Enhancing the (FeMnCrNiCo + TiC) cladding layer by in-situ laser remelting

In this study, the (FeMnCrNiCo + 20%TiC) laser cladding layer was re-treated through multiple-pass in-situ laser remelting. Optical microscopy, scanning electron microscopy, and X-ray diffraction were used to analyse the evolution of microstructures and phases before and after the in-situ laser reme...

Full description

Saved in:
Bibliographic Details
Published inSurface engineering Vol. 37; no. 12; pp. 1496 - 1502
Main Authors Cai, Yangchuan, Cui, Yan, Zhu, Lisong, Tian, Ruyu, Geng, Keping, Li, Huijun, Han, Jian
Format Journal Article
LanguageEnglish
Published London, England Taylor & Francis 02.12.2021
SAGE Publications
Subjects
Online AccessGet full text
ISSN0267-0844
1743-2944
DOI10.1080/02670844.2020.1868651

Cover

Loading…
Abstract In this study, the (FeMnCrNiCo + 20%TiC) laser cladding layer was re-treated through multiple-pass in-situ laser remelting. Optical microscopy, scanning electron microscopy, and X-ray diffraction were used to analyse the evolution of microstructures and phases before and after the in-situ laser remelting processes. The micro-hardness and wear resistance of the composite coatings were systematically investigated using micro-hardness and abrasion. Results show that in-situ laser remelting decreased the dilution rate. The thermal effect of laser melting and the Maragni action in the liquid coating metal enabled the large-sized and loosened ceramic particles to remelt into the cladding layers. As a result, the ceramic particles in the cladding layers after in-situ laser remelting were modified considerably in terms of their spherification rate, dimension uniformity, and particle distribution. The weak spots caused by stress on the surfaces of the cladding layers were reduced, and accordingly the wear resistances improved.
AbstractList In this study, the (FeMnCrNiCo + 20%TiC) laser cladding layer was re-treated through multiple-pass in-situ laser remelting. Optical microscopy, scanning electron microscopy, and X-ray diffraction were used to analyse the evolution of microstructures and phases before and after the in-situ laser remelting processes. The micro-hardness and wear resistance of the composite coatings were systematically investigated using micro-hardness and abrasion. Results show that in-situ laser remelting decreased the dilution rate. The thermal effect of laser melting and the Maragni action in the liquid coating metal enabled the large-sized and loosened ceramic particles to remelt into the cladding layers. As a result, the ceramic particles in the cladding layers after in-situ laser remelting were modified considerably in terms of their spherification rate, dimension uniformity, and particle distribution. The weak spots caused by stress on the surfaces of the cladding layers were reduced, and accordingly the wear resistances improved.
Author Cai, Yangchuan
Zhu, Lisong
Li, Huijun
Geng, Keping
Cui, Yan
Tian, Ruyu
Han, Jian
Author_xml – sequence: 1
  givenname: Yangchuan
  surname: Cai
  fullname: Cai, Yangchuan
  organization: Tianjin University of Technology
– sequence: 2
  givenname: Yan
  surname: Cui
  fullname: Cui, Yan
  organization: Tianjin University
– sequence: 3
  givenname: Lisong
  surname: Zhu
  fullname: Zhu, Lisong
  organization: Tianjin University of Technology
– sequence: 4
  givenname: Ruyu
  surname: Tian
  fullname: Tian, Ruyu
  organization: Yangzhou University
– sequence: 5
  givenname: Keping
  surname: Geng
  fullname: Geng, Keping
  organization: Tianjin Sino-German University of Applied Sciences
– sequence: 6
  givenname: Huijun
  surname: Li
  fullname: Li, Huijun
  organization: Tianjin University
– sequence: 7
  givenname: Jian
  surname: Han
  fullname: Han, Jian
  email: hj_tjut@vip.126.com
  organization: Tianjin University of Technology
BookMark eNqFkE9LwzAYh4NMcJt-BKFHRTrzr22KF6VsKsx5meeQpumW0SWSdEhvXv2afhJTNi8e3OEl8ON5Xt78RmBgrFEAXCI4QZDBW4jTDDJKJxjiELGUpQk6AUOUURLjnNIBGPZM3ENnYOT9BkKMMpYMwWJq1sJIbVZRu1bR1Uy9mMItdGG_P79uwix1cR3JRlRVzzSiUy4qu0ib2Ot2FwIfAqe2qmkDcA5Oa9F4dXF4x-BtNl0WT_H89fG5eJjHkiSkjbNKhOMSyRgiGEOU5ymRkClBSpxhRWES4grCMoWU4qxOcaaqsma5zDHpsTG42--VznrvVM2lbkWrrWmd0A1HkPfV8N9qeF8NP1QT7OSP_e70VrjuqIf3nhcrxTd250z45FHpfi9pU1u3FR_WNRVvRddYV7u-e8_J_yt-ACtIiqM
CitedBy_id crossref_primary_10_1007_s11837_023_05799_2
crossref_primary_10_1016_j_optlaseng_2022_107330
crossref_primary_10_1016_j_optlastec_2022_108205
crossref_primary_10_1016_j_optlastec_2025_112672
crossref_primary_10_3390_app11146580
crossref_primary_10_1007_s12666_024_03414_9
crossref_primary_10_1016_j_matpr_2023_08_052
crossref_primary_10_1007_s11665_024_09294_w
crossref_primary_10_3390_met12122055
Cites_doi 10.1016/S0921-5093(03)00519-7
10.1016/j.matdes.2018.01.007
10.1007/s11661-015-3246-0
10.1016/j.matchar.2016.09.011
10.1016/j.jallcom.2019.02.223
10.1016/j.surfcoat.2020.125360
10.1016/j.jallcom.2019.05.012
10.1002/adem.200300567
10.1007/s11837-017-2565-6
10.1016/S0257-8972(02)00700-4
10.1016/j.matdes.2017.07.045
10.1007/s11837-014-1066-0
10.1038/s41586-019-1617-1
10.1016/j.optlastec.2018.01.024
10.1016/j.apsusc.2019.144349
10.1016/j.jallcom.2019.03.328
10.1016/j.jallcom.2008.12.088
10.1002/adem.201700948
10.1016/j.ijepes.2017.04.009
10.1016/j.jallcom.2013.08.102
10.1016/j.jallcom.2015.11.050
10.1016/j.jallcom.2018.03.197
10.1016/j.surfcoat.2018.03.035
10.1016/j.matchemphys.2018.09.022
10.1016/j.surfcoat.2017.01.057
10.1016/j.matchemphys.2019.122522
ContentType Journal Article
Copyright 2021 Institute of Materials, Minerals and Mining Published by Taylor & Francis on behalf of the Institute 2021
2021 Institute of Materials, Minerals and Mining Published by Taylor & Francis on behalf of the Institute
Copyright_xml – notice: 2021 Institute of Materials, Minerals and Mining Published by Taylor & Francis on behalf of the Institute 2021
– notice: 2021 Institute of Materials, Minerals and Mining Published by Taylor & Francis on behalf of the Institute
DBID AAYXX
CITATION
DOI 10.1080/02670844.2020.1868651
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1743-2944
EndPage 1502
ExternalDocumentID 10_1080_02670844_2020_1868651
10.1080_02670844.2020.1868651
1868651
Genre Research Article
GroupedDBID 002
0BK
0R~
123
1~B
29Q
4.4
8WZ
A6W
AAJMT
AATAA
ABCCY
ABDBF
ABFIM
ABJNI
ABKLS
ABPNF
ABXYU
ACFOO
ACGFS
ACOXC
ACTIO
ACUHS
ACUIR
ADCVX
ADGTB
ADVBO
ADYCX
AENEX
AEYOC
AGDLA
AGKLV
AIJEM
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
ARTOV
AWYRJ
BLEHA
BPACV
CCCUG
CS3
DGEBU
DKSSO
DU5
E01
EAP
EBS
EMK
EPL
ESX
FHBDP
H13
HCLVR
HZ~
I-F
IPNFZ
J8X
KYCEM
LJTGL
M4V
M4Z
MV1
P2P
P75
P7B
RIG
ROSJB
SCNPE
SFC
TDBHL
TEN
TFL
TFT
TFW
TTHFI
TUS
AAGLT
AAQXI
ABRHV
ABUJY
ABUNW
ACTTO
ACVGN
ADEBD
ADUKL
ADUMR
ADXEU
AEAXR
AEHZU
AEXNY
AEZBV
AFION
AGVKY
AGWUF
AHDMH
AKHJE
ALKDR
ALRRR
ALXIB
AMATQ
BGSSV
BWMZZ
CYRSC
DAOYK
EJD
FETWF
IFELN
M46
NUSFT
O9-
OPCYK
Q1R
SAUOL
TAJZE
ZE2
AAPII
AAYXX
AJGYC
AJVBE
CITATION
ID FETCH-LOGICAL-c353t-7da1745c881322019963c08ea3b272e405322d00b604427f627edbf89c9238ea3
ISSN 0267-0844
IngestDate Thu Apr 24 23:10:06 EDT 2025
Tue Aug 05 12:06:41 EDT 2025
Tue Jun 17 22:30:41 EDT 2025
Wed Dec 25 09:07:10 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords cladding
laser
remelting
wear
uniformity
FeMnCrNiCo
in-situ
TiC
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c353t-7da1745c881322019963c08ea3b272e405322d00b604427f627edbf89c9238ea3
PageCount 7
ParticipantIDs crossref_citationtrail_10_1080_02670844_2020_1868651
sage_journals_10_1080_02670844_2020_1868651
informaworld_taylorfrancis_310_1080_02670844_2020_1868651
crossref_primary_10_1080_02670844_2020_1868651
PublicationCentury 2000
PublicationDate 2021-12-02
PublicationDateYYYYMMDD 2021-12-02
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-02
  day: 02
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
PublicationTitle Surface engineering
PublicationYear 2021
Publisher Taylor & Francis
SAGE Publications
Publisher_xml – name: Taylor & Francis
– name: SAGE Publications
References Richardson, Cuskelly, Brandt 2020; 385
Chen, Kauffmann, Gorr 2016; 661
Luo, Liu, Shen 2019; 791
Huang, Vida, Heczel 2017; 69
Zhou, Kong 2019; 795
Cai, Chen, Manladan 2018; 142
Li, Feng, Liu 2019; 788
Senkov, Woodward, Miracle 2014; 66
Dutta, Galun, Mordik 2003; 361
Zhou, Xu, Liao 2018; 103
Liu, Wang, Zhang 2014; 583
Guo, Shang, Liu 2018; 344
Huang, Nolan, Brandt 2003; 165
Yeh, Chen, Lin 2004; 6
Ho, Chen, Ling 2017; 92
Guo, Li, Zeng 2020; 242
Cai, Jin, Cui 2016; 120
Cai, Chen, Luo 2017; 133
Shun, Du 2009; 479
Chang, Titus, Yeh 2018; 20
Sun, Zhu, Li 2018; 220
Hulka, Utu, Serban 2020; 504
Gorr, Azim, Christ 2016; 47
Ding, Zhang, Chen 2019; 574
Kang, Verdy, Coddet 2017; 318
Yang, Yang, Wen 2018; 748
CIT0010
CIT0012
CIT0011
Milan B. (CIT0003) 2017
CIT0014
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
David RG. (CIT0028) 1995
CIT0021
CIT0020
CIT0001
CIT0023
Zhang MN. (CIT0027) 2018
CIT0022
CIT0025
CIT0002
CIT0024
CIT0005
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0009
CIT0008
References_xml – volume: 583
  start-page: 162
  year: 2014
  end-page: 169
  article-title: Microstructure and oxidation behavior of new refractory high entropy alloys
  publication-title: J Alloy Compd
– volume: 69
  start-page: 1
  year: 2017
  end-page: 6
  article-title: Thermal expansion, elastic and magnetic properties of FeCoNiCu-based high-entropy alloys using first-principle theory
  publication-title: JOM
– volume: 66
  start-page: 2030
  year: 2014
  end-page: 2042
  article-title: Microstructure and properties of aluminum-containing refractory high-entropy alloys
  publication-title: JOM
– volume: 20
  start-page: 1700948
  year: 2018
  article-title: Oxidation behavior between 700 and 1300 °C of refractory TiZrNbHfTa high-entropy alloys containing aluminum
  publication-title: Adv Eng Mater
– volume: 242
  start-page: 122522
  year: 2020
  article-title: In-situ TiC reinforced CoCrCuFeNiSi high-entropy alloy coatings designed for enhanced wear performance by laser cladding
  publication-title: Mater Chem Phys
– volume: 748
  start-page: 577
  year: 2018
  end-page: 582
  article-title: A novel route for the synthesis of ultrafine WC-15 wt %Co cemented carbides
  publication-title: J Alloy Compd
– volume: 133
  start-page: 91
  year: 2017
  end-page: 108
  article-title: Manufacturing of FeCoCrNiCu medium-entropy alloy coating using laser cladding technology
  publication-title: Mater Des
– volume: 165
  start-page: 26
  issue: 1
  year: 2003
  end-page: 34
  article-title: Pre-placed WC/Ni clad layers produced with a pulsed Nd:YAG laser via optical fibres
  publication-title: Surf Coat Technol
– volume: 120
  start-page: 229
  year: 2016
  end-page: 233
  article-title: Synthesis and microstructure characterization of Ni-Cr-Co-Ti-V-Al high entropy alloy coating on Ti-6Al-4V substrate by laser surface alloying
  publication-title: Mater Charact
– volume: 504
  start-page: 144349
  year: 2020
  article-title: Effect of Ti addition on microstructure and corrosion properties of laser cladded WC-Co/NiCrBSi(Ti) coatings
  publication-title: Appl Surf Sci
– volume: 103
  start-page: 8
  year: 2018
  end-page: 16
  article-title: Effect of laser remelting on microstructure and properties of WC reinforced Fe-based amorphous composite coatings by laser cladding
  publication-title: Opt Laser Technol
– volume: 92
  start-page: 53
  year: 2017
  end-page: 62
  article-title: Variance analysis of robust state estimation in power system using influence function
  publication-title: Int J Electr Power Energy Syst
– volume: 361
  start-page: 119
  year: 2003
  end-page: 129
  article-title: Effect of laser surface meltingon corrosion and wear resistance of a commercial magnesium alloy
  publication-title: Mater Sci Eng. A
– volume: 6
  start-page: 299
  year: 2004
  end-page: 303
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv Eng Mater
– volume: 574
  start-page: 223
  year: 2019
  end-page: 227
  article-title: Tuning element distribution, structure and properties by composition in high-entropy alloys
  publication-title: Nature
– volume: 479
  start-page: 157
  year: 2009
  end-page: 160
  article-title: Microstructure and tensile behaviors of FCC Al CoCrFeNi high entropy alloy
  publication-title: J Alloy Compd
– volume: 661
  start-page: 206
  year: 2016
  end-page: 215
  article-title: Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al
  publication-title: J Alloy Compd
– volume: 142
  start-page: 124
  year: 2018
  end-page: 137
  article-title: Influence of dilution rate on the microstructure and properties of FeCrCoNi high-entropy alloy coating
  publication-title: Mater Des
– volume: 795
  start-page: 416
  year: 2019
  end-page: 425
  article-title: Effects of Ni addition on corrosion behaviors of laser cladded FeSiBNi coating in 3.5% NaCl solution
  publication-title: J Alloy Compd
– volume: 344
  start-page: 353
  year: 2018
  end-page: 358
  article-title: Microstructure and properties of in-situ TiN reinforced laser cladding CoCr FeNiTi high-entropy alloy composite coatings
  publication-title: Surf Coat Technol
– volume: 385
  start-page: 125360
  year: 2020
  article-title: Microstructural analysis of in-situ reacted Ti AlC MAX phase composite coating by laser cladding
  publication-title: Surf Coat Technol
– volume: 318
  start-page: 355
  year: 2017
  end-page: 359
  article-title: Effects of laser remelting process on the microstructure, roughness and microhardness of in-situ cold sprayed hypoeutectic Al-Si coating
  publication-title: Surf Coat Technol
– volume: 791
  start-page: 540
  year: 2019
  end-page: 549
  article-title: Effects of binders on the microstructures and mechanical properties of ultrafine WC-10%Al CoCrCuFeNi composites by spark plasma sintering
  publication-title: J Alloy Compd
– volume: 47
  start-page: 961
  year: 2016
  end-page: 970
  article-title: Microstructure evolution in a new refractory high-entropy alloy W-Mo-Cr-Ti-Al
  publication-title: Metall Mater Trans. A
– volume: 788
  start-page: 485
  year: 2019
  end-page: 494
  article-title: Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding
  publication-title: J Alloy Compd
– volume: 220
  start-page: 449
  year: 2018
  end-page: 459
  article-title: High entropy alloy FeCoNiCu matrix composites reinforced with in-situ TiC particles and graphite whiskers
  publication-title: Mater Chem Phys
– ident: CIT0025
  doi: 10.1016/S0921-5093(03)00519-7
– volume-title: Introduction to the thermodynamics of materials. 3rd ed
  year: 1995
  ident: CIT0028
– ident: CIT0002
  doi: 10.1016/j.matdes.2018.01.007
– ident: CIT0016
  doi: 10.1007/s11661-015-3246-0
– ident: CIT0008
  doi: 10.1016/j.matchar.2016.09.011
– ident: CIT0020
  doi: 10.1016/j.jallcom.2019.02.223
– ident: CIT0007
  doi: 10.1016/j.surfcoat.2020.125360
– ident: CIT0005
  doi: 10.1016/j.jallcom.2019.05.012
– ident: CIT0013
  doi: 10.1002/adem.200300567
– ident: CIT0012
  doi: 10.1007/s11837-017-2565-6
– ident: CIT0004
  doi: 10.1016/S0257-8972(02)00700-4
– ident: CIT0001
  doi: 10.1016/j.matdes.2017.07.045
– ident: CIT0015
  doi: 10.1007/s11837-014-1066-0
– ident: CIT0017
  doi: 10.1038/s41586-019-1617-1
– ident: CIT0024
  doi: 10.1016/j.optlastec.2018.01.024
– ident: CIT0006
  doi: 10.1016/j.apsusc.2019.144349
– ident: CIT0019
  doi: 10.1016/j.jallcom.2019.03.328
– ident: CIT0009
  doi: 10.1016/j.jallcom.2008.12.088
– volume-title: Laser additive manufacturing: materials, design, technologies and applications
  year: 2017
  ident: CIT0003
– ident: CIT0010
  doi: 10.1002/adem.201700948
– ident: CIT0029
  doi: 10.1016/j.ijepes.2017.04.009
– ident: CIT0011
  doi: 10.1016/j.jallcom.2013.08.102
– ident: CIT0014
  doi: 10.1016/j.jallcom.2015.11.050
– ident: CIT0018
  doi: 10.1016/j.jallcom.2018.03.197
– ident: CIT0022
  doi: 10.1016/j.surfcoat.2018.03.035
– ident: CIT0021
  doi: 10.1016/j.matchemphys.2018.09.022
– ident: CIT0026
  doi: 10.1016/j.surfcoat.2017.01.057
– ident: CIT0023
  doi: 10.1016/j.matchemphys.2019.122522
– volume-title: Microstructure and properties of CoCrMoNbTi and AlCoCuFeNi high entropy alloys by additive manufacturing technology [dissertation]
  year: 2018
  ident: CIT0027
SSID ssj0021785
Score 2.3376343
Snippet In this study, the (FeMnCrNiCo + 20%TiC) laser cladding layer was re-treated through multiple-pass in-situ laser remelting. Optical microscopy, scanning...
SourceID crossref
sage
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 1496
SubjectTerms cladding
FeMnCrNiCo
in-situ
laser
remelting
TiC
uniformity
wear
Title Enhancing the (FeMnCrNiCo + TiC) cladding layer by in-situ laser remelting
URI https://www.tandfonline.com/doi/abs/10.1080/02670844.2020.1868651
https://journals.sagepub.com/doi/full/10.1080/02670844.2020.1868651
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QUOqLxEoUU-gARaZeU4TuIcu2lXFVL3tJXKKYodm6ZapWibHMqJKyf-I7-EceI8Vooo5bBRZMVx1vNlMjOe-YzQ-5S5kumAOJGfSodxqhzhauJwLYgUIdcZN7XD56vg7IJ9vvQvJ5Nfg6ylqhRz-X20ruR_pAptIFdTJfsAyXY3hQY4B_nCESQMx3-S8WlxZegybMET2IpLdV7E21Ue39gkBh59oIvufJ3HJgogNyaLCHptUjC4jQGaF85tXlbQAM89MyHDTdl-067bkpGtTkEJqJ7AsF-_qFMCvqTFV3lV9XCLq7a9D09XTSAArPyu-zq3a1HVXTUMQlC3TujoXdZm9Ws8zkhBExPekDzOVaNlDS8qjWybVcMN90sLNzpQquDEBYMPNJiwdFT522xJGNCMB74_hUYe8MBS2u7yatseyej1j9AeBb-DTtHe8eJksex8eDesd3nt_lVbFGbo2sdutGPu7JDh7qQO1tbMeh89tW4IPm4w9QxNVPEcPRmQU75Aqw5dGNCFP_bY-v3j5wx-gKZPuMUSrrGExR22WMI1lnCHpZfoYnm6js8cu_uGIz3fK50wS0FOvuTcBCyIyVb3JOEq9QQNqWJmSxGaESICwhgNdUBDlQnNIwk-g7nsFZoWN4V6jTAnAeE6ClOuAyY8xiPlZ9RjoRI-BZf6ALF2khJpqenNDimbxG0ZbO3cJmZuEzu3B2jedfvWcLPc1yEaSiAp66CYbnawSbx7-s6MuBL7-t_-faQ3D7r6LXrcv1SHaFpuK3UEtm4p3ln8_QGjPpRv
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+%28FeMnCrNiCo%E2%80%89%2B%E2%80%89TiC%29+cladding+layer+by+in-situ+laser+remelting&rft.jtitle=Surface+engineering&rft.au=Cai%2C+Yangchuan&rft.au=Cui%2C+Yan&rft.au=Zhu%2C+Lisong&rft.au=Tian%2C+Ruyu&rft.date=2021-12-02&rft.pub=SAGE+Publications&rft.issn=0267-0844&rft.eissn=1743-2944&rft.volume=37&rft.issue=12&rft.spage=1496&rft.epage=1502&rft_id=info:doi/10.1080%2F02670844.2020.1868651&rft.externalDocID=10.1080_02670844.2020.1868651
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0267-0844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0267-0844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0267-0844&client=summon