Feature Extractions for Small Sample Size Classification Problem
Much research has shown that the definitions of within-class and between-class scatter matrices and regularization technique are the key components to design a feature extraction for small sample size problems. In this paper, we illustrate the importance of another key component, eigenvalue decompos...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 45; no. 3; pp. 756 - 764 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.03.2007
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Much research has shown that the definitions of within-class and between-class scatter matrices and regularization technique are the key components to design a feature extraction for small sample size problems. In this paper, we illustrate the importance of another key component, eigenvalue decomposition method, and a new regularization technique was proposed. In the hyperspectral image experiment, the effects of these three components of feature extraction are explored on ill-posed and poorly posed conditions. The experimental results show that different regularization methods need to cooperate with different eigenvalue decomposition methods to reach the best performance, the proposed regularization method, regularized feature extraction (RFE) outperform others, and the best feature extraction for a small sample size classification problem is RFE with nonparametric weighted scatter matrices |
---|---|
AbstractList | Much research has shown that the definitions of within-class and between-class scatter matrices and regularization technique are the key components to design a feature extraction for small sample size problems. In this paper, we illustrate the importance of another key component, eigenvalue decomposition method, and a new regularization technique was proposed. In the hyperspectral image experiment, the effects of these three components of feature extraction are explored on ill-posed and poorly posed conditions. The experimental results show that different regularization methods need to cooperate with different eigenvalue decomposition methods to reach the best performance, the proposed regularization method, regularized feature extraction (RFE) outperform others, and the best feature extraction for a small sample size classification problem is RFE with nonparametric weighted scatter matrices |
Author | Kuang-Yu Chang Bor-Chen Kuo |
Author_xml | – sequence: 1 givenname: Bor-Chen surname: KUO fullname: KUO, Bor-Chen organization: Graduate School of Educational Measurement and Statistics, National Taichung University, Taichung, Taiwan, Province of China – sequence: 2 givenname: Kuang-Yu surname: CHANG fullname: CHANG, Kuang-Yu organization: Graduate School of Educational Measurement and Statistics, National Taichung University, Taichung, Taiwan, Province of China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18555264$$DView record in Pascal Francis |
BookMark | eNpdkE1Lw0AQhhepYK3eBS9BELyk7nd2b0ppq1BQTD0vk-0GUjZJ3U1B_fUmtCh4msM87zvDc45GTds4hK4InhKC9f16-ZZPKcZyqpTAGT9BYyKESrHkfITGmGiZUqXpGTqPcYsx4YJkY_SwcNDtg0vmn10A21VtE5OyDUleg_dJDvXOuySvvl0y8xBjVVYWBip5DW3hXX2BTkvw0V0e5wS9L-br2VO6elk-zx5XqWWCdakCbQsLGdAyY5QUVmMmSAkbjvVGq0JSorWwoCUHyZVlWgpNNpSyYqOBAZugu0PvLrQfexc7U1fROu-hce0-GiIzwrBgVPbozT902-5D039nlOzv9RZ0D-EDZEMbY3Cl2YWqhvBlCDaDUTMYNYNRczDaR26PvRAt-DJAY6v4l1NCCCoH7vrAVc653zUnWGLB2Q92Yn8P |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1109_LGRS_2015_2393438 crossref_primary_10_1007_s11760_019_01604_3 crossref_primary_10_1186_s12938_021_00968_3 crossref_primary_10_1016_j_jmsy_2024_04_021 crossref_primary_10_15701_kcgs_2019_25_1_23 crossref_primary_10_1109_TGRS_2010_2096822 crossref_primary_10_1186_1687_6180_2012_92 crossref_primary_10_1109_JPROC_2012_2229082 crossref_primary_10_1016_j_knosys_2010_07_003 crossref_primary_10_1109_TNNLS_2013_2275003 crossref_primary_10_1016_j_matpr_2021_01_045 crossref_primary_10_1109_ACCESS_2018_2877730 crossref_primary_10_1109_TNNLS_2012_2216545 crossref_primary_10_1109_JSTARS_2014_2362116 crossref_primary_10_3390_math11071716 crossref_primary_10_3390_s19030479 crossref_primary_10_1109_JSTARS_2013_2262926 crossref_primary_10_1109_JSTARS_2015_2458855 crossref_primary_10_1109_TGRS_2009_2036842 crossref_primary_10_1109_TGRS_2011_2162246 crossref_primary_10_1016_j_patrec_2016_05_013 crossref_primary_10_1109_LGRS_2022_3206917 crossref_primary_10_1016_j_patcog_2017_07_033 crossref_primary_10_1109_LGRS_2015_2419629 crossref_primary_10_1080_01431160802695691 crossref_primary_10_1016_j_engappai_2013_07_010 crossref_primary_10_1016_j_patcog_2008_04_013 crossref_primary_10_1109_TGRS_2009_2031812 crossref_primary_10_1109_TGRS_2010_2043533 crossref_primary_10_1016_j_cmpb_2016_04_001 crossref_primary_10_3390_rs10060817 crossref_primary_10_1109_TGRS_2017_2754648 |
Cites_doi | 10.1109/IGARSS.2004.1368633 10.2307/2289860 10.1109/TGRS.2004.825578 10.1007/978-1-4757-2440-0 10.1137/0710024 10.1007/978-3-662-07418-3 10.1109/TPAMI.2004.37 10.1109/TPAMI.2004.46 10.1109/TCSVT.2003.821984 10.1016/S0031-3203(99)00139-9 10.1016/S0262-8856(97)00070-X 10.1002/0471723800 10.6028/NIST.IR.4880 10.1109/WARSD.2003.1295214 10.1109/36.774728 10.1109/34.206958 10.1109/TGRS.2002.1006358 10.1016/S0031-3203(00)00162-X 10.1137/1.9780898719604 10.1109/TIT.1968.1054102 10.1109/34.506799 10.1016/0031-3203(91)90074-F |
ContentType | Journal Article |
Copyright | 2007 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007 |
Copyright_xml | – notice: 2007 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007 |
DBID | 97E RIA RIE IQODW AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 7SP F28 |
DOI | 10.1109/TGRS.2006.885074 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Pascal-Francis CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics Physics |
EISSN | 1558-0644 |
EndPage | 764 |
ExternalDocumentID | 2333805661 10_1109_TGRS_2006_885074 18555264 4106054 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAYOK ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS RXW TAE TN5 VH1 XFK Y6R 08R IQODW TAF AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 7SP F28 |
ID | FETCH-LOGICAL-c353t-8a9cbca7a2f7321bc90351fad409d98b621995ca964a648c396591d223bd9a3a3 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Fri Aug 16 21:58:29 EDT 2024 Thu Oct 10 19:48:48 EDT 2024 Fri Aug 23 03:22:04 EDT 2024 Sun Oct 22 16:09:05 EDT 2023 Wed Jun 26 19:26:42 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | algorithms eigenvalues discriminant analysis small sample size classification feature extraction regularization Eigenvalue decomposition accuracy genetic algorithm (GA) classification |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-8a9cbca7a2f7321bc90351fad409d98b621995ca964a648c396591d223bd9a3a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 864098929 |
PQPubID | 85465 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1671305326 pascalfrancis_primary_18555264 ieee_primary_4106054 proquest_journals_864098929 crossref_primary_10_1109_TGRS_2006_885074 |
PublicationCentury | 2000 |
PublicationDate | 2007-03-01 |
PublicationDateYYYYMMDD | 2007-03-01 |
PublicationDate_xml | – month: 03 year: 2007 text: 2007-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2007 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 holland (ref30) 1994 ref12 fukunaga (ref6) 1990 ref15 ref14 ref11 ref10 chang (ref5) 2004 ref2 ref1 ref19 ref18 thomaz (ref16) 2004 ref24 ref23 ref25 kuo (ref8) 2002; 40 ref20 ref22 ref21 ref27 ref29 ref7 ref9 hsu (ref4) 2004 watkins (ref26) 1999 houck (ref28) 1995 ref3 golub (ref17) 1996 |
References_xml | – ident: ref13 doi: 10.1109/IGARSS.2004.1368633 – year: 1994 ident: ref30 publication-title: Adaptation in Natural and Artificial Systems contributor: fullname: holland – year: 1995 ident: ref28 publication-title: A genetic algorithm for function optimization A MATLAB implementation contributor: fullname: houck – ident: ref3 doi: 10.2307/2289860 – year: 1999 ident: ref26 publication-title: Infinite Eigenvalues and the QZ Algorithm contributor: fullname: watkins – ident: ref7 doi: 10.1109/TGRS.2004.825578 – ident: ref10 doi: 10.1007/978-1-4757-2440-0 – ident: ref14 doi: 10.1137/0710024 – year: 2004 ident: ref16 publication-title: A maximum uncertainty LDA-based approach for limited sample size problems-with application to face recognition contributor: fullname: thomaz – ident: ref29 doi: 10.1007/978-3-662-07418-3 – year: 2004 ident: ref5 publication-title: LIBSVM A library for support vector machines contributor: fullname: chang – ident: ref24 doi: 10.1109/TPAMI.2004.37 – ident: ref25 doi: 10.1109/TPAMI.2004.46 – ident: ref15 doi: 10.1109/TCSVT.2003.821984 – ident: ref22 doi: 10.1016/S0031-3203(99)00139-9 – ident: ref20 doi: 10.1016/S0262-8856(97)00070-X – year: 1996 ident: ref17 publication-title: Matrix Computations contributor: fullname: golub – ident: ref1 doi: 10.1002/0471723800 – ident: ref21 doi: 10.6028/NIST.IR.4880 – ident: ref2 doi: 10.1109/WARSD.2003.1295214 – ident: ref27 doi: 10.1109/36.774728 – ident: ref11 doi: 10.1109/34.206958 – volume: 40 start-page: 814 year: 2002 ident: ref8 article-title: A covariance estimator for small sample size classification problems and its application to feature extraction publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2002.1006358 contributor: fullname: kuo – ident: ref19 doi: 10.1016/S0031-3203(00)00162-X – ident: ref23 doi: 10.1137/1.9780898719604 – year: 1990 ident: ref6 publication-title: Introduction to statistical pattern recognition contributor: fullname: fukunaga – ident: ref12 doi: 10.1109/TIT.1968.1054102 – ident: ref9 doi: 10.1109/34.506799 – ident: ref18 doi: 10.1016/0031-3203(91)90074-F – year: 2004 ident: ref4 publication-title: A Practical Guide to Support Vector Classification contributor: fullname: hsu |
SSID | ssj0014517 |
Score | 2.1410193 |
Snippet | Much research has shown that the definitions of within-class and between-class scatter matrices and regularization technique are the key components to design a... |
SourceID | proquest crossref pascalfrancis ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 756 |
SubjectTerms | Applied geophysics Classification Covariance matrix Data preprocessing Decomposition Earth sciences Earth, ocean, space Eigenvalue decomposition Eigenvalues Eigenvalues and eigenfunctions Exact sciences and technology Feature extraction genetic algorithm (GA) Genetic algorithms Hyperspectral imaging Internal geophysics Linear discriminant analysis Mathematical analysis Matrices Matrix decomposition Regularization Scatter Scattering small sample size classification Statistics |
Title | Feature Extractions for Small Sample Size Classification Problem |
URI | https://ieeexplore.ieee.org/document/4106054 https://www.proquest.com/docview/864098929 https://search.proquest.com/docview/1671305326 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB2ShUJ6SNJNS5xNggq9FOqNPyRZuqWUpKGQUroJ5Gb0ZShNdsPahpBfH43k3TZtD70ZbGRLI1lv9GbmAbyrjHBG50i6c5rSpqCp8jttynmlmOUVNcHSl1_5xTX9csNuNuDDOhfGOReCz9wULwOXbxemx6OyE-r9Fw8xNmGzkjLmaq0ZA8ryITWap96JKFaUZCZPrj5_n0XaQQgPf-izLShoqmBEpGr9oDRRzeKvH3PYbc534HL1nTHI5Oe07_TUPP5RwvF_O7IL2wPsJB_jPHkFG24-hpe_FSMcw4sQDGraMWwhAo0FnPfgFEFiv3Tk7KFbxiyIlnikS2Z36vaWzBSWFyazH4-OBIFNDD0K1ibfolbNa7g-P7v6dJEOsgupKVnZpUJJo42qVNFUZZFrI5FtbJT1rqCVQvMC07qNkpwqToUpsSZhbj3O0FaqUpVvYDRfzN0-EFY5VjBt80p7t6WRWjRG0TKzzmaNpFkC71eWqO9jdY06eCWZrNFqKJLJ62i1BPZwINfPDWOYwPEz0_1qRzDGPNxLYLKyZT2sz7YW3HfGzxKZwNv1Xb-wkC1Rc7fo2zrn3n9H3Qx-8O83T2ArHvRiQNohjLpl7448Qun0cZiaTzNO4Vc |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkQ58NgWNRSKkbggkW0etmPfQKhlgW6F2K3UW-RXJETZrTaJhPrr8djZhQIHbpESObHHjr_xNzMfwMvKCGd0jqQ7pyltCpoqv9OmnFeKWV5REyw9PeOTc_rxgl1swetNLoxzLgSfuTFeBi7fLk2PR2VH1PsvHmLcgtseVwses7U2nAFl-ZAczVPvRhRrUjKTR_P3X2aReBDCAyB6YxMKqioYE6laPyxN1LP469cc9puTBzBdf2kMM_k27js9Ntd_FHH83648hPsD8CRv40x5BFtuMYJ7v5UjHMGdEA5q2hHsIAaNJZx34Q3CxH7lyPGPbhXzIFrisS6ZfVeXl2SmsMAwmX29diRIbGLwUbA3-RzVavbg_OR4_m6SDsILqSlZ2aVCSaONqlTRVGWRayORb2yU9c6glULzAhO7jZKcKk6FKbEqYW490tBWqlKVj2F7sVy4fSCscqxg2uaV9o5LI7VojKJlZp3NGkmzBF6tLVFfxfoadfBLMlmj1VAmk9fRagns4kBunhvGMIHDG6b71Y5gjHnAl8DB2pb1sELbWnDfGT9LZAIvNnf90kK-RC3csm_rnHsPHpUz-JN_v_k53J3Mp6f16YezTwewE499MTztKWx3q94983il04dhmv4EISLkog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Extractions+for+Small+Sample+Size+Classification+Problem&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Bor-Chen+Kuo&rft.au=Kuang-Yu+Chang&rft.date=2007-03-01&rft.pub=IEEE&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=45&rft.issue=3&rft.spage=756&rft.epage=764&rft_id=info:doi/10.1109%2FTGRS.2006.885074&rft.externalDocID=4106054 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |