Deep learning in omics: a survey and guideline
Abstract Omics, such as genomics, transcriptome and proteomics, has been affected by the era of big data. A huge amount of high dimensional and complex structured data has made it no longer applicable for conventional machine learning algorithms. Fortunately, deep learning technology can contribute...
Saved in:
Published in | Briefings in functional genomics Vol. 18; no. 1; pp. 41 - 57 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
14.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Omics, such as genomics, transcriptome and proteomics, has been affected by the era of big data. A huge amount of high dimensional and complex structured data has made it no longer applicable for conventional machine learning algorithms. Fortunately, deep learning technology can contribute toward resolving these challenges. There is evidence that deep learning can handle omics data well and resolve omics problems. This survey aims to provide an entry-level guideline for researchers, to understand and use deep learning in order to solve omics problems. We first introduce several deep learning models and then discuss several research areas which have combined omics and deep learning in recent years. In addition, we summarize the general steps involved in using deep learning which have not yet been systematically discussed in the existent literature on this topic. Finally, we compare the features and performance of current mainstream open source deep learning frameworks and present the opportunities and challenges involved in deep learning. This survey will be a good starting point and guideline for omics researchers to understand deep learning. |
---|---|
AbstractList | Omics, such as genomics, transcriptome and proteomics, has been affected by the era of big data. A huge amount of high dimensional and complex structured data has made it no longer applicable for conventional machine learning algorithms. Fortunately, deep learning technology can contribute toward resolving these challenges. There is evidence that deep learning can handle omics data well and resolve omics problems. This survey aims to provide an entry-level guideline for researchers, to understand and use deep learning in order to solve omics problems. We first introduce several deep learning models and then discuss several research areas which have combined omics and deep learning in recent years. In addition, we summarize the general steps involved in using deep learning which have not yet been systematically discussed in the existent literature on this topic. Finally, we compare the features and performance of current mainstream open source deep learning frameworks and present the opportunities and challenges involved in deep learning. This survey will be a good starting point and guideline for omics researchers to understand deep learning. Omics, such as genomics, transcriptome and proteomics, has been affected by the era of big data. A huge amount of high dimensional and complex structured data has made it no longer applicable for conventional machine learning algorithms. Fortunately, deep learning technology can contribute toward resolving these challenges. There is evidence that deep learning can handle omics data well and resolve omics problems. This survey aims to provide an entry-level guideline for researchers, to understand and use deep learning in order to solve omics problems. We first introduce several deep learning models and then discuss several research areas which have combined omics and deep learning in recent years. In addition, we summarize the general steps involved in using deep learning which have not yet been systematically discussed in the existent literature on this topic. Finally, we compare the features and performance of current mainstream open source deep learning frameworks and present the opportunities and challenges involved in deep learning. This survey will be a good starting point and guideline for omics researchers to understand deep learning.Omics, such as genomics, transcriptome and proteomics, has been affected by the era of big data. A huge amount of high dimensional and complex structured data has made it no longer applicable for conventional machine learning algorithms. Fortunately, deep learning technology can contribute toward resolving these challenges. There is evidence that deep learning can handle omics data well and resolve omics problems. This survey aims to provide an entry-level guideline for researchers, to understand and use deep learning in order to solve omics problems. We first introduce several deep learning models and then discuss several research areas which have combined omics and deep learning in recent years. In addition, we summarize the general steps involved in using deep learning which have not yet been systematically discussed in the existent literature on this topic. Finally, we compare the features and performance of current mainstream open source deep learning frameworks and present the opportunities and challenges involved in deep learning. This survey will be a good starting point and guideline for omics researchers to understand deep learning. Abstract Omics, such as genomics, transcriptome and proteomics, has been affected by the era of big data. A huge amount of high dimensional and complex structured data has made it no longer applicable for conventional machine learning algorithms. Fortunately, deep learning technology can contribute toward resolving these challenges. There is evidence that deep learning can handle omics data well and resolve omics problems. This survey aims to provide an entry-level guideline for researchers, to understand and use deep learning in order to solve omics problems. We first introduce several deep learning models and then discuss several research areas which have combined omics and deep learning in recent years. In addition, we summarize the general steps involved in using deep learning which have not yet been systematically discussed in the existent literature on this topic. Finally, we compare the features and performance of current mainstream open source deep learning frameworks and present the opportunities and challenges involved in deep learning. This survey will be a good starting point and guideline for omics researchers to understand deep learning. |
Author | Peng, Shaoliang Shi, Wenqiang Liao, Xiangke Zhang, Zhiqiang Zhao, Yi Li, Kenli Zou, Quan |
Author_xml | – sequence: 1 givenname: Zhiqiang surname: Zhang fullname: Zhang, Zhiqiang organization: School of Computer Science, National University of Defense Technology, Changsha, China – sequence: 2 givenname: Yi surname: Zhao fullname: Zhao, Yi organization: Institute of Computing Technology,Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Xiangke surname: Liao fullname: Liao, Xiangke organization: School of Computer Science, National University of Defense Technology, Changsha, China – sequence: 4 givenname: Wenqiang surname: Shi fullname: Shi, Wenqiang organization: School of Computer Science, National University of Defense Technology, Changsha, China – sequence: 5 givenname: Kenli surname: Li fullname: Li, Kenli email: pengshaoliang@nudt.edu.cn organization: College of Computer Science and Electronic Engineering & National Supercomputer Centre in Changsha, Hunan University, Changsha, China – sequence: 6 givenname: Quan orcidid: 0000-0001-6406-1142 surname: Zou fullname: Zou, Quan email: zouquan@nclab.net organization: School of Computer Science and Technology, Tianjin University, Tianjin, China – sequence: 7 givenname: Shaoliang surname: Peng fullname: Peng, Shaoliang email: pengshaoliang@nudt.edu.cn organization: School of Computer Science, National University of Defense Technology, Changsha, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30265280$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0M9LwzAUB_AgEzfnTt6lJxGkW9KkaeNN5k8YeNFzSJOXEenS2rTC_ns7unkQ0Xd57_B5j8f3FI185QGhc4LnBAu6KOy6XkC5xRQfoUmCGYkTnmaj75mJMZqF8I77ooQxgk_QmOIeJTmeoPkdQB2VoBrv_DpyPqo2ToebSEWhaz5hGylvonXnDJTOwxk6tqoMMNv3KXp7uH9dPsWrl8fn5e0q1jSlbZwZLhgumOVAbCZIqoHbQnPTv4w1iJwYS3MFTCU804lJQWuaGctJThTLBZ2iq-Fu3VQfHYRWblzQUJbKQ9UFmaQJozhjOP-fEsK4EGm6oxd72hUbMLJu3EY1W3mIowdkALqpQmjASu1a1brKt41ypSRY7lKXu9TlkHq_c_1j53D2d3056Kqr_4Rf_LyPUg |
CitedBy_id | crossref_primary_10_1016_j_imu_2019_100270 crossref_primary_10_1007_s00521_024_10130_4 crossref_primary_10_7717_peerj_13613 crossref_primary_10_3389_fgene_2019_00166 crossref_primary_10_1109_ACCESS_2019_2953951 crossref_primary_10_1109_ACCESS_2020_2982666 crossref_primary_10_1093_bib_bbad156 crossref_primary_10_1016_j_compbiolchem_2021_107593 crossref_primary_10_1016_j_inffus_2020_09_006 crossref_primary_10_1016_j_neucom_2020_09_056 crossref_primary_10_1016_j_biotechadv_2024_108400 crossref_primary_10_1016_j_ccell_2022_06_010 crossref_primary_10_1016_j_jbi_2024_104629 crossref_primary_10_3390_biology11121798 crossref_primary_10_1093_bib_bbz139 crossref_primary_10_1093_bfgp_elad012 crossref_primary_10_1016_j_aej_2024_03_066 crossref_primary_10_1093_bioinformatics_btac147 crossref_primary_10_1016_j_omtn_2019_05_028 crossref_primary_10_1016_j_csbj_2020_08_003 crossref_primary_10_1088_2040_8986_aba22e crossref_primary_10_1109_ACCESS_2020_2971091 crossref_primary_10_3389_fgene_2018_00613 crossref_primary_10_1007_s10462_024_10918_9 crossref_primary_10_1038_s41598_024_76093_7 crossref_primary_10_1038_s42003_020_01233_4 crossref_primary_10_1038_s41698_020_0122_1 crossref_primary_10_3389_fgene_2019_00267 crossref_primary_10_2174_1574893615666200207094357 crossref_primary_10_1186_s12859_021_04026_6 crossref_primary_10_1007_s11042_021_10619_3 crossref_primary_10_3390_genes12071098 crossref_primary_10_1016_j_omtn_2019_11_014 crossref_primary_10_3389_fbioe_2019_00224 crossref_primary_10_1109_ACCESS_2020_3036090 crossref_primary_10_3390_ijms25126422 crossref_primary_10_1109_TCBB_2023_3252276 crossref_primary_10_3389_fgene_2020_00402 crossref_primary_10_1093_bib_bbac514 crossref_primary_10_1093_bib_bbz081 crossref_primary_10_3389_fbioe_2019_00215 crossref_primary_10_1109_ACCESS_2020_3025990 crossref_primary_10_1016_j_inffus_2021_10_007 crossref_primary_10_1109_JBHI_2022_3163150 crossref_primary_10_1093_bib_bbz120 crossref_primary_10_3390_s23010062 crossref_primary_10_3389_fgene_2019_01346 crossref_primary_10_1038_s41598_021_97238_y crossref_primary_10_1016_j_compbiomed_2024_109302 crossref_primary_10_3389_frans_2023_1119438 crossref_primary_10_1016_j_pneurobio_2023_102480 crossref_primary_10_1007_s11390_021_1174_6 crossref_primary_10_1016_j_cmpb_2023_107377 crossref_primary_10_3390_app12125927 crossref_primary_10_1016_j_compbiomed_2022_105832 crossref_primary_10_2174_1381612826666200617170826 crossref_primary_10_3390_diagnostics13071353 crossref_primary_10_1016_j_csbj_2021_09_001 crossref_primary_10_3389_fgene_2019_01071 crossref_primary_10_1186_s12859_022_04758_z crossref_primary_10_1186_s12859_023_05224_0 crossref_primary_10_1016_j_neucom_2019_09_070 crossref_primary_10_1093_bib_bbac420 crossref_primary_10_1016_j_neucom_2020_05_115 crossref_primary_10_1007_s12033_024_01133_6 crossref_primary_10_1021_acs_analchem_2c00601 crossref_primary_10_3390_biomedicines9111733 crossref_primary_10_1007_s12539_021_00434_7 crossref_primary_10_1007_s00701_021_04928_7 crossref_primary_10_1109_ACCESS_2020_2991605 crossref_primary_10_1002_smll_202206349 crossref_primary_10_1261_rna_069112_118 crossref_primary_10_1016_j_aca_2020_10_038 crossref_primary_10_1093_bib_bbad104 crossref_primary_10_1007_s10681_025_03461_3 crossref_primary_10_1109_TCBB_2023_3247634 crossref_primary_10_1016_j_csbj_2022_07_014 crossref_primary_10_1109_ACCESS_2019_2958133 crossref_primary_10_3390_cancers13092013 crossref_primary_10_1093_bib_bby124 crossref_primary_10_1093_ecco_jcc_jjab169 crossref_primary_10_1007_s11831_021_09547_0 crossref_primary_10_1038_s41538_025_00394_y crossref_primary_10_1007_s12539_022_00503_5 crossref_primary_10_1016_j_bspc_2023_105263 crossref_primary_10_3390_genes10080587 crossref_primary_10_1038_s41598_021_03215_w crossref_primary_10_1016_j_csbj_2021_10_009 crossref_primary_10_1109_ACCESS_2020_2997937 crossref_primary_10_1016_j_cmpb_2022_106874 crossref_primary_10_1089_omi_2022_0155 crossref_primary_10_3390_diagnostics13040664 crossref_primary_10_1155_2022_3022767 crossref_primary_10_3390_e24010017 crossref_primary_10_1007_s42979_021_00841_z crossref_primary_10_1109_ACCESS_2020_2987324 crossref_primary_10_3389_frai_2023_1128153 crossref_primary_10_1093_bib_bbab585 crossref_primary_10_1007_s11042_022_13085_7 crossref_primary_10_1016_j_copbio_2022_102887 crossref_primary_10_1007_s11883_023_01154_7 crossref_primary_10_1186_s12859_019_3275_6 crossref_primary_10_1016_j_talanta_2024_125949 crossref_primary_10_3390_app15020666 crossref_primary_10_1177_00033197231206427 crossref_primary_10_3390_ijms232012272 crossref_primary_10_2139_ssrn_4787016 crossref_primary_10_1360_SSV_2023_0304 crossref_primary_10_1109_TCBB_2019_2952338 crossref_primary_10_3390_ijms25179514 |
Cites_doi | 10.1162/neco.1997.9.8.1735 10.1109/TNN.2004.842673 10.1186/s12859-017-1922-3 10.1101/gr.224964.117 10.1093/bioinformatics/btw255 10.1109/TCBB.2014.2377729 10.1101/085241 10.1038/srep26094 10.1093/nar/gkw226 10.1126/science.1105136 10.12733/jics20103423 10.1038/srep17573 10.1162/neco.2006.18.7.1527 10.15252/msb.20156651 10.1162/neco.1989.1.4.541 10.1146/annurev-bioeng-071516-044442 10.1109/TCBB.2014.2343960 10.1186/s12864-016-3262-5 10.1002/jcc.23718 10.3390/ijms17081313 10.1186/s12859-015-0553-9 10.1186/1471-2105-14-88 10.1101/151274 10.1186/s12859-017-1713-x 10.1109/TKDE.2009.191 10.1002/minf.201501008 10.1128/mSystems.00025-15 10.1093/bioinformatics/btx431 10.1186/s12859-017-1834-2 10.1037/h0042519 10.1186/s12859-017-1878-3 10.1093/bioinformatics/btv643 10.1162/neco.1989.1.2.270 10.1101/gr.200535.115 10.1093/bioinformatics/btu277 10.3389/fnins.2014.00229 10.1101/103994 10.1093/bioinformatics/btx247 10.1186/s12859-018-2187-1 10.1093/bioinformatics/btx496 10.1016/S0022-2836(05)80360-2 10.1093/nar/gkv1025 10.1093/nar/gks1193 10.1093/bioinformatics/btx243 10.1186/s12859-017-1700-2 10.1021/acs.molpharmaceut.5b00982 10.1093/bioinformatics/bts598 10.1109/CCBD.2016.029 10.1126/science.1127647 10.1007/BF02478259 10.1186/s12859-017-1561-8 10.1001/jama.2016.17216 10.2174/1574893612666170125124538 10.1371/journal.pone.0171410 10.1021/acs.molpharmaceut.6b00248 10.1109/5326.983933 10.1038/nbt.3300 10.1109/JBHI.2016.2636665 10.1371/journal.pcbi.1005324 10.1093/bioinformatics/btw074 10.1016/j.compbiolchem.2016.08.002 10.1073/pnas.0607879104 10.1093/bioinformatics/btw819 10.1007/s13721-016-0129-2 10.1093/bioinformatics/btm247 10.1016/S0169-7439(97)00061-0 10.1186/s12859-017-1828-0 10.1186/s12920-016-0207-4 10.1038/nmeth.3547 10.1109/TPAMI.2006.79 10.1093/bioinformatics/btx350 10.1101/086033 10.1093/bioinformatics/btx105 10.1038/srep28517 10.1186/s12859-017-1798-2 10.1073/pnas.0408677102 10.1038/srep11476 10.1093/bioinformatics/btw427 10.1038/s41598-017-11817-6 10.1093/bioinformatics/bts475 10.1093/nar/gkx177 10.1093/bioinformatics/btu703 10.1186/s13059-017-1189-z 10.1101/103663 10.1093/nar/gkx870 |
ContentType | Journal Article |
Copyright | The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2018 The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2018 – notice: The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1093/bfgp/ely030 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-2657 |
EndPage | 57 |
ExternalDocumentID | 30265280 10_1093_bfgp_ely030 10.1093/bfgp/ely030 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61772543; U1435222; 61625202; 61272056 funderid: 10.13039/501100001809 – fundername: Funds of State Key Laboratory of Chemo/Biosensing and Chemometrics – fundername: Guangdong Provincial Science and Technology Department grantid: 2016B090918122 funderid: 10.13039/501100007162 – fundername: National Key R&D Program of China grantid: 2018YFC090002; 2017YFB0202602; 2017YFC1311003; 2016YFC1302500; 2016YFB0200400; 2017YFB0202104 – fundername: Fundamental Research Funds for the Central Universities |
GroupedDBID | --- .2P .I3 0R~ 4.4 48X 53G 5VS 6J9 70D AAHBH AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABJNI ABMNT ABNKS ABPQP ABPTD ABQLI ABQTQ ABVGC ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACIWK ACPRK ACUFI ACUHS ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADNBA ADOCK ADPDF ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX AMNDL APIBT APWMN ARIXL AXUDD AYOIW BAWUL BAYMD BEYMZ BHONS BQDIO BSWAC C45 CDBKE CZ4 DAKXR DIK DILTD DU5 D~K EAD EAP EAS EBD EBS EE~ EJD EMK EMOBN ESX F5P F9B FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KBUDW KOP KSI KSN M-Z M49 N9A NGC NLBLG NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OJZSN OK1 OVD PAFKI PEELM PQQKQ Q1. Q5Y RD5 RPM RUSNO RW1 RXO SV3 TEORI TLC TR2 TUS X7H Y6R YAYTL YKOAZ YXANX ~91 AAYXX AHGBF CITATION TOX CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c353t-7d6940b4f6e1f7915ce6fbc6d0930ce981df38ae4a267c2d5ecc37df6181a4893 |
IEDL.DBID | TOX |
ISSN | 2041-2649 2041-2657 |
IngestDate | Fri Jul 11 04:18:15 EDT 2025 Fri Jul 11 04:30:19 EDT 2025 Thu Apr 03 07:04:50 EDT 2025 Thu Apr 24 23:03:25 EDT 2025 Tue Jul 01 03:26:56 EDT 2025 Wed Apr 02 07:03:25 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Keywords | deep learning omics gene neural network bioinformatics |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-7d6940b4f6e1f7915ce6fbc6d0930ce981df38ae4a267c2d5ecc37df6181a4893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6406-1142 |
PMID | 30265280 |
PQID | 2114699558 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2524307408 proquest_miscellaneous_2114699558 pubmed_primary_30265280 crossref_citationtrail_10_1093_bfgp_ely030 crossref_primary_10_1093_bfgp_ely030 oup_primary_10_1093_bfgp_ely030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-14 |
PublicationDateYYYYMMDD | 2019-02-14 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Briefings in functional genomics |
PublicationTitleAlternate | Brief Funct Genomics |
PublicationYear | 2019 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Hinton ( key 2019021407195590500_ref4) 2006; 18 Svozil ( key 2019021407195590500_ref23) 1997; 39 Tavanaei ( key 2019021407195590500_ref51) 2016 Raza ( key 2019021407195590500_ref42) 2014; 24 Lee ( key 2019021407195590500_ref69) 2015 Eickholt ( key 2019021407195590500_ref111) 2013; 14 Cho ( key 2019021407195590500_ref32) 2014 Wang ( key 2019021407195590500_ref117) 2017; 33 Li ( key 2019021407195590500_ref37) 2018; 19 Cuperus ( key 2019021407195590500_ref80) 2017; 27 Hassanzadeh ( key 2019021407195590500_ref64) 2016 Heffernan ( key 2019021407195590500_ref49) 2015; 5 Quang ( key 2019021407195590500_ref41) 2016; 44 Meng ( key 2019021407195590500_ref11) 2015 Stober ( key 2019021407195590500_ref12) 2014 Sønderby ( key 2019021407195590500_ref120) 2015 Lee ( key 2019021407195590500_ref96) 2016 Zhang ( key 2019021407195590500_ref66) 2017; 33 Zeng ( key 2019021407195590500_ref59) 2016; 32 Sutton ( key 2019021407195590500_ref140) 2005; 16 Denas ( key 2019021407195590500_ref60) 2013 Williams ( key 2019021407195590500_ref30) 1989; 1 Verborgh ( key 2019021407195590500_ref124) 2013 Wang ( key 2019021407195590500_ref50) 2017; 13 Young ( key 2019021407195590500_ref88) 2017; 18 Hinton ( key 2019021407195590500_ref25) 1986 Zhou ( key 2019021407195590500_ref72) 2015; 12 Pan ( key 2019021407195590500_ref94) 2017; 18 Y-z ( key 2019021407195590500_ref95) 2017; 18 Bhat ( key 2019021407195590500_ref101) 2016 Kukar ( key 2019021407195590500_ref138) 1998 Plis ( key 2019021407195590500_ref8) 2014; 8 Li ( key 2019021407195590500_ref112) 2016 Eickholt ( key 2019021407195590500_ref27) 2012; 28 Zhao ( key 2019021407195590500_ref123) 2017 Gawehn ( key 2019021407195590500_ref22) 2016; 35 Xu ( key 2019021407195590500_ref92) 2017; 45 He ( key 2019021407195590500_ref130) 2016 Chaudhary ( key 2019021407195590500_ref100) 2017; 24 Kulmanov ( key 2019021407195590500_ref116) 2017; 34 Tan ( key 2019021407195590500_ref71) 2016; 1 Fakoor ( key 2019021407195590500_ref84) 2013 Pan ( key 2019021407195590500_ref142) 2010; 22 Park ( key 2019021407195590500_ref97) 2016 McCulloch ( key 2019021407195590500_ref1) 1943; 5 Nguyen ( key 2019021407195590500_ref107) 2014 Adhikari ( key 2019021407195590500_ref114) 2017; 34 Miotto ( key 2019021407195590500_ref5) 2016; 6 Lyons ( key 2019021407195590500_ref108) 2014; 35 Goodfellow ( key 2019021407195590500_ref137) 2014; 3 Yu ( key 2019021407195590500_ref98) 2018; 13 Qi ( key 2019021407195590500_ref103) 2012; 7 Hochreiter ( key 2019021407195590500_ref31) 1997; 9 Liu ( key 2019021407195590500_ref52) 2017 Angermueller ( key 2019021407195590500_ref45) 2017; 18 Liu ( key 2019021407195590500_ref55) 2016; 6 Bu ( key 2019021407195590500_ref58) 2017; 18 Barrett ( key 2019021407195590500_ref15) 2012; 41 Raza ( key 2019021407195590500_ref81) 2016; 64 Zeng ( key 2019021407195590500_ref75) 2015; 16 Liang ( key 2019021407195590500_ref89) 2016; 9 Mamoshina ( key 2019021407195590500_ref17) 2016; 13 Tripathi ( key 2019021407195590500_ref90) 2016; 5 Rosenblatt ( key 2019021407195590500_ref2) 1958; 65 Angermueller ( key 2019021407195590500_ref16) 2016; 12 Altschul ( key 2019021407195590500_ref125) 1990; 215 Almagro ( key 2019021407195590500_ref121) 2017; 33 Shen ( key 2019021407195590500_ref10) 2017; 19 Pastur-Romay ( key 2019021407195590500_ref20) 2016; 17 Lanchantin ( key 2019021407195590500_ref35) 2016 Werbos ( key 2019021407195590500_ref3) 1974 Ibrahim ( key 2019021407195590500_ref47) 2014 Li ( key 2019021407195590500_ref115) 2017; 18 Singh ( key 2019021407195590500_ref76) 2016; 32 Jiménez ( key 2019021407195590500_ref118) 2017; 33 Cheng ( key 2019021407195590500_ref6) 2016 Li ( key 2019021407195590500_ref56) 2015 Zhang ( key 2019021407195590500_ref91) 2016 Wan ( key 2019021407195590500_ref122) Li ( key 2019021407195590500_ref79) 2017 Chen ( key 2019021407195590500_ref39) 2016; 32 Zhou ( key 2019021407195590500_ref67) 2016 Stahl ( key 2019021407195590500_ref106) 2017; 18 Gulshan ( key 2019021407195590500_ref7) 2016; 316 Zeng ( key 2019021407195590500_ref44) 2017; 45 Zhao ( key 2019021407195590500_ref127) 2014; 11 Wang ( key 2019021407195590500_ref38) 2016 Koh ( key 2019021407195590500_ref77) 2017; 33 Shrikumar ( key 2019021407195590500_ref61) 2017 Eickholt ( key 2019021407195590500_ref129) 2013; 14 Miotto ( key 2019021407195590500_ref19) 2017 Quang ( key 2019021407195590500_ref83) 2014; 31 Consortium ( key 2019021407195590500_ref14) 2004; 306 Fei-Fei ( key 2019021407195590500_ref136) 2006; 28 Liang ( key 2019021407195590500_ref87) 2015; 12 Min ( key 2019021407195590500_ref68) 2017; 18 Cutler ( key 2019021407195590500_ref143) 2015 Liu ( key 2019021407195590500_ref34) 2015; 32 Wei ( key 2019021407195590500_ref119) 2017 Pärnamaa ( key 2019021407195590500_ref54) 2017; 7 Yang ( key 2019021407195590500_ref70) 2017; 33 Uziela ( key 2019021407195590500_ref104) 2017; 33 Sun ( key 2019021407195590500_ref53) 2017; 18 Singh ( key 2019021407195590500_ref63) 2016 Hinton ( key 2019021407195590500_ref24) 2006; 313 Alipanahi ( key 2019021407195590500_ref73) 2015; 33 Suk ( key 2019021407195590500_ref9) 2013 Palatucci ( key 2019021407195590500_ref135) 2009 Lanchantin ( key 2019021407195590500_ref139) 2016; 22 LeCun ( key 2019021407195590500_ref29) 1989; 1 Lanchantin ( key 2019021407195590500_ref62) 2016 Hinton ( key 2019021407195590500_ref131) 2012; 3 Quang ( key 2019021407195590500_ref33) 2017 Umarov ( key 2019021407195590500_ref36) 2017; 12 Spencer ( key 2019021407195590500_ref109) 2015; 12 Ravì ( key 2019021407195590500_ref21) 2017; 21 Yu ( key 2019021407195590500_ref57) 2017; 18 Yousefi ( key 2019021407195590500_ref43) 2017; 7 Kelley ( key 2019021407195590500_ref74) 2016; 26 Poplin ( key 2019021407195590500_ref78) 2016 Tan ( key 2019021407195590500_ref85) 2015 An ( key 2019021407195590500_ref13) 2014 Bahrampour ( key 2019021407195590500_ref133) 2015 Carreira-Perpinan ( key 2019021407195590500_ref26) 2005 Zhang ( key 2019021407195590500_ref28) 2015; 44 Atchley ( key 2019021407195590500_ref128) 2005; 102 Shen ( key 2019021407195590500_ref126) 2007; 104 Shi ( key 2019021407195590500_ref134) 2016 Polikar ( key 2019021407195590500_ref141) 2001; 31 Min ( key 2019021407195590500_ref65) 2016 Snoek ( key 2019021407195590500_ref132) 2012 Khademi ( key 2019021407195590500_ref86) 2015 Xie ( key 2019021407195590500_ref40) 2016 Di Lena ( key 2019021407195590500_ref105) 2012; 28 Thomas ( key 2019021407195590500_ref46) 2017 Aliper ( key 2019021407195590500_ref48) 2016; 13 Danaee ( key 2019021407195590500_ref82) 2016 Wang ( key 2019021407195590500_ref113) 2017; 82 Leung ( key 2019021407195590500_ref93) 2014; 30 Ching ( key 2019021407195590500_ref99) 2016 Hochreiter ( key 2019021407195590500_ref102) 2007; 23 Min ( key 2019021407195590500_ref18) 2016; 18 Jo ( key 2019021407195590500_ref110) 2015; 5 |
References_xml | – volume: 9 start-page: 1735 year: 1997 ident: key 2019021407195590500_ref31 article-title: Long short-term memory publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – start-page: 2951 volume-title: Advances in Neural Information Processing Systems year: 2012 ident: key 2019021407195590500_ref132 – year: 2016 ident: key 2019021407195590500_ref35 article-title: Deep motif: visualizing genomic sequence classifications – start-page: 132 volume-title: Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing year: 2015 ident: key 2019021407195590500_ref85 – start-page: 1806 year: 2016 ident: key 2019021407195590500_ref38 article-title: A high-precision shallow Convolutional Neural Network based strategy for the detection of Genomic Deletions – volume: 16 start-page: 285 year: 2005 ident: key 2019021407195590500_ref140 article-title: Reinforcement learning: an introduction, bradford book publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2004.842673 – volume: 7 start-page: 1385 year: 2017 ident: key 2019021407195590500_ref54 article-title: Accurate classification of protein subcellular localization from high-throughput microscopy images using deep learning, G3: Genes, Genomes publication-title: Genetics – year: 2016 ident: key 2019021407195590500_ref112 article-title: Protein secondary structure prediction using cascaded convolutional and recurrent neural networks – volume: 18 start-page: 511 year: 2017 ident: key 2019021407195590500_ref57 article-title: A deep learning method for lincRNA detection using auto-encoder algorithm publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1922-3 – volume: 27 start-page: 2015 year: 2017 ident: key 2019021407195590500_ref80 article-title: Deep learning of the regulatory grammar of yeast 5' untranslated regions from 500,000 random sequences publication-title: Genome Res doi: 10.1101/gr.224964.117 – volume: 32 start-page: i121 year: 2016 ident: key 2019021407195590500_ref59 article-title: Convolutional neural network architectures for predicting DNA–protein binding publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw255 – volume: 12 start-page: 928 year: 2015 ident: key 2019021407195590500_ref87 article-title: Integrative data analysis of multi-platform cancer data with a multimodal deep learning approach publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2014.2377729 – start-page: 7 year: 2015 ident: key 2019021407195590500_ref11 article-title: Classification of electrocardiogram signals with deep belief networks – year: 2016 ident: key 2019021407195590500_ref63 article-title: Predicting enhancer-promoter interaction from genomic sequence with deep neural networks doi: 10.1101/085241 – start-page: 1449 volume-title: Advances in Neural Information Processing Systems year: 2014 ident: key 2019021407195590500_ref12 – volume: 3 start-page: 2672 year: 2014 ident: key 2019021407195590500_ref137 article-title: Generative adversarial networks publication-title: Adv Neural Inf Process Syst – volume: 6 start-page: 26094 year: 2016 ident: key 2019021407195590500_ref5 article-title: Deep patient: an unsupervised representation to predict the future of patients from the electronic health records publication-title: Sci Rep doi: 10.1038/srep26094 – volume: 44 start-page: e107 year: 2016 ident: key 2019021407195590500_ref41 article-title: DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw226 – volume: 306 start-page: 636 year: 2004 ident: key 2019021407195590500_ref14 article-title: The ENCODE (ENCyclopedia of DNA elements) project publication-title: Science doi: 10.1126/science.1105136 – start-page: 203 year: 2014 ident: key 2019021407195590500_ref13 article-title: A deep learning method for classification of EEG data based on motor imagery – volume-title: Using OpenRefine year: 2013 ident: key 2019021407195590500_ref124 – volume: 11 start-page: 2397 year: 2014 ident: key 2019021407195590500_ref127 article-title: Predicting protein-protein interactions from protein sequences using probabilistic neural network and feature combination publication-title: J Inform Comput Sci doi: 10.12733/jics20103423 – volume: 5 year: 2015 ident: key 2019021407195590500_ref110 article-title: Improving protein fold recognition by deep learning networks publication-title: Sci Rep doi: 10.1038/srep17573 – volume: 18 start-page: 1527 year: 2006 ident: key 2019021407195590500_ref4 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput doi: 10.1162/neco.2006.18.7.1527 – start-page: 78 year: 2016 ident: key 2019021407195590500_ref67 article-title: CNNsite: Prediction of DNA-binding residues in proteins using Convolutional Neural Network with sequence features – volume: 12 start-page: 878 year: 2016 ident: key 2019021407195590500_ref16 article-title: Deep learning for computational biology publication-title: Mol Syst Biol doi: 10.15252/msb.20156651 – volume: 1 start-page: 541 year: 1989 ident: key 2019021407195590500_ref29 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput doi: 10.1162/neco.1989.1.4.541 – volume: 19 start-page: 221 year: 2017 ident: key 2019021407195590500_ref10 article-title: Deep learning in medical image analysis publication-title: Annu Rev Biomed Eng doi: 10.1146/annurev-bioeng-071516-044442 – volume: 12 start-page: 103 year: 2015 ident: key 2019021407195590500_ref109 article-title: A deep learning network approach to ab initio protein secondary structure prediction publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2014.2343960 – volume: 18 start-page: 1044 year: 2017 ident: key 2019021407195590500_ref95 article-title: Sequence-specific bias correction for RNA-seq data using recurrent neural networks publication-title: BMC Genomics doi: 10.1186/s12864-016-3262-5 – volume: 35 start-page: 2040 year: 2014 ident: key 2019021407195590500_ref108 article-title: Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network publication-title: J Comput Chem doi: 10.1002/jcc.23718 – volume: 17 start-page: 1313 year: 2016 ident: key 2019021407195590500_ref20 article-title: Deep artificial neural networks and neuromorphic chips for big data analysis: pharmaceutical and bioinformatics applications publication-title: Int J Mol Sci doi: 10.3390/ijms17081313 – start-page: 1410 year: 2009 ident: key 2019021407195590500_ref135 article-title: Zero-shot learning with semantic output codes – volume: 16 start-page: 147 year: 2015 ident: key 2019021407195590500_ref75 article-title: Deep convolutional neural networks for annotating gene expression patterns in the mouse brain publication-title: BMC Bioinformatics doi: 10.1186/s12859-015-0553-9 – start-page: 219 volume-title: Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing year: 2016 ident: key 2019021407195590500_ref82 article-title: A deep learning approach for cancer detection and relevant gene identification – volume: 14 start-page: 1 year: 2013 ident: key 2019021407195590500_ref129 article-title: DNdisorder: predicting protein disorder using boosting and deep networks publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-88 – year: 2017 ident: key 2019021407195590500_ref33 article-title: FactorNet: a deep learning framework for predicting cell type specific transcription factor binding from nucleotide-resolution sequential data doi: 10.1101/151274 – volume: 18 start-page: 303 year: 2017 ident: key 2019021407195590500_ref106 article-title: EPSILON-CP: using deep learning to combine information from multiple sources for protein contact prediction publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1713-x – start-page: 432 year: 2016 ident: key 2019021407195590500_ref6 article-title: Risk prediction with electronic health records: a deep learning approach – volume: 22 start-page: 1345 year: 2010 ident: key 2019021407195590500_ref142 article-title: A survey on transfer learning publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2009.191 – volume: 35 start-page: 3 year: 2016 ident: key 2019021407195590500_ref22 article-title: Deep learning in drug discovery publication-title: Mol Inform doi: 10.1002/minf.201501008 – start-page: 400 year: 2017 ident: key 2019021407195590500_ref79 article-title: Understanding sequence conservation with deep learning – volume: 1 start-page: e00025 year: 2016 ident: key 2019021407195590500_ref71 article-title: Adage-based integration of publicly available pseudomonas aeruginosa gene expression data with denoising autoencoders illuminates microbe-host interactions publication-title: MSystems doi: 10.1128/mSystems.00025-15 – volume: 33 start-page: 3387 issue: (21) year: 2017 ident: key 2019021407195590500_ref121 article-title: DeepLoc: prediction of protein subcellular localization using deep learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx431 – volume: 18 start-page: 417 year: 2017 ident: key 2019021407195590500_ref115 article-title: Deep learning methods for protein torsion angle prediction publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1834-2 – volume: 3 start-page: 212 year: 2012 ident: key 2019021407195590500_ref131 article-title: Improving neural networks by preventing co-adaptation of feature detectors publication-title: Comput Sci – volume-title: Representation Learning, ICML Workshop year: 2013 ident: key 2019021407195590500_ref60 – start-page: 205 year: 2015 ident: key 2019021407195590500_ref56 – volume: 65 start-page: 386 year: 1958 ident: key 2019021407195590500_ref2 article-title: The perceptron: a probabilistic model for information storage and organization in the brain publication-title: Psychol Rev doi: 10.1037/h0042519 – volume: 18 start-page: 478 year: 2017 ident: key 2019021407195590500_ref68 article-title: Predicting enhancers with deep convolutional neural networks publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1878-3 – volume: 14 start-page: 88 year: 2013 ident: key 2019021407195590500_ref111 article-title: DNdisorder: predicting protein disorder using boosting and deep networks publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-88 – volume: 32 start-page: 641 year: 2015 ident: key 2019021407195590500_ref34 article-title: De novo identification of replication-timing domains in the human genome by deep learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv643 – start-page: 3957 year: 2014 ident: key 2019021407195590500_ref47 article-title: Multi-level gene/MiRNA feature selection using deep belief nets and active learning – volume: 7 year: 2012 ident: key 2019021407195590500_ref103 article-title: A unified multitask architecture for predicting local protein properties publication-title: PloS One – volume: 1 start-page: 270 year: 1989 ident: key 2019021407195590500_ref30 article-title: A learning algorithm for continually running fully recurrent neural networks publication-title: Neural Comput doi: 10.1162/neco.1989.1.2.270 – volume: 26 start-page: 990 year: 2016 ident: key 2019021407195590500_ref74 article-title: Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks publication-title: Genome Res doi: 10.1101/gr.200535.115 – volume: 30 start-page: i121 year: 2014 ident: key 2019021407195590500_ref93 article-title: Deep learning of the tissue-regulated splicing code publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu277 – volume: 8 start-page: 229 year: 2014 ident: key 2019021407195590500_ref8 article-title: Deep learning for neuroimaging: a validation study publication-title: Front Neurosci doi: 10.3389/fnins.2014.00229 – start-page: 178 year: 2016 ident: key 2019021407195590500_ref64 article-title: DeeperBind: enhancing prediction of sequence specificities of DNA binding proteins – year: 2017 ident: key 2019021407195590500_ref52 article-title: Deep recurrent neural network for protein function prediction from sequence doi: 10.1101/103994 – volume: 33 start-page: i234 year: 2017 ident: key 2019021407195590500_ref66 article-title: TITER: predicting translation initiation sites by deep learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx247 – volume: 19 start-page: 202 year: 2018 ident: key 2019021407195590500_ref37 article-title: Genome-wide prediction of cis-regulatory regions using supervised deep learning methods publication-title: BMC Bioinformatics doi: 10.1186/s12859-018-2187-1 – volume: 33 start-page: 3909 issue: (24) year: 2017 ident: key 2019021407195590500_ref117 article-title: MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx496 – volume: 215 start-page: 403 year: 1990 ident: key 2019021407195590500_ref125 article-title: Basic local alignment search tool publication-title: J Mol Biol doi: 10.1016/S0022-2836(05)80360-2 – volume: 44 start-page: e32 year: 2015 ident: key 2019021407195590500_ref28 article-title: A deep learning framework for modeling structural features of RNA-binding protein targets publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1025 – start-page: 96 year: 2017 ident: key 2019021407195590500_ref46 article-title: DP-miRNA: An improved prediction of precursor microRNA using deep learning model – volume: 41 start-page: D991 year: 2012 ident: key 2019021407195590500_ref15 article-title: NCBI GEO: archive for functional genomics data sets—update publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1193 – volume: 33 start-page: i225 year: 2017 ident: key 2019021407195590500_ref77 article-title: Denoising genome-wide histone ChIP-seq with convolutional neural networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx243 – volume: 18 start-page: 277 year: 2017 ident: key 2019021407195590500_ref53 article-title: Sequence-based prediction of protein protein interaction using a deep-learning algorithm publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1700-2 – volume: 13 start-page: 1445 year: 2016 ident: key 2019021407195590500_ref17 article-title: Applications of deep learning in biomedicine publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.5b00982 – start-page: 770 year: 2016 ident: key 2019021407195590500_ref130 article-title: Deep residual learning for image recognition – start-page: 33 year: 2005 ident: key 2019021407195590500_ref26 – start-page: 2071 year: 2014 ident: key 2019021407195590500_ref107 article-title: DL-PRO: A novel deep learning method for protein model quality assessment – volume: 28 start-page: 3066 year: 2012 ident: key 2019021407195590500_ref27 article-title: Predicting protein residue–residue contacts using deep networks and boosting publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts598 – year: 2016 ident: key 2019021407195590500_ref101 article-title: DeepCancer: detecting cancer through gene expressions via deep generative learning – volume: 34 start-page: 660 issue: (4) year: 2017 ident: key 2019021407195590500_ref116 article-title: DeepGO: Predicting protein functions from sequence and interactions using a deep ontology-aware classifier publication-title: Bioinformatics – start-page: 330 year: 2016 ident: key 2019021407195590500_ref91 article-title: DeepSplice: deep classification of novel splice junctions revealed by RNA-seq – year: 2016 ident: key 2019021407195590500_ref134 article-title: Benchmarking state-of-the-art deep learning software tools doi: 10.1109/CCBD.2016.029 – volume: 313 start-page: 504 year: 2006 ident: key 2019021407195590500_ref24 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 5 start-page: 115 year: 1943 ident: key 2019021407195590500_ref1 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull Math Biophys doi: 10.1007/BF02478259 – year: 2016 ident: key 2019021407195590500_ref78 publication-title: Creating a universal SNP and small indel variant caller with deep neural networks – volume: 18 start-page: 136 year: 2017 ident: key 2019021407195590500_ref94 article-title: RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1561-8 – year: 2016 ident: key 2019021407195590500_ref97 article-title: DeepMiRGene: deep neural network based precursor microRNA prediction – volume: 22 start-page: 254 year: 2016 ident: key 2019021407195590500_ref139 article-title: Deep motif dashboard: visualizing and understanding genomic sequences using deep neural networks publication-title: Pac Symp Biocomput – volume: 316 start-page: 2402 year: 2016 ident: key 2019021407195590500_ref7 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: Jama doi: 10.1001/jama.2016.17216 – volume: 13 start-page: 253 year: 2018 ident: key 2019021407195590500_ref98 article-title: Drug and nondrug classification based on deep learning with various feature selection strategies publication-title: Current Bioinform doi: 10.2174/1574893612666170125124538 – volume: 12 year: 2017 ident: key 2019021407195590500_ref36 article-title: Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks publication-title: PloS One doi: 10.1371/journal.pone.0171410 – volume: 13 start-page: 2524 year: 2016 ident: key 2019021407195590500_ref48 article-title: Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.6b00248 – volume: 31 start-page: 497 year: 2001 ident: key 2019021407195590500_ref141 article-title: Learn++: an incremental learning algorithm for supervised neural networks publication-title: IEE Trans Syst Man Cybern C Appl Rev doi: 10.1109/5326.983933 – volume: 33 start-page: 831 year: 2015 ident: key 2019021407195590500_ref73 article-title: Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning publication-title: Nat Biotechnol doi: 10.1038/nbt.3300 – volume: 21 start-page: 4 year: 2017 ident: key 2019021407195590500_ref21 article-title: Deep learning for health informatics publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2016.2636665 – start-page: 676 year: 2016 ident: key 2019021407195590500_ref40 article-title: A predictive model of gene expression using a deep learning framework – volume: 13 year: 2017 ident: key 2019021407195590500_ref50 article-title: Accurate de novo prediction of protein contact map by ultra-deep learning model publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005324 – volume-title: Proceedings of the International Conference on Machine Learning year: 2013 ident: key 2019021407195590500_ref84 article-title: Using deep learning to enhance cancer diagnosis and classification – volume: 32 start-page: 1832 year: 2016 ident: key 2019021407195590500_ref39 article-title: Gene expression inference with deep learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw074 – start-page: 637 year: 2016 ident: key 2019021407195590500_ref65 article-title: DeepEnhancer: predicting enhancers by convolutional neural networks – volume: 64 start-page: 322 year: 2016 ident: key 2019021407195590500_ref81 article-title: Recurrent neural network based hybrid model for reconstructing gene regulatory network publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2016.08.002 – year: 2014 ident: key 2019021407195590500_ref32 article-title: On the properties of neural machine translation: encoder-decoder approaches publication-title: Comput Sci – volume: 104 start-page: 4337 year: 2007 ident: key 2019021407195590500_ref126 article-title: Predicting protein-protein interactions based only on sequences information publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0607879104 – volume: 33 start-page: 1578 year: 2017 ident: key 2019021407195590500_ref104 article-title: ProQ3D: improved model quality assessments using deep learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw819 – volume: 5 start-page: 1 year: 2016 ident: key 2019021407195590500_ref90 article-title: DeepLNC, a long non-coding RNA prediction tool using deep neural network publication-title: Netw Model Anal Health Inform Bioinform doi: 10.1007/s13721-016-0129-2 – volume: 23 start-page: 1728 year: 2007 ident: key 2019021407195590500_ref102 article-title: Fast model-based protein homology detection without alignment publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm247 – start-page: 68 year: 2015 ident: key 2019021407195590500_ref120 article-title: Convolutional LSTM networks for subcellular localization of proteins – volume: 18 start-page: 851 issue: (5) year: 2016 ident: key 2019021407195590500_ref18 article-title: Deep learning in bioinformatics publication-title: Brief Bioinform – start-page: 65 year: 1974 ident: key 2019021407195590500_ref3 article-title: Beyond regression: new tools for prediction and analysis in the behavioral science – year: 2017 ident: key 2019021407195590500_ref19 article-title: Deep learning for healthcare: review, opportunities and challenges publication-title: Brief Bioinform – start-page: 445 volume-title: The 13th European Conference on Artificial Intelligence (Brighton, UK) year: 1998 ident: key 2019021407195590500_ref138 article-title: Cost-sensitive learning with neural networks – volume: 39 start-page: 43 year: 1997 ident: key 2019021407195590500_ref23 article-title: Introduction to multi-layer feed-forward neural networks publication-title: Chemometr Intell Lab Syst doi: 10.1016/S0169-7439(97)00061-0 – start-page: 727 year: 2015 ident: key 2019021407195590500_ref86 article-title: Probabilistic graphical models and deep belief networks for prognosis of breast cancer – volume: 18 start-page: 418 year: 2017 ident: key 2019021407195590500_ref58 article-title: A new method for enhancer prediction based on deep belief network publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1828-0 – start-page: 1 year: 2015 ident: key 2019021407195590500_ref133 article-title: Comparative study of caffe, neon, theano, and torch for deep learning publication-title: Proceedings of the 2016 International Conference on Learning Representations – volume: 82 start-page: 208 year: 2017 ident: key 2019021407195590500_ref113 article-title: Analysis of deep learning methods for blind protein contact prediction in CASP12 publication-title: Proteins – start-page: 145 volume-title: IEEE. year: 2016 ident: key 2019021407195590500_ref51 article-title: Towards recognition of protein function based on its structure using deep convolutional networks – start-page: 434 year: 2016 ident: key 2019021407195590500_ref96 article-title: DeepTarget: end-to-end learning framework for microRNA target prediction using deep recurrent neural networks – volume: 9 start-page: 48 year: 2016 ident: key 2019021407195590500_ref89 article-title: DL-ADR: a novel deep learning model for classifying genomic variants into adverse drug reactions publication-title: BMC Med Genomics doi: 10.1186/s12920-016-0207-4 – volume: 12 start-page: 931 year: 2015 ident: key 2019021407195590500_ref72 article-title: Predicting effects of noncoding variants with deep learning–based sequence model publication-title: Nat Methods doi: 10.1038/nmeth.3547 – year: 2017 ident: key 2019021407195590500_ref119 article-title: Prediction of human protein subcellular localization using deep learning publication-title: J Parallel Distrib Comput – year: 2016 ident: key 2019021407195590500_ref62 article-title: Deep motif: visualizing genomic sequence classifications – volume: 28 start-page: 594 year: 2006 ident: key 2019021407195590500_ref136 article-title: One-shot learning of object categories publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2006.79 – start-page: 2605 year: 2015 ident: key 2019021407195590500_ref143 article-title: Efficient reinforcement learning for robots using informative simulated priors – volume: 24 start-page: 522 year: 2014 ident: key 2019021407195590500_ref42 article-title: Recurrent neural network based hybrid model of gene regulatory network publication-title: Comput Sci – volume: 33 start-page: 3036 issue: (19) year: 2017 ident: key 2019021407195590500_ref118 article-title: DeepSite: protein binding site predictor using 3D-convolutional neural networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx350 – ident: key 2019021407195590500_ref122 article-title: Deep learning with feature embedding for compound-protein interaction prediction doi: 10.1101/086033 – volume: 33 start-page: 1930 year: 2017 ident: key 2019021407195590500_ref70 article-title: BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx105 – issue: (99) year: 2017 ident: key 2019021407195590500_ref123 article-title: Protein-protein interaction interface residue pair prediction based on deep learning architecture publication-title: IEEE/ACM Trans Comput Biol Bioinform – start-page: 583 volume-title: MICCAI International Conference on Medical Image Computing & Computer-assisted Intervention year: 2013 ident: key 2019021407195590500_ref9 article-title: Deep learning-based feature representation for AD/MCI classification – volume: 6 start-page: 28517 year: 2016 ident: key 2019021407195590500_ref55 article-title: PEDLA: predicting enhancers with a deep learning-based algorithmic framework publication-title: Sci Rep doi: 10.1038/srep28517 – volume: 18 start-page: 381 year: 2017 ident: key 2019021407195590500_ref88 article-title: Unsupervised deep learning reveals prognostically relevant subtypes of glioblastoma publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1798-2 – year: 2016 ident: key 2019021407195590500_ref99 article-title: Cox-nnet: an artificial neural network Cox regression for prognosis prediction – volume: 102 start-page: 6395 year: 2005 ident: key 2019021407195590500_ref128 article-title: Solving the protein sequence metric problem publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0408677102 – volume: 5 start-page: 11476 year: 2015 ident: key 2019021407195590500_ref49 article-title: Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning publication-title: Sci Rep doi: 10.1038/srep11476 – volume-title: Parallel Distrilmted Processing year: 1986 ident: key 2019021407195590500_ref25 article-title: Learning and releaming in Boltzmann machines – volume: 34 start-page: 1466 issue: (9) year: 2017 ident: key 2019021407195590500_ref114 article-title: DNCON2: Improved protein contact prediction using two-level deep convolutional neural networks publication-title: Bioinformatics – volume: 24 year: 2017 ident: key 2019021407195590500_ref100 article-title: Deep learning based multi-omics integration robustly predicts survival in liver cancer publication-title: Clin Cancer Res – volume: 32 start-page: i639 year: 2016 ident: key 2019021407195590500_ref76 article-title: DeepChrome: deep-learning for predicting gene expression from histone modifications publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw427 – volume: 7 start-page: 11707 year: 2017 ident: key 2019021407195590500_ref43 article-title: Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models publication-title: Scie Rep doi: 10.1038/s41598-017-11817-6 – volume: 28 start-page: 2449 year: 2012 ident: key 2019021407195590500_ref105 article-title: Deep architectures for protein contact map prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts475 – year: 2015 ident: key 2019021407195590500_ref69 article-title: DNA-level splice junction prediction using deep recurrent neural networks – volume: 45 start-page: e99 issue: (11) year: 2017 ident: key 2019021407195590500_ref44 article-title: Predicting the impact of non-coding variants on DNA methylation publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx177 – volume: 31 start-page: 761 year: 2014 ident: key 2019021407195590500_ref83 article-title: DANN: a deep learning approach for annotating the pathogenicity of genetic variants publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu703 – volume: 18 start-page: 67 year: 2017 ident: key 2019021407195590500_ref45 article-title: DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning publication-title: Genome Biology doi: 10.1186/s13059-017-1189-z – year: 2017 ident: key 2019021407195590500_ref61 article-title: Reverse-complement parameter sharing improves deep learning models for genomics doi: 10.1101/103663 – volume: 45 start-page: 12100 year: 2017 ident: key 2019021407195590500_ref92 article-title: Deep learning of the splicing (epi)genetic code reveals a novel candidate mechanism linking histone modifications to ESC fate decision publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx870 |
SSID | ssj0000314410 |
Score | 2.5465655 |
SecondaryResourceType | review_article |
Snippet | Abstract
Omics, such as genomics, transcriptome and proteomics, has been affected by the era of big data. A huge amount of high dimensional and complex... Omics, such as genomics, transcriptome and proteomics, has been affected by the era of big data. A huge amount of high dimensional and complex structured data... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 41 |
SubjectTerms | Algorithms Computational Biology - methods Deep Learning genomics Genomics - methods guidelines Guidelines as Topic Humans proteomics Proteomics - methods surveys Surveys and Questionnaires Transcriptome |
Title | Deep learning in omics: a survey and guideline |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30265280 https://www.proquest.com/docview/2114699558 https://www.proquest.com/docview/2524307408 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da8IwEA_DMdjL2Pfch8vAp0Fn21zaZm86JzLY9qLgW2nSRAZSxerA_34XWwU3ce9X2l4u97tc7n5HSF1zxSTYjDvCmwNS2T1nIgfRSrFIJcJPbWrg_SPo9uFtwAdlgWy-5QpfsIY0w0lDjxZojuhqEX4tRX7vc7BOpVgGdljyDvgueLZmS5SdeL8e38CejX62P2HlEl46x-SojAtps1jIE7Kns1NyUEyKXJyRp7bWE1qOeBjSr4zabuL8mSY0n0-_9YImWUqHc0tahXHjOel3XnsvXaccdeAoxtnMCdNAgCvBBNozofC40oGRKkjxD1ylBUaVhkWJhsQPQuWnHDXPwtQECNCJ5Y-5IJVsnOkrQg2X6MVAehBykDyINIM0BVCyOL5VyeNKCbEqecDtOIpRXNxHs9hqLC40ViX1tfCkoL_YLnaP2twt8bDSdIwGbG8lkkyP53ns275oITiPdshwH9AZgYsyl8UyrV_G8BTJ_ci9_vcbbsghhjvC1lx7cEsqs-lc32FIMZM1st9stVud2tKwfgD4Vcgl |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+in+omics%3A+a+survey+and+guideline&rft.jtitle=Briefings+in+functional+genomics&rft.au=Zhang%2C+Zhiqiang&rft.au=Zhao%2C+Yi&rft.au=Liao%2C+Xiangke&rft.au=Shi%2C+Wenqiang&rft.date=2019-02-14&rft.pub=Oxford+University+Press&rft.issn=2041-2649&rft.eissn=2041-2657&rft.volume=18&rft.issue=1&rft.spage=41&rft.epage=57&rft_id=info:doi/10.1093%2Fbfgp%2Fely030&rft.externalDocID=10.1093%2Fbfgp%2Fely030 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-2649&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-2649&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-2649&client=summon |