Prediction of Deformation in Expansive Soil Landslides Utilizing AMPSO-SVR

A non-periodic “step-like” variation in displacement is exhibited owing to the repeated instability of expansive soil landslides. The dynamic prediction of deformation for expansive soil landslides has become a challenge in actual engineering for disaster prevention and mitigation. Therefore, a supp...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 16; no. 13; p. 2483
Main Authors Chen, Zi, Huang, Guanwen, Zhang, Yongzhi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A non-periodic “step-like” variation in displacement is exhibited owing to the repeated instability of expansive soil landslides. The dynamic prediction of deformation for expansive soil landslides has become a challenge in actual engineering for disaster prevention and mitigation. Therefore, a support vector regression prediction (AMPSO-SVR) model based on adaptive mutation particle swarm optimization is proposed, which is suitable for small samples of data. The shallow displacement is decomposed into a trend component and fluctuating component by complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and the trend displacement is predicted by cubic polynomial fitting. In this paper, the multiple disaster-inducing factors of expansive landslides and the time hysteresis effect between displacement and its influencing factors are fully considered, and the crucial influencing factors which eliminate the time lag effect and state factors are input into the model to predict the fluctuation displacement. Monitoring data in the Ningming area of China are employed for the model validation. The predicted results are compared with those of the traditional model. The model performance is evaluated through indicators such as the goodness of fit R2 and root mean square error RMSE. The results show that the prediction RMSE of the new model for three monitoring stations can reach 2.6 mm, 6.6 mm, and 2.5 mm, respectively. Compared with the common Grid search support vector regression (GS-SVR), the Particle Swarm Optimization Support Vector Regression (PSO-SVR) and Back Propagation Neural Network (BPNN) models have average improvements of 58.4%, 38.1%, and 25.2% respectively. The goodness of fit R2 is superior to 0.99 in the new method. The proposed model can effectively be deployed for the displacement prediction of non-periodic stepped expansive soil landslides driven by multiple influencing factors, providing a reference idea for the deformation prediction of expansive soil landslides.
AbstractList A non-periodic “step-like” variation in displacement is exhibited owing to the repeated instability of expansive soil landslides. The dynamic prediction of deformation for expansive soil landslides has become a challenge in actual engineering for disaster prevention and mitigation. Therefore, a support vector regression prediction (AMPSO-SVR) model based on adaptive mutation particle swarm optimization is proposed, which is suitable for small samples of data. The shallow displacement is decomposed into a trend component and fluctuating component by complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and the trend displacement is predicted by cubic polynomial fitting. In this paper, the multiple disaster-inducing factors of expansive landslides and the time hysteresis effect between displacement and its influencing factors are fully considered, and the crucial influencing factors which eliminate the time lag effect and state factors are input into the model to predict the fluctuation displacement. Monitoring data in the Ningming area of China are employed for the model validation. The predicted results are compared with those of the traditional model. The model performance is evaluated through indicators such as the goodness of fit R² and root mean square error RMSE. The results show that the prediction RMSE of the new model for three monitoring stations can reach 2.6 mm, 6.6 mm, and 2.5 mm, respectively. Compared with the common Grid search support vector regression (GS-SVR), the Particle Swarm Optimization Support Vector Regression (PSO-SVR) and Back Propagation Neural Network (BPNN) models have average improvements of 58.4%, 38.1%, and 25.2% respectively. The goodness of fit R² is superior to 0.99 in the new method. The proposed model can effectively be deployed for the displacement prediction of non-periodic stepped expansive soil landslides driven by multiple influencing factors, providing a reference idea for the deformation prediction of expansive soil landslides.
A non-periodic “step-like” variation in displacement is exhibited owing to the repeated instability of expansive soil landslides. The dynamic prediction of deformation for expansive soil landslides has become a challenge in actual engineering for disaster prevention and mitigation. Therefore, a support vector regression prediction (AMPSO-SVR) model based on adaptive mutation particle swarm optimization is proposed, which is suitable for small samples of data. The shallow displacement is decomposed into a trend component and fluctuating component by complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and the trend displacement is predicted by cubic polynomial fitting. In this paper, the multiple disaster-inducing factors of expansive landslides and the time hysteresis effect between displacement and its influencing factors are fully considered, and the crucial influencing factors which eliminate the time lag effect and state factors are input into the model to predict the fluctuation displacement. Monitoring data in the Ningming area of China are employed for the model validation. The predicted results are compared with those of the traditional model. The model performance is evaluated through indicators such as the goodness of fit R2 and root mean square error RMSE. The results show that the prediction RMSE of the new model for three monitoring stations can reach 2.6 mm, 6.6 mm, and 2.5 mm, respectively. Compared with the common Grid search support vector regression (GS-SVR), the Particle Swarm Optimization Support Vector Regression (PSO-SVR) and Back Propagation Neural Network (BPNN) models have average improvements of 58.4%, 38.1%, and 25.2% respectively. The goodness of fit R2 is superior to 0.99 in the new method. The proposed model can effectively be deployed for the displacement prediction of non-periodic stepped expansive soil landslides driven by multiple influencing factors, providing a reference idea for the deformation prediction of expansive soil landslides.
Author Huang, Guanwen
Zhang, Yongzhi
Chen, Zi
Author_xml – sequence: 1
  givenname: Zi
  surname: Chen
  fullname: Chen, Zi
– sequence: 2
  givenname: Guanwen
  surname: Huang
  fullname: Huang, Guanwen
– sequence: 3
  givenname: Yongzhi
  surname: Zhang
  fullname: Zhang, Yongzhi
BookMark eNpdUctKAzEUDaKgVjd-wYAbEUaT3GRmshTfUmmx6jakeUjKNKnJVNSvd7Si4t3cB4dz7uFso_UQg0Voj-AjAIGPUyYVAcoaWENbFNe0ZFTQ9T_zJtrNeYb7AiACsy10M07WeN35GIroijPrYpqrr9WH4vx1oUL2L7aYRN8WQxVMbr2xuXjofOvffXgqTm7Hk1E5ebzbQRtOtdnufvcBerg4vz-9Koejy-vTk2GpgUNXNsA4ACa8YQCKUYOVBk1rTRrKG-dIVTFcAa9rYyyrBSgCujINU0RNhXUwQNcrXhPVTC6Sn6v0JqPy8usQ05NUqfO6tdJQ4QivehXHGOFa1DCdGsDOcQbU2J7rYMW1SPF5aXMn5z5r27Yq2LjMEgiHije0Ej10_x90Fpcp9E4l4FpQXje9sQE6XKF0ijkn634eJFh-piR_U4IPB5mCpg
Cites_doi 10.1007/s12303-017-0034-4
10.1109/ICSAI.2012.6223534
10.1007/s10346-018-01127-x
10.1109/TSMCB.2008.2011816
10.1007/978-981-13-5871-5_2
10.1007/s10346-019-01273-w
10.1016/j.catena.2018.03.003
10.1061/(ASCE)0899-1561(2009)21:4(154)
10.1186/s43020-023-00119-0
10.1007/s11069-021-04655-3
10.1007/s00521-020-05529-8
10.3390/rs15112772
10.1016/S0013-7952(02)00145-X
10.1023/B:STCO.0000035301.49549.88
10.3390/rs14143384
10.3390/app12178392
10.3390/w15071328
10.1007/s10346-017-0883-y
10.1016/S0013-7952(01)00136-3
10.1186/s43020-023-00095-5
10.1016/j.enggeo.2022.106544
10.1016/j.coldregions.2021.103393
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs16132483
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_d29f156a42f4415c973bbd30ff5432de
10_3390_rs16132483
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c353t-8345330158433a42d0ac3c27c18258ff1664063577dde4793a13c6d84a1ab9ef3
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:31:33 EDT 2025
Fri Jul 11 15:27:12 EDT 2025
Fri Jul 25 11:44:59 EDT 2025
Tue Jul 01 01:33:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-8345330158433a42d0ac3c27c18258ff1664063577dde4793a13c6d84a1ab9ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3079257845?pq-origsite=%requestingapplication%
PQID 3079257845
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_d29f156a42f4415c973bbd30ff5432de
proquest_miscellaneous_3153658269
proquest_journals_3079257845
crossref_primary_10_3390_rs16132483
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Huang (ref_6) 2023; 4
Shi (ref_11) 2002; 67
Miao (ref_16) 2017; 15
Chen (ref_5) 2022; 53
Miao (ref_9) 2002; 65
XU (ref_25) 2022; 53
Wang (ref_8) 2023; 4
Liu (ref_27) 2022; 53
Huang (ref_4) 2023; 52
ref_13
Ma (ref_10) 2020; 33
Huang (ref_22) 2018; 165
Li (ref_28) 2021; 192
Wang (ref_29) 2022; 298
Chae (ref_19) 2017; 21
Cervantes (ref_18) 2009; 39
Yang (ref_15) 2019; 16
Zheng (ref_1) 2009; 21
ref_24
Dai (ref_12) 2017; 2017
Zhang (ref_7) 2022; 51
Zhang (ref_26) 2021; 107
Gao (ref_14) 2020; 17
ref_21
ref_20
Smola (ref_23) 2004; 14
ref_3
ref_2
Xun (ref_17) 2011; 39
References_xml – volume: 53
  start-page: 1
  year: 2022
  ident: ref_25
  article-title: Failure characteristics of expansive soil slope and standardization of slope slide prevention by geotextile bag
  publication-title: J. Cent. South Univ. (Sci. Technol.)
– volume: 21
  start-page: 1033
  year: 2017
  ident: ref_19
  article-title: Landslide prediction, monitoring and early warning: A concise review of state-of-the-art
  publication-title: Geosci. J.
  doi: 10.1007/s12303-017-0034-4
– ident: ref_21
  doi: 10.1109/ICSAI.2012.6223534
– volume: 16
  start-page: 677
  year: 2019
  ident: ref_15
  article-title: Time series analysis and long short-term memory neural network to predict landslide displacement
  publication-title: Landslides
  doi: 10.1007/s10346-018-01127-x
– volume: 39
  start-page: 1082
  year: 2009
  ident: ref_18
  article-title: AMPSO: A New Particle Swarm Method for Nearest Neighborhood Classification
  publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.)
  doi: 10.1109/TSMCB.2008.2011816
– ident: ref_2
  doi: 10.1007/978-981-13-5871-5_2
– volume: 2017
  start-page: 196
  year: 2017
  ident: ref_12
  article-title: The failure characteristics and evolution mechanism of the expansive soil trench slope
  publication-title: 2nd Pan-Am. Conf. Unsaturated Soils
– volume: 51
  start-page: 1985
  year: 2022
  ident: ref_7
  article-title: Review of GNSS Landslide Monitoring and Early Warning
  publication-title: Acta Geod. Et Cartogr. Sin.
– volume: 17
  start-page: 111
  year: 2020
  ident: ref_14
  article-title: Landslide prediction based on a combination intelligent method using the GM and ENN: Two cases of landslides in the Three Gorges Reservoir, China
  publication-title: Landslides
  doi: 10.1007/s10346-019-01273-w
– volume: 165
  start-page: 520
  year: 2018
  ident: ref_22
  article-title: Review on landslide susceptibility mapping using support vector machines
  publication-title: Catena
  doi: 10.1016/j.catena.2018.03.003
– volume: 53
  start-page: 150
  year: 2022
  ident: ref_27
  article-title: Research on lateral earth pressure acting on retaining wall in expansive soil considering influences of environmental load
  publication-title: J. Cent. South Univ. (Sci. Technol.)
– volume: 21
  start-page: 154
  year: 2009
  ident: ref_1
  article-title: Highway Subgrade Construction in Expansive Soil Areas
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)0899-1561(2009)21:4(154)
– volume: 4
  start-page: 29
  year: 2023
  ident: ref_8
  article-title: Stability analysis of reference station and compensation for monitoring stations in GNSS landslide monitoring
  publication-title: Satell. Navig.
  doi: 10.1186/s43020-023-00119-0
– volume: 107
  start-page: 1709
  year: 2021
  ident: ref_26
  article-title: Research on displacement prediction of step-type landslide under the influence of various environmental factors based on intelligent WCA-ELM in the Three Gorges Reservoir area
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-021-04655-3
– volume: 33
  start-page: 10881
  year: 2020
  ident: ref_10
  article-title: Machine learning for landslides prevention: A survey
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05529-8
– ident: ref_3
  doi: 10.3390/rs15112772
– volume: 67
  start-page: 63
  year: 2002
  ident: ref_11
  article-title: Engineering geological characteristics of expansive soils in China
  publication-title: Eng. Geol.
  doi: 10.1016/S0013-7952(02)00145-X
– volume: 52
  start-page: 1873
  year: 2023
  ident: ref_4
  article-title: GNSS Real-time Monitoring Technology of Expansive Soil Slope
  publication-title: Acta Geod. Cartogr. Sin.
– volume: 14
  start-page: 199
  year: 2004
  ident: ref_23
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– ident: ref_13
  doi: 10.3390/rs14143384
– ident: ref_24
  doi: 10.3390/app12178392
– volume: 53
  start-page: 214
  year: 2022
  ident: ref_5
  article-title: Monitoring of expansive soil slope based on low-cost millimeter-sized GNSS technology
  publication-title: J. Cent. South Univ. (Sci. Technol.)
– ident: ref_20
  doi: 10.3390/w15071328
– volume: 15
  start-page: 475
  year: 2017
  ident: ref_16
  article-title: Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model
  publication-title: Landslides
  doi: 10.1007/s10346-017-0883-y
– volume: 65
  start-page: 261
  year: 2002
  ident: ref_9
  article-title: Research of soil–water characteristics and shear strength features of Nanyang expansive soil
  publication-title: Eng. Geol.
  doi: 10.1016/S0013-7952(01)00136-3
– volume: 4
  start-page: 5
  year: 2023
  ident: ref_6
  article-title: GNSS techniques for real-time monitoring of landslides: A review
  publication-title: Satell. Navig.
  doi: 10.1186/s43020-023-00095-5
– volume: 39
  start-page: 0797
  year: 2011
  ident: ref_17
  article-title: Prediction Study of Wind Energy Based on AMPSO Algorithm and Neural Network
  publication-title: East China Electric Power.
– volume: 298
  start-page: 106544
  year: 2022
  ident: ref_29
  article-title: A comparative study of different machine learning methods for reservoir landslide displacement prediction
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2022.106544
– volume: 192
  start-page: 103393
  year: 2021
  ident: ref_28
  article-title: The deformation and microstructure characteristics of expansive soil under freeze–thaw cycles with loads
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2021.103393
SSID ssj0000331904
Score 2.3693137
Snippet A non-periodic “step-like” variation in displacement is exhibited owing to the repeated instability of expansive soil landslides. The dynamic prediction of...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 2483
SubjectTerms Adaptive sampling
Algorithms
AMPSO-SVR
Artificial neural networks
Back propagation networks
China
Deformation
Deformation effects
disaster preparedness
Disasters
displacement prediction
Emergency preparedness
expansive soil landslide
Expansive soils
Goodness of fit
hysteresis
Landslides
Landslides & mudslides
Machine learning
model validation
Monitoring
multiple driven factors
mutation
Neural networks
Noise prediction
Optimization
Particle swarm optimization
Polynomials
prediction
Predictions
Regression analysis
Regression models
Root-mean-square errors
soil
Support vector machines
Time lag
time lag effect
Time series
Trends
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QF7ggnmK8FATXirZOX8cBmybEY2IMcavSNBaVpg5tQwJ-PXbbDRAHLlybHKLPyefPjWMLcWo8N4u1j46yyneUhsyJ0XpOlCAaazRnXnC2xW3YG6qrp-DpW6svzgmrywPXwJ3lfoIUY2jlI0t_k0SQZTm4iIECP7fMvuTzvgVTFQcDbS1X1fVIgeL6s8mUtA2phxh-eKCqUP8vHq6cS3ddrDWqULbr1WyIJVtuipWmQfnz-5a46k_4RoVRlGOUl3bx6FAWpey80ZnmPHQ5GBcjec3Pd0dFbqdyOCtGxQe5J9m-6Q_unMHj_bYYdjsPFz2naYPgGAhg5sSgOAXUI6kAQDjkrjZg_MhQaBDEiF4YkleGIIqIqvhHmfbAhHmstKezxCLsiOVyXNpdIVXooRvkxmDAdWVQu5pCkhAjICGBudsSJ3No0pe62kVKUQIDmH4B2BLnjNpiBleorj6Q3dLGbulfdmuJgznmaXNspikRTsIcooKWOF4M04bnWwxd2vErzSGOJtnkh8nef6xjX6z6pFPqDNwDsTybvNpD0hmz7KjaUp-3h87G
  priority: 102
  providerName: Directory of Open Access Journals
Title Prediction of Deformation in Expansive Soil Landslides Utilizing AMPSO-SVR
URI https://www.proquest.com/docview/3079257845
https://www.proquest.com/docview/3153658269
https://doaj.org/article/d29f156a42f4415c973bbd30ff5432de
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_W5GF7Gftk2bqgsb2K2pZsy08jbZOW0nahWUbfjKyPzhDsLklh21_fO0dJGYW92sKY0-nu97s73QF8MXFUKZ14Lp1MuNSi4sq7mOeF98YZTZUXVG1xmZ3O5dl1eh0CbqtQVrm1iZ2htq2hGPkB6mJB6iXTr7e_OE2NouxqGKGxB300wUr1oH84vpxe7aIskUAVi-SmL6lAfn-wXCHGQRShxD-eqGvY_8ged05m8gKeB3TIRpvtfAlPXPMKnoZB5T__vIaz6ZIyKyRN1np27HaXD1ndsPFvPNtUj85mbb1g53SNd1Fbt2Lzdb2o_6KbYqOL6ewbn_24egPzyfj70SkP4xC4EalYcyUklYLGCBmE0DKxkTbCJLlBipAq7-MsQ-8s0jxHk0UBMx0Lk1kldayrwnnxFnpN27h3wGQW-yi1xviU-st4HWmkJpnPBQIKb6MBfN6KprzddL0okS2QAMsHAQ7gkKS2W0GdqrsH7fKmDIpf2qTwyBHxfz1RN1PkoqqsiLxPpUisG8D-VuZlOD6r8mGzB_Bp9xoVn7IZunHtHa5BW43wKcmK9___xAd4liAS2dTY7kNvvbxzHxFJrKsh7KnJyRD6o-OL89kwKM-w4-X3TAnLFw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxFMsLWAEHK0mtvM6IFRol227LRXbRb0Fxw8aaZWU3a2g_Ch-IzN5bIWQuPUaJ1Y0_mbmG3s8A_DahEGRauG5ckpwpWXBU-9CnmTeG2c0ZV5QtsVxPJqqg7PobA1-93dhKK2yt4mNoba1oT3ybcRiRvBS0buL75y6RtHpat9Co4XFobv6gSHb4u3-Lq7vGyGGe6cfRrzrKsCNjOSSp1JRRmWInldKrYQNtJFGJAaZdpR6H8YxOjkZJQlqPu076VCa2KZKh7rInJc47y24jR9nFOylw4-rPZ1AIqAD1VZBxfFge75ARoWcJZV_-b2mPcA_1r9xacN7cLfjomynBc99WHPVA9jo2qKfXz2Eg5M5nePQ2rHas123uurIyort_URLQtnvbFKXMzamS8Oz0roFmy7LWfkLnSLbOTqZfOKTL58fwfRGxPQY1qu6ck-AqTj0QWSN8RFVs_E60BgIxT6RSF-8DQbwqhdNftHW2MgxNiEB5tcCHMB7ktrqDaqL3Tyo59_yTs1yKzKPESn-r6dA0WSJLAorA-8jJYV1A9jqZZ53yrrIr6E1gJerYVQzOjvRlasv8R30DEjWRJw9_f8UL2BjdHo0zsf7x4ebcEcgB2qze7dgfTm_dM-QwyyL5w1wGHy9aaT-AZNVAQ8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuFU-RUmARcLRi765fhwq1JFFfhKghqDez3ge1FNklSdWWn8avYya2UyEkbr3a1sqa_Xa-b3ZnZwDe68DPE8WdJ63knlQi9xJnAy9OndNWK8q8oGyLUXQwlUdn4dkG_G7vwlBaZesTV47aVJr2yHuIxZTgJcOea9Iixv3hx4ufHnWQopPWtp1GDZFje3OF4dti97CPc_2B8-Hg66cDr-kw4GkRiqWXCEnZlQGysBBKcuMrLTSPNaruMHEuiCIkPBHGMXoB2oNSgdCRSaQKVJ5aJ3Dce7AZU1TUgc39wWh8ut7h8QXC25d1TVQhUr83X6C-QgWTiL9YcNUs4B8uWBHc8BFsNcqU7dVQegwbtnwCD5om6ec3T-FoPKdTHZpJVjnWt-uLj6wo2eAa_QrlwrNJVczYCV0hnhXGLth0WcyKX0iRbO_zePLFm3w7fQbTOzHUc-iUVWlfAJNR4PzQaO1Cqm3jlK8wLIpcLFDMOON34V1rmuyirriRYaRCBsxuDdiFfbLa-guqkr16UM1_ZM2iywxPHcan-L-OwkadxiLPjfCdC6XgxnZhp7V51izdRXYLtC68Xb_GRUcnKaq01SV-gzyB0o1H6fb_h3gD9xGl2cnh6PglPOQoiOpU3x3oLOeX9hUKmmX-ukEOg-93DdY_3bsGoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Deformation+in+Expansive+Soil+Landslides+Utilizing+AMPSO-SVR&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Zi&rft.au=Huang%2C+Guanwen&rft.au=Zhang%2C+Yongzhi&rft.date=2024-07-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=16&rft.issue=13&rft_id=info:doi/10.3390%2Frs16132483&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon