Deep learning in omics: a survey and guideline

Abstract Omics, such as genomics, transcriptome and proteomics, has been affected by the era of big data. A huge amount of high dimensional and complex structured data has made it no longer applicable for conventional machine learning algorithms. Fortunately, deep learning technology can contribute...

Full description

Saved in:
Bibliographic Details
Published inBriefings in functional genomics Vol. 18; no. 1; pp. 41 - 57
Main Authors Zhang, Zhiqiang, Zhao, Yi, Liao, Xiangke, Shi, Wenqiang, Li, Kenli, Zou, Quan, Peng, Shaoliang
Format Journal Article
LanguageEnglish
Published England Oxford University Press 14.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Omics, such as genomics, transcriptome and proteomics, has been affected by the era of big data. A huge amount of high dimensional and complex structured data has made it no longer applicable for conventional machine learning algorithms. Fortunately, deep learning technology can contribute toward resolving these challenges. There is evidence that deep learning can handle omics data well and resolve omics problems. This survey aims to provide an entry-level guideline for researchers, to understand and use deep learning in order to solve omics problems. We first introduce several deep learning models and then discuss several research areas which have combined omics and deep learning in recent years. In addition, we summarize the general steps involved in using deep learning which have not yet been systematically discussed in the existent literature on this topic. Finally, we compare the features and performance of current mainstream open source deep learning frameworks and present the opportunities and challenges involved in deep learning. This survey will be a good starting point and guideline for omics researchers to understand deep learning.
AbstractList Omics, such as genomics, transcriptome and proteomics, has been affected by the era of big data. A huge amount of high dimensional and complex structured data has made it no longer applicable for conventional machine learning algorithms. Fortunately, deep learning technology can contribute toward resolving these challenges. There is evidence that deep learning can handle omics data well and resolve omics problems. This survey aims to provide an entry-level guideline for researchers, to understand and use deep learning in order to solve omics problems. We first introduce several deep learning models and then discuss several research areas which have combined omics and deep learning in recent years. In addition, we summarize the general steps involved in using deep learning which have not yet been systematically discussed in the existent literature on this topic. Finally, we compare the features and performance of current mainstream open source deep learning frameworks and present the opportunities and challenges involved in deep learning. This survey will be a good starting point and guideline for omics researchers to understand deep learning.
Omics, such as genomics, transcriptome and proteomics, has been affected by the era of big data. A huge amount of high dimensional and complex structured data has made it no longer applicable for conventional machine learning algorithms. Fortunately, deep learning technology can contribute toward resolving these challenges. There is evidence that deep learning can handle omics data well and resolve omics problems. This survey aims to provide an entry-level guideline for researchers, to understand and use deep learning in order to solve omics problems. We first introduce several deep learning models and then discuss several research areas which have combined omics and deep learning in recent years. In addition, we summarize the general steps involved in using deep learning which have not yet been systematically discussed in the existent literature on this topic. Finally, we compare the features and performance of current mainstream open source deep learning frameworks and present the opportunities and challenges involved in deep learning. This survey will be a good starting point and guideline for omics researchers to understand deep learning.Omics, such as genomics, transcriptome and proteomics, has been affected by the era of big data. A huge amount of high dimensional and complex structured data has made it no longer applicable for conventional machine learning algorithms. Fortunately, deep learning technology can contribute toward resolving these challenges. There is evidence that deep learning can handle omics data well and resolve omics problems. This survey aims to provide an entry-level guideline for researchers, to understand and use deep learning in order to solve omics problems. We first introduce several deep learning models and then discuss several research areas which have combined omics and deep learning in recent years. In addition, we summarize the general steps involved in using deep learning which have not yet been systematically discussed in the existent literature on this topic. Finally, we compare the features and performance of current mainstream open source deep learning frameworks and present the opportunities and challenges involved in deep learning. This survey will be a good starting point and guideline for omics researchers to understand deep learning.
Abstract Omics, such as genomics, transcriptome and proteomics, has been affected by the era of big data. A huge amount of high dimensional and complex structured data has made it no longer applicable for conventional machine learning algorithms. Fortunately, deep learning technology can contribute toward resolving these challenges. There is evidence that deep learning can handle omics data well and resolve omics problems. This survey aims to provide an entry-level guideline for researchers, to understand and use deep learning in order to solve omics problems. We first introduce several deep learning models and then discuss several research areas which have combined omics and deep learning in recent years. In addition, we summarize the general steps involved in using deep learning which have not yet been systematically discussed in the existent literature on this topic. Finally, we compare the features and performance of current mainstream open source deep learning frameworks and present the opportunities and challenges involved in deep learning. This survey will be a good starting point and guideline for omics researchers to understand deep learning.
Author Peng, Shaoliang
Shi, Wenqiang
Liao, Xiangke
Zhang, Zhiqiang
Zhao, Yi
Li, Kenli
Zou, Quan
Author_xml – sequence: 1
  givenname: Zhiqiang
  surname: Zhang
  fullname: Zhang, Zhiqiang
  organization: School of Computer Science, National University of Defense Technology, Changsha, China
– sequence: 2
  givenname: Yi
  surname: Zhao
  fullname: Zhao, Yi
  organization: Institute of Computing Technology,Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Xiangke
  surname: Liao
  fullname: Liao, Xiangke
  organization: School of Computer Science, National University of Defense Technology, Changsha, China
– sequence: 4
  givenname: Wenqiang
  surname: Shi
  fullname: Shi, Wenqiang
  organization: School of Computer Science, National University of Defense Technology, Changsha, China
– sequence: 5
  givenname: Kenli
  surname: Li
  fullname: Li, Kenli
  email: pengshaoliang@nudt.edu.cn
  organization: College of Computer Science and Electronic Engineering & National Supercomputer Centre in Changsha, Hunan University, Changsha, China
– sequence: 6
  givenname: Quan
  orcidid: 0000-0001-6406-1142
  surname: Zou
  fullname: Zou, Quan
  email: zouquan@nclab.net
  organization: School of Computer Science and Technology, Tianjin University, Tianjin, China
– sequence: 7
  givenname: Shaoliang
  surname: Peng
  fullname: Peng, Shaoliang
  email: pengshaoliang@nudt.edu.cn
  organization: School of Computer Science, National University of Defense Technology, Changsha, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30265280$$D View this record in MEDLINE/PubMed
BookMark eNqF0M9LwzAUB_AgEzfnTt6lJxGkW9KkaeNN5k8YeNFzSJOXEenS2rTC_ns7unkQ0Xd57_B5j8f3FI185QGhc4LnBAu6KOy6XkC5xRQfoUmCGYkTnmaj75mJMZqF8I77ooQxgk_QmOIeJTmeoPkdQB2VoBrv_DpyPqo2ToebSEWhaz5hGylvonXnDJTOwxk6tqoMMNv3KXp7uH9dPsWrl8fn5e0q1jSlbZwZLhgumOVAbCZIqoHbQnPTv4w1iJwYS3MFTCU804lJQWuaGctJThTLBZ2iq-Fu3VQfHYRWblzQUJbKQ9UFmaQJozhjOP-fEsK4EGm6oxd72hUbMLJu3EY1W3mIowdkALqpQmjASu1a1brKt41ypSRY7lKXu9TlkHq_c_1j53D2d3056Kqr_4Rf_LyPUg
CitedBy_id crossref_primary_10_1016_j_imu_2019_100270
crossref_primary_10_1007_s00521_024_10130_4
crossref_primary_10_7717_peerj_13613
crossref_primary_10_3389_fgene_2019_00166
crossref_primary_10_1109_ACCESS_2019_2953951
crossref_primary_10_1109_ACCESS_2020_2982666
crossref_primary_10_1093_bib_bbad156
crossref_primary_10_1016_j_compbiolchem_2021_107593
crossref_primary_10_1016_j_inffus_2020_09_006
crossref_primary_10_1016_j_neucom_2020_09_056
crossref_primary_10_1016_j_biotechadv_2024_108400
crossref_primary_10_1016_j_ccell_2022_06_010
crossref_primary_10_1016_j_jbi_2024_104629
crossref_primary_10_3390_biology11121798
crossref_primary_10_1093_bib_bbz139
crossref_primary_10_1093_bfgp_elad012
crossref_primary_10_1016_j_aej_2024_03_066
crossref_primary_10_1093_bioinformatics_btac147
crossref_primary_10_1016_j_omtn_2019_05_028
crossref_primary_10_1016_j_csbj_2020_08_003
crossref_primary_10_1088_2040_8986_aba22e
crossref_primary_10_1109_ACCESS_2020_2971091
crossref_primary_10_3389_fgene_2018_00613
crossref_primary_10_1007_s10462_024_10918_9
crossref_primary_10_1038_s41598_024_76093_7
crossref_primary_10_1038_s42003_020_01233_4
crossref_primary_10_1038_s41698_020_0122_1
crossref_primary_10_3389_fgene_2019_00267
crossref_primary_10_2174_1574893615666200207094357
crossref_primary_10_1186_s12859_021_04026_6
crossref_primary_10_1007_s11042_021_10619_3
crossref_primary_10_3390_genes12071098
crossref_primary_10_1016_j_omtn_2019_11_014
crossref_primary_10_3389_fbioe_2019_00224
crossref_primary_10_1109_ACCESS_2020_3036090
crossref_primary_10_3390_ijms25126422
crossref_primary_10_1109_TCBB_2023_3252276
crossref_primary_10_3389_fgene_2020_00402
crossref_primary_10_1093_bib_bbac514
crossref_primary_10_1093_bib_bbz081
crossref_primary_10_3389_fbioe_2019_00215
crossref_primary_10_1109_ACCESS_2020_3025990
crossref_primary_10_1016_j_inffus_2021_10_007
crossref_primary_10_1109_JBHI_2022_3163150
crossref_primary_10_1093_bib_bbz120
crossref_primary_10_3390_s23010062
crossref_primary_10_3389_fgene_2019_01346
crossref_primary_10_1038_s41598_021_97238_y
crossref_primary_10_1016_j_compbiomed_2024_109302
crossref_primary_10_3389_frans_2023_1119438
crossref_primary_10_1016_j_pneurobio_2023_102480
crossref_primary_10_1007_s11390_021_1174_6
crossref_primary_10_1016_j_cmpb_2023_107377
crossref_primary_10_3390_app12125927
crossref_primary_10_1016_j_compbiomed_2022_105832
crossref_primary_10_2174_1381612826666200617170826
crossref_primary_10_3390_diagnostics13071353
crossref_primary_10_1016_j_csbj_2021_09_001
crossref_primary_10_3389_fgene_2019_01071
crossref_primary_10_1186_s12859_022_04758_z
crossref_primary_10_1186_s12859_023_05224_0
crossref_primary_10_1016_j_neucom_2019_09_070
crossref_primary_10_1093_bib_bbac420
crossref_primary_10_1016_j_neucom_2020_05_115
crossref_primary_10_1007_s12033_024_01133_6
crossref_primary_10_1021_acs_analchem_2c00601
crossref_primary_10_3390_biomedicines9111733
crossref_primary_10_1007_s12539_021_00434_7
crossref_primary_10_1007_s00701_021_04928_7
crossref_primary_10_1109_ACCESS_2020_2991605
crossref_primary_10_1002_smll_202206349
crossref_primary_10_1261_rna_069112_118
crossref_primary_10_1016_j_aca_2020_10_038
crossref_primary_10_1093_bib_bbad104
crossref_primary_10_1007_s10681_025_03461_3
crossref_primary_10_1109_TCBB_2023_3247634
crossref_primary_10_1016_j_csbj_2022_07_014
crossref_primary_10_1109_ACCESS_2019_2958133
crossref_primary_10_3390_cancers13092013
crossref_primary_10_1093_bib_bby124
crossref_primary_10_1093_ecco_jcc_jjab169
crossref_primary_10_1007_s11831_021_09547_0
crossref_primary_10_1038_s41538_025_00394_y
crossref_primary_10_1007_s12539_022_00503_5
crossref_primary_10_1016_j_bspc_2023_105263
crossref_primary_10_3390_genes10080587
crossref_primary_10_1038_s41598_021_03215_w
crossref_primary_10_1016_j_csbj_2021_10_009
crossref_primary_10_1109_ACCESS_2020_2997937
crossref_primary_10_1016_j_cmpb_2022_106874
crossref_primary_10_1089_omi_2022_0155
crossref_primary_10_3390_diagnostics13040664
crossref_primary_10_1155_2022_3022767
crossref_primary_10_3390_e24010017
crossref_primary_10_1007_s42979_021_00841_z
crossref_primary_10_1109_ACCESS_2020_2987324
crossref_primary_10_3389_frai_2023_1128153
crossref_primary_10_1093_bib_bbab585
crossref_primary_10_1007_s11042_022_13085_7
crossref_primary_10_1016_j_copbio_2022_102887
crossref_primary_10_1007_s11883_023_01154_7
crossref_primary_10_1186_s12859_019_3275_6
crossref_primary_10_1016_j_talanta_2024_125949
crossref_primary_10_3390_app15020666
crossref_primary_10_1177_00033197231206427
crossref_primary_10_3390_ijms232012272
crossref_primary_10_2139_ssrn_4787016
crossref_primary_10_1360_SSV_2023_0304
crossref_primary_10_1109_TCBB_2019_2952338
crossref_primary_10_3390_ijms25179514
Cites_doi 10.1162/neco.1997.9.8.1735
10.1109/TNN.2004.842673
10.1186/s12859-017-1922-3
10.1101/gr.224964.117
10.1093/bioinformatics/btw255
10.1109/TCBB.2014.2377729
10.1101/085241
10.1038/srep26094
10.1093/nar/gkw226
10.1126/science.1105136
10.12733/jics20103423
10.1038/srep17573
10.1162/neco.2006.18.7.1527
10.15252/msb.20156651
10.1162/neco.1989.1.4.541
10.1146/annurev-bioeng-071516-044442
10.1109/TCBB.2014.2343960
10.1186/s12864-016-3262-5
10.1002/jcc.23718
10.3390/ijms17081313
10.1186/s12859-015-0553-9
10.1186/1471-2105-14-88
10.1101/151274
10.1186/s12859-017-1713-x
10.1109/TKDE.2009.191
10.1002/minf.201501008
10.1128/mSystems.00025-15
10.1093/bioinformatics/btx431
10.1186/s12859-017-1834-2
10.1037/h0042519
10.1186/s12859-017-1878-3
10.1093/bioinformatics/btv643
10.1162/neco.1989.1.2.270
10.1101/gr.200535.115
10.1093/bioinformatics/btu277
10.3389/fnins.2014.00229
10.1101/103994
10.1093/bioinformatics/btx247
10.1186/s12859-018-2187-1
10.1093/bioinformatics/btx496
10.1016/S0022-2836(05)80360-2
10.1093/nar/gkv1025
10.1093/nar/gks1193
10.1093/bioinformatics/btx243
10.1186/s12859-017-1700-2
10.1021/acs.molpharmaceut.5b00982
10.1093/bioinformatics/bts598
10.1109/CCBD.2016.029
10.1126/science.1127647
10.1007/BF02478259
10.1186/s12859-017-1561-8
10.1001/jama.2016.17216
10.2174/1574893612666170125124538
10.1371/journal.pone.0171410
10.1021/acs.molpharmaceut.6b00248
10.1109/5326.983933
10.1038/nbt.3300
10.1109/JBHI.2016.2636665
10.1371/journal.pcbi.1005324
10.1093/bioinformatics/btw074
10.1016/j.compbiolchem.2016.08.002
10.1073/pnas.0607879104
10.1093/bioinformatics/btw819
10.1007/s13721-016-0129-2
10.1093/bioinformatics/btm247
10.1016/S0169-7439(97)00061-0
10.1186/s12859-017-1828-0
10.1186/s12920-016-0207-4
10.1038/nmeth.3547
10.1109/TPAMI.2006.79
10.1093/bioinformatics/btx350
10.1101/086033
10.1093/bioinformatics/btx105
10.1038/srep28517
10.1186/s12859-017-1798-2
10.1073/pnas.0408677102
10.1038/srep11476
10.1093/bioinformatics/btw427
10.1038/s41598-017-11817-6
10.1093/bioinformatics/bts475
10.1093/nar/gkx177
10.1093/bioinformatics/btu703
10.1186/s13059-017-1189-z
10.1101/103663
10.1093/nar/gkx870
ContentType Journal Article
Copyright The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2018
The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2018
– notice: The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1093/bfgp/ely030
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-2657
EndPage 57
ExternalDocumentID 30265280
10_1093_bfgp_ely030
10.1093/bfgp/ely030
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61772543; U1435222; 61625202; 61272056
  funderid: 10.13039/501100001809
– fundername: Funds of State Key Laboratory of Chemo/Biosensing and Chemometrics
– fundername: Guangdong Provincial Science and Technology Department
  grantid: 2016B090918122
  funderid: 10.13039/501100007162
– fundername: National Key R&D Program of China
  grantid: 2018YFC090002; 2017YFB0202602; 2017YFC1311003; 2016YFC1302500; 2016YFB0200400; 2017YFB0202104
– fundername: Fundamental Research Funds for the Central Universities
GroupedDBID ---
.2P
.I3
0R~
4.4
48X
53G
5VS
6J9
70D
AAHBH
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABMNT
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACIWK
ACPRK
ACUFI
ACUHS
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADNBA
ADOCK
ADPDF
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
AMNDL
APIBT
APWMN
ARIXL
AXUDD
AYOIW
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BSWAC
C45
CDBKE
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EAD
EAP
EAS
EBD
EBS
EE~
EJD
EMK
EMOBN
ESX
F5P
F9B
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KBUDW
KOP
KSI
KSN
M-Z
M49
N9A
NGC
NLBLG
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OJZSN
OK1
OVD
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TLC
TR2
TUS
X7H
Y6R
YAYTL
YKOAZ
YXANX
~91
AAYXX
AHGBF
CITATION
TOX
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c353t-7d6940b4f6e1f7915ce6fbc6d0930ce981df38ae4a267c2d5ecc37df6181a4893
IEDL.DBID TOX
ISSN 2041-2649
2041-2657
IngestDate Fri Jul 11 04:18:15 EDT 2025
Fri Jul 11 04:30:19 EDT 2025
Thu Apr 03 07:04:50 EDT 2025
Thu Apr 24 23:03:25 EDT 2025
Tue Jul 01 03:26:56 EDT 2025
Wed Apr 02 07:03:25 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords deep learning
omics
gene
neural network
bioinformatics
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-7d6940b4f6e1f7915ce6fbc6d0930ce981df38ae4a267c2d5ecc37df6181a4893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6406-1142
PMID 30265280
PQID 2114699558
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_2524307408
proquest_miscellaneous_2114699558
pubmed_primary_30265280
crossref_citationtrail_10_1093_bfgp_ely030
crossref_primary_10_1093_bfgp_ely030
oup_primary_10_1093_bfgp_ely030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-14
PublicationDateYYYYMMDD 2019-02-14
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-14
  day: 14
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Briefings in functional genomics
PublicationTitleAlternate Brief Funct Genomics
PublicationYear 2019
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Hinton ( key 2019021407195590500_ref4) 2006; 18
Svozil ( key 2019021407195590500_ref23) 1997; 39
Tavanaei ( key 2019021407195590500_ref51) 2016
Raza ( key 2019021407195590500_ref42) 2014; 24
Lee ( key 2019021407195590500_ref69) 2015
Eickholt ( key 2019021407195590500_ref111) 2013; 14
Cho ( key 2019021407195590500_ref32) 2014
Wang ( key 2019021407195590500_ref117) 2017; 33
Li ( key 2019021407195590500_ref37) 2018; 19
Cuperus ( key 2019021407195590500_ref80) 2017; 27
Hassanzadeh ( key 2019021407195590500_ref64) 2016
Heffernan ( key 2019021407195590500_ref49) 2015; 5
Quang ( key 2019021407195590500_ref41) 2016; 44
Meng ( key 2019021407195590500_ref11) 2015
Stober ( key 2019021407195590500_ref12) 2014
Sønderby ( key 2019021407195590500_ref120) 2015
Lee ( key 2019021407195590500_ref96) 2016
Zhang ( key 2019021407195590500_ref66) 2017; 33
Zeng ( key 2019021407195590500_ref59) 2016; 32
Sutton ( key 2019021407195590500_ref140) 2005; 16
Denas ( key 2019021407195590500_ref60) 2013
Williams ( key 2019021407195590500_ref30) 1989; 1
Verborgh ( key 2019021407195590500_ref124) 2013
Wang ( key 2019021407195590500_ref50) 2017; 13
Young ( key 2019021407195590500_ref88) 2017; 18
Hinton ( key 2019021407195590500_ref25) 1986
Zhou ( key 2019021407195590500_ref72) 2015; 12
Pan ( key 2019021407195590500_ref94) 2017; 18
Y-z ( key 2019021407195590500_ref95) 2017; 18
Bhat ( key 2019021407195590500_ref101) 2016
Kukar ( key 2019021407195590500_ref138) 1998
Plis ( key 2019021407195590500_ref8) 2014; 8
Li ( key 2019021407195590500_ref112) 2016
Eickholt ( key 2019021407195590500_ref27) 2012; 28
Zhao ( key 2019021407195590500_ref123) 2017
Gawehn ( key 2019021407195590500_ref22) 2016; 35
Xu ( key 2019021407195590500_ref92) 2017; 45
He ( key 2019021407195590500_ref130) 2016
Chaudhary ( key 2019021407195590500_ref100) 2017; 24
Kulmanov ( key 2019021407195590500_ref116) 2017; 34
Tan ( key 2019021407195590500_ref71) 2016; 1
Fakoor ( key 2019021407195590500_ref84) 2013
Pan ( key 2019021407195590500_ref142) 2010; 22
Park ( key 2019021407195590500_ref97) 2016
McCulloch ( key 2019021407195590500_ref1) 1943; 5
Nguyen ( key 2019021407195590500_ref107) 2014
Adhikari ( key 2019021407195590500_ref114) 2017; 34
Miotto ( key 2019021407195590500_ref5) 2016; 6
Lyons ( key 2019021407195590500_ref108) 2014; 35
Goodfellow ( key 2019021407195590500_ref137) 2014; 3
Yu ( key 2019021407195590500_ref98) 2018; 13
Qi ( key 2019021407195590500_ref103) 2012; 7
Hochreiter ( key 2019021407195590500_ref31) 1997; 9
Liu ( key 2019021407195590500_ref52) 2017
Angermueller ( key 2019021407195590500_ref45) 2017; 18
Liu ( key 2019021407195590500_ref55) 2016; 6
Bu ( key 2019021407195590500_ref58) 2017; 18
Barrett ( key 2019021407195590500_ref15) 2012; 41
Raza ( key 2019021407195590500_ref81) 2016; 64
Zeng ( key 2019021407195590500_ref75) 2015; 16
Liang ( key 2019021407195590500_ref89) 2016; 9
Mamoshina ( key 2019021407195590500_ref17) 2016; 13
Tripathi ( key 2019021407195590500_ref90) 2016; 5
Rosenblatt ( key 2019021407195590500_ref2) 1958; 65
Angermueller ( key 2019021407195590500_ref16) 2016; 12
Altschul ( key 2019021407195590500_ref125) 1990; 215
Almagro ( key 2019021407195590500_ref121) 2017; 33
Shen ( key 2019021407195590500_ref10) 2017; 19
Pastur-Romay ( key 2019021407195590500_ref20) 2016; 17
Lanchantin ( key 2019021407195590500_ref35) 2016
Werbos ( key 2019021407195590500_ref3) 1974
Ibrahim ( key 2019021407195590500_ref47) 2014
Li ( key 2019021407195590500_ref115) 2017; 18
Singh ( key 2019021407195590500_ref76) 2016; 32
Jiménez ( key 2019021407195590500_ref118) 2017; 33
Cheng ( key 2019021407195590500_ref6) 2016
Li ( key 2019021407195590500_ref56) 2015
Zhang ( key 2019021407195590500_ref91) 2016
Wan ( key 2019021407195590500_ref122)
Li ( key 2019021407195590500_ref79) 2017
Chen ( key 2019021407195590500_ref39) 2016; 32
Zhou ( key 2019021407195590500_ref67) 2016
Stahl ( key 2019021407195590500_ref106) 2017; 18
Gulshan ( key 2019021407195590500_ref7) 2016; 316
Zeng ( key 2019021407195590500_ref44) 2017; 45
Zhao ( key 2019021407195590500_ref127) 2014; 11
Wang ( key 2019021407195590500_ref38) 2016
Koh ( key 2019021407195590500_ref77) 2017; 33
Shrikumar ( key 2019021407195590500_ref61) 2017
Eickholt ( key 2019021407195590500_ref129) 2013; 14
Miotto ( key 2019021407195590500_ref19) 2017
Quang ( key 2019021407195590500_ref83) 2014; 31
Consortium ( key 2019021407195590500_ref14) 2004; 306
Fei-Fei ( key 2019021407195590500_ref136) 2006; 28
Liang ( key 2019021407195590500_ref87) 2015; 12
Min ( key 2019021407195590500_ref68) 2017; 18
Cutler ( key 2019021407195590500_ref143) 2015
Liu ( key 2019021407195590500_ref34) 2015; 32
Wei ( key 2019021407195590500_ref119) 2017
Pärnamaa ( key 2019021407195590500_ref54) 2017; 7
Yang ( key 2019021407195590500_ref70) 2017; 33
Uziela ( key 2019021407195590500_ref104) 2017; 33
Sun ( key 2019021407195590500_ref53) 2017; 18
Singh ( key 2019021407195590500_ref63) 2016
Hinton ( key 2019021407195590500_ref24) 2006; 313
Alipanahi ( key 2019021407195590500_ref73) 2015; 33
Suk ( key 2019021407195590500_ref9) 2013
Palatucci ( key 2019021407195590500_ref135) 2009
Lanchantin ( key 2019021407195590500_ref139) 2016; 22
LeCun ( key 2019021407195590500_ref29) 1989; 1
Lanchantin ( key 2019021407195590500_ref62) 2016
Hinton ( key 2019021407195590500_ref131) 2012; 3
Quang ( key 2019021407195590500_ref33) 2017
Umarov ( key 2019021407195590500_ref36) 2017; 12
Spencer ( key 2019021407195590500_ref109) 2015; 12
Ravì ( key 2019021407195590500_ref21) 2017; 21
Yu ( key 2019021407195590500_ref57) 2017; 18
Yousefi ( key 2019021407195590500_ref43) 2017; 7
Kelley ( key 2019021407195590500_ref74) 2016; 26
Poplin ( key 2019021407195590500_ref78) 2016
Tan ( key 2019021407195590500_ref85) 2015
An ( key 2019021407195590500_ref13) 2014
Bahrampour ( key 2019021407195590500_ref133) 2015
Carreira-Perpinan ( key 2019021407195590500_ref26) 2005
Zhang ( key 2019021407195590500_ref28) 2015; 44
Atchley ( key 2019021407195590500_ref128) 2005; 102
Shen ( key 2019021407195590500_ref126) 2007; 104
Shi ( key 2019021407195590500_ref134) 2016
Polikar ( key 2019021407195590500_ref141) 2001; 31
Min ( key 2019021407195590500_ref65) 2016
Snoek ( key 2019021407195590500_ref132) 2012
Khademi ( key 2019021407195590500_ref86) 2015
Xie ( key 2019021407195590500_ref40) 2016
Di Lena ( key 2019021407195590500_ref105) 2012; 28
Thomas ( key 2019021407195590500_ref46) 2017
Aliper ( key 2019021407195590500_ref48) 2016; 13
Danaee ( key 2019021407195590500_ref82) 2016
Wang ( key 2019021407195590500_ref113) 2017; 82
Leung ( key 2019021407195590500_ref93) 2014; 30
Ching ( key 2019021407195590500_ref99) 2016
Hochreiter ( key 2019021407195590500_ref102) 2007; 23
Min ( key 2019021407195590500_ref18) 2016; 18
Jo ( key 2019021407195590500_ref110) 2015; 5
References_xml – volume: 9
  start-page: 1735
  year: 1997
  ident: key 2019021407195590500_ref31
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 2951
  volume-title: Advances in Neural Information Processing Systems
  year: 2012
  ident: key 2019021407195590500_ref132
– year: 2016
  ident: key 2019021407195590500_ref35
  article-title: Deep motif: visualizing genomic sequence classifications
– start-page: 132
  volume-title: Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
  year: 2015
  ident: key 2019021407195590500_ref85
– start-page: 1806
  year: 2016
  ident: key 2019021407195590500_ref38
  article-title: A high-precision shallow Convolutional Neural Network based strategy for the detection of Genomic Deletions
– volume: 16
  start-page: 285
  year: 2005
  ident: key 2019021407195590500_ref140
  article-title: Reinforcement learning: an introduction, bradford book
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2004.842673
– volume: 7
  start-page: 1385
  year: 2017
  ident: key 2019021407195590500_ref54
  article-title: Accurate classification of protein subcellular localization from high-throughput microscopy images using deep learning, G3: Genes, Genomes
  publication-title: Genetics
– year: 2016
  ident: key 2019021407195590500_ref112
  article-title: Protein secondary structure prediction using cascaded convolutional and recurrent neural networks
– volume: 18
  start-page: 511
  year: 2017
  ident: key 2019021407195590500_ref57
  article-title: A deep learning method for lincRNA detection using auto-encoder algorithm
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1922-3
– volume: 27
  start-page: 2015
  year: 2017
  ident: key 2019021407195590500_ref80
  article-title: Deep learning of the regulatory grammar of yeast 5' untranslated regions from 500,000 random sequences
  publication-title: Genome Res
  doi: 10.1101/gr.224964.117
– volume: 32
  start-page: i121
  year: 2016
  ident: key 2019021407195590500_ref59
  article-title: Convolutional neural network architectures for predicting DNA–protein binding
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw255
– volume: 12
  start-page: 928
  year: 2015
  ident: key 2019021407195590500_ref87
  article-title: Integrative data analysis of multi-platform cancer data with a multimodal deep learning approach
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2014.2377729
– start-page: 7
  year: 2015
  ident: key 2019021407195590500_ref11
  article-title: Classification of electrocardiogram signals with deep belief networks
– year: 2016
  ident: key 2019021407195590500_ref63
  article-title: Predicting enhancer-promoter interaction from genomic sequence with deep neural networks
  doi: 10.1101/085241
– start-page: 1449
  volume-title: Advances in Neural Information Processing Systems
  year: 2014
  ident: key 2019021407195590500_ref12
– volume: 3
  start-page: 2672
  year: 2014
  ident: key 2019021407195590500_ref137
  article-title: Generative adversarial networks
  publication-title: Adv Neural Inf Process Syst
– volume: 6
  start-page: 26094
  year: 2016
  ident: key 2019021407195590500_ref5
  article-title: Deep patient: an unsupervised representation to predict the future of patients from the electronic health records
  publication-title: Sci Rep
  doi: 10.1038/srep26094
– volume: 44
  start-page: e107
  year: 2016
  ident: key 2019021407195590500_ref41
  article-title: DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw226
– volume: 306
  start-page: 636
  year: 2004
  ident: key 2019021407195590500_ref14
  article-title: The ENCODE (ENCyclopedia of DNA elements) project
  publication-title: Science
  doi: 10.1126/science.1105136
– start-page: 203
  year: 2014
  ident: key 2019021407195590500_ref13
  article-title: A deep learning method for classification of EEG data based on motor imagery
– volume-title: Using OpenRefine
  year: 2013
  ident: key 2019021407195590500_ref124
– volume: 11
  start-page: 2397
  year: 2014
  ident: key 2019021407195590500_ref127
  article-title: Predicting protein-protein interactions from protein sequences using probabilistic neural network and feature combination
  publication-title: J Inform Comput Sci
  doi: 10.12733/jics20103423
– volume: 5
  year: 2015
  ident: key 2019021407195590500_ref110
  article-title: Improving protein fold recognition by deep learning networks
  publication-title: Sci Rep
  doi: 10.1038/srep17573
– volume: 18
  start-page: 1527
  year: 2006
  ident: key 2019021407195590500_ref4
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput
  doi: 10.1162/neco.2006.18.7.1527
– start-page: 78
  year: 2016
  ident: key 2019021407195590500_ref67
  article-title: CNNsite: Prediction of DNA-binding residues in proteins using Convolutional Neural Network with sequence features
– volume: 12
  start-page: 878
  year: 2016
  ident: key 2019021407195590500_ref16
  article-title: Deep learning for computational biology
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20156651
– volume: 1
  start-page: 541
  year: 1989
  ident: key 2019021407195590500_ref29
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput
  doi: 10.1162/neco.1989.1.4.541
– volume: 19
  start-page: 221
  year: 2017
  ident: key 2019021407195590500_ref10
  article-title: Deep learning in medical image analysis
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev-bioeng-071516-044442
– volume: 12
  start-page: 103
  year: 2015
  ident: key 2019021407195590500_ref109
  article-title: A deep learning network approach to ab initio protein secondary structure prediction
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2014.2343960
– volume: 18
  start-page: 1044
  year: 2017
  ident: key 2019021407195590500_ref95
  article-title: Sequence-specific bias correction for RNA-seq data using recurrent neural networks
  publication-title: BMC Genomics
  doi: 10.1186/s12864-016-3262-5
– volume: 35
  start-page: 2040
  year: 2014
  ident: key 2019021407195590500_ref108
  article-title: Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network
  publication-title: J Comput Chem
  doi: 10.1002/jcc.23718
– volume: 17
  start-page: 1313
  year: 2016
  ident: key 2019021407195590500_ref20
  article-title: Deep artificial neural networks and neuromorphic chips for big data analysis: pharmaceutical and bioinformatics applications
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms17081313
– start-page: 1410
  year: 2009
  ident: key 2019021407195590500_ref135
  article-title: Zero-shot learning with semantic output codes
– volume: 16
  start-page: 147
  year: 2015
  ident: key 2019021407195590500_ref75
  article-title: Deep convolutional neural networks for annotating gene expression patterns in the mouse brain
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-015-0553-9
– start-page: 219
  volume-title: Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
  year: 2016
  ident: key 2019021407195590500_ref82
  article-title: A deep learning approach for cancer detection and relevant gene identification
– volume: 14
  start-page: 1
  year: 2013
  ident: key 2019021407195590500_ref129
  article-title: DNdisorder: predicting protein disorder using boosting and deep networks
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-88
– year: 2017
  ident: key 2019021407195590500_ref33
  article-title: FactorNet: a deep learning framework for predicting cell type specific transcription factor binding from nucleotide-resolution sequential data
  doi: 10.1101/151274
– volume: 18
  start-page: 303
  year: 2017
  ident: key 2019021407195590500_ref106
  article-title: EPSILON-CP: using deep learning to combine information from multiple sources for protein contact prediction
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1713-x
– start-page: 432
  year: 2016
  ident: key 2019021407195590500_ref6
  article-title: Risk prediction with electronic health records: a deep learning approach
– volume: 22
  start-page: 1345
  year: 2010
  ident: key 2019021407195590500_ref142
  article-title: A survey on transfer learning
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2009.191
– volume: 35
  start-page: 3
  year: 2016
  ident: key 2019021407195590500_ref22
  article-title: Deep learning in drug discovery
  publication-title: Mol Inform
  doi: 10.1002/minf.201501008
– start-page: 400
  year: 2017
  ident: key 2019021407195590500_ref79
  article-title: Understanding sequence conservation with deep learning
– volume: 1
  start-page: e00025
  year: 2016
  ident: key 2019021407195590500_ref71
  article-title: Adage-based integration of publicly available pseudomonas aeruginosa gene expression data with denoising autoencoders illuminates microbe-host interactions
  publication-title: MSystems
  doi: 10.1128/mSystems.00025-15
– volume: 33
  start-page: 3387
  issue: (21)
  year: 2017
  ident: key 2019021407195590500_ref121
  article-title: DeepLoc: prediction of protein subcellular localization using deep learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx431
– volume: 18
  start-page: 417
  year: 2017
  ident: key 2019021407195590500_ref115
  article-title: Deep learning methods for protein torsion angle prediction
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1834-2
– volume: 3
  start-page: 212
  year: 2012
  ident: key 2019021407195590500_ref131
  article-title: Improving neural networks by preventing co-adaptation of feature detectors
  publication-title: Comput Sci
– volume-title: Representation Learning, ICML Workshop
  year: 2013
  ident: key 2019021407195590500_ref60
– start-page: 205
  year: 2015
  ident: key 2019021407195590500_ref56
– volume: 65
  start-page: 386
  year: 1958
  ident: key 2019021407195590500_ref2
  article-title: The perceptron: a probabilistic model for information storage and organization in the brain
  publication-title: Psychol Rev
  doi: 10.1037/h0042519
– volume: 18
  start-page: 478
  year: 2017
  ident: key 2019021407195590500_ref68
  article-title: Predicting enhancers with deep convolutional neural networks
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1878-3
– volume: 14
  start-page: 88
  year: 2013
  ident: key 2019021407195590500_ref111
  article-title: DNdisorder: predicting protein disorder using boosting and deep networks
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-88
– volume: 32
  start-page: 641
  year: 2015
  ident: key 2019021407195590500_ref34
  article-title: De novo identification of replication-timing domains in the human genome by deep learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv643
– start-page: 3957
  year: 2014
  ident: key 2019021407195590500_ref47
  article-title: Multi-level gene/MiRNA feature selection using deep belief nets and active learning
– volume: 7
  year: 2012
  ident: key 2019021407195590500_ref103
  article-title: A unified multitask architecture for predicting local protein properties
  publication-title: PloS One
– volume: 1
  start-page: 270
  year: 1989
  ident: key 2019021407195590500_ref30
  article-title: A learning algorithm for continually running fully recurrent neural networks
  publication-title: Neural Comput
  doi: 10.1162/neco.1989.1.2.270
– volume: 26
  start-page: 990
  year: 2016
  ident: key 2019021407195590500_ref74
  article-title: Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks
  publication-title: Genome Res
  doi: 10.1101/gr.200535.115
– volume: 30
  start-page: i121
  year: 2014
  ident: key 2019021407195590500_ref93
  article-title: Deep learning of the tissue-regulated splicing code
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu277
– volume: 8
  start-page: 229
  year: 2014
  ident: key 2019021407195590500_ref8
  article-title: Deep learning for neuroimaging: a validation study
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2014.00229
– start-page: 178
  year: 2016
  ident: key 2019021407195590500_ref64
  article-title: DeeperBind: enhancing prediction of sequence specificities of DNA binding proteins
– year: 2017
  ident: key 2019021407195590500_ref52
  article-title: Deep recurrent neural network for protein function prediction from sequence
  doi: 10.1101/103994
– volume: 33
  start-page: i234
  year: 2017
  ident: key 2019021407195590500_ref66
  article-title: TITER: predicting translation initiation sites by deep learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx247
– volume: 19
  start-page: 202
  year: 2018
  ident: key 2019021407195590500_ref37
  article-title: Genome-wide prediction of cis-regulatory regions using supervised deep learning methods
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-018-2187-1
– volume: 33
  start-page: 3909
  issue: (24)
  year: 2017
  ident: key 2019021407195590500_ref117
  article-title: MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx496
– volume: 215
  start-page: 403
  year: 1990
  ident: key 2019021407195590500_ref125
  article-title: Basic local alignment search tool
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(05)80360-2
– volume: 44
  start-page: e32
  year: 2015
  ident: key 2019021407195590500_ref28
  article-title: A deep learning framework for modeling structural features of RNA-binding protein targets
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1025
– start-page: 96
  year: 2017
  ident: key 2019021407195590500_ref46
  article-title: DP-miRNA: An improved prediction of precursor microRNA using deep learning model
– volume: 41
  start-page: D991
  year: 2012
  ident: key 2019021407195590500_ref15
  article-title: NCBI GEO: archive for functional genomics data sets—update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1193
– volume: 33
  start-page: i225
  year: 2017
  ident: key 2019021407195590500_ref77
  article-title: Denoising genome-wide histone ChIP-seq with convolutional neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx243
– volume: 18
  start-page: 277
  year: 2017
  ident: key 2019021407195590500_ref53
  article-title: Sequence-based prediction of protein protein interaction using a deep-learning algorithm
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1700-2
– volume: 13
  start-page: 1445
  year: 2016
  ident: key 2019021407195590500_ref17
  article-title: Applications of deep learning in biomedicine
  publication-title: Mol Pharm
  doi: 10.1021/acs.molpharmaceut.5b00982
– start-page: 770
  year: 2016
  ident: key 2019021407195590500_ref130
  article-title: Deep residual learning for image recognition
– start-page: 33
  year: 2005
  ident: key 2019021407195590500_ref26
– start-page: 2071
  year: 2014
  ident: key 2019021407195590500_ref107
  article-title: DL-PRO: A novel deep learning method for protein model quality assessment
– volume: 28
  start-page: 3066
  year: 2012
  ident: key 2019021407195590500_ref27
  article-title: Predicting protein residue–residue contacts using deep networks and boosting
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts598
– year: 2016
  ident: key 2019021407195590500_ref101
  article-title: DeepCancer: detecting cancer through gene expressions via deep generative learning
– volume: 34
  start-page: 660
  issue: (4)
  year: 2017
  ident: key 2019021407195590500_ref116
  article-title: DeepGO: Predicting protein functions from sequence and interactions using a deep ontology-aware classifier
  publication-title: Bioinformatics
– start-page: 330
  year: 2016
  ident: key 2019021407195590500_ref91
  article-title: DeepSplice: deep classification of novel splice junctions revealed by RNA-seq
– year: 2016
  ident: key 2019021407195590500_ref134
  article-title: Benchmarking state-of-the-art deep learning software tools
  doi: 10.1109/CCBD.2016.029
– volume: 313
  start-page: 504
  year: 2006
  ident: key 2019021407195590500_ref24
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 5
  start-page: 115
  year: 1943
  ident: key 2019021407195590500_ref1
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull Math Biophys
  doi: 10.1007/BF02478259
– year: 2016
  ident: key 2019021407195590500_ref78
  publication-title: Creating a universal SNP and small indel variant caller with deep neural networks
– volume: 18
  start-page: 136
  year: 2017
  ident: key 2019021407195590500_ref94
  article-title: RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1561-8
– year: 2016
  ident: key 2019021407195590500_ref97
  article-title: DeepMiRGene: deep neural network based precursor microRNA prediction
– volume: 22
  start-page: 254
  year: 2016
  ident: key 2019021407195590500_ref139
  article-title: Deep motif dashboard: visualizing and understanding genomic sequences using deep neural networks
  publication-title: Pac Symp Biocomput
– volume: 316
  start-page: 2402
  year: 2016
  ident: key 2019021407195590500_ref7
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: Jama
  doi: 10.1001/jama.2016.17216
– volume: 13
  start-page: 253
  year: 2018
  ident: key 2019021407195590500_ref98
  article-title: Drug and nondrug classification based on deep learning with various feature selection strategies
  publication-title: Current Bioinform
  doi: 10.2174/1574893612666170125124538
– volume: 12
  year: 2017
  ident: key 2019021407195590500_ref36
  article-title: Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks
  publication-title: PloS One
  doi: 10.1371/journal.pone.0171410
– volume: 13
  start-page: 2524
  year: 2016
  ident: key 2019021407195590500_ref48
  article-title: Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data
  publication-title: Mol Pharm
  doi: 10.1021/acs.molpharmaceut.6b00248
– volume: 31
  start-page: 497
  year: 2001
  ident: key 2019021407195590500_ref141
  article-title: Learn++: an incremental learning algorithm for supervised neural networks
  publication-title: IEE Trans Syst Man Cybern C Appl Rev
  doi: 10.1109/5326.983933
– volume: 33
  start-page: 831
  year: 2015
  ident: key 2019021407195590500_ref73
  article-title: Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3300
– volume: 21
  start-page: 4
  year: 2017
  ident: key 2019021407195590500_ref21
  article-title: Deep learning for health informatics
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2016.2636665
– start-page: 676
  year: 2016
  ident: key 2019021407195590500_ref40
  article-title: A predictive model of gene expression using a deep learning framework
– volume: 13
  year: 2017
  ident: key 2019021407195590500_ref50
  article-title: Accurate de novo prediction of protein contact map by ultra-deep learning model
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005324
– volume-title: Proceedings of the International Conference on Machine Learning
  year: 2013
  ident: key 2019021407195590500_ref84
  article-title: Using deep learning to enhance cancer diagnosis and classification
– volume: 32
  start-page: 1832
  year: 2016
  ident: key 2019021407195590500_ref39
  article-title: Gene expression inference with deep learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw074
– start-page: 637
  year: 2016
  ident: key 2019021407195590500_ref65
  article-title: DeepEnhancer: predicting enhancers by convolutional neural networks
– volume: 64
  start-page: 322
  year: 2016
  ident: key 2019021407195590500_ref81
  article-title: Recurrent neural network based hybrid model for reconstructing gene regulatory network
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2016.08.002
– year: 2014
  ident: key 2019021407195590500_ref32
  article-title: On the properties of neural machine translation: encoder-decoder approaches
  publication-title: Comput Sci
– volume: 104
  start-page: 4337
  year: 2007
  ident: key 2019021407195590500_ref126
  article-title: Predicting protein-protein interactions based only on sequences information
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0607879104
– volume: 33
  start-page: 1578
  year: 2017
  ident: key 2019021407195590500_ref104
  article-title: ProQ3D: improved model quality assessments using deep learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw819
– volume: 5
  start-page: 1
  year: 2016
  ident: key 2019021407195590500_ref90
  article-title: DeepLNC, a long non-coding RNA prediction tool using deep neural network
  publication-title: Netw Model Anal Health Inform Bioinform
  doi: 10.1007/s13721-016-0129-2
– volume: 23
  start-page: 1728
  year: 2007
  ident: key 2019021407195590500_ref102
  article-title: Fast model-based protein homology detection without alignment
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm247
– start-page: 68
  year: 2015
  ident: key 2019021407195590500_ref120
  article-title: Convolutional LSTM networks for subcellular localization of proteins
– volume: 18
  start-page: 851
  issue: (5)
  year: 2016
  ident: key 2019021407195590500_ref18
  article-title: Deep learning in bioinformatics
  publication-title: Brief Bioinform
– start-page: 65
  year: 1974
  ident: key 2019021407195590500_ref3
  article-title: Beyond regression: new tools for prediction and analysis in the behavioral science
– year: 2017
  ident: key 2019021407195590500_ref19
  article-title: Deep learning for healthcare: review, opportunities and challenges
  publication-title: Brief Bioinform
– start-page: 445
  volume-title: The 13th European Conference on Artificial Intelligence (Brighton, UK)
  year: 1998
  ident: key 2019021407195590500_ref138
  article-title: Cost-sensitive learning with neural networks
– volume: 39
  start-page: 43
  year: 1997
  ident: key 2019021407195590500_ref23
  article-title: Introduction to multi-layer feed-forward neural networks
  publication-title: Chemometr Intell Lab Syst
  doi: 10.1016/S0169-7439(97)00061-0
– start-page: 727
  year: 2015
  ident: key 2019021407195590500_ref86
  article-title: Probabilistic graphical models and deep belief networks for prognosis of breast cancer
– volume: 18
  start-page: 418
  year: 2017
  ident: key 2019021407195590500_ref58
  article-title: A new method for enhancer prediction based on deep belief network
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1828-0
– start-page: 1
  year: 2015
  ident: key 2019021407195590500_ref133
  article-title: Comparative study of caffe, neon, theano, and torch for deep learning
  publication-title: Proceedings of the 2016 International Conference on Learning Representations
– volume: 82
  start-page: 208
  year: 2017
  ident: key 2019021407195590500_ref113
  article-title: Analysis of deep learning methods for blind protein contact prediction in CASP12
  publication-title: Proteins
– start-page: 145
  volume-title: IEEE.
  year: 2016
  ident: key 2019021407195590500_ref51
  article-title: Towards recognition of protein function based on its structure using deep convolutional networks
– start-page: 434
  year: 2016
  ident: key 2019021407195590500_ref96
  article-title: DeepTarget: end-to-end learning framework for microRNA target prediction using deep recurrent neural networks
– volume: 9
  start-page: 48
  year: 2016
  ident: key 2019021407195590500_ref89
  article-title: DL-ADR: a novel deep learning model for classifying genomic variants into adverse drug reactions
  publication-title: BMC Med Genomics
  doi: 10.1186/s12920-016-0207-4
– volume: 12
  start-page: 931
  year: 2015
  ident: key 2019021407195590500_ref72
  article-title: Predicting effects of noncoding variants with deep learning–based sequence model
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3547
– year: 2017
  ident: key 2019021407195590500_ref119
  article-title: Prediction of human protein subcellular localization using deep learning
  publication-title: J Parallel Distrib Comput
– year: 2016
  ident: key 2019021407195590500_ref62
  article-title: Deep motif: visualizing genomic sequence classifications
– volume: 28
  start-page: 594
  year: 2006
  ident: key 2019021407195590500_ref136
  article-title: One-shot learning of object categories
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2006.79
– start-page: 2605
  year: 2015
  ident: key 2019021407195590500_ref143
  article-title: Efficient reinforcement learning for robots using informative simulated priors
– volume: 24
  start-page: 522
  year: 2014
  ident: key 2019021407195590500_ref42
  article-title: Recurrent neural network based hybrid model of gene regulatory network
  publication-title: Comput Sci
– volume: 33
  start-page: 3036
  issue: (19)
  year: 2017
  ident: key 2019021407195590500_ref118
  article-title: DeepSite: protein binding site predictor using 3D-convolutional neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx350
– ident: key 2019021407195590500_ref122
  article-title: Deep learning with feature embedding for compound-protein interaction prediction
  doi: 10.1101/086033
– volume: 33
  start-page: 1930
  year: 2017
  ident: key 2019021407195590500_ref70
  article-title: BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx105
– issue: (99)
  year: 2017
  ident: key 2019021407195590500_ref123
  article-title: Protein-protein interaction interface residue pair prediction based on deep learning architecture
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
– start-page: 583
  volume-title: MICCAI International Conference on Medical Image Computing & Computer-assisted Intervention
  year: 2013
  ident: key 2019021407195590500_ref9
  article-title: Deep learning-based feature representation for AD/MCI classification
– volume: 6
  start-page: 28517
  year: 2016
  ident: key 2019021407195590500_ref55
  article-title: PEDLA: predicting enhancers with a deep learning-based algorithmic framework
  publication-title: Sci Rep
  doi: 10.1038/srep28517
– volume: 18
  start-page: 381
  year: 2017
  ident: key 2019021407195590500_ref88
  article-title: Unsupervised deep learning reveals prognostically relevant subtypes of glioblastoma
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1798-2
– year: 2016
  ident: key 2019021407195590500_ref99
  article-title: Cox-nnet: an artificial neural network Cox regression for prognosis prediction
– volume: 102
  start-page: 6395
  year: 2005
  ident: key 2019021407195590500_ref128
  article-title: Solving the protein sequence metric problem
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0408677102
– volume: 5
  start-page: 11476
  year: 2015
  ident: key 2019021407195590500_ref49
  article-title: Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning
  publication-title: Sci Rep
  doi: 10.1038/srep11476
– volume-title: Parallel Distrilmted Processing
  year: 1986
  ident: key 2019021407195590500_ref25
  article-title: Learning and releaming in Boltzmann machines
– volume: 34
  start-page: 1466
  issue: (9)
  year: 2017
  ident: key 2019021407195590500_ref114
  article-title: DNCON2: Improved protein contact prediction using two-level deep convolutional neural networks
  publication-title: Bioinformatics
– volume: 24
  year: 2017
  ident: key 2019021407195590500_ref100
  article-title: Deep learning based multi-omics integration robustly predicts survival in liver cancer
  publication-title: Clin Cancer Res
– volume: 32
  start-page: i639
  year: 2016
  ident: key 2019021407195590500_ref76
  article-title: DeepChrome: deep-learning for predicting gene expression from histone modifications
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw427
– volume: 7
  start-page: 11707
  year: 2017
  ident: key 2019021407195590500_ref43
  article-title: Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models
  publication-title: Scie Rep
  doi: 10.1038/s41598-017-11817-6
– volume: 28
  start-page: 2449
  year: 2012
  ident: key 2019021407195590500_ref105
  article-title: Deep architectures for protein contact map prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts475
– year: 2015
  ident: key 2019021407195590500_ref69
  article-title: DNA-level splice junction prediction using deep recurrent neural networks
– volume: 45
  start-page: e99
  issue: (11)
  year: 2017
  ident: key 2019021407195590500_ref44
  article-title: Predicting the impact of non-coding variants on DNA methylation
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx177
– volume: 31
  start-page: 761
  year: 2014
  ident: key 2019021407195590500_ref83
  article-title: DANN: a deep learning approach for annotating the pathogenicity of genetic variants
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu703
– volume: 18
  start-page: 67
  year: 2017
  ident: key 2019021407195590500_ref45
  article-title: DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning
  publication-title: Genome Biology
  doi: 10.1186/s13059-017-1189-z
– year: 2017
  ident: key 2019021407195590500_ref61
  article-title: Reverse-complement parameter sharing improves deep learning models for genomics
  doi: 10.1101/103663
– volume: 45
  start-page: 12100
  year: 2017
  ident: key 2019021407195590500_ref92
  article-title: Deep learning of the splicing (epi)genetic code reveals a novel candidate mechanism linking histone modifications to ESC fate decision
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx870
SSID ssj0000314410
Score 2.5465655
SecondaryResourceType review_article
Snippet Abstract Omics, such as genomics, transcriptome and proteomics, has been affected by the era of big data. A huge amount of high dimensional and complex...
Omics, such as genomics, transcriptome and proteomics, has been affected by the era of big data. A huge amount of high dimensional and complex structured data...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 41
SubjectTerms Algorithms
Computational Biology - methods
Deep Learning
genomics
Genomics - methods
guidelines
Guidelines as Topic
Humans
proteomics
Proteomics - methods
surveys
Surveys and Questionnaires
Transcriptome
Title Deep learning in omics: a survey and guideline
URI https://www.ncbi.nlm.nih.gov/pubmed/30265280
https://www.proquest.com/docview/2114699558
https://www.proquest.com/docview/2524307408
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da8IwEA_DMdjL2Pfch8vAp0Fn21zaZm86JzLY9qLgW2nSRAZSxerA_34XWwU3ce9X2l4u97tc7n5HSF1zxSTYjDvCmwNS2T1nIgfRSrFIJcJPbWrg_SPo9uFtwAdlgWy-5QpfsIY0w0lDjxZojuhqEX4tRX7vc7BOpVgGdljyDvgueLZmS5SdeL8e38CejX62P2HlEl46x-SojAtps1jIE7Kns1NyUEyKXJyRp7bWE1qOeBjSr4zabuL8mSY0n0-_9YImWUqHc0tahXHjOel3XnsvXaccdeAoxtnMCdNAgCvBBNozofC40oGRKkjxD1ylBUaVhkWJhsQPQuWnHDXPwtQECNCJ5Y-5IJVsnOkrQg2X6MVAehBykDyINIM0BVCyOL5VyeNKCbEqecDtOIpRXNxHs9hqLC40ViX1tfCkoL_YLnaP2twt8bDSdIwGbG8lkkyP53ns275oITiPdshwH9AZgYsyl8UyrV_G8BTJ_ci9_vcbbsghhjvC1lx7cEsqs-lc32FIMZM1st9stVud2tKwfgD4Vcgl
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+in+omics%3A+a+survey+and+guideline&rft.jtitle=Briefings+in+functional+genomics&rft.au=Zhang%2C+Zhiqiang&rft.au=Zhao%2C+Yi&rft.au=Liao%2C+Xiangke&rft.au=Shi%2C+Wenqiang&rft.date=2019-02-14&rft.pub=Oxford+University+Press&rft.issn=2041-2649&rft.eissn=2041-2657&rft.volume=18&rft.issue=1&rft.spage=41&rft.epage=57&rft_id=info:doi/10.1093%2Fbfgp%2Fely030&rft.externalDocID=10.1093%2Fbfgp%2Fely030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-2649&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-2649&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-2649&client=summon