Prediction of Deformation in Expansive Soil Landslides Utilizing AMPSO-SVR
A non-periodic “step-like” variation in displacement is exhibited owing to the repeated instability of expansive soil landslides. The dynamic prediction of deformation for expansive soil landslides has become a challenge in actual engineering for disaster prevention and mitigation. Therefore, a supp...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 16; no. 13; p. 2483 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A non-periodic “step-like” variation in displacement is exhibited owing to the repeated instability of expansive soil landslides. The dynamic prediction of deformation for expansive soil landslides has become a challenge in actual engineering for disaster prevention and mitigation. Therefore, a support vector regression prediction (AMPSO-SVR) model based on adaptive mutation particle swarm optimization is proposed, which is suitable for small samples of data. The shallow displacement is decomposed into a trend component and fluctuating component by complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and the trend displacement is predicted by cubic polynomial fitting. In this paper, the multiple disaster-inducing factors of expansive landslides and the time hysteresis effect between displacement and its influencing factors are fully considered, and the crucial influencing factors which eliminate the time lag effect and state factors are input into the model to predict the fluctuation displacement. Monitoring data in the Ningming area of China are employed for the model validation. The predicted results are compared with those of the traditional model. The model performance is evaluated through indicators such as the goodness of fit R2 and root mean square error RMSE. The results show that the prediction RMSE of the new model for three monitoring stations can reach 2.6 mm, 6.6 mm, and 2.5 mm, respectively. Compared with the common Grid search support vector regression (GS-SVR), the Particle Swarm Optimization Support Vector Regression (PSO-SVR) and Back Propagation Neural Network (BPNN) models have average improvements of 58.4%, 38.1%, and 25.2% respectively. The goodness of fit R2 is superior to 0.99 in the new method. The proposed model can effectively be deployed for the displacement prediction of non-periodic stepped expansive soil landslides driven by multiple influencing factors, providing a reference idea for the deformation prediction of expansive soil landslides. |
---|---|
AbstractList | A non-periodic “step-like” variation in displacement is exhibited owing to the repeated instability of expansive soil landslides. The dynamic prediction of deformation for expansive soil landslides has become a challenge in actual engineering for disaster prevention and mitigation. Therefore, a support vector regression prediction (AMPSO-SVR) model based on adaptive mutation particle swarm optimization is proposed, which is suitable for small samples of data. The shallow displacement is decomposed into a trend component and fluctuating component by complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and the trend displacement is predicted by cubic polynomial fitting. In this paper, the multiple disaster-inducing factors of expansive landslides and the time hysteresis effect between displacement and its influencing factors are fully considered, and the crucial influencing factors which eliminate the time lag effect and state factors are input into the model to predict the fluctuation displacement. Monitoring data in the Ningming area of China are employed for the model validation. The predicted results are compared with those of the traditional model. The model performance is evaluated through indicators such as the goodness of fit R² and root mean square error RMSE. The results show that the prediction RMSE of the new model for three monitoring stations can reach 2.6 mm, 6.6 mm, and 2.5 mm, respectively. Compared with the common Grid search support vector regression (GS-SVR), the Particle Swarm Optimization Support Vector Regression (PSO-SVR) and Back Propagation Neural Network (BPNN) models have average improvements of 58.4%, 38.1%, and 25.2% respectively. The goodness of fit R² is superior to 0.99 in the new method. The proposed model can effectively be deployed for the displacement prediction of non-periodic stepped expansive soil landslides driven by multiple influencing factors, providing a reference idea for the deformation prediction of expansive soil landslides. A non-periodic “step-like” variation in displacement is exhibited owing to the repeated instability of expansive soil landslides. The dynamic prediction of deformation for expansive soil landslides has become a challenge in actual engineering for disaster prevention and mitigation. Therefore, a support vector regression prediction (AMPSO-SVR) model based on adaptive mutation particle swarm optimization is proposed, which is suitable for small samples of data. The shallow displacement is decomposed into a trend component and fluctuating component by complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and the trend displacement is predicted by cubic polynomial fitting. In this paper, the multiple disaster-inducing factors of expansive landslides and the time hysteresis effect between displacement and its influencing factors are fully considered, and the crucial influencing factors which eliminate the time lag effect and state factors are input into the model to predict the fluctuation displacement. Monitoring data in the Ningming area of China are employed for the model validation. The predicted results are compared with those of the traditional model. The model performance is evaluated through indicators such as the goodness of fit R2 and root mean square error RMSE. The results show that the prediction RMSE of the new model for three monitoring stations can reach 2.6 mm, 6.6 mm, and 2.5 mm, respectively. Compared with the common Grid search support vector regression (GS-SVR), the Particle Swarm Optimization Support Vector Regression (PSO-SVR) and Back Propagation Neural Network (BPNN) models have average improvements of 58.4%, 38.1%, and 25.2% respectively. The goodness of fit R2 is superior to 0.99 in the new method. The proposed model can effectively be deployed for the displacement prediction of non-periodic stepped expansive soil landslides driven by multiple influencing factors, providing a reference idea for the deformation prediction of expansive soil landslides. |
Author | Huang, Guanwen Zhang, Yongzhi Chen, Zi |
Author_xml | – sequence: 1 givenname: Zi surname: Chen fullname: Chen, Zi – sequence: 2 givenname: Guanwen surname: Huang fullname: Huang, Guanwen – sequence: 3 givenname: Yongzhi surname: Zhang fullname: Zhang, Yongzhi |
BookMark | eNpdUctKAzEUDaKgVjd-wYAbEUaT3GRmshTfUmmx6jakeUjKNKnJVNSvd7Si4t3cB4dz7uFso_UQg0Voj-AjAIGPUyYVAcoaWENbFNe0ZFTQ9T_zJtrNeYb7AiACsy10M07WeN35GIroijPrYpqrr9WH4vx1oUL2L7aYRN8WQxVMbr2xuXjofOvffXgqTm7Hk1E5ebzbQRtOtdnufvcBerg4vz-9Koejy-vTk2GpgUNXNsA4ACa8YQCKUYOVBk1rTRrKG-dIVTFcAa9rYyyrBSgCujINU0RNhXUwQNcrXhPVTC6Sn6v0JqPy8usQ05NUqfO6tdJQ4QivehXHGOFa1DCdGsDOcQbU2J7rYMW1SPF5aXMn5z5r27Yq2LjMEgiHije0Ej10_x90Fpcp9E4l4FpQXje9sQE6XKF0ijkn634eJFh-piR_U4IPB5mCpg |
Cites_doi | 10.1007/s12303-017-0034-4 10.1109/ICSAI.2012.6223534 10.1007/s10346-018-01127-x 10.1109/TSMCB.2008.2011816 10.1007/978-981-13-5871-5_2 10.1007/s10346-019-01273-w 10.1016/j.catena.2018.03.003 10.1061/(ASCE)0899-1561(2009)21:4(154) 10.1186/s43020-023-00119-0 10.1007/s11069-021-04655-3 10.1007/s00521-020-05529-8 10.3390/rs15112772 10.1016/S0013-7952(02)00145-X 10.1023/B:STCO.0000035301.49549.88 10.3390/rs14143384 10.3390/app12178392 10.3390/w15071328 10.1007/s10346-017-0883-y 10.1016/S0013-7952(01)00136-3 10.1186/s43020-023-00095-5 10.1016/j.enggeo.2022.106544 10.1016/j.coldregions.2021.103393 |
ContentType | Journal Article |
Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs16132483 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_d29f156a42f4415c973bbd30ff5432de 10_3390_rs16132483 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c353t-8345330158433a42d0ac3c27c18258ff1664063577dde4793a13c6d84a1ab9ef3 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:31:33 EDT 2025 Fri Jul 11 15:27:12 EDT 2025 Fri Jul 25 11:44:59 EDT 2025 Tue Jul 01 01:33:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-8345330158433a42d0ac3c27c18258ff1664063577dde4793a13c6d84a1ab9ef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/3079257845?pq-origsite=%requestingapplication% |
PQID | 3079257845 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d29f156a42f4415c973bbd30ff5432de proquest_miscellaneous_3153658269 proquest_journals_3079257845 crossref_primary_10_3390_rs16132483 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Huang (ref_6) 2023; 4 Shi (ref_11) 2002; 67 Miao (ref_16) 2017; 15 Chen (ref_5) 2022; 53 Miao (ref_9) 2002; 65 XU (ref_25) 2022; 53 Wang (ref_8) 2023; 4 Liu (ref_27) 2022; 53 Huang (ref_4) 2023; 52 ref_13 Ma (ref_10) 2020; 33 Huang (ref_22) 2018; 165 Li (ref_28) 2021; 192 Wang (ref_29) 2022; 298 Chae (ref_19) 2017; 21 Cervantes (ref_18) 2009; 39 Yang (ref_15) 2019; 16 Zheng (ref_1) 2009; 21 ref_24 Dai (ref_12) 2017; 2017 Zhang (ref_7) 2022; 51 Zhang (ref_26) 2021; 107 Gao (ref_14) 2020; 17 ref_21 ref_20 Smola (ref_23) 2004; 14 ref_3 ref_2 Xun (ref_17) 2011; 39 |
References_xml | – volume: 53 start-page: 1 year: 2022 ident: ref_25 article-title: Failure characteristics of expansive soil slope and standardization of slope slide prevention by geotextile bag publication-title: J. Cent. South Univ. (Sci. Technol.) – volume: 21 start-page: 1033 year: 2017 ident: ref_19 article-title: Landslide prediction, monitoring and early warning: A concise review of state-of-the-art publication-title: Geosci. J. doi: 10.1007/s12303-017-0034-4 – ident: ref_21 doi: 10.1109/ICSAI.2012.6223534 – volume: 16 start-page: 677 year: 2019 ident: ref_15 article-title: Time series analysis and long short-term memory neural network to predict landslide displacement publication-title: Landslides doi: 10.1007/s10346-018-01127-x – volume: 39 start-page: 1082 year: 2009 ident: ref_18 article-title: AMPSO: A New Particle Swarm Method for Nearest Neighborhood Classification publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.) doi: 10.1109/TSMCB.2008.2011816 – ident: ref_2 doi: 10.1007/978-981-13-5871-5_2 – volume: 2017 start-page: 196 year: 2017 ident: ref_12 article-title: The failure characteristics and evolution mechanism of the expansive soil trench slope publication-title: 2nd Pan-Am. Conf. Unsaturated Soils – volume: 51 start-page: 1985 year: 2022 ident: ref_7 article-title: Review of GNSS Landslide Monitoring and Early Warning publication-title: Acta Geod. Et Cartogr. Sin. – volume: 17 start-page: 111 year: 2020 ident: ref_14 article-title: Landslide prediction based on a combination intelligent method using the GM and ENN: Two cases of landslides in the Three Gorges Reservoir, China publication-title: Landslides doi: 10.1007/s10346-019-01273-w – volume: 165 start-page: 520 year: 2018 ident: ref_22 article-title: Review on landslide susceptibility mapping using support vector machines publication-title: Catena doi: 10.1016/j.catena.2018.03.003 – volume: 53 start-page: 150 year: 2022 ident: ref_27 article-title: Research on lateral earth pressure acting on retaining wall in expansive soil considering influences of environmental load publication-title: J. Cent. South Univ. (Sci. Technol.) – volume: 21 start-page: 154 year: 2009 ident: ref_1 article-title: Highway Subgrade Construction in Expansive Soil Areas publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)0899-1561(2009)21:4(154) – volume: 4 start-page: 29 year: 2023 ident: ref_8 article-title: Stability analysis of reference station and compensation for monitoring stations in GNSS landslide monitoring publication-title: Satell. Navig. doi: 10.1186/s43020-023-00119-0 – volume: 107 start-page: 1709 year: 2021 ident: ref_26 article-title: Research on displacement prediction of step-type landslide under the influence of various environmental factors based on intelligent WCA-ELM in the Three Gorges Reservoir area publication-title: Nat. Hazards doi: 10.1007/s11069-021-04655-3 – volume: 33 start-page: 10881 year: 2020 ident: ref_10 article-title: Machine learning for landslides prevention: A survey publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05529-8 – ident: ref_3 doi: 10.3390/rs15112772 – volume: 67 start-page: 63 year: 2002 ident: ref_11 article-title: Engineering geological characteristics of expansive soils in China publication-title: Eng. Geol. doi: 10.1016/S0013-7952(02)00145-X – volume: 52 start-page: 1873 year: 2023 ident: ref_4 article-title: GNSS Real-time Monitoring Technology of Expansive Soil Slope publication-title: Acta Geod. Cartogr. Sin. – volume: 14 start-page: 199 year: 2004 ident: ref_23 article-title: A tutorial on support vector regression publication-title: Stat. Comput. doi: 10.1023/B:STCO.0000035301.49549.88 – ident: ref_13 doi: 10.3390/rs14143384 – ident: ref_24 doi: 10.3390/app12178392 – volume: 53 start-page: 214 year: 2022 ident: ref_5 article-title: Monitoring of expansive soil slope based on low-cost millimeter-sized GNSS technology publication-title: J. Cent. South Univ. (Sci. Technol.) – ident: ref_20 doi: 10.3390/w15071328 – volume: 15 start-page: 475 year: 2017 ident: ref_16 article-title: Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model publication-title: Landslides doi: 10.1007/s10346-017-0883-y – volume: 65 start-page: 261 year: 2002 ident: ref_9 article-title: Research of soil–water characteristics and shear strength features of Nanyang expansive soil publication-title: Eng. Geol. doi: 10.1016/S0013-7952(01)00136-3 – volume: 4 start-page: 5 year: 2023 ident: ref_6 article-title: GNSS techniques for real-time monitoring of landslides: A review publication-title: Satell. Navig. doi: 10.1186/s43020-023-00095-5 – volume: 39 start-page: 0797 year: 2011 ident: ref_17 article-title: Prediction Study of Wind Energy Based on AMPSO Algorithm and Neural Network publication-title: East China Electric Power. – volume: 298 start-page: 106544 year: 2022 ident: ref_29 article-title: A comparative study of different machine learning methods for reservoir landslide displacement prediction publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2022.106544 – volume: 192 start-page: 103393 year: 2021 ident: ref_28 article-title: The deformation and microstructure characteristics of expansive soil under freeze–thaw cycles with loads publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2021.103393 |
SSID | ssj0000331904 |
Score | 2.3693137 |
Snippet | A non-periodic “step-like” variation in displacement is exhibited owing to the repeated instability of expansive soil landslides. The dynamic prediction of... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 2483 |
SubjectTerms | Adaptive sampling Algorithms AMPSO-SVR Artificial neural networks Back propagation networks China Deformation Deformation effects disaster preparedness Disasters displacement prediction Emergency preparedness expansive soil landslide Expansive soils Goodness of fit hysteresis Landslides Landslides & mudslides Machine learning model validation Monitoring multiple driven factors mutation Neural networks Noise prediction Optimization Particle swarm optimization Polynomials prediction Predictions Regression analysis Regression models Root-mean-square errors soil Support vector machines Time lag time lag effect Time series Trends |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QF7ggnmK8FATXirZOX8cBmybEY2IMcavSNBaVpg5tQwJ-PXbbDRAHLlybHKLPyefPjWMLcWo8N4u1j46yyneUhsyJ0XpOlCAaazRnXnC2xW3YG6qrp-DpW6svzgmrywPXwJ3lfoIUY2jlI0t_k0SQZTm4iIECP7fMvuTzvgVTFQcDbS1X1fVIgeL6s8mUtA2phxh-eKCqUP8vHq6cS3ddrDWqULbr1WyIJVtuipWmQfnz-5a46k_4RoVRlGOUl3bx6FAWpey80ZnmPHQ5GBcjec3Pd0dFbqdyOCtGxQe5J9m-6Q_unMHj_bYYdjsPFz2naYPgGAhg5sSgOAXUI6kAQDjkrjZg_MhQaBDEiF4YkleGIIqIqvhHmfbAhHmstKezxCLsiOVyXNpdIVXooRvkxmDAdWVQu5pCkhAjICGBudsSJ3No0pe62kVKUQIDmH4B2BLnjNpiBleorj6Q3dLGbulfdmuJgznmaXNspikRTsIcooKWOF4M04bnWwxd2vErzSGOJtnkh8nef6xjX6z6pFPqDNwDsTybvNpD0hmz7KjaUp-3h87G priority: 102 providerName: Directory of Open Access Journals |
Title | Prediction of Deformation in Expansive Soil Landslides Utilizing AMPSO-SVR |
URI | https://www.proquest.com/docview/3079257845 https://www.proquest.com/docview/3153658269 https://doaj.org/article/d29f156a42f4415c973bbd30ff5432de |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_W5GF7Gftk2bqgsb2K2pZsy08jbZOW0nahWUbfjKyPzhDsLklh21_fO0dJGYW92sKY0-nu97s73QF8MXFUKZ14Lp1MuNSi4sq7mOeF98YZTZUXVG1xmZ3O5dl1eh0CbqtQVrm1iZ2htq2hGPkB6mJB6iXTr7e_OE2NouxqGKGxB300wUr1oH84vpxe7aIskUAVi-SmL6lAfn-wXCHGQRShxD-eqGvY_8ged05m8gKeB3TIRpvtfAlPXPMKnoZB5T__vIaz6ZIyKyRN1np27HaXD1ndsPFvPNtUj85mbb1g53SNd1Fbt2Lzdb2o_6KbYqOL6ewbn_24egPzyfj70SkP4xC4EalYcyUklYLGCBmE0DKxkTbCJLlBipAq7-MsQ-8s0jxHk0UBMx0Lk1kldayrwnnxFnpN27h3wGQW-yi1xviU-st4HWmkJpnPBQIKb6MBfN6KprzddL0okS2QAMsHAQ7gkKS2W0GdqrsH7fKmDIpf2qTwyBHxfz1RN1PkoqqsiLxPpUisG8D-VuZlOD6r8mGzB_Bp9xoVn7IZunHtHa5BW43wKcmK9___xAd4liAS2dTY7kNvvbxzHxFJrKsh7KnJyRD6o-OL89kwKM-w4-X3TAnLFw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxFMsLWAEHK0mtvM6IFRol227LRXbRb0Fxw8aaZWU3a2g_Ch-IzN5bIWQuPUaJ1Y0_mbmG3s8A_DahEGRauG5ckpwpWXBU-9CnmTeG2c0ZV5QtsVxPJqqg7PobA1-93dhKK2yt4mNoba1oT3ybcRiRvBS0buL75y6RtHpat9Co4XFobv6gSHb4u3-Lq7vGyGGe6cfRrzrKsCNjOSSp1JRRmWInldKrYQNtJFGJAaZdpR6H8YxOjkZJQlqPu076VCa2KZKh7rInJc47y24jR9nFOylw4-rPZ1AIqAD1VZBxfFge75ARoWcJZV_-b2mPcA_1r9xacN7cLfjomynBc99WHPVA9jo2qKfXz2Eg5M5nePQ2rHas123uurIyort_URLQtnvbFKXMzamS8Oz0roFmy7LWfkLnSLbOTqZfOKTL58fwfRGxPQY1qu6ck-AqTj0QWSN8RFVs_E60BgIxT6RSF-8DQbwqhdNftHW2MgxNiEB5tcCHMB7ktrqDaqL3Tyo59_yTs1yKzKPESn-r6dA0WSJLAorA-8jJYV1A9jqZZ53yrrIr6E1gJerYVQzOjvRlasv8R30DEjWRJw9_f8UL2BjdHo0zsf7x4ebcEcgB2qze7dgfTm_dM-QwyyL5w1wGHy9aaT-AZNVAQ8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuFU-RUmARcLRi765fhwq1JFFfhKghqDez3ge1FNklSdWWn8avYya2UyEkbr3a1sqa_Xa-b3ZnZwDe68DPE8WdJ63knlQi9xJnAy9OndNWK8q8oGyLUXQwlUdn4dkG_G7vwlBaZesTV47aVJr2yHuIxZTgJcOea9Iixv3hx4ufHnWQopPWtp1GDZFje3OF4dti97CPc_2B8-Hg66cDr-kw4GkRiqWXCEnZlQGysBBKcuMrLTSPNaruMHEuiCIkPBHGMXoB2oNSgdCRSaQKVJ5aJ3Dce7AZU1TUgc39wWh8ut7h8QXC25d1TVQhUr83X6C-QgWTiL9YcNUs4B8uWBHc8BFsNcqU7dVQegwbtnwCD5om6ec3T-FoPKdTHZpJVjnWt-uLj6wo2eAa_QrlwrNJVczYCV0hnhXGLth0WcyKX0iRbO_zePLFm3w7fQbTOzHUc-iUVWlfAJNR4PzQaO1Cqm3jlK8wLIpcLFDMOON34V1rmuyirriRYaRCBsxuDdiFfbLa-guqkr16UM1_ZM2iywxPHcan-L-OwkadxiLPjfCdC6XgxnZhp7V51izdRXYLtC68Xb_GRUcnKaq01SV-gzyB0o1H6fb_h3gD9xGl2cnh6PglPOQoiOpU3x3oLOeX9hUKmmX-ukEOg-93DdY_3bsGoQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Deformation+in+Expansive+Soil+Landslides+Utilizing+AMPSO-SVR&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Zi&rft.au=Huang%2C+Guanwen&rft.au=Zhang%2C+Yongzhi&rft.date=2024-07-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=16&rft.issue=13&rft_id=info:doi/10.3390%2Frs16132483&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |