Enhancing the (FeMnCrNiCo + TiC) cladding layer by in-situ laser remelting
In this study, the (FeMnCrNiCo + 20%TiC) laser cladding layer was re-treated through multiple-pass in-situ laser remelting. Optical microscopy, scanning electron microscopy, and X-ray diffraction were used to analyse the evolution of microstructures and phases before and after the in-situ laser reme...
Saved in:
Published in | Surface engineering Vol. 37; no. 12; pp. 1496 - 1502 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London, England
Taylor & Francis
02.12.2021
SAGE Publications |
Subjects | |
Online Access | Get full text |
ISSN | 0267-0844 1743-2944 |
DOI | 10.1080/02670844.2020.1868651 |
Cover
Loading…
Abstract | In this study, the (FeMnCrNiCo + 20%TiC) laser cladding layer was re-treated through multiple-pass in-situ laser remelting. Optical microscopy, scanning electron microscopy, and X-ray diffraction were used to analyse the evolution of microstructures and phases before and after the in-situ laser remelting processes. The micro-hardness and wear resistance of the composite coatings were systematically investigated using micro-hardness and abrasion. Results show that in-situ laser remelting decreased the dilution rate. The thermal effect of laser melting and the Maragni action in the liquid coating metal enabled the large-sized and loosened ceramic particles to remelt into the cladding layers. As a result, the ceramic particles in the cladding layers after in-situ laser remelting were modified considerably in terms of their spherification rate, dimension uniformity, and particle distribution. The weak spots caused by stress on the surfaces of the cladding layers were reduced, and accordingly the wear resistances improved. |
---|---|
AbstractList | In this study, the (FeMnCrNiCo + 20%TiC) laser cladding layer was re-treated through multiple-pass in-situ laser remelting. Optical microscopy, scanning electron microscopy, and X-ray diffraction were used to analyse the evolution of microstructures and phases before and after the in-situ laser remelting processes. The micro-hardness and wear resistance of the composite coatings were systematically investigated using micro-hardness and abrasion. Results show that in-situ laser remelting decreased the dilution rate. The thermal effect of laser melting and the Maragni action in the liquid coating metal enabled the large-sized and loosened ceramic particles to remelt into the cladding layers. As a result, the ceramic particles in the cladding layers after in-situ laser remelting were modified considerably in terms of their spherification rate, dimension uniformity, and particle distribution. The weak spots caused by stress on the surfaces of the cladding layers were reduced, and accordingly the wear resistances improved. |
Author | Cai, Yangchuan Zhu, Lisong Li, Huijun Geng, Keping Cui, Yan Tian, Ruyu Han, Jian |
Author_xml | – sequence: 1 givenname: Yangchuan surname: Cai fullname: Cai, Yangchuan organization: Tianjin University of Technology – sequence: 2 givenname: Yan surname: Cui fullname: Cui, Yan organization: Tianjin University – sequence: 3 givenname: Lisong surname: Zhu fullname: Zhu, Lisong organization: Tianjin University of Technology – sequence: 4 givenname: Ruyu surname: Tian fullname: Tian, Ruyu organization: Yangzhou University – sequence: 5 givenname: Keping surname: Geng fullname: Geng, Keping organization: Tianjin Sino-German University of Applied Sciences – sequence: 6 givenname: Huijun surname: Li fullname: Li, Huijun organization: Tianjin University – sequence: 7 givenname: Jian surname: Han fullname: Han, Jian email: hj_tjut@vip.126.com organization: Tianjin University of Technology |
BookMark | eNqFkE9LwzAYh4NMcJt-BKFHRTrzr22KF6VsKsx5meeQpumW0SWSdEhvXv2afhJTNi8e3OEl8ON5Xt78RmBgrFEAXCI4QZDBW4jTDDJKJxjiELGUpQk6AUOUURLjnNIBGPZM3ENnYOT9BkKMMpYMwWJq1sJIbVZRu1bR1Uy9mMItdGG_P79uwix1cR3JRlRVzzSiUy4qu0ib2Ot2FwIfAqe2qmkDcA5Oa9F4dXF4x-BtNl0WT_H89fG5eJjHkiSkjbNKhOMSyRgiGEOU5ymRkClBSpxhRWES4grCMoWU4qxOcaaqsma5zDHpsTG42--VznrvVM2lbkWrrWmd0A1HkPfV8N9qeF8NP1QT7OSP_e70VrjuqIf3nhcrxTd250z45FHpfi9pU1u3FR_WNRVvRddYV7u-e8_J_yt-ACtIiqM |
CitedBy_id | crossref_primary_10_1007_s11837_023_05799_2 crossref_primary_10_1016_j_optlaseng_2022_107330 crossref_primary_10_1016_j_optlastec_2022_108205 crossref_primary_10_1016_j_optlastec_2025_112672 crossref_primary_10_3390_app11146580 crossref_primary_10_1007_s12666_024_03414_9 crossref_primary_10_1016_j_matpr_2023_08_052 crossref_primary_10_1007_s11665_024_09294_w crossref_primary_10_3390_met12122055 |
Cites_doi | 10.1016/S0921-5093(03)00519-7 10.1016/j.matdes.2018.01.007 10.1007/s11661-015-3246-0 10.1016/j.matchar.2016.09.011 10.1016/j.jallcom.2019.02.223 10.1016/j.surfcoat.2020.125360 10.1016/j.jallcom.2019.05.012 10.1002/adem.200300567 10.1007/s11837-017-2565-6 10.1016/S0257-8972(02)00700-4 10.1016/j.matdes.2017.07.045 10.1007/s11837-014-1066-0 10.1038/s41586-019-1617-1 10.1016/j.optlastec.2018.01.024 10.1016/j.apsusc.2019.144349 10.1016/j.jallcom.2019.03.328 10.1016/j.jallcom.2008.12.088 10.1002/adem.201700948 10.1016/j.ijepes.2017.04.009 10.1016/j.jallcom.2013.08.102 10.1016/j.jallcom.2015.11.050 10.1016/j.jallcom.2018.03.197 10.1016/j.surfcoat.2018.03.035 10.1016/j.matchemphys.2018.09.022 10.1016/j.surfcoat.2017.01.057 10.1016/j.matchemphys.2019.122522 |
ContentType | Journal Article |
Copyright | 2021 Institute of Materials, Minerals and Mining Published by Taylor & Francis on behalf of the Institute 2021 2021 Institute of Materials, Minerals and Mining Published by Taylor & Francis on behalf of the Institute |
Copyright_xml | – notice: 2021 Institute of Materials, Minerals and Mining Published by Taylor & Francis on behalf of the Institute 2021 – notice: 2021 Institute of Materials, Minerals and Mining Published by Taylor & Francis on behalf of the Institute |
DBID | AAYXX CITATION |
DOI | 10.1080/02670844.2020.1868651 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1743-2944 |
EndPage | 1502 |
ExternalDocumentID | 10_1080_02670844_2020_1868651 10.1080_02670844.2020.1868651 1868651 |
Genre | Research Article |
GroupedDBID | 002 0BK 0R~ 123 1~B 29Q 4.4 8WZ A6W AAJMT AATAA ABCCY ABDBF ABFIM ABJNI ABKLS ABPNF ABXYU ACFOO ACGFS ACOXC ACTIO ACUHS ACUIR ADCVX ADGTB ADVBO ADYCX AENEX AEYOC AGDLA AGKLV AIJEM AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH ARTOV AWYRJ BLEHA BPACV CCCUG CS3 DGEBU DKSSO DU5 E01 EAP EBS EMK EPL ESX FHBDP H13 HCLVR HZ~ I-F IPNFZ J8X KYCEM LJTGL M4V M4Z MV1 P2P P75 P7B RIG ROSJB SCNPE SFC TDBHL TEN TFL TFT TFW TTHFI TUS AAGLT AAQXI ABRHV ABUJY ABUNW ACTTO ACVGN ADEBD ADUKL ADUMR ADXEU AEAXR AEHZU AEXNY AEZBV AFION AGVKY AGWUF AHDMH AKHJE ALKDR ALRRR ALXIB AMATQ BGSSV BWMZZ CYRSC DAOYK EJD FETWF IFELN M46 NUSFT O9- OPCYK Q1R SAUOL TAJZE ZE2 AAPII AAYXX AJGYC AJVBE CITATION |
ID | FETCH-LOGICAL-c353t-7da1745c881322019963c08ea3b272e405322d00b604427f627edbf89c9238ea3 |
ISSN | 0267-0844 |
IngestDate | Thu Apr 24 23:10:06 EDT 2025 Tue Aug 05 12:06:41 EDT 2025 Tue Jun 17 22:30:41 EDT 2025 Wed Dec 25 09:07:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | cladding laser remelting wear uniformity FeMnCrNiCo in-situ TiC |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c353t-7da1745c881322019963c08ea3b272e405322d00b604427f627edbf89c9238ea3 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1080_02670844_2020_1868651 sage_journals_10_1080_02670844_2020_1868651 informaworld_taylorfrancis_310_1080_02670844_2020_1868651 crossref_primary_10_1080_02670844_2020_1868651 |
PublicationCentury | 2000 |
PublicationDate | 2021-12-02 |
PublicationDateYYYYMMDD | 2021-12-02 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England |
PublicationTitle | Surface engineering |
PublicationYear | 2021 |
Publisher | Taylor & Francis SAGE Publications |
Publisher_xml | – name: Taylor & Francis – name: SAGE Publications |
References | Richardson, Cuskelly, Brandt 2020; 385 Chen, Kauffmann, Gorr 2016; 661 Luo, Liu, Shen 2019; 791 Huang, Vida, Heczel 2017; 69 Zhou, Kong 2019; 795 Cai, Chen, Manladan 2018; 142 Li, Feng, Liu 2019; 788 Senkov, Woodward, Miracle 2014; 66 Dutta, Galun, Mordik 2003; 361 Zhou, Xu, Liao 2018; 103 Liu, Wang, Zhang 2014; 583 Guo, Shang, Liu 2018; 344 Huang, Nolan, Brandt 2003; 165 Yeh, Chen, Lin 2004; 6 Ho, Chen, Ling 2017; 92 Guo, Li, Zeng 2020; 242 Cai, Jin, Cui 2016; 120 Cai, Chen, Luo 2017; 133 Shun, Du 2009; 479 Chang, Titus, Yeh 2018; 20 Sun, Zhu, Li 2018; 220 Hulka, Utu, Serban 2020; 504 Gorr, Azim, Christ 2016; 47 Ding, Zhang, Chen 2019; 574 Kang, Verdy, Coddet 2017; 318 Yang, Yang, Wen 2018; 748 CIT0010 CIT0012 CIT0011 Milan B. (CIT0003) 2017 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 David RG. (CIT0028) 1995 CIT0021 CIT0020 CIT0001 CIT0023 Zhang MN. (CIT0027) 2018 CIT0022 CIT0025 CIT0002 CIT0024 CIT0005 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0009 CIT0008 |
References_xml | – volume: 583 start-page: 162 year: 2014 end-page: 169 article-title: Microstructure and oxidation behavior of new refractory high entropy alloys publication-title: J Alloy Compd – volume: 69 start-page: 1 year: 2017 end-page: 6 article-title: Thermal expansion, elastic and magnetic properties of FeCoNiCu-based high-entropy alloys using first-principle theory publication-title: JOM – volume: 66 start-page: 2030 year: 2014 end-page: 2042 article-title: Microstructure and properties of aluminum-containing refractory high-entropy alloys publication-title: JOM – volume: 20 start-page: 1700948 year: 2018 article-title: Oxidation behavior between 700 and 1300 °C of refractory TiZrNbHfTa high-entropy alloys containing aluminum publication-title: Adv Eng Mater – volume: 242 start-page: 122522 year: 2020 article-title: In-situ TiC reinforced CoCrCuFeNiSi high-entropy alloy coatings designed for enhanced wear performance by laser cladding publication-title: Mater Chem Phys – volume: 748 start-page: 577 year: 2018 end-page: 582 article-title: A novel route for the synthesis of ultrafine WC-15 wt %Co cemented carbides publication-title: J Alloy Compd – volume: 133 start-page: 91 year: 2017 end-page: 108 article-title: Manufacturing of FeCoCrNiCu medium-entropy alloy coating using laser cladding technology publication-title: Mater Des – volume: 165 start-page: 26 issue: 1 year: 2003 end-page: 34 article-title: Pre-placed WC/Ni clad layers produced with a pulsed Nd:YAG laser via optical fibres publication-title: Surf Coat Technol – volume: 120 start-page: 229 year: 2016 end-page: 233 article-title: Synthesis and microstructure characterization of Ni-Cr-Co-Ti-V-Al high entropy alloy coating on Ti-6Al-4V substrate by laser surface alloying publication-title: Mater Charact – volume: 504 start-page: 144349 year: 2020 article-title: Effect of Ti addition on microstructure and corrosion properties of laser cladded WC-Co/NiCrBSi(Ti) coatings publication-title: Appl Surf Sci – volume: 103 start-page: 8 year: 2018 end-page: 16 article-title: Effect of laser remelting on microstructure and properties of WC reinforced Fe-based amorphous composite coatings by laser cladding publication-title: Opt Laser Technol – volume: 92 start-page: 53 year: 2017 end-page: 62 article-title: Variance analysis of robust state estimation in power system using influence function publication-title: Int J Electr Power Energy Syst – volume: 361 start-page: 119 year: 2003 end-page: 129 article-title: Effect of laser surface meltingon corrosion and wear resistance of a commercial magnesium alloy publication-title: Mater Sci Eng. A – volume: 6 start-page: 299 year: 2004 end-page: 303 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv Eng Mater – volume: 574 start-page: 223 year: 2019 end-page: 227 article-title: Tuning element distribution, structure and properties by composition in high-entropy alloys publication-title: Nature – volume: 479 start-page: 157 year: 2009 end-page: 160 article-title: Microstructure and tensile behaviors of FCC Al CoCrFeNi high entropy alloy publication-title: J Alloy Compd – volume: 661 start-page: 206 year: 2016 end-page: 215 article-title: Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al publication-title: J Alloy Compd – volume: 142 start-page: 124 year: 2018 end-page: 137 article-title: Influence of dilution rate on the microstructure and properties of FeCrCoNi high-entropy alloy coating publication-title: Mater Des – volume: 795 start-page: 416 year: 2019 end-page: 425 article-title: Effects of Ni addition on corrosion behaviors of laser cladded FeSiBNi coating in 3.5% NaCl solution publication-title: J Alloy Compd – volume: 344 start-page: 353 year: 2018 end-page: 358 article-title: Microstructure and properties of in-situ TiN reinforced laser cladding CoCr FeNiTi high-entropy alloy composite coatings publication-title: Surf Coat Technol – volume: 385 start-page: 125360 year: 2020 article-title: Microstructural analysis of in-situ reacted Ti AlC MAX phase composite coating by laser cladding publication-title: Surf Coat Technol – volume: 318 start-page: 355 year: 2017 end-page: 359 article-title: Effects of laser remelting process on the microstructure, roughness and microhardness of in-situ cold sprayed hypoeutectic Al-Si coating publication-title: Surf Coat Technol – volume: 791 start-page: 540 year: 2019 end-page: 549 article-title: Effects of binders on the microstructures and mechanical properties of ultrafine WC-10%Al CoCrCuFeNi composites by spark plasma sintering publication-title: J Alloy Compd – volume: 47 start-page: 961 year: 2016 end-page: 970 article-title: Microstructure evolution in a new refractory high-entropy alloy W-Mo-Cr-Ti-Al publication-title: Metall Mater Trans. A – volume: 788 start-page: 485 year: 2019 end-page: 494 article-title: Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding publication-title: J Alloy Compd – volume: 220 start-page: 449 year: 2018 end-page: 459 article-title: High entropy alloy FeCoNiCu matrix composites reinforced with in-situ TiC particles and graphite whiskers publication-title: Mater Chem Phys – ident: CIT0025 doi: 10.1016/S0921-5093(03)00519-7 – volume-title: Introduction to the thermodynamics of materials. 3rd ed year: 1995 ident: CIT0028 – ident: CIT0002 doi: 10.1016/j.matdes.2018.01.007 – ident: CIT0016 doi: 10.1007/s11661-015-3246-0 – ident: CIT0008 doi: 10.1016/j.matchar.2016.09.011 – ident: CIT0020 doi: 10.1016/j.jallcom.2019.02.223 – ident: CIT0007 doi: 10.1016/j.surfcoat.2020.125360 – ident: CIT0005 doi: 10.1016/j.jallcom.2019.05.012 – ident: CIT0013 doi: 10.1002/adem.200300567 – ident: CIT0012 doi: 10.1007/s11837-017-2565-6 – ident: CIT0004 doi: 10.1016/S0257-8972(02)00700-4 – ident: CIT0001 doi: 10.1016/j.matdes.2017.07.045 – ident: CIT0015 doi: 10.1007/s11837-014-1066-0 – ident: CIT0017 doi: 10.1038/s41586-019-1617-1 – ident: CIT0024 doi: 10.1016/j.optlastec.2018.01.024 – ident: CIT0006 doi: 10.1016/j.apsusc.2019.144349 – ident: CIT0019 doi: 10.1016/j.jallcom.2019.03.328 – ident: CIT0009 doi: 10.1016/j.jallcom.2008.12.088 – volume-title: Laser additive manufacturing: materials, design, technologies and applications year: 2017 ident: CIT0003 – ident: CIT0010 doi: 10.1002/adem.201700948 – ident: CIT0029 doi: 10.1016/j.ijepes.2017.04.009 – ident: CIT0011 doi: 10.1016/j.jallcom.2013.08.102 – ident: CIT0014 doi: 10.1016/j.jallcom.2015.11.050 – ident: CIT0018 doi: 10.1016/j.jallcom.2018.03.197 – ident: CIT0022 doi: 10.1016/j.surfcoat.2018.03.035 – ident: CIT0021 doi: 10.1016/j.matchemphys.2018.09.022 – ident: CIT0026 doi: 10.1016/j.surfcoat.2017.01.057 – ident: CIT0023 doi: 10.1016/j.matchemphys.2019.122522 – volume-title: Microstructure and properties of CoCrMoNbTi and AlCoCuFeNi high entropy alloys by additive manufacturing technology [dissertation] year: 2018 ident: CIT0027 |
SSID | ssj0021785 |
Score | 2.3376343 |
Snippet | In this study, the (FeMnCrNiCo + 20%TiC) laser cladding layer was re-treated through multiple-pass in-situ laser remelting. Optical microscopy, scanning... |
SourceID | crossref sage informaworld |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1496 |
SubjectTerms | cladding FeMnCrNiCo in-situ laser remelting TiC uniformity wear |
Title | Enhancing the (FeMnCrNiCo + TiC) cladding layer by in-situ laser remelting |
URI | https://www.tandfonline.com/doi/abs/10.1080/02670844.2020.1868651 https://journals.sagepub.com/doi/full/10.1080/02670844.2020.1868651 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QUOqLxEoUU-gARaZeU4TuIcu2lXFVL3tJXKKYodm6ZapWibHMqJKyf-I7-EceI8Vooo5bBRZMVx1vNlMjOe-YzQ-5S5kumAOJGfSodxqhzhauJwLYgUIdcZN7XD56vg7IJ9vvQvJ5Nfg6ylqhRz-X20ruR_pAptIFdTJfsAyXY3hQY4B_nCESQMx3-S8WlxZegybMET2IpLdV7E21Ue39gkBh59oIvufJ3HJgogNyaLCHptUjC4jQGaF85tXlbQAM89MyHDTdl-067bkpGtTkEJqJ7AsF-_qFMCvqTFV3lV9XCLq7a9D09XTSAArPyu-zq3a1HVXTUMQlC3TujoXdZm9Ws8zkhBExPekDzOVaNlDS8qjWybVcMN90sLNzpQquDEBYMPNJiwdFT522xJGNCMB74_hUYe8MBS2u7yatseyej1j9AeBb-DTtHe8eJksex8eDesd3nt_lVbFGbo2sdutGPu7JDh7qQO1tbMeh89tW4IPm4w9QxNVPEcPRmQU75Aqw5dGNCFP_bY-v3j5wx-gKZPuMUSrrGExR22WMI1lnCHpZfoYnm6js8cu_uGIz3fK50wS0FOvuTcBCyIyVb3JOEq9QQNqWJmSxGaESICwhgNdUBDlQnNIwk-g7nsFZoWN4V6jTAnAeE6ClOuAyY8xiPlZ9RjoRI-BZf6ALF2khJpqenNDimbxG0ZbO3cJmZuEzu3B2jedfvWcLPc1yEaSiAp66CYbnawSbx7-s6MuBL7-t_-faQ3D7r6LXrcv1SHaFpuK3UEtm4p3ln8_QGjPpRv |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+%28FeMnCrNiCo%E2%80%89%2B%E2%80%89TiC%29+cladding+layer+by+in-situ+laser+remelting&rft.jtitle=Surface+engineering&rft.au=Cai%2C+Yangchuan&rft.au=Cui%2C+Yan&rft.au=Zhu%2C+Lisong&rft.au=Tian%2C+Ruyu&rft.date=2021-12-02&rft.pub=SAGE+Publications&rft.issn=0267-0844&rft.eissn=1743-2944&rft.volume=37&rft.issue=12&rft.spage=1496&rft.epage=1502&rft_id=info:doi/10.1080%2F02670844.2020.1868651&rft.externalDocID=10.1080_02670844.2020.1868651 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0267-0844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0267-0844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0267-0844&client=summon |