Feature Extractions for Small Sample Size Classification Problem

Much research has shown that the definitions of within-class and between-class scatter matrices and regularization technique are the key components to design a feature extraction for small sample size problems. In this paper, we illustrate the importance of another key component, eigenvalue decompos...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 45; no. 3; pp. 756 - 764
Main Authors KUO, Bor-Chen, CHANG, Kuang-Yu
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Much research has shown that the definitions of within-class and between-class scatter matrices and regularization technique are the key components to design a feature extraction for small sample size problems. In this paper, we illustrate the importance of another key component, eigenvalue decomposition method, and a new regularization technique was proposed. In the hyperspectral image experiment, the effects of these three components of feature extraction are explored on ill-posed and poorly posed conditions. The experimental results show that different regularization methods need to cooperate with different eigenvalue decomposition methods to reach the best performance, the proposed regularization method, regularized feature extraction (RFE) outperform others, and the best feature extraction for a small sample size classification problem is RFE with nonparametric weighted scatter matrices
AbstractList Much research has shown that the definitions of within-class and between-class scatter matrices and regularization technique are the key components to design a feature extraction for small sample size problems. In this paper, we illustrate the importance of another key component, eigenvalue decomposition method, and a new regularization technique was proposed. In the hyperspectral image experiment, the effects of these three components of feature extraction are explored on ill-posed and poorly posed conditions. The experimental results show that different regularization methods need to cooperate with different eigenvalue decomposition methods to reach the best performance, the proposed regularization method, regularized feature extraction (RFE) outperform others, and the best feature extraction for a small sample size classification problem is RFE with nonparametric weighted scatter matrices
Author Kuang-Yu Chang
Bor-Chen Kuo
Author_xml – sequence: 1
  givenname: Bor-Chen
  surname: KUO
  fullname: KUO, Bor-Chen
  organization: Graduate School of Educational Measurement and Statistics, National Taichung University, Taichung, Taiwan, Province of China
– sequence: 2
  givenname: Kuang-Yu
  surname: CHANG
  fullname: CHANG, Kuang-Yu
  organization: Graduate School of Educational Measurement and Statistics, National Taichung University, Taichung, Taiwan, Province of China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18555264$$DView record in Pascal Francis
BookMark eNpdkE1Lw0AQhhepYK3eBS9BELyk7nd2b0ppq1BQTD0vk-0GUjZJ3U1B_fUmtCh4msM87zvDc45GTds4hK4InhKC9f16-ZZPKcZyqpTAGT9BYyKESrHkfITGmGiZUqXpGTqPcYsx4YJkY_SwcNDtg0vmn10A21VtE5OyDUleg_dJDvXOuySvvl0y8xBjVVYWBip5DW3hXX2BTkvw0V0e5wS9L-br2VO6elk-zx5XqWWCdakCbQsLGdAyY5QUVmMmSAkbjvVGq0JSorWwoCUHyZVlWgpNNpSyYqOBAZugu0PvLrQfexc7U1fROu-hce0-GiIzwrBgVPbozT902-5D039nlOzv9RZ0D-EDZEMbY3Cl2YWqhvBlCDaDUTMYNYNRczDaR26PvRAt-DJAY6v4l1NCCCoH7vrAVc653zUnWGLB2Q92Yn8P
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_LGRS_2015_2393438
crossref_primary_10_1007_s11760_019_01604_3
crossref_primary_10_1186_s12938_021_00968_3
crossref_primary_10_1016_j_jmsy_2024_04_021
crossref_primary_10_15701_kcgs_2019_25_1_23
crossref_primary_10_1109_TGRS_2010_2096822
crossref_primary_10_1186_1687_6180_2012_92
crossref_primary_10_1109_JPROC_2012_2229082
crossref_primary_10_1016_j_knosys_2010_07_003
crossref_primary_10_1109_TNNLS_2013_2275003
crossref_primary_10_1016_j_matpr_2021_01_045
crossref_primary_10_1109_ACCESS_2018_2877730
crossref_primary_10_1109_TNNLS_2012_2216545
crossref_primary_10_1109_JSTARS_2014_2362116
crossref_primary_10_3390_math11071716
crossref_primary_10_3390_s19030479
crossref_primary_10_1109_JSTARS_2013_2262926
crossref_primary_10_1109_JSTARS_2015_2458855
crossref_primary_10_1109_TGRS_2009_2036842
crossref_primary_10_1109_TGRS_2011_2162246
crossref_primary_10_1016_j_patrec_2016_05_013
crossref_primary_10_1109_LGRS_2022_3206917
crossref_primary_10_1016_j_patcog_2017_07_033
crossref_primary_10_1109_LGRS_2015_2419629
crossref_primary_10_1080_01431160802695691
crossref_primary_10_1016_j_engappai_2013_07_010
crossref_primary_10_1016_j_patcog_2008_04_013
crossref_primary_10_1109_TGRS_2009_2031812
crossref_primary_10_1109_TGRS_2010_2043533
crossref_primary_10_1016_j_cmpb_2016_04_001
crossref_primary_10_3390_rs10060817
crossref_primary_10_1109_TGRS_2017_2754648
Cites_doi 10.1109/IGARSS.2004.1368633
10.2307/2289860
10.1109/TGRS.2004.825578
10.1007/978-1-4757-2440-0
10.1137/0710024
10.1007/978-3-662-07418-3
10.1109/TPAMI.2004.37
10.1109/TPAMI.2004.46
10.1109/TCSVT.2003.821984
10.1016/S0031-3203(99)00139-9
10.1016/S0262-8856(97)00070-X
10.1002/0471723800
10.6028/NIST.IR.4880
10.1109/WARSD.2003.1295214
10.1109/36.774728
10.1109/34.206958
10.1109/TGRS.2002.1006358
10.1016/S0031-3203(00)00162-X
10.1137/1.9780898719604
10.1109/TIT.1968.1054102
10.1109/34.506799
10.1016/0031-3203(91)90074-F
ContentType Journal Article
Copyright 2007 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
Copyright_xml – notice: 2007 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
DBID 97E
RIA
RIE
IQODW
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
7SP
F28
DOI 10.1109/TGRS.2006.885074
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE
Pascal-Francis
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Physics
EISSN 1558-0644
EndPage 764
ExternalDocumentID 2333805661
10_1109_TGRS_2006_885074
18555264
4106054
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAYOK
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
RXW
TAE
TN5
VH1
XFK
Y6R
08R
IQODW
TAF
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
7SP
F28
ID FETCH-LOGICAL-c353t-8a9cbca7a2f7321bc90351fad409d98b621995ca964a648c396591d223bd9a3a3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Fri Aug 16 21:58:29 EDT 2024
Thu Oct 10 19:48:48 EDT 2024
Fri Aug 23 03:22:04 EDT 2024
Sun Oct 22 16:09:05 EDT 2023
Wed Jun 26 19:26:42 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords algorithms
eigenvalues
discriminant analysis
small sample size classification
feature extraction
regularization
Eigenvalue decomposition
accuracy
genetic algorithm (GA)
classification
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-8a9cbca7a2f7321bc90351fad409d98b621995ca964a648c396591d223bd9a3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 864098929
PQPubID 85465
PageCount 9
ParticipantIDs proquest_miscellaneous_1671305326
pascalfrancis_primary_18555264
ieee_primary_4106054
proquest_journals_864098929
crossref_primary_10_1109_TGRS_2006_885074
PublicationCentury 2000
PublicationDate 2007-03-01
PublicationDateYYYYMMDD 2007-03-01
PublicationDate_xml – month: 03
  year: 2007
  text: 2007-03-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2007
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
holland (ref30) 1994
ref12
fukunaga (ref6) 1990
ref15
ref14
ref11
ref10
chang (ref5) 2004
ref2
ref1
ref19
ref18
thomaz (ref16) 2004
ref24
ref23
ref25
kuo (ref8) 2002; 40
ref20
ref22
ref21
ref27
ref29
ref7
ref9
hsu (ref4) 2004
watkins (ref26) 1999
houck (ref28) 1995
ref3
golub (ref17) 1996
References_xml – ident: ref13
  doi: 10.1109/IGARSS.2004.1368633
– year: 1994
  ident: ref30
  publication-title: Adaptation in Natural and Artificial Systems
  contributor:
    fullname: holland
– year: 1995
  ident: ref28
  publication-title: A genetic algorithm for function optimization A MATLAB implementation
  contributor:
    fullname: houck
– ident: ref3
  doi: 10.2307/2289860
– year: 1999
  ident: ref26
  publication-title: Infinite Eigenvalues and the QZ Algorithm
  contributor:
    fullname: watkins
– ident: ref7
  doi: 10.1109/TGRS.2004.825578
– ident: ref10
  doi: 10.1007/978-1-4757-2440-0
– ident: ref14
  doi: 10.1137/0710024
– year: 2004
  ident: ref16
  publication-title: A maximum uncertainty LDA-based approach for limited sample size problems-with application to face recognition
  contributor:
    fullname: thomaz
– ident: ref29
  doi: 10.1007/978-3-662-07418-3
– year: 2004
  ident: ref5
  publication-title: LIBSVM A library for support vector machines
  contributor:
    fullname: chang
– ident: ref24
  doi: 10.1109/TPAMI.2004.37
– ident: ref25
  doi: 10.1109/TPAMI.2004.46
– ident: ref15
  doi: 10.1109/TCSVT.2003.821984
– ident: ref22
  doi: 10.1016/S0031-3203(99)00139-9
– ident: ref20
  doi: 10.1016/S0262-8856(97)00070-X
– year: 1996
  ident: ref17
  publication-title: Matrix Computations
  contributor:
    fullname: golub
– ident: ref1
  doi: 10.1002/0471723800
– ident: ref21
  doi: 10.6028/NIST.IR.4880
– ident: ref2
  doi: 10.1109/WARSD.2003.1295214
– ident: ref27
  doi: 10.1109/36.774728
– ident: ref11
  doi: 10.1109/34.206958
– volume: 40
  start-page: 814
  year: 2002
  ident: ref8
  article-title: A covariance estimator for small sample size classification problems and its application to feature extraction
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2002.1006358
  contributor:
    fullname: kuo
– ident: ref19
  doi: 10.1016/S0031-3203(00)00162-X
– ident: ref23
  doi: 10.1137/1.9780898719604
– year: 1990
  ident: ref6
  publication-title: Introduction to statistical pattern recognition
  contributor:
    fullname: fukunaga
– ident: ref12
  doi: 10.1109/TIT.1968.1054102
– ident: ref9
  doi: 10.1109/34.506799
– ident: ref18
  doi: 10.1016/0031-3203(91)90074-F
– year: 2004
  ident: ref4
  publication-title: A Practical Guide to Support Vector Classification
  contributor:
    fullname: hsu
SSID ssj0014517
Score 2.1410193
Snippet Much research has shown that the definitions of within-class and between-class scatter matrices and regularization technique are the key components to design a...
SourceID proquest
crossref
pascalfrancis
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 756
SubjectTerms Applied geophysics
Classification
Covariance matrix
Data preprocessing
Decomposition
Earth sciences
Earth, ocean, space
Eigenvalue decomposition
Eigenvalues
Eigenvalues and eigenfunctions
Exact sciences and technology
Feature extraction
genetic algorithm (GA)
Genetic algorithms
Hyperspectral imaging
Internal geophysics
Linear discriminant analysis
Mathematical analysis
Matrices
Matrix decomposition
Regularization
Scatter
Scattering
small sample size classification
Statistics
Title Feature Extractions for Small Sample Size Classification Problem
URI https://ieeexplore.ieee.org/document/4106054
https://www.proquest.com/docview/864098929
https://search.proquest.com/docview/1671305326
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB2ShUJ6SNJNS5xNggq9FOqNPyRZuqWUpKGQUroJ5Gb0ZShNdsPahpBfH43k3TZtD70ZbGRLI1lv9GbmAbyrjHBG50i6c5rSpqCp8jttynmlmOUVNcHSl1_5xTX9csNuNuDDOhfGOReCz9wULwOXbxemx6OyE-r9Fw8xNmGzkjLmaq0ZA8ryITWap96JKFaUZCZPrj5_n0XaQQgPf-izLShoqmBEpGr9oDRRzeKvH3PYbc534HL1nTHI5Oe07_TUPP5RwvF_O7IL2wPsJB_jPHkFG24-hpe_FSMcw4sQDGraMWwhAo0FnPfgFEFiv3Tk7KFbxiyIlnikS2Z36vaWzBSWFyazH4-OBIFNDD0K1ibfolbNa7g-P7v6dJEOsgupKVnZpUJJo42qVNFUZZFrI5FtbJT1rqCVQvMC07qNkpwqToUpsSZhbj3O0FaqUpVvYDRfzN0-EFY5VjBt80p7t6WRWjRG0TKzzmaNpFkC71eWqO9jdY06eCWZrNFqKJLJ62i1BPZwINfPDWOYwPEz0_1qRzDGPNxLYLKyZT2sz7YW3HfGzxKZwNv1Xb-wkC1Rc7fo2zrn3n9H3Qx-8O83T2ArHvRiQNohjLpl7448Qun0cZiaTzNO4Vc
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkQ58NgWNRSKkbggkW0etmPfQKhlgW6F2K3UW-RXJETZrTaJhPrr8djZhQIHbpESObHHjr_xNzMfwMvKCGd0jqQ7pyltCpoqv9OmnFeKWV5REyw9PeOTc_rxgl1swetNLoxzLgSfuTFeBi7fLk2PR2VH1PsvHmLcgtseVwses7U2nAFl-ZAczVPvRhRrUjKTR_P3X2aReBDCAyB6YxMKqioYE6laPyxN1LP469cc9puTBzBdf2kMM_k27js9Ntd_FHH83648hPsD8CRv40x5BFtuMYJ7v5UjHMGdEA5q2hHsIAaNJZx34Q3CxH7lyPGPbhXzIFrisS6ZfVeXl2SmsMAwmX29diRIbGLwUbA3-RzVavbg_OR4_m6SDsILqSlZ2aVCSaONqlTRVGWRayORb2yU9c6glULzAhO7jZKcKk6FKbEqYW490tBWqlKVj2F7sVy4fSCscqxg2uaV9o5LI7VojKJlZp3NGkmzBF6tLVFfxfoadfBLMlmj1VAmk9fRagns4kBunhvGMIHDG6b71Y5gjHnAl8DB2pb1sELbWnDfGT9LZAIvNnf90kK-RC3csm_rnHsPHpUz-JN_v_k53J3Mp6f16YezTwewE499MTztKWx3q94983il04dhmv4EISLkog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Extractions+for+Small+Sample+Size+Classification+Problem&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Bor-Chen+Kuo&rft.au=Kuang-Yu+Chang&rft.date=2007-03-01&rft.pub=IEEE&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=45&rft.issue=3&rft.spage=756&rft.epage=764&rft_id=info:doi/10.1109%2FTGRS.2006.885074&rft.externalDocID=4106054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon