A review: preparation of functionalised materials/smart fabrics that exhibit thermochromic behaviour
Colour transformation in thermochromic materials comes true with the phase transition in the material due to temperature amendments. By using thermochromic fibres, capsules, colourants, or pigments that respond to heat stimulus in various materials, these materials can be given functional properties...
Saved in:
Published in | Materials science and technology Vol. 37; no. 18; pp. 1405 - 1420 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London, England
Taylor & Francis
12.12.2021
SAGE Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Colour transformation in thermochromic materials comes true with the phase transition in the material due to temperature amendments. By using thermochromic fibres, capsules, colourants, or pigments that respond to heat stimulus in various materials, these materials can be given functional properties. Studies on this subject in the literature are generally related to gaining thermochromic properties to main materials such as glass, concrete, asphalt, and wood. Other studies are related to the production of fibres with thermochromic properties and their use in thermochromic fabrics. In this study, the methods used in the progress of intelligent materials were examined. Developments in innovative, smart thermochromic fabrics were assessed. Despite technological progress, much research still needs to be done on textile practices of thermochromic materials. |
---|---|
AbstractList | Colour transformation in thermochromic materials comes true with the phase transition in the material due to temperature amendments. By using thermochromic fibres, capsules, colourants, or pigments that respond to heat stimulus in various materials, these materials can be given functional properties. Studies on this subject in the literature are generally related to gaining thermochromic properties to main materials such as glass, concrete, asphalt, and wood. Other studies are related to the production of fibres with thermochromic properties and their use in thermochromic fabrics. In this study, the methods used in the progress of intelligent materials were examined. Developments in innovative, smart thermochromic fabrics were assessed. Despite technological progress, much research still needs to be done on textile practices of thermochromic materials. |
Author | Kurama, S. Civan, L. |
Author_xml | – sequence: 1 givenname: L. orcidid: 0000-0001-6749-7398 surname: Civan fullname: Civan, L. email: Francis@manchester.ac.uk organization: Eskisehir Technical University – sequence: 2 givenname: S. orcidid: 0000-0002-7554-3419 surname: Kurama fullname: Kurama, S. organization: Eskisehir Technical University |
BookMark | eNqFkMlOHDEQhi0EUoblESL5BRps92I3uQQhEpCQcoGzVWOXGaPu9qhstrdPdwYuHMKlFqm-kv7vkO1PaULGvktxKoURZ0J1Wpi6O1VCybnI1jTNHltJ3dSVMo3eZ6vlplqOvrHDnB-FEF3f9yvmLzjhc8SXc74l3AJBiWniKfDwNLllhiFm9HyEghRhyGd5BCo8wJqiy7xsoHB83cR1LPOCNCa3oTRGx9e4geeYnuiYHYSZxJP3fsTuf13dXV5Xt39-31xe3FaubutSGaW8lgG86nvjXR1c30JvUGmQQRunW-2d9MGFoNAI13Wu09IjNNA7xFAfsR-7v45SzoTBulj-BSoEcbBS2EWY_RBmF2H2XdhMt5_oLcU569uXnNpxGR7QPs55Z2f5S-jnDopTSDTCS6LB2wJvQ6JAMLmYbf3_F38BLAOWJQ |
CitedBy_id | crossref_primary_10_1016_j_optmat_2023_113999 crossref_primary_10_3390_pr12050862 crossref_primary_10_1016_j_porgcoat_2023_108194 crossref_primary_10_1039_D3RA06432H crossref_primary_10_1002_cnl2_38 crossref_primary_10_1016_j_solener_2024_112694 crossref_primary_10_1016_j_molliq_2023_123574 crossref_primary_10_1007_s13762_025_06374_9 crossref_primary_10_1016_j_jallcom_2023_172013 crossref_primary_10_2298_TSCI2303811L crossref_primary_10_1021_acs_macromol_3c00956 crossref_primary_10_1016_j_solmat_2023_112322 crossref_primary_10_1515_epoly_2024_0009 crossref_primary_10_1016_j_clema_2024_100273 crossref_primary_10_1016_j_nanoen_2024_109308 crossref_primary_10_1016_j_polymertesting_2024_108404 crossref_primary_10_1021_acs_energyfuels_2c01389 crossref_primary_10_1111_cote_12808 crossref_primary_10_1016_j_colsurfa_2023_132333 crossref_primary_10_1021_acsami_4c19009 crossref_primary_10_1016_j_pmatsci_2024_101374 crossref_primary_10_1016_j_cscm_2024_e03391 crossref_primary_10_1515_epoly_2023_0189 crossref_primary_10_1007_s11998_024_00982_9 crossref_primary_10_1016_j_polymer_2025_128225 crossref_primary_10_1364_OE_477910 crossref_primary_10_1080_00405167_2023_2250651 crossref_primary_10_1007_s12221_024_00764_5 crossref_primary_10_1016_j_matchemphys_2025_130691 crossref_primary_10_1002_est2_70110 crossref_primary_10_1016_j_surfin_2024_104660 crossref_primary_10_1002_pc_28656 |
Cites_doi | 10.1016/j.apsusc.2016.10.084 10.1016/j.tsf.2019.137443 10.1016/j.matdes.2018.03.030 10.1016/S0378-5173(02)00141-2 10.1016/j.apenergy.2018.02.150 10.1016/j.apenergy.2017.12.006 10.1016/j.jclepro.2020.123675 10.1016/j.apenergy.2020.114729 10.1016/j.cej.2021.129553 10.1080/00405000.2014.965501 10.1016/j.tca.2009.09.005 10.1061/(ASCE)MT.1943-5533.0003489 10.1016/j.spmi.2019.106335 10.1016/j.conbuildmat.2019.05.046 10.1038/s41598-018-23789-2 10.1007/s10570-020-02992-3 10.1002/adfm.202100686 10.1016/j.solmat.2013.03.043 10.1007/s10853-013-7287-8 10.1016/j.solmat.2020.110845 10.1016/j.eurpolymj.2019.05.050 10.1016/j.solener.2016.10.011 10.1016/j.applthermaleng.2007.08.009 10.1080/00405000.2020.1785071 10.1016/j.dyepig.2015.04.022 10.1016/j.cej.2020.127276 10.1016/j.ceramint.2019.12.042 10.1002/app.48815 10.1080/10601325.2019.1590125 10.1002/app.49724 10.3390/coatings10121258 10.1016/j.tsf.2018.06.057 10.1061/(ASCE)MT.1943-5533.0001132 10.1016/j.ceramint.2020.05.042 10.1016/j.matpr.2021.05.523 10.1016/j.cemconres.2008.10.006 10.1155/2020/9490873 10.1016/j.ceramint.2021.02.133 10.1016/j.porgcoat.2019.06.010 10.1016/j.conbuildmat.2020.119038 10.1021/acsami.9b21330 10.1016/j.jobe.2020.102019 10.1016/j.cej.2019.123376 10.1007/978-981-15-3669-4_11 10.1021/acsami.1c02656 10.1177/0040517520910217 10.1080/00405000.2019.1684224 10.1016/j.matpr.2020.10.480 10.1016/j.porgcoat.2019.02.022 10.1039/c3tc30094c 10.1002/app.29384 10.1533/9780857097613.1.3 10.1016/j.jmst.2018.05.016 10.1002/er.6287 10.1016/j.porgcoat.2020.105697 10.1016/j.apenergy.2019.114147 10.1016/j.surfcoat.2021.127654 10.1080/00405000.2013.814753 10.1016/j.cemconcomp.2017.04.010 10.1177/0887302X19899992 10.1016/j.solener.2021.01.013 10.1016/j.apsusc.2018.02.083 10.1039/C7TC02077E 10.1016/j.energy.2018.06.218 10.1021/acsami.0c14665 10.1016/j.infrared.2021.103648 10.1016/B978-0-12-817854-6.00017-9 10.1016/j.conbuildmat.2017.08.161 10.1021/acsami.1c03803 10.1016/j.tca.2007.11.007 10.1016/j.dyepig.2018.11.007 10.1016/j.polymer.2010.09.018 10.1111/cote.12015 10.1002/app.50465 10.1016/j.solener.2020.05.015 10.1016/j.jssc.2013.10.040 10.1002/adfm.201704040 10.1016/j.solmat.2018.10.023 10.1533/9781845697785.2.125 |
ContentType | Journal Article |
Copyright | 2021 Institute of Materials, Minerals and Mining. 2021 2021 Institute of Materials, Minerals and Mining. |
Copyright_xml | – notice: 2021 Institute of Materials, Minerals and Mining. 2021 – notice: 2021 Institute of Materials, Minerals and Mining. |
DBID | AAYXX CITATION |
DOI | 10.1080/02670836.2021.2015844 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1743-2847 |
EndPage | 1420 |
ExternalDocumentID | 10_1080_02670836_2021_2015844 10.1080_02670836.2021.2015844 2015844 |
Genre | Review |
GroupedDBID | -~X .4S .DC 002 0BK 0R~ 1~B 29M 4.4 85S AAJMT AATAA ABCCY ABDBF ABFIM ABKLS ABPNF ABXYU ACFOO ACGFS ACGOD ACIWK ACOXC ACTIO ACUHS ACUIR ADCVX ADGTB ADVBO ADYCX AENEX AEYOC AGDLA AGKLV AIJEM AKOOK AKRHH ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH ARCSS ARTOV AWYRJ BLEHA BPACV CCCUG CS3 DGEBU DKSSO DU5 E01 EAP EBS EDO EMK ESX FHBDP H13 HCLVR HZ~ I-F IPNFZ J8X KYCEM LJTGL M4V M4Z MK~ MV1 O9- P75 P7B RIG ROSJB RWL SCNPE SFC TAE TDBHL TFL TFT TFW TN5 TTHFI TUS WH7 ~XQ 6TJ 88I 8AF 8FE 8FG 8R4 8R5 8WZ A6W AAGLT AANMX AAQXI AATVF ABCES ABEFU ABGQB ABJCF ABJNI ABRHV ABUJY ABUNW ABUWG ACKDS ACLZH ACVGN ADEBD ADMLS ADUKL AEAXR AEXNY AFGMD AFKRA AGQOX AHDMH AIDUJ AIPZZ ALKDR AMATQ ASQZU AZQEC BENPR BGLVJ BPHCQ BVUPT CCPQU CZ9 D1I DGEYW DWNMW DWQXO EBKLY EJD EXXQB GNUQQ HCIFZ H~9 JHRKR KB. KC. M2P M2Q M46 NUSFT PDBOC PHGZM PHGZT PQQKQ PROAC Q1R Q2X QSQFL RNS S0X SAUOL SC5 TCJPB TFMCV AAYXX AJGYC CITATION |
ID | FETCH-LOGICAL-c353t-822d71fad2998dc3fc95a98e27a1f78c757dc1dfcff2e80c66c671dea4a9ceef3 |
ISSN | 0267-0836 |
IngestDate | Thu Apr 24 23:12:51 EDT 2025 Tue Jul 01 05:25:30 EDT 2025 Tue Jun 17 22:30:32 EDT 2025 Wed Dec 25 09:07:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | Electrospinning sol–gel melt spinning microencapsulation screen printing |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c353t-822d71fad2998dc3fc95a98e27a1f78c757dc1dfcff2e80c66c671dea4a9ceef3 |
ORCID | 0000-0001-6749-7398 0000-0002-7554-3419 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1080_02670836_2021_2015844 informaworld_taylorfrancis_310_1080_02670836_2021_2015844 crossref_citationtrail_10_1080_02670836_2021_2015844 sage_journals_10_1080_02670836_2021_2015844 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-12 |
PublicationDateYYYYMMDD | 2021-12-12 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England |
PublicationTitle | Materials science and technology |
PublicationYear | 2021 |
Publisher | Taylor & Francis SAGE Publications |
Publisher_xml | – name: Taylor & Francis – name: SAGE Publications |
References | Vu, Liu, Zeng 2020; 46 Ramlow, Andrade, Immich 2021; 112 Fabiani, Castaldo, Pisello 2020; 262 Cheng, Zhang, Fang 2018; 34 Hussain, Sikandar, Nasir 2021; 35 Geng, Li, Wang 2018; 217 Bárta, Vlček, Houška 2020; 10 Viková, Pechová 2020; 90 Karpagam, Saranya, Gopinathan 2017; 108 Guan, Zhang, Wang 2018; 147 Štaffová, Kučera, Tocháček 2021; 138 Bašnec, Perše, Šumiga 2018; 8 Tsige, Ganesh, Mensur 2021; 45 Warwick, Binions 2014; 214 Soudian, Berardi, Laschuk 2020; 205 Li, Zhao, Wang 2009; 112 Wang, Yi, Fang 2021; 138 Seeboth, Lötzsch 2002; 12 Tözüm, Alkan, Alay Aksoy 2020; 137 Peng, Dou, Hu 2020; 2020 Gong, Hou, Zhang 2020; 12 Tözüm, Alay Aksoy, Alkan 2021; 45 Pan, Hao, Xu 2020; 384 Yang, Wang, Yu 2018; 212 Malherbe, Sanderson, Smit 2010; 51 Mondal 2008; 28 Liu, Tso, Lee 2021; 13(19) Juan, Lin, Lin 2019; 687 Long, Cao, Sun 2018; 441 Jiang, Bárta, Vlček 2021; 424 Troyano, Castillo, Martínez 2018; 28 Ma, Zhao, Wang 2020; 111 Zhang, Chen, Li 2017; 155 Garshasbi, Santamouris 2019; 191 Kumar, Singh, Chae 2020; 137 Houska, Kolenaty, Rezek 2017; 421 Ma, Zhu 2009; 39 Zhang, Hu, Xiang 2019; 162 Pérez, Mota-Heredia, Sánchez-García 2020; 251 Wu, Ma, Zheng 2014; 105 Geng, Li, Yin 2018; 159 Panák, Držková, Kaplanová 2015; 120 Geng, Gao, Wang 2021; 408 Lee, Pang, Hoffmann 2013; 116 Li, Chen, Zhang 2020; 32 Zhang, Ji, Al-Hashimi 2021; 419 Li, Gao, Li 2019; 118 Sánchez, Sánchez-Fernandez, Romero 2010; 498 Arnesano, Pandarese, Martarelli 2021; 216 Zhang, Jiang, Chen 2021; 31 Abou Elmaaty, Abdeldayem, Elshafai 2020; 38 Houska, Kolenaty, Vlcek 2018; 660 Wei, Falzone, Wang 2017; 81 Van Der Werff, Kyratzis, Robinson 2013; 48 Zhang, Fei, Zhang 2020; 147 Seeboth, Lötzsch, Ruhmann 2013; 1 Zhang, Liu, Niu 2020; 264 Arulprakasajothi, Susanth, Kumar 2021; 47 Nelson 2002; 242 Chowdhury, Butola, Joshi 2013; 129 Yi, Sun, Deng 2015; 106 Li, Ji, Gao 2013; 3 Gagaoudakis, Aperathitis, Michail 2021; 220 Sun, Lv, Xu 2020; 27 Li, Yao, Tian 2020; 46 Chen, Zhang, Duan 2021; 279 Liu, Zong, Yan 2021; 113 Kang, Liu, Shi 2021; 47 Onder, Sarier, Cimen 2008; 467 Ji, Zhang, Ge 2019; 131 Ji, Liu, Zhang 2020; 145 Salamati, Kamyabjou, Mohamadi 2019; 218 Zhu, Liu, Li 2018; 8 Ma, Wang, Li 2019; 56 Wang, Luo, Yang 2016; 139 Zhang, Ji, Zeng 2017; 5 Liu, Rasines Mazo, Gurr 2020; 12 Chen, Zhang, Ye 2021; 13 Hu, Gao, Yu 2015; 27 bibr6-02670836.2021.2015844 bibr35-02670836.2021.2015844 bibr80-02670836.2021.2015844 bibr11-02670836.2021.2015844 bibr76-02670836.2021.2015844 Li Y (bibr19-02670836.2021.2015844) 2013; 3 bibr47-02670836.2021.2015844 bibr64-02670836.2021.2015844 bibr52-02670836.2021.2015844 bibr59-02670836.2021.2015844 bibr7-02670836.2021.2015844 bibr24-02670836.2021.2015844 bibr22-02670836.2021.2015844 bibr50-02670836.2021.2015844 bibr10-02670836.2021.2015844 bibr36-02670836.2021.2015844 bibr75-02670836.2021.2015844 bibr48-02670836.2021.2015844 bibr63-02670836.2021.2015844 bibr51-02670836.2021.2015844 bibr23-02670836.2021.2015844 bibr25-02670836.2021.2015844 bibr4-02670836.2021.2015844 Xia X (bibr73-02670836.2021.2015844) 2014 bibr41-02670836.2021.2015844 bibr74-02670836.2021.2015844 bibr66-02670836.2021.2015844 bibr17-02670836.2021.2015844 bibr57-02670836.2021.2015844 bibr42-02670836.2021.2015844 bibr49-02670836.2021.2015844 bibr5-02670836.2021.2015844 bibr26-02670836.2021.2015844 bibr32-02670836.2021.2015844 bibr34-02670836.2021.2015844 bibr18-02670836.2021.2015844 bibr40-02670836.2021.2015844 bibr65-02670836.2021.2015844 Karpagam K (bibr82-02670836.2021.2015844) 2017; 108 bibr58-02670836.2021.2015844 bibr81-02670836.2021.2015844 bibr33-02670836.2021.2015844 bibr31-02670836.2021.2015844 bibr27-02670836.2021.2015844 bibr2-02670836.2021.2015844 bibr84-02670836.2021.2015844 bibr15-02670836.2021.2015844 bibr60-02670836.2021.2015844 Seeboth A (bibr30-02670836.2021.2015844) 2002; 12 bibr67-02670836.2021.2015844 bibr44-02670836.2021.2015844 bibr1-02670836.2021.2015844 bibr14-02670836.2021.2015844 bibr39-02670836.2021.2015844 bibr72-02670836.2021.2015844 bibr28-02670836.2021.2015844 bibr83-02670836.2021.2015844 bibr3-02670836.2021.2015844 bibr16-02670836.2021.2015844 bibr56-02670836.2021.2015844 bibr55-02670836.2021.2015844 bibr71-02670836.2021.2015844 bibr43-02670836.2021.2015844 bibr68-02670836.2021.2015844 bibr8-02670836.2021.2015844 bibr21-02670836.2021.2015844 bibr37-02670836.2021.2015844 bibr62-02670836.2021.2015844 bibr70-02670836.2021.2015844 bibr12-02670836.2021.2015844 bibr54-02670836.2021.2015844 bibr69-02670836.2021.2015844 bibr29-02670836.2021.2015844 bibr79-02670836.2021.2015844 bibr77-02670836.2021.2015844 bibr9-02670836.2021.2015844 Zhu X (bibr45-02670836.2021.2015844) 2018; 8 bibr20-02670836.2021.2015844 bibr46-02670836.2021.2015844 bibr85-02670836.2021.2015844 bibr61-02670836.2021.2015844 bibr13-02670836.2021.2015844 bibr38-02670836.2021.2015844 bibr53-02670836.2021.2015844 bibr78-02670836.2021.2015844 |
References_xml | – volume: 27 start-page: 2939 issue: 5 year: 2020 end-page: 2952 article-title: Smart cotton fabric screen-printed with viologen polymer: photochromic, thermochromic and ammonia sensing publication-title: Cellulose – volume: 498 start-page: 16 issue: 1-2 year: 2010 end-page: 21 article-title: Development of thermo-regulating textiles using paraffin wax microcapsules publication-title: Thermochim Acta – volume: 45 start-page: 6171 year: 2021 end-page: 6175 article-title: Thermal studies on chemical bath deposited thermochromic VO thin film for energy efficient glass windows publication-title: Mater Today Proc – volume: 90 start-page: 2070 issue: 17-18 year: 2020 end-page: 2084 article-title: Study of adaptive thermochromic camouflage for combat uniform publication-title: Text Res J – volume: 138 start-page: 49724 issue: 4 year: 2021 article-title: Insight into color change of reversible thermochromic systems and their incorporation into textile coating publication-title: J Appl Polym Sci – volume: 384 start-page: 123376 year: 2020 article-title: Highly robust and durable core-sheath nanocomposite yarns for electro-thermochromic performance application publication-title: Chem Eng J – volume: 38 start-page: 182 issue: 3 year: 2020 end-page: 195 article-title: Simultaneous thermochromic pigment printing and Se-NP multifunctional finishing of cotton fabrics for smart children swear publication-title: Cloth Text Res J – volume: 137 start-page: 48815 issue: 24 year: 2020 article-title: Preparation of poly (methyl methacrylate-co-ethylene glycol dimethacrylate-co-glycidyl methacrylate) walled thermochromic microcapsules and their application to cotton fabrics publication-title: J Appl Polym Sci – volume: 32 start-page: 04020388 issue: 12 year: 2020 article-title: Effect of thermochromic materials on the properties of SBS-modified asphalt mixture publication-title: J Mater Civ Eng – volume: 35 start-page: 102019 year: 2021 article-title: Effect of SiO coated leuco-dye based thermochromic pigment on the properties of Portland cement pastes publication-title: J Build Eng – volume: 264 start-page: 114729 year: 2020 article-title: Development of reversible and durable thermochromic phase-change microcapsules for real-time indication of thermal energy storage and management publication-title: Appl Energy – volume: 28 start-page: 1536 issue: 11-12 year: 2008 end-page: 1550 article-title: Phase change materials for smart textiles – an overview publication-title: Appl Therm Eng – volume: 251 start-page: 119038 year: 2020 article-title: Compatibility between thermochromic pigments and Portland cement-based materials publication-title: Constr Build Mater – volume: 1 start-page: 2811 issue: 16 year: 2013 end-page: 2816 article-title: First example of a non-toxic thermochromic polymer material-based on a novel mechanism publication-title: J Mater Chem C – volume: 47 start-page: 15631 issue: 11 year: 2021 end-page: 15638 article-title: The thermochromic characteristics of Zn-doped VO that were prepared by the hydrothermal and post-annealing process and their polyurethane composite films publication-title: Ceram Int – volume: 129 start-page: 232 issue: 3 year: 2013 end-page: 237 article-title: Application of thermochromic colorants on textiles: temperature dependence of colorimetric properties publication-title: Color Technol – volume: 137 start-page: 106335 year: 2020 article-title: Annealing effect on phase transition and thermochromic properties of VO thin films publication-title: Superlatt Microstruct – volume: 131 start-page: 111 year: 2019 end-page: 118 article-title: Thermochromic behavior analysis of terminated polyurethane functionalized with rhodamine B derivative publication-title: Prog Org Coat – volume: 8 start-page: 1 issue: 1 year: 2018 end-page: 10 article-title: Relation between colour-and phase changes of a leuco dye-based thermochromic composite publication-title: Sci Rep – volume: 424 start-page: 127654 year: 2021 article-title: Microstructure of high-performance thermochromic ZrO /V W O /ZrO coating with a low transition temperature (22°C) prepared on flexible glass publication-title: Surf Coat Technol – volume: 147 start-page: 105697 year: 2020 article-title: Durable and tunable temperature responsive silk fabricated with reactive thermochromic pigments publication-title: Prog Org Coat – volume: 45 start-page: 7018 issue: 5 year: 2021 end-page: 7037 article-title: Manufacturing surface active shell and bisphenol A free thermochromic acrylic microcapsules for textile applications publication-title: Int J Energy Res – volume: 155 start-page: 1198 year: 2017 end-page: 1205 article-title: Evaluation of aging behaviors of asphalt with different thermochromic powders publication-title: Constr Build Mater – volume: 48 start-page: 5005 issue: 14 year: 2013 end-page: 5011 article-title: Thermochromic composite fibres containing liquid crystals formed via melt extrusion publication-title: J Mater Sci – volume: 46 start-page: 8145 issue: 6 year: 2020 end-page: 8153 article-title: High-power impulse magnetron sputtering deposition of high crystallinity vanadium dioxide for thermochromic smart windows applications publication-title: Ceram Int – volume: 116 start-page: 14 year: 2013 end-page: 26 article-title: An empirical study of a full-scale polymer thermochromic window and its implications on material science development objectives publication-title: Sol Energy Mater Sol Cells – volume: 687 start-page: 137443 year: 2019 article-title: Low thermal budget annealing for thermochromic VO thin films prepared by high power impulse magnetron sputtering publication-title: Thin Solid Films – volume: 159 start-page: 857 year: 2018 end-page: 869 article-title: Design and fabrication of reversible thermochromic microencapsulated phase change materials for thermal energy storage and its antibacterial activity publication-title: Energy – volume: 218 start-page: 477 year: 2019 end-page: 482 article-title: Preparation of TiO @ W-VO thermochromic thin film for the application of energy efficient smart windows and energy modeling studies of the produced glass publication-title: Constr Build Mater – volume: 39 start-page: 90 issue: 2 year: 2009 end-page: 94 article-title: Research on the preparation of reversibly thermochromic cement based materials at normal temperature publication-title: Cem Concr Res – volume: 111 start-page: 1097 issue: 8 year: 2020 end-page: 1105 article-title: Research on the behaviors of extending thermochromic colors for a new thermochromic microcapsule publication-title: J Text Inst – volume: 120 start-page: 279 year: 2015 end-page: 287 article-title: Insight into the evaluation of colour changes of leuco dye based thermochromic systems as a function of temperature publication-title: Dyes Pigm – volume: 147 start-page: 28 year: 2018 end-page: 34 article-title: Preparation of thermochromic liquid crystal microcapsules for intelligent functional fiber publication-title: Mater Des – volume: 34 start-page: 2225 issue: 12 year: 2018 end-page: 2234 article-title: Discoloration mechanism, structures and recent applications of thermochromic materials via different methods: a review publication-title: J Mater Sci Technol – volume: 279 start-page: 123675 year: 2021 article-title: Improvement of thermal and optical responses of short-term aged thermochromic asphalt binder by warm-mix asphalt technology publication-title: J Clean Prod – volume: 106 start-page: 1071 issue: 10 year: 2015 end-page: 1077 article-title: Preparation of composite thermochromic and phase-change materials by the sol–gel method and its application in textiles publication-title: J Text Inst – volume: 467 start-page: 63 issue: 1-2 year: 2008 end-page: 72 article-title: Encapsulation of phase change materials by complex coacervation to improve thermal performances of woven fabrics publication-title: Thermochim Acta – volume: 145 start-page: 105164 year: 2020 article-title: Thermochromic behaviors of terminated waterborne thermochromic polyurethane with tailored molecular weight publication-title: Prog Org Coat – volume: 13(19) start-page: 22495 year: 2021 end-page: 22504 article-title: Self-densified optically transparent VO thermochromic wood film for smart windows publication-title: ACS Appl Mater Interfaces – volume: 421 start-page: 529 year: 2017 end-page: 534 article-title: Characterization of thermochromic VO (prepared at 250°C) in a wide temperature range by spectroscopic ellipsometry publication-title: Appl Surf Sci – volume: 118 start-page: 163 year: 2019 end-page: 169 article-title: Energy saving wood composite with temperature regulatory ability and thermoresponsive performance publication-title: Eur Polym J – volume: 242 start-page: 55 issue: 1-2 year: 2002 end-page: 62 article-title: Application of microencapsulation in textiles publication-title: Int J Pharm – volume: 56 start-page: 588 issue: 6 year: 2019 end-page: 596 article-title: The novel thermochromic and energy-storage microcapsules with significant extension of color change range to different tones publication-title: J Macromol Sci Part A – volume: 212 start-page: 455 year: 2018 end-page: 464 article-title: Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage publication-title: Appl Energy – volume: 51 start-page: 5037 issue: 22 year: 2010 end-page: 5043 article-title: Reversibly thermochromic micro-fibres by coaxial electrospinning publication-title: Polymer – volume: 8 start-page: 1 issue: 1 year: 2018 end-page: 10 article-title: Thermochromic microcapsules with highly transparent shells obtained through in-situ polymerization of urea formaldehyde around thermochromic cores for smart wood coatings publication-title: Sci Rep – volume: 112 start-page: 152 issue: 1 year: 2021 end-page: 171 article-title: Smart textiles: an overview of recent progress on chromic textiles publication-title: J Text Inst – volume: 12 start-page: 51225 issue: 46 year: 2020 end-page: 51235 article-title: Thermochromic hydrogel-functionalized textiles for synchronous visual monitoring of on-demand in vitro drug release publication-title: ACS Appl Mater Interfaces – volume: 13 start-page: 18120 issue: 15 year: 2021 end-page: 18127 article-title: Color-changeable four-dimensional printing enabled with ultraviolet-curable and thermochromic shape memory polymers publication-title: ACS Appl Mater Interfaces – volume: 441 start-page: 764 year: 2018 end-page: 772 article-title: Effects of V O buffer layers on sputtered VO smart windows: improved thermochromic properties, tunable width of hysteresis loops and enhanced durability publication-title: Appl Surf Sci – volume: 12 start-page: 143 year: 2002 end-page: 165 article-title: Thermochromic polymers publication-title: Encycl Polym Sci Technol – volume: 408 start-page: 127276 year: 2021 article-title: Intelligent adjustment of light-to-thermal energy conversion efficiency of thermo-regulated fabric containing reversible thermochromic MicroPCMs publication-title: Chem Eng J – volume: 2020 start-page: 1 year: 2020 end-page: 20 article-title: Phase change material (PCM) microcapsules for thermal energy storage publication-title: Adv Polym Technol – volume: 5 start-page: 8169 issue: 32 year: 2017 end-page: 8178 article-title: A new approach for the preparation of durable and reversible color changing polyester fabrics using thermochromic leuco dye-loaded silica nanocapsules publication-title: J Mater Chem C – volume: 162 start-page: 705 year: 2019 end-page: 711 article-title: Fabrication of visual textile temperature indicators based on reversible thermochromic fibers publication-title: Dyes Pigm – volume: 139 start-page: 591 year: 2016 end-page: 598 article-title: Fabrication and characterization of microcapsulated phase change materials with an additional function of thermochromic performance publication-title: Sol Energy – volume: 191 start-page: 21 year: 2019 end-page: 32 article-title: Using advanced thermochromic technologies in the built environment: recent development and potential to decrease the energy consumption and fight urban overheating publication-title: Sol Energy Mater Sol Cells – volume: 419 start-page: 129553 year: 2021 article-title: Feasible fabrication and textile application of polymer composites featuring dual optical thermoresponses publication-title: Chem Eng J – volume: 27 start-page: 04014171 issue: 5 year: 2015 article-title: Characterization of the optical and mechanical properties of innovative multifunctional thermochromic asphalt binders publication-title: J Mater Civ Eng – volume: 108 start-page: 1122 issue: 7 year: 2017 end-page: 1127 article-title: Development of smart clothing for military applications using thermochromic colorants publication-title: J Text Inst – volume: 112 start-page: 269 issue: 1 year: 2009 end-page: 274 article-title: Thermochromic core–shell nanofibers fabricated by melt coaxial electrospinning publication-title: J Appl Polym Sci – volume: 138 start-page: 50465 issue: 21 year: 2021 article-title: Reversibly thermochromic and high strength core-shell nanofibers fabricated by melt coaxial electrospinning publication-title: J Appl Polym Sci – volume: 81 start-page: 66 year: 2017 end-page: 76 article-title: The durability of cementitious composites containing microencapsulated phase change materials publication-title: Cem Concr Compos – volume: 216 start-page: 14 year: 2021 end-page: 25 article-title: Optimization of the thermochromic glazing design for curtain wall buildings based on experimental measurements and dynamic simulation publication-title: Sol Energy – volume: 31 start-page: 2100686 issue: 18 year: 2021 article-title: Ultra-compliant and tough thermochromic polymer for self-regulated smart windows publication-title: Adv Funct Mater – volume: 46 start-page: 18274 issue: 11 year: 2020 end-page: 18280 article-title: A facile one-step annealing route to prepare thermochromic W doped VO (M) particles for smart windows publication-title: Ceram Int – volume: 214 start-page: 53 year: 2014 end-page: 66 article-title: Chemical vapour deposition of thermochromic vanadium dioxide thin films for energy efficient glazing publication-title: J Solid State Chem – volume: 217 start-page: 281 year: 2018 end-page: 294 article-title: Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing publication-title: Appl Energy – volume: 47 start-page: 4666 year: 2021 end-page: 4670 article-title: Thermal management on external surfaces by thermochromic materials publication-title: Mater Today Proc – volume: 3 start-page: 1 issue: 1 year: 2013 end-page: 13 article-title: Core-shell VO @ TiO nanorods that combine thermochromic and photocatalytic properties for application as energy-saving smart coatings publication-title: Sci Rep – volume: 28 start-page: 1704040 issue: 5 year: 2018 article-title: Reversible thermochromic polymeric thin films made of ultrathin 2D crystals of coordination polymers based on copper (I)-thiophenolates publication-title: Adv Funct Mater – volume: 262 start-page: 114147 year: 2020 article-title: Thermochromic materials for indoor thermal comfort improvement: finite difference modeling and validation in a real case-study building publication-title: Appl Energy – volume: 113 start-page: 103648 year: 2021 article-title: Sno /VO /SnO tri-layer thermochromic films with high luminous transmittance, remarkable solar modulation ability and excellent hydrophobicity grown on glass substrates publication-title: Infrared Phys Technol – volume: 10 start-page: 1258 issue: 12 year: 2020 article-title: Pulsed magnetron sputtering of strongly thermochromic VO -based coatings with a transition temperature of 22°C onto ultrathin flexible glass publication-title: Coatings – volume: 205 start-page: 282 year: 2020 end-page: 291 article-title: Development and thermal-optical characterization of a cementitious plaster with phase change materials and thermochromic paint publication-title: Sol Energy – volume: 660 start-page: 463 year: 2018 end-page: 470 article-title: Properties of thermochromic VO2 films prepared by HiPIMS onto unbiased amorphous glass substrates at a low temperature of 300°C publication-title: Thin Solid Films – volume: 12 start-page: 9782 issue: 8 year: 2020 end-page: 9789 article-title: Reversible nontoxic thermochromic microcapsules publication-title: ACS Appl Mater Interfaces – volume: 220 start-page: 110845 year: 2021 article-title: Sputtered VO coatings on commercial glass substrates for smart glazing applications publication-title: Sol Energy Mater Sol Cells – volume: 105 start-page: 398 issue: 4 year: 2014 end-page: 405 article-title: Synthesis and characterization of thermochromic energy-storage microcapsule and application to fabric publication-title: J Text Inst – ident: bibr22-02670836.2021.2015844 doi: 10.1016/j.apsusc.2016.10.084 – ident: bibr25-02670836.2021.2015844 doi: 10.1016/j.tsf.2019.137443 – ident: bibr66-02670836.2021.2015844 doi: 10.1016/j.matdes.2018.03.030 – ident: bibr54-02670836.2021.2015844 doi: 10.1016/S0378-5173(02)00141-2 – volume: 3 start-page: 1 issue: 1 year: 2013 ident: bibr19-02670836.2021.2015844 publication-title: Sci Rep – ident: bibr57-02670836.2021.2015844 doi: 10.1016/j.apenergy.2018.02.150 – volume: 108 start-page: 1122 issue: 7 year: 2017 ident: bibr82-02670836.2021.2015844 publication-title: J Text Inst – volume: 12 start-page: 143 year: 2002 ident: bibr30-02670836.2021.2015844 publication-title: Encycl Polym Sci Technol – ident: bibr47-02670836.2021.2015844 doi: 10.1016/j.apenergy.2017.12.006 – ident: bibr42-02670836.2021.2015844 doi: 10.1016/j.jclepro.2020.123675 – ident: bibr59-02670836.2021.2015844 doi: 10.1016/j.apenergy.2020.114729 – ident: bibr77-02670836.2021.2015844 doi: 10.1016/j.cej.2021.129553 – ident: bibr75-02670836.2021.2015844 doi: 10.1080/00405000.2014.965501 – ident: bibr68-02670836.2021.2015844 doi: 10.1016/j.tca.2009.09.005 – ident: bibr6-02670836.2021.2015844 doi: 10.1061/(ASCE)MT.1943-5533.0003489 – ident: bibr18-02670836.2021.2015844 doi: 10.1016/j.spmi.2019.106335 – ident: bibr20-02670836.2021.2015844 doi: 10.1016/j.conbuildmat.2019.05.046 – ident: bibr51-02670836.2021.2015844 doi: 10.1038/s41598-018-23789-2 – ident: bibr79-02670836.2021.2015844 doi: 10.1007/s10570-020-02992-3 – ident: bibr32-02670836.2021.2015844 doi: 10.1002/adfm.202100686 – ident: bibr33-02670836.2021.2015844 doi: 10.1016/j.solmat.2013.03.043 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: bibr45-02670836.2021.2015844 publication-title: Sci Rep – ident: bibr74-02670836.2021.2015844 doi: 10.1007/s10853-013-7287-8 – ident: bibr29-02670836.2021.2015844 doi: 10.1016/j.solmat.2020.110845 – volume-title: Advanced materials research year: 2014 ident: bibr73-02670836.2021.2015844 – ident: bibr48-02670836.2021.2015844 doi: 10.1016/j.eurpolymj.2019.05.050 – ident: bibr56-02670836.2021.2015844 doi: 10.1016/j.solener.2016.10.011 – ident: bibr8-02670836.2021.2015844 doi: 10.1016/j.applthermaleng.2007.08.009 – ident: bibr76-02670836.2021.2015844 doi: 10.1080/00405000.2020.1785071 – ident: bibr50-02670836.2021.2015844 doi: 10.1016/j.dyepig.2015.04.022 – ident: bibr63-02670836.2021.2015844 doi: 10.1016/j.cej.2020.127276 – ident: bibr23-02670836.2021.2015844 doi: 10.1016/j.ceramint.2019.12.042 – ident: bibr60-02670836.2021.2015844 doi: 10.1002/app.48815 – ident: bibr64-02670836.2021.2015844 doi: 10.1080/10601325.2019.1590125 – ident: bibr1-02670836.2021.2015844 doi: 10.1002/app.49724 – ident: bibr24-02670836.2021.2015844 doi: 10.3390/coatings10121258 – ident: bibr21-02670836.2021.2015844 doi: 10.1016/j.tsf.2018.06.057 – ident: bibr43-02670836.2021.2015844 doi: 10.1061/(ASCE)MT.1943-5533.0001132 – ident: bibr16-02670836.2021.2015844 doi: 10.1016/j.ceramint.2020.05.042 – ident: bibr3-02670836.2021.2015844 doi: 10.1016/j.matpr.2021.05.523 – ident: bibr37-02670836.2021.2015844 doi: 10.1016/j.cemconres.2008.10.006 – ident: bibr53-02670836.2021.2015844 doi: 10.1155/2020/9490873 – ident: bibr27-02670836.2021.2015844 doi: 10.1016/j.ceramint.2021.02.133 – ident: bibr12-02670836.2021.2015844 doi: 10.1016/j.porgcoat.2019.06.010 – ident: bibr39-02670836.2021.2015844 doi: 10.1016/j.conbuildmat.2020.119038 – ident: bibr61-02670836.2021.2015844 doi: 10.1021/acsami.9b21330 – ident: bibr36-02670836.2021.2015844 doi: 10.1016/j.jobe.2020.102019 – ident: bibr84-02670836.2021.2015844 doi: 10.1016/j.cej.2019.123376 – ident: bibr52-02670836.2021.2015844 doi: 10.1007/978-981-15-3669-4_11 – ident: bibr35-02670836.2021.2015844 doi: 10.1021/acsami.1c02656 – ident: bibr80-02670836.2021.2015844 doi: 10.1177/0040517520910217 – ident: bibr55-02670836.2021.2015844 doi: 10.1080/00405000.2019.1684224 – ident: bibr17-02670836.2021.2015844 doi: 10.1016/j.matpr.2020.10.480 – ident: bibr81-02670836.2021.2015844 doi: 10.1016/j.porgcoat.2019.02.022 – ident: bibr31-02670836.2021.2015844 doi: 10.1039/c3tc30094c – ident: bibr71-02670836.2021.2015844 doi: 10.1002/app.29384 – ident: bibr85-02670836.2021.2015844 – ident: bibr49-02670836.2021.2015844 doi: 10.1533/9780857097613.1.3 – ident: bibr4-02670836.2021.2015844 doi: 10.1016/j.jmst.2018.05.016 – ident: bibr58-02670836.2021.2015844 doi: 10.1002/er.6287 – ident: bibr78-02670836.2021.2015844 doi: 10.1016/j.porgcoat.2020.105697 – ident: bibr5-02670836.2021.2015844 doi: 10.1016/j.apenergy.2019.114147 – ident: bibr15-02670836.2021.2015844 doi: 10.1016/j.surfcoat.2021.127654 – ident: bibr70-02670836.2021.2015844 doi: 10.1080/00405000.2013.814753 – ident: bibr41-02670836.2021.2015844 doi: 10.1016/j.cemconcomp.2017.04.010 – ident: bibr2-02670836.2021.2015844 doi: 10.1177/0887302X19899992 – ident: bibr13-02670836.2021.2015844 doi: 10.1016/j.solener.2021.01.013 – ident: bibr28-02670836.2021.2015844 doi: 10.1016/j.apsusc.2018.02.083 – ident: bibr69-02670836.2021.2015844 doi: 10.1039/C7TC02077E – ident: bibr62-02670836.2021.2015844 doi: 10.1016/j.energy.2018.06.218 – ident: bibr83-02670836.2021.2015844 doi: 10.1021/acsami.0c14665 – ident: bibr26-02670836.2021.2015844 doi: 10.1016/j.infrared.2021.103648 – ident: bibr38-02670836.2021.2015844 doi: 10.1016/B978-0-12-817854-6.00017-9 – ident: bibr44-02670836.2021.2015844 doi: 10.1016/j.conbuildmat.2017.08.161 – ident: bibr46-02670836.2021.2015844 doi: 10.1021/acsami.1c03803 – ident: bibr67-02670836.2021.2015844 doi: 10.1016/j.tca.2007.11.007 – ident: bibr10-02670836.2021.2015844 doi: 10.1016/j.dyepig.2018.11.007 – ident: bibr72-02670836.2021.2015844 doi: 10.1016/j.polymer.2010.09.018 – ident: bibr11-02670836.2021.2015844 doi: 10.1111/cote.12015 – ident: bibr9-02670836.2021.2015844 doi: 10.1002/app.50465 – ident: bibr40-02670836.2021.2015844 doi: 10.1016/j.solener.2020.05.015 – ident: bibr14-02670836.2021.2015844 doi: 10.1016/j.jssc.2013.10.040 – ident: bibr34-02670836.2021.2015844 doi: 10.1002/adfm.201704040 – ident: bibr7-02670836.2021.2015844 doi: 10.1016/j.solmat.2018.10.023 – ident: bibr65-02670836.2021.2015844 doi: 10.1533/9781845697785.2.125 |
SSID | ssj0006999 |
Score | 2.4781408 |
SecondaryResourceType | review_article |
Snippet | Colour transformation in thermochromic materials comes true with the phase transition in the material due to temperature amendments. By using thermochromic... |
SourceID | crossref sage informaworld |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1405 |
SubjectTerms | Electrospinning melt spinning microencapsulation screen printing sol-gel |
Title | A review: preparation of functionalised materials/smart fabrics that exhibit thermochromic behaviour |
URI | https://www.tandfonline.com/doi/abs/10.1080/02670836.2021.2015844 https://journals.sagepub.com/doi/full/10.1080/02670836.2021.2015844 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbb5NIeSp80bVp06G2xG0m2Zee2eRFKUwpNIDcjSxYJdHeL44WQX98ZS_bKZGmaXsxiLFmr-az5RpoHIZ_rwoqKCRkxpmyEFkNUSYWRXKAQjAKVYtBQPPuenV4kXy_Ty8nkNvBaWrVVrO82xpX8j1ThHsgVo2QfIdmhU7gBv0G-cAUJw_WfZDzzkSdo1v9oapfG2xFA1Fdum-_6Bjgl8FI3IBzhHLqaWlU1mKG5vVLttMYy2dddWGMzX-qrBmOV-xD-VRMy2LO-p2kfEdT5YN7boT_sj5i-xcFxkZp3ZPVnHO42cIaeG2xtm7pjrs0bihyWXMx17TSLW04xASoqwHC9dUleelzlweoJxl4aaGKWdHFy91d57xYJL8T3xThOdNIDLpWs1drgbOhblBuff0K2ORgYsEJuzw6ODk4GLZ4VXe3R4V_10V-Yl31TRyNeM8p6O_IR7GjL-Qvy3NsbdObA85JM6sUr8izIQvmamBl1MNqnAYjo0tIxiOgAoi8dhKiHEEUIUQ8hOoIQHSD0hlycHJ8fnka--EakRSraCIijkcwqA3wlN1pYXaSqyGsuFbMy1zKVRjNjtbW8zvd0lulMMlOrRBVAvKx4S7YWy0X9jlAu9ywXNuNaV4nQVZGolBsDtobG-gR8hyT91JXaZ6bHAim_StYnsPUzXuKMl37Gd0g8NPvtUrM81KAI5VK23Z6YdQVsSvFA2ykKsfRf_83f3_T-UU9_IE_Xn9ou2WqbVf0RqG5bffKo_ANNvp09 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review%3A+Preparation+of+functionalised+materials%2Fsmart+fabrics+that+exhibit+thermochromic+behaviour&rft.jtitle=Materials+science+and+technology&rft.au=Civan%2C+L.&rft.au=Kurama%2C+S.&rft.date=2021-12-12&rft.pub=SAGE+Publications&rft.issn=0267-0836&rft.eissn=1743-2847&rft.volume=37&rft.issue=18&rft.spage=1405&rft.epage=1420&rft_id=info:doi/10.1080%2F02670836.2021.2015844&rft.externalDocID=10.1080_02670836.2021.2015844 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0267-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0267-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0267-0836&client=summon |