Prediction and modeling of MWCNT/Carbon (60/40)/SAE 10 W 40/SAE 85 W 90(50/50) nanofluid viscosity using artificial neural network (ANN) and self-organizing map (SOM)
The present study investigated and predicted the relative viscosity of multiwall carbon nanotube/carbon (60/40)/SAE 10 W 40/(Society of Automotive Engineers) SAE 85 W 90(50/50) at different temperatures and the different volumetric fraction by applying artificial neural networks based on experimenta...
Saved in:
Published in | Journal of thermal analysis and calorimetry Vol. 134; no. 3; pp. 2275 - 2286 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.12.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The present study investigated and predicted the relative viscosity of multiwall carbon nanotube/carbon (60/40)/SAE 10 W 40/(Society of Automotive Engineers) SAE 85 W 90(50/50) at different temperatures and the different volumetric fraction by applying artificial neural networks based on experimental data. Several samples of nanofluid were provided by adding nanoparticles in 0%, 0.1%, 0.3%, 0.5%, 0.8% and 1% volumetric concentrations. Dynamic viscosity of the nanofluid was measured in the temperature range of 25–50 °C. Initially, a self-organizing 6 × 6 hexagonal network was used. A total of 36 neurons were chosen. The winner neuron was neuron 25, having assigned the most data to itself. Then 25 neurons were used for the neural network, which had a very good performance. Temperature and concentration were considered as input variables, while the relative viscosity was the output parameter of the neural network. Mean-square error, correlation coefficient and standard deviation were utilized in order to assess the results. Based on the obtained results, the best model was double-layer perceptron neural network with 25 neurons. The mean square error, correlation coefficient and standard deviation were equal to 2.0193e−008, 1 and 0.00021082, respectively. Therefore, the model is able to predict relative viscosity with appropriate accuracy. |
---|---|
AbstractList | The present study investigated and predicted the relative viscosity of multiwall carbon nanotube/carbon (60/40)/SAE 10 W 40/(Society of Automotive Engineers) SAE 85 W 90(50/50) at different temperatures and the different volumetric fraction by applying artificial neural networks based on experimental data. Several samples of nanofluid were provided by adding nanoparticles in 0%, 0.1%, 0.3%, 0.5%, 0.8% and 1% volumetric concentrations. Dynamic viscosity of the nanofluid was measured in the temperature range of 25–50 °C. Initially, a self-organizing 6 × 6 hexagonal network was used. A total of 36 neurons were chosen. The winner neuron was neuron 25, having assigned the most data to itself. Then 25 neurons were used for the neural network, which had a very good performance. Temperature and concentration were considered as input variables, while the relative viscosity was the output parameter of the neural network. Mean-square error, correlation coefficient and standard deviation were utilized in order to assess the results. Based on the obtained results, the best model was double-layer perceptron neural network with 25 neurons. The mean square error, correlation coefficient and standard deviation were equal to 2.0193e−008, 1 and 0.00021082, respectively. Therefore, the model is able to predict relative viscosity with appropriate accuracy. The present study investigated and predicted the relative viscosity of multiwall carbon nanotube/carbon (60/40)/SAE 10 W 40/(Society of Automotive Engineers) SAE 85 W 90(50/50) at different temperatures and the different volumetric fraction by applying artificial neural networks based on experimental data. Several samples of nanofluid were provided by adding nanoparticles in 0%, 0.1%, 0.3%, 0.5%, 0.8% and 1% volumetric concentrations. Dynamic viscosity of the nanofluid was measured in the temperature range of 25–50 °C. Initially, a self-organizing 6 × 6 hexagonal network was used. A total of 36 neurons were chosen. The winner neuron was neuron 25, having assigned the most data to itself. Then 25 neurons were used for the neural network, which had a very good performance. Temperature and concentration were considered as input variables, while the relative viscosity was the output parameter of the neural network. Mean-square error, correlation coefficient and standard deviation were utilized in order to assess the results. Based on the obtained results, the best model was double-layer perceptron neural network with 25 neurons. The mean square error, correlation coefficient and standard deviation were equal to 2.0193e−008, 1 and 0.00021082, respectively. Therefore, the model is able to predict relative viscosity with appropriate accuracy. |
Author | Ghasemi, Nahid Rahimzadeh, Mohammad Ahmadi, Mohammad Hossein Maddah, Heydar Aghayari, Reza |
Author_xml | – sequence: 1 givenname: Heydar surname: Maddah fullname: Maddah, Heydar organization: Department of Chemistry, Payame Noor University (PNU) – sequence: 2 givenname: Reza surname: Aghayari fullname: Aghayari, Reza organization: Department of Chemistry, Payame Noor University (PNU) – sequence: 3 givenname: Mohammad Hossein surname: Ahmadi fullname: Ahmadi, Mohammad Hossein email: mohammadhosein.ahmadi@gmail.com, mhosein.ahmadi@shahroodut.ac.ir organization: Faculty of Mechanical Engineering, Shahrood University of Technology – sequence: 4 givenname: Mohammad surname: Rahimzadeh fullname: Rahimzadeh, Mohammad organization: Department of Mechanical Engineering, Golestan University – sequence: 5 givenname: Nahid surname: Ghasemi fullname: Ghasemi, Nahid organization: Department of Chemistry, Arak Branch, Islamic Azad University |
BookMark | eNp1UctqGzEUFSWFPNoP6E7Qjb2YzpU0oxktjUkfkDiBJGQpZD2M0rHkSjMt6Qf1OyvbgayyuudyzwPuOUcnIQaL0CcCXwhAV2cComMVkL7qetpV5B06I23fV1RQflIwK5iTFk7Rec5PACAEkDP07zZZ4_XoY8AqGLyNxg4-bHB0-Ppxubqvlyqty3HGoW5gXt8tLjEB_IgbOOC-LVjArIW6hTkOKkQ3TN7g3z7rmP34jKe8N1Rp9M5rrwYc7JQOY_wT0088W6xW80N6toOrYtqo4P_uNVu1w7O7m-v5B_TeqSHbjy_zAj18vbxffq-ubr79WC6uKs1aNlbdWjtKTUeYsGvdifIK0ZmGNq7puaC90byn4Jg1UDauDKx1wy3hLRHMKsUu0Oej7y7FX5PNo3yKUwolUtJiytsGBCsscmTpFHNO1sld8luVniUBua9DHuuQpQ65r0OSoqFHTS7csLHp1flt0X_I4InX |
CitedBy_id | crossref_primary_10_1140_epjp_s13360_020_00252_8 crossref_primary_10_1007_s10973_019_08698_4 crossref_primary_10_1016_j_molliq_2019_04_085 crossref_primary_10_1590_fst_18320 crossref_primary_10_1007_s10973_019_08447_7 crossref_primary_10_1002_htj_22411 crossref_primary_10_1007_s10973_020_09940_0 crossref_primary_10_1016_j_csite_2021_101122 crossref_primary_10_1016_j_matpr_2019_06_554 crossref_primary_10_1016_j_powtec_2022_117210 crossref_primary_10_1007_s10973_019_09029_3 crossref_primary_10_1021_acs_iecr_2c02059 crossref_primary_10_1007_s00366_020_01038_3 crossref_primary_10_1016_j_rser_2019_109345 crossref_primary_10_1016_j_jtice_2019_03_016 crossref_primary_10_1007_s10973_020_09652_5 crossref_primary_10_3390_su13168824 crossref_primary_10_1007_s00231_019_02576_3 crossref_primary_10_3390_nano10040697 crossref_primary_10_1016_j_enganabound_2023_06_003 crossref_primary_10_3390_math7111042 crossref_primary_10_1007_s11356_021_16220_3 crossref_primary_10_1016_j_colsurfa_2022_129691 crossref_primary_10_1016_j_arabjc_2022_104508 crossref_primary_10_1016_j_icheatmasstransfer_2021_105543 crossref_primary_10_1007_s10973_019_08154_3 crossref_primary_10_1016_j_physa_2019_122489 crossref_primary_10_1177_0954405420972980 crossref_primary_10_1016_j_icheatmasstransfer_2019_02_002 crossref_primary_10_1002_htj_23005 crossref_primary_10_1007_s10973_020_09279_6 crossref_primary_10_1007_s10973_022_11821_7 crossref_primary_10_1007_s10973_020_09903_5 crossref_primary_10_1007_s10973_019_08759_8 crossref_primary_10_1016_j_matpr_2019_06_379 crossref_primary_10_1080_15567036_2021_1993469 crossref_primary_10_1016_j_triboint_2023_108337 crossref_primary_10_3390_ma12213628 crossref_primary_10_3390_su13063068 crossref_primary_10_1177_0954406219873932 crossref_primary_10_3390_su13063023 crossref_primary_10_1038_s41598_022_26253_4 crossref_primary_10_1007_s10973_024_13127_2 crossref_primary_10_1080_15567036_2019_1648606 crossref_primary_10_1016_j_arabjc_2022_104285 crossref_primary_10_3390_nano11061628 crossref_primary_10_1016_j_molliq_2020_114843 crossref_primary_10_3233_JCM_200033 crossref_primary_10_1007_s00231_019_02758_z |
Cites_doi | 10.1007/s00231-016-1906-2 10.1007/s00231-016-1941-z 10.1090/qam/10666 10.1007/s10973-016-6002-9 10.1016/j.aej.2014.09.007 10.1016/J.APPLTHERMALENG.2017.06.077 10.1061/(ASCE)0887-3801(1997)11:1(74) 10.1016/j.colsurfa.2009.11.044 10.22038/NMJ.2018.005.0001 10.1063/1.1861145 10.1016/j.molliq.2018.05.124 10.1016/J.APPLTHERMALENG.2017.05.200 10.1007/s00231-017-2068-6 10.1260/0144-5987.33.5.659 10.1016/j.neunet.2012.09.018 10.2174/1573413713666161213114458 10.1007/s00231-018-2292-8 10.1016/j.ijthermalsci.2012.10.016 10.1007/s10973-016-5469-8 10.1115/imece2016-66039 10.1016/j.rser.2018.04.042 10.1016/j.icheatmasstransfer.2017.12.006 10.1016/j.applthermaleng.2017.01.068 10.1134/S1063785013090125 10.1016/J.EXPTHERMFLUSCI.2015.11.018 10.1007/s11242-014-0375-7 10.1007/s10973-018-7035-z 10.1007/s10973-014-3771-x 10.1080/01457632.2013.810086 10.1016/j.ijheatmasstransfer.2017.09.070 10.1007/s00231-017-2261-7 10.1016/J.MOLLIQ.2017.05.121 10.1016/j.colsurfa.2014.07.017 10.1016/j.icheatmasstransfer.2015.06.013 10.1016/J.COLSURFA.2018.01.030 10.1016/J.COLSURFA.2017.06.084 10.1007/s10973-017-6680-y 10.1155/2014/274560 |
ContentType | Journal Article |
Copyright | Akadémiai Kiadó, Budapest, Hungary 2018 Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: Akadémiai Kiadó, Budapest, Hungary 2018 – notice: Copyright Springer Science & Business Media 2018 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10973-018-7827-1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1588-2926 |
EndPage | 2286 |
ExternalDocumentID | 10_1007_s10973_018_7827_1 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 2.D 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAGCJ AAHNG AAIAL AAIKT AANZL AARHV AARTL AATNV AATVU AAUCO AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJGSW AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ AXYYD AYJHY AZFZN B-. B0M BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- MET MKB N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RKA RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8T Z8W Z91 Z92 ZE2 ZMTXR ~02 ~8M AACDK AAEOY AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGJZZ AGQEE AGRTI AIGIU CITATION H13 |
ID | FETCH-LOGICAL-c353t-7bcf22d7139ebc7978297d424f486928dc6820f3ed09286ad0bc46e165193eaa3 |
IEDL.DBID | AGYKE |
ISSN | 1388-6150 |
IngestDate | Tue Nov 19 05:57:44 EST 2024 Thu Nov 21 21:32:42 EST 2024 Sat Dec 16 12:02:39 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Viscosity Nanofluid Self-organizing map Artificial neural networks |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-7bcf22d7139ebc7978297d424f486928dc6820f3ed09286ad0bc46e165193eaa3 |
PQID | 2139654093 |
PQPubID | 2043843 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2139654093 crossref_primary_10_1007_s10973_018_7827_1 springer_journals_10_1007_s10973_018_7827_1 |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Forum for Thermal Studies |
PublicationTitle | Journal of thermal analysis and calorimetry |
PublicationTitleAbbrev | J Therm Anal Calorim |
PublicationYear | 2018 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Hemmat Esfe, Esfandeh, Saedodin, Rostamian (CR27) 2017; 125 Mukherjee (CR36) 1997; 11 Alhuyi Nazari, Ahmadi, Ghasempour, Shafii (CR4) 2018; 91 Pal, Mallick, Pal (CR20) 2014; 459 Hemmat Esfe, Saedodin, Sina, Afrand, Rostami (CR39) 2015; 68 Ahmadi, Ahmadi, Nazari, Mahian, Ghasempour (CR6) 2018 Gandomkar, Saidi, Shafii, Vandadi, Kalan (CR16) 2017; 116 Ahmadi, Alhuyi Nazari, Ghasempour, Madah, Shafii, Ahmadi (CR10) 2018; 541 Sheremet, Shenoy, Pop (CR28) 2016 Ghasemi, Aghayari, Maddah (CR8) 2018 Taslimifar, Mohammadi, Afshin, Saidi, Shafii (CR12) 2013; 65 Hemmat Esfe, Ahangar, Toghraie, Hajmohammad, Rostamian, Tourang (CR25) 2016; 126 Rahman, Leong, Idris, Saad, Anwar (CR1) 2017; 53 Amin, Roghayeh, Fatemeh, Fatollah (CR14) 2015; 33 Kohonen (CR32) 2013; 37 Maddah, Ghasemi (CR9) 2017; 53 Mohammadi, Mohammadi, Ghahremani, Shafii, Mohammadi (CR13) 2014; 35 Levenberg (CR35) 1944; 2 Maddah, Ghasemi, Keyvani, Cheraghali (CR31) 2017; 53 Alias, Johari, Ngadi, Zaine (CR34) 2015; 9 Lenin, Joy (CR21) 2017; 529 Jamshidi, Farhadi, Ganji, Sedighi (CR22) 2012; 25 Ahmadi, Mirlohi, Nazari, Ghasempour (CR5) 2018 Rudyak, Dimov, Kuznetsov (CR38) 2013; 39 Esfe, Rejvani, Karimpour, Abbasian Arani (CR24) 2017; 128 Nazari, Ghasempour, Ahmadi, Heydarian, Shafii (CR15) 2018; 91 Sheremet, Pop (CR29) 2014; 105 Akbarianrad, Mohammadian, Alhuyi Nazari, Rahbani Nobar (CR3) 2018; 5 Hemmat Esfe, Wongwises, Rejvani (CR23) 2017; 13 Barzegarian, Moraveji, Aloueyan (CR11) 2016; 74 Yu, Xie, Chen, Li (CR19) 2010; 355 Sheremet, Mahian, Pop (CR30) 2018; 116 CR7 Hemmat Esfe, Esfandeh, Rejvani (CR26) 2017 Alirezaie, Saedodin, Esfe, Rostamian (CR40) 2017; 241 Hong, Yang, Choi (CR17) 2005; 97 Moghaddam, Motahari (CR41) 2017; 123 Esfe, Saedodin, Mahian, Wongwises (CR18) 2014; 117 Ghasemi, Aghayari, Maddah (CR33) 2017 Chaudhary, Bhatia, Ahlawat (CR37) 2014; 53 Negm, Abdel-Rehim, Attia (CR2) 2016; 8 MH Ahmadi (7827_CR5) 2018 M Hemmat Esfe (7827_CR39) 2015; 68 MA Moghaddam (7827_CR41) 2017; 123 7827_CR7 K Levenberg (7827_CR35) 1944; 2 M Sheremet (7827_CR28) 2016 MNA Negm (7827_CR2) 2016; 8 H Maddah (7827_CR9) 2017; 53 MRA Rahman (7827_CR1) 2017; 53 M Sheremet (7827_CR29) 2014; 105 T Kohonen (7827_CR32) 2013; 37 A Gandomkar (7827_CR16) 2017; 116 MH Esfe (7827_CR18) 2014; 117 A Alirezaie (7827_CR40) 2017; 241 MH Ahmadi (7827_CR6) 2018 VY Rudyak (7827_CR38) 2013; 39 M Hemmat Esfe (7827_CR25) 2016; 126 A Mukherjee (7827_CR36) 1997; 11 MH Ahmadi (7827_CR10) 2018; 541 TE Amin (7827_CR14) 2015; 33 H Maddah (7827_CR31) 2017; 53 R Barzegarian (7827_CR11) 2016; 74 B Pal (7827_CR20) 2014; 459 H Alias (7827_CR34) 2015; 9 N Akbarianrad (7827_CR3) 2018; 5 M Hemmat Esfe (7827_CR27) 2017; 125 N Ghasemi (7827_CR33) 2017 M Mohammadi (7827_CR13) 2014; 35 MA Nazari (7827_CR15) 2018; 91 W Yu (7827_CR19) 2010; 355 V Chaudhary (7827_CR37) 2014; 53 M Hemmat Esfe (7827_CR23) 2017; 13 MH Esfe (7827_CR24) 2017; 128 N Jamshidi (7827_CR22) 2012; 25 M Hemmat Esfe (7827_CR26) 2017 M Alhuyi Nazari (7827_CR4) 2018; 91 M Taslimifar (7827_CR12) 2013; 65 R Lenin (7827_CR21) 2017; 529 N Ghasemi (7827_CR8) 2018 M Sheremet (7827_CR30) 2018; 116 T-K Hong (7827_CR17) 2005; 97 |
References_xml | – volume: 53 start-page: 1413 year: 2017 end-page: 1423 ident: CR31 article-title: Experimental and numerical study of nanofluid in heat exchanger fitted by modified twisted tape: exergy analysis and ANN prediction model publication-title: Heat Mass Transf Und Stoffuebertragung doi: 10.1007/s00231-016-1906-2 contributor: fullname: Cheraghali – volume: 53 start-page: 1835 year: 2017 end-page: 1842 ident: CR1 article-title: Numerical analysis of the forced convective heat transfer on Al O –Cu/water hybrid nanofluid publication-title: Heat Mass Transf Und Stoffuebertragung doi: 10.1007/s00231-016-1941-z contributor: fullname: Anwar – volume: 2 start-page: 164 year: 1944 end-page: 168 ident: CR35 article-title: A method for the solution of certain non-linear problems in least squares publication-title: Q Appl Math doi: 10.1090/qam/10666 contributor: fullname: Levenberg – volume: 128 start-page: 1359 year: 2017 end-page: 1371 ident: CR24 article-title: Estimation of thermal conductivity of ethylene glycol-based nanofluid with hybrid suspensions of SWCNT–Al2O3 nanoparticles by correlation and ANN methods using experimental data publication-title: J Therm Anal Calorim doi: 10.1007/s10973-016-6002-9 contributor: fullname: Abbasian Arani – volume: 53 start-page: 827 year: 2014 end-page: 831 ident: CR37 article-title: A novel self-organizing map (SOM) learning algorithm with nearest and farthest neurons publication-title: Alex Eng J doi: 10.1016/j.aej.2014.09.007 contributor: fullname: Ahlawat – volume: 125 start-page: 673 year: 2017 end-page: 685 ident: CR27 article-title: Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water hybrid nanofluid for engineering applications publication-title: Appl Therm Eng doi: 10.1016/J.APPLTHERMALENG.2017.06.077 contributor: fullname: Rostamian – volume: 11 start-page: 74 year: 1997 end-page: 77 ident: CR36 article-title: Self-organizing neural network for identification of natural modes publication-title: J Comput Civil Eng doi: 10.1061/(ASCE)0887-3801(1997)11:1(74) contributor: fullname: Mukherjee – volume: 355 start-page: 109 year: 2010 end-page: 113 ident: CR19 article-title: Enhancement of thermal conductivity of kerosene-based Fe O nanofluids prepared via phase-transfer method publication-title: Colloids Surf A Physicochem Eng Asp doi: 10.1016/j.colsurfa.2009.11.044 contributor: fullname: Li – volume: 5 start-page: 121 year: 2018 end-page: 126 ident: CR3 article-title: Applications of nanotechnology in endodontic: a review publication-title: Nanomed J doi: 10.22038/NMJ.2018.005.0001 contributor: fullname: Rahbani Nobar – volume: 97 start-page: 064311 year: 2005 ident: CR17 article-title: Study of the enhanced thermal conductivity of Fe nanofluids publication-title: J Appl Phys doi: 10.1063/1.1861145 contributor: fullname: Choi – year: 2018 ident: CR5 article-title: A review of thermal conductivity of various nanofluids publication-title: J Mol Liq doi: 10.1016/j.molliq.2018.05.124 contributor: fullname: Ghasempour – volume: 123 start-page: 1419 year: 2017 end-page: 1433 ident: CR41 article-title: Experimental investigation, sensitivity analysis and modeling of rheological behavior of MWCNT-CuO (30–70)/SAE40 hybrid nano-lubricant publication-title: Appl Therm Eng doi: 10.1016/J.APPLTHERMALENG.2017.05.200 contributor: fullname: Motahari – volume: 53 start-page: 3459 year: 2017 end-page: 3472 ident: CR9 article-title: Experimental evaluation of heat transfer efficiency of nanofluid in a double pipe heat exchanger and prediction of experimental results using artificial neural networks publication-title: Heat Mass Transf doi: 10.1007/s00231-017-2068-6 contributor: fullname: Ghasemi – volume: 33 start-page: 659 year: 2015 end-page: 676 ident: CR14 article-title: Evaluation of nanoparticle shape effect on a nanofluid based flat-plate solar collector efficiency publication-title: Energy Explor Exploit doi: 10.1260/0144-5987.33.5.659 contributor: fullname: Fatollah – volume: 37 start-page: 52 year: 2013 end-page: 65 ident: CR32 article-title: Essentials of the self-organizing map publication-title: Neural Netw doi: 10.1016/j.neunet.2012.09.018 contributor: fullname: Kohonen – volume: 13 start-page: 324 year: 2017 end-page: 329 ident: CR23 article-title: Prediction of thermal conductivity of carbon nanotube-EG nanofluid using experimental data by ANN publication-title: Curr Nanosci doi: 10.2174/1573413713666161213114458 contributor: fullname: Rejvani – year: 2018 ident: CR8 article-title: Optimizing the parameters of heat transmission in a small heat exchanger with spiral tapes cut as triangles and aluminum oxide nanofluid using central composite design method publication-title: Heat Mass Transf doi: 10.1007/s00231-018-2292-8 contributor: fullname: Maddah – volume: 65 start-page: 234 year: 2013 end-page: 241 ident: CR12 article-title: Overall thermal performance of ferrofluidic open loop pulsating heat pipes: an experimental approach publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2012.10.016 contributor: fullname: Shafii – volume: 126 start-page: 837 year: 2016 end-page: 843 ident: CR25 article-title: Designing artificial neural network on thermal conductivity of Al O –water–EG (60–40%) nanofluid using experimental data publication-title: J Therm Anal Calorim doi: 10.1007/s10973-016-5469-8 contributor: fullname: Tourang – volume: 8 start-page: V008T10A097 year: 2016 ident: CR2 article-title: Investigating the effect of Al O /water nanofluid on the efficiency of a thermosyphon flat-plate solar collector publication-title: Heat Transf Therm Eng ASME doi: 10.1115/imece2016-66039 contributor: fullname: Attia – year: 2016 ident: CR28 publication-title: Convective flow and heat transfer from wavy surfaces: viscous fluids, porous media and nanofluids contributor: fullname: Pop – volume: 91 start-page: 630 year: 2018 end-page: 638 ident: CR4 article-title: How to improve the thermal performance of pulsating heat pipes: a review on working fluid publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.04.042 contributor: fullname: Shafii – volume: 91 start-page: 90 year: 2018 end-page: 94 ident: CR15 article-title: Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2017.12.006 contributor: fullname: Shafii – volume: 116 start-page: 56 year: 2017 end-page: 65 ident: CR16 article-title: Visualization and comparative investigations of pulsating ferro-fluid heat pipe publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2017.01.068 contributor: fullname: Kalan – volume: 39 start-page: 779 year: 2013 end-page: 782 ident: CR38 article-title: On the dependence of the viscosity coefficient of nanofluids on particle size and temperature publication-title: Tech Phys Lett doi: 10.1134/S1063785013090125 contributor: fullname: Kuznetsov – volume: 74 start-page: 11 year: 2016 end-page: 18 ident: CR11 article-title: Experimental investigation on heat transfer characteristics and pressure drop of BPHE (brazed plate heat exchanger) using TiO –water nanofluid publication-title: Exp Therm Fluid Sci doi: 10.1016/J.EXPTHERMFLUSCI.2015.11.018 contributor: fullname: Aloueyan – volume: 105 start-page: 411 year: 2014 end-page: 429 ident: CR29 article-title: Natural convection in a square porous cavity with sinusoidal temperature distributions on both side walls filled with a nanofluid: Buongiorno’s mathematical model publication-title: Transp Porous Media doi: 10.1007/s11242-014-0375-7 contributor: fullname: Pop – year: 2018 ident: CR6 article-title: A proposed model to predict thermal conductivity ratio of Al O /EG nanofluid by applying least squares support vector machine (LSSVM) and genetic algorithm as a connectionist approach publication-title: J Therm Anal Calorim doi: 10.1007/s10973-018-7035-z contributor: fullname: Ghasempour – volume: 117 start-page: 675 year: 2014 end-page: 681 ident: CR18 article-title: Thermal conductivity of Al O /water nanofluids: measurement, correlation, sensitivity analysis, and comparisons with literature reports publication-title: J Therm Anal Calorim doi: 10.1007/s10973-014-3771-x contributor: fullname: Wongwises – volume: 35 start-page: 25 year: 2014 end-page: 33 ident: CR13 article-title: Experimental investigation of thermal resistance of a ferrofluidic closed-loop pulsating heat pipe publication-title: Heat Transf Eng doi: 10.1080/01457632.2013.810086 contributor: fullname: Mohammadi – volume: 9 start-page: 43 year: 2015 end-page: 48 ident: CR34 article-title: Thermal and flow behaviour of Titania-deionized water nanofluids publication-title: Adv Environ Biol contributor: fullname: Zaine – volume: 116 start-page: 751 year: 2018 end-page: 761 ident: CR30 article-title: Natural convection in an inclined cavity with time-periodic temperature boundary conditions using nanofluids: application in solar collectors publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.09.070 contributor: fullname: Pop – year: 2017 ident: CR33 article-title: Designing an artificial neural network using radial basis function to model exergetic efficiency of nanofluids in mini double pipe heat exchanger publication-title: Heat Mass Transf doi: 10.1007/s00231-017-2261-7 contributor: fullname: Maddah – volume: 241 start-page: 173 year: 2017 end-page: 181 ident: CR40 article-title: Investigation of rheological behavior of MWCNT (COOH-functionalized)/MgO—engine oil hybrid nanofluids and modelling the results with artificial neural networks publication-title: J Mol Liq doi: 10.1016/J.MOLLIQ.2017.05.121 contributor: fullname: Rostamian – volume: 459 start-page: 282 year: 2014 end-page: 289 ident: CR20 article-title: Anisotropic CuO nanostructures of different size and shape exhibit thermal conductivity superior than typical bulk powder publication-title: Colloids Surf A Physicochem Eng Asp doi: 10.1016/j.colsurfa.2014.07.017 contributor: fullname: Pal – ident: CR7 – volume: 68 start-page: 50 year: 2015 end-page: 57 ident: CR39 article-title: Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2015.06.013 contributor: fullname: Rostami – volume: 541 start-page: 154 year: 2018 end-page: 164 ident: CR10 article-title: Thermal conductivity ratio prediction of Al O /water nanofluid by applying connectionist methods publication-title: Colloids Surf A Physicochem Eng Asp doi: 10.1016/J.COLSURFA.2018.01.030 contributor: fullname: Ahmadi – volume: 529 start-page: 922 year: 2017 end-page: 929 ident: CR21 article-title: Role of base fluid on the thermal conductivity of oleic acid coated magnetite nanofluids publication-title: Colloids Surf A Physicochem Eng Asp doi: 10.1016/J.COLSURFA.2017.06.084 contributor: fullname: Joy – volume: 25 start-page: 201 year: 2012 end-page: 209 ident: CR22 article-title: Experimental investigation on the viscosity of nanofluids publication-title: Int J Eng Trans B Appl contributor: fullname: Sedighi – year: 2017 ident: CR26 article-title: Modeling of thermal conductivity of MWCNT-SiO2 (30:70%)/EG hybrid nanofluid, sensitivity analyzing and cost performance for industrial applications publication-title: J Therm Anal Calorim doi: 10.1007/s10973-017-6680-y contributor: fullname: Rejvani – year: 2018 ident: 7827_CR8 publication-title: Heat Mass Transf doi: 10.1007/s00231-018-2292-8 contributor: fullname: N Ghasemi – volume: 33 start-page: 659 year: 2015 ident: 7827_CR14 publication-title: Energy Explor Exploit doi: 10.1260/0144-5987.33.5.659 contributor: fullname: TE Amin – volume: 126 start-page: 837 year: 2016 ident: 7827_CR25 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-016-5469-8 contributor: fullname: M Hemmat Esfe – volume: 241 start-page: 173 year: 2017 ident: 7827_CR40 publication-title: J Mol Liq doi: 10.1016/J.MOLLIQ.2017.05.121 contributor: fullname: A Alirezaie – volume: 529 start-page: 922 year: 2017 ident: 7827_CR21 publication-title: Colloids Surf A Physicochem Eng Asp doi: 10.1016/J.COLSURFA.2017.06.084 contributor: fullname: R Lenin – volume: 65 start-page: 234 year: 2013 ident: 7827_CR12 publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2012.10.016 contributor: fullname: M Taslimifar – ident: 7827_CR7 doi: 10.1155/2014/274560 – volume: 125 start-page: 673 year: 2017 ident: 7827_CR27 publication-title: Appl Therm Eng doi: 10.1016/J.APPLTHERMALENG.2017.06.077 contributor: fullname: M Hemmat Esfe – volume-title: Convective flow and heat transfer from wavy surfaces: viscous fluids, porous media and nanofluids year: 2016 ident: 7827_CR28 contributor: fullname: M Sheremet – year: 2018 ident: 7827_CR6 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-018-7035-z contributor: fullname: MH Ahmadi – year: 2018 ident: 7827_CR5 publication-title: J Mol Liq doi: 10.1016/j.molliq.2018.05.124 contributor: fullname: MH Ahmadi – volume: 8 start-page: V008T10A097 year: 2016 ident: 7827_CR2 publication-title: Heat Transf Therm Eng ASME doi: 10.1115/imece2016-66039 contributor: fullname: MNA Negm – volume: 25 start-page: 201 year: 2012 ident: 7827_CR22 publication-title: Int J Eng Trans B Appl contributor: fullname: N Jamshidi – volume: 105 start-page: 411 year: 2014 ident: 7827_CR29 publication-title: Transp Porous Media doi: 10.1007/s11242-014-0375-7 contributor: fullname: M Sheremet – volume: 116 start-page: 751 year: 2018 ident: 7827_CR30 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.09.070 contributor: fullname: M Sheremet – volume: 39 start-page: 779 year: 2013 ident: 7827_CR38 publication-title: Tech Phys Lett doi: 10.1134/S1063785013090125 contributor: fullname: VY Rudyak – volume: 91 start-page: 630 year: 2018 ident: 7827_CR4 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.04.042 contributor: fullname: M Alhuyi Nazari – volume: 91 start-page: 90 year: 2018 ident: 7827_CR15 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2017.12.006 contributor: fullname: MA Nazari – volume: 53 start-page: 827 year: 2014 ident: 7827_CR37 publication-title: Alex Eng J doi: 10.1016/j.aej.2014.09.007 contributor: fullname: V Chaudhary – volume: 37 start-page: 52 year: 2013 ident: 7827_CR32 publication-title: Neural Netw doi: 10.1016/j.neunet.2012.09.018 contributor: fullname: T Kohonen – volume: 5 start-page: 121 year: 2018 ident: 7827_CR3 publication-title: Nanomed J doi: 10.22038/NMJ.2018.005.0001 contributor: fullname: N Akbarianrad – year: 2017 ident: 7827_CR33 publication-title: Heat Mass Transf doi: 10.1007/s00231-017-2261-7 contributor: fullname: N Ghasemi – volume: 53 start-page: 1835 year: 2017 ident: 7827_CR1 publication-title: Heat Mass Transf Und Stoffuebertragung doi: 10.1007/s00231-016-1941-z contributor: fullname: MRA Rahman – volume: 459 start-page: 282 year: 2014 ident: 7827_CR20 publication-title: Colloids Surf A Physicochem Eng Asp doi: 10.1016/j.colsurfa.2014.07.017 contributor: fullname: B Pal – volume: 9 start-page: 43 year: 2015 ident: 7827_CR34 publication-title: Adv Environ Biol contributor: fullname: H Alias – volume: 74 start-page: 11 year: 2016 ident: 7827_CR11 publication-title: Exp Therm Fluid Sci doi: 10.1016/J.EXPTHERMFLUSCI.2015.11.018 contributor: fullname: R Barzegarian – volume: 68 start-page: 50 year: 2015 ident: 7827_CR39 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2015.06.013 contributor: fullname: M Hemmat Esfe – volume: 541 start-page: 154 year: 2018 ident: 7827_CR10 publication-title: Colloids Surf A Physicochem Eng Asp doi: 10.1016/J.COLSURFA.2018.01.030 contributor: fullname: MH Ahmadi – volume: 117 start-page: 675 year: 2014 ident: 7827_CR18 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-014-3771-x contributor: fullname: MH Esfe – volume: 53 start-page: 1413 year: 2017 ident: 7827_CR31 publication-title: Heat Mass Transf Und Stoffuebertragung doi: 10.1007/s00231-016-1906-2 contributor: fullname: H Maddah – volume: 123 start-page: 1419 year: 2017 ident: 7827_CR41 publication-title: Appl Therm Eng doi: 10.1016/J.APPLTHERMALENG.2017.05.200 contributor: fullname: MA Moghaddam – volume: 97 start-page: 064311 year: 2005 ident: 7827_CR17 publication-title: J Appl Phys doi: 10.1063/1.1861145 contributor: fullname: T-K Hong – volume: 355 start-page: 109 year: 2010 ident: 7827_CR19 publication-title: Colloids Surf A Physicochem Eng Asp doi: 10.1016/j.colsurfa.2009.11.044 contributor: fullname: W Yu – year: 2017 ident: 7827_CR26 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-017-6680-y contributor: fullname: M Hemmat Esfe – volume: 53 start-page: 3459 year: 2017 ident: 7827_CR9 publication-title: Heat Mass Transf doi: 10.1007/s00231-017-2068-6 contributor: fullname: H Maddah – volume: 35 start-page: 25 year: 2014 ident: 7827_CR13 publication-title: Heat Transf Eng doi: 10.1080/01457632.2013.810086 contributor: fullname: M Mohammadi – volume: 116 start-page: 56 year: 2017 ident: 7827_CR16 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2017.01.068 contributor: fullname: A Gandomkar – volume: 128 start-page: 1359 year: 2017 ident: 7827_CR24 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-016-6002-9 contributor: fullname: MH Esfe – volume: 13 start-page: 324 year: 2017 ident: 7827_CR23 publication-title: Curr Nanosci doi: 10.2174/1573413713666161213114458 contributor: fullname: M Hemmat Esfe – volume: 2 start-page: 164 year: 1944 ident: 7827_CR35 publication-title: Q Appl Math doi: 10.1090/qam/10666 contributor: fullname: K Levenberg – volume: 11 start-page: 74 year: 1997 ident: 7827_CR36 publication-title: J Comput Civil Eng doi: 10.1061/(ASCE)0887-3801(1997)11:1(74) contributor: fullname: A Mukherjee |
SSID | ssj0009901 |
Score | 2.4743686 |
Snippet | The present study investigated and predicted the relative viscosity of multiwall carbon nanotube/carbon (60/40)/SAE 10 W 40/(Society of Automotive Engineers)... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 2275 |
SubjectTerms | Analytical Chemistry Artificial neural networks Automotive engineering Carbon Chemistry Chemistry and Materials Science Correlation coefficients Inorganic Chemistry Mathematical models Measurement Science and Instrumentation Multi wall carbon nanotubes Nanofluids Nanoparticles Neural networks Neurons Physical Chemistry Polymer Sciences Predictions Self organizing maps Standard deviation Viscosity |
Title | Prediction and modeling of MWCNT/Carbon (60/40)/SAE 10 W 40/SAE 85 W 90(50/50) nanofluid viscosity using artificial neural network (ANN) and self-organizing map (SOM) |
URI | https://link.springer.com/article/10.1007/s10973-018-7827-1 https://www.proquest.com/docview/2139654093 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDBa69rBd1u6FZm0DHXZINihRJFm2j26QrNgQb0AbtDsZtiUNRTunyGPA-oP2O0fKcdO9Dj1ZhizJFimRNKmPhLyRbuAQpZ1ZJzlT0gUsVsoxzUNnUGSHBR5OnqT6ZKo-XAQXW0Tc_bqornqNR9Jv1PfOusUhhv5EDIRayMDi2QHRg4txJ3n_5eNoA7Ub89rMAh5AuPPGl_mvTn6XRhsV8w-vqBc24936AODCYxRijMlVb7UseuXt3wiOD_iOPfJ0rXvSpGaWZ2TLVs_J42GT8u0F-fl5jn4bpBXNK0N9mhzonM4cnZwP07P-MJ8XUNnRvK94t3-ajOiA03OquC9HAZRj3gl4P-BdWuXVzF2vLg39frkoMTzsB8VA-68UGbbGrqCIqOkvPh6ddpI07frRF_basTrr1C22-Zbf0M7pp0n3JZmOR2fDE7ZO5MBKGcglA3o7IQzYw7EtyhAMVxGHRgnlVKRjEZlSgyLipDUc7nRueFEqbQca1Uub5_IV2a5mld0ntFAGtp28RLNIOWGi0HFobawsbB4K3SJvG4JmNzVeR7ZBZsapz2DqM5z6bNAihw3Js_XSXWQC3lKDHhvLFnnXkHBT_d_OXj_o6QPyRCAP-MCYQ7K9nK_sEag3y6IN_Dw-Pk7ba75uk0dTkfwC4OjtOg |
link.rule.ids | 314,780,784,27924,27925,41081,41523,42150,42592,52111,52234 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELam8TBeEGMgOvbDD3toQVZd23Hix6raVLY1Q1qr7S1yYnuatKVT2yHBH8TfyZ3TqIDggac4cuxE_i6-O935O0JOZBgEZGlnPkjOlAwJM0oFpnkaHKrstMTDyZNcj2fq_Da5XZ_jXrbZ7m1IMu7Uvxx2Mynm_mQMtFrKwOV5AQJnsGzBTAw3TLuGN14WiACynbehzL9N8bsy2liYfwRFo645e01erY1EOmxQ3SVbvn5DdkZtbbY98uPLAgMsuKjU1o7GejYwFZ0HOrkZ5dP-yC5K6Oxq3le8178entIBpzdU8djOEmgb3k14P-E9Wtt6Hh6e7x39er-sMI_rG8WM-DuKktWQTFCkvoyXmDhOu8M878W3L_1DYE15qO845tE-0e711aT3lszOTqejMVtXXGCVTOSKATBBCAeOq_FllYKHKUzqlFBBZdqIzFUaLIYgveNwp63jZaW0H2i0A7218h3Zrue1f09oqRzsD7ZC_0UF4bI0cBjtvCy9TYXukI_t0hdPDbFGsaFQRpwKwKlAnIpBhxy04BTrf2xZCPhKDQankR3yqQVs0_3Pyfb_6-ljsjOeTi6Ly8_5xQfyUqDwxGyWA7K9Wjz7Q7BJVuVRlMGfMwjR5Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swELYQSIwXBPshCgz8sId2kxXXdpzkseqoGKwZElTwFjmxjZAgrdqCBH8Qfyd3SaOOiT3wFEeO7cjfJXenO39HyDfpux5Z2pnzkjMlfcgSpTzTPPIWVXaU4-HkYaqPR-rkKrxa1DmdNdnuTUiyPtOALE3lPJhYH_x18C2JMA8oZqDhIgbuzxpqIhT0kegtWXcTXntcIA7IfN6ENd-a4rViWlqb_wRIK70z2CKbC4OR9mqEt8mKKz-SD_2mTtsn8nw2xWALbjA1paVVbRuYio49HV7204ugb6Y5dLY1DxTvBOe9I9rl9JIqXrXjENoJb4c8CHmHlqYc-9v7G0sfbmYF5nQ9UsyOv6YoZTXhBEUazOpSJZHTdi9NO9XqM3frWV0q6gnH3JkJbZ__GXY-k9Hg6KJ_zBbVF1ghQzlnAJIXwoITm7i8iMDbFElklVBexToRsS00WA9eOsvhThvL80Jp19VoEzpj5BeyWo5Lt0Noriz8K0yBvozywsaR5zDaOpk7EwndIt-brc8mNclGtqRTRpwywClDnLJui-w34GSL722WCXhLDcZnIlvkRwPYsvu_k-2-6-lDsn72c5D9_pWe7pENgbJTJbbsk9X59N59BfNknh9UIvgCw5rWIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+and+modeling+of+MWCNT%2FCarbon+%2860%2F40%29%2FSAE+10+W+40%2FSAE+85+W+90%2850%2F50%29+nanofluid+viscosity+using+artificial+neural+network+%28ANN%29+and+self-organizing+map+%28SOM%29&rft.jtitle=Journal+of+thermal+analysis+and+calorimetry&rft.au=Maddah%2C+Heydar&rft.au=Aghayari%2C+Reza&rft.au=Ahmadi%2C+Mohammad+Hossein&rft.au=Rahimzadeh%2C+Mohammad&rft.date=2018-12-01&rft.pub=Springer+International+Publishing&rft.issn=1388-6150&rft.eissn=1588-2926&rft.volume=134&rft.issue=3&rft.spage=2275&rft.epage=2286&rft_id=info:doi/10.1007%2Fs10973-018-7827-1&rft.externalDocID=10_1007_s10973_018_7827_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-6150&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-6150&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-6150&client=summon |