An image-driven micromechanical approach to characterize multiscale remodeling in infarcted myocardium

Myocardial infarction (MI) is accompanied by the formation of a fibrotic scar in the left ventricle (LV) and initiates significant alterations in the architecture and constituents of the LV free wall (LVFW). Previous studies have shown that LV adaptation is highly individual, indicating that the ide...

Full description

Saved in:
Bibliographic Details
Published inActa biomaterialia Vol. 173; pp. 109 - 122
Main Authors Mendiola, Emilio A., Neelakantan, Sunder, Xiang, Qian, Xia, Shuda, Zhang, Jianyi, Serpooshan, Vahid, Vanderslice, Peter, Avazmohammadi, Reza
Format Journal Article
LanguageEnglish
Published England 01.01.2024
Subjects
Online AccessGet full text
ISSN1742-7061
1878-7568
1878-7568
DOI10.1016/j.actbio.2023.10.027

Cover

Abstract Myocardial infarction (MI) is accompanied by the formation of a fibrotic scar in the left ventricle (LV) and initiates significant alterations in the architecture and constituents of the LV free wall (LVFW). Previous studies have shown that LV adaptation is highly individual, indicating that the identification of remodeling mechanisms post-MI demands a fully subject-specific approach that can integrate a host of structural alterations at the fiber-level to changes in bulk biomechanical adaptation at the tissue-level. We present an image-driven micromechanical approach to characterize remodeling, assimilating new biaxial mechanical data, histological studies, and digital image correlation data within an in-silico framework to elucidate the fiber-level remodeling mechanisms that drive tissue-level adaptation for each subject. We found that a progressively diffused collagen fiber structure combined with similarly disorganized myofiber architecture in the healthy region leads to the loss of LVFW anisotropy post-MI, offering an important tissue-level hallmark for LV maladaptation. In contrast, our results suggest that reductions in collagen undulation are an adaptive mechanism competing against LVFW thinning. Additionally, we show that the inclusion of subject-specific geometry when modeling myocardial tissue is essential for accurate prediction of tissue kinematics. Our approach serves as an essential step toward identifying fiber-level remodeling indices that govern the transition of MI to systolic heart failure. These indices complement the traditional, organ-level measures of LV anatomy and function that often fall short of early prognostication of heart failure in MI. In addition, our approach offers an integrated methodology to advance the design of personalized interventions, such as hydrogel injection, to reinforce and suppress native adaptive and maladaptive mechanisms, respectively, to prevent the transition of MI to heart failure. STATEMENT OF SIGNIFICANCE: Biomechanical and architectural adaptation of the LVFW remains a central, yet overlooked, remodeling process post-MI. Our study indicates the biomechanical adaptation of the LVFW post-MI is highly individual and driven by altered fiber network architecture and collective changes in collagen fiber content, undulation, and stiffness. Our findings demonstrate the possibility of using cardiac strains to infer such fiber-level remodeling events through in-silico modeling, paving the way for in-vivo characterization of multiscale biomechanical indices in humans. Such indices will complement the traditional, organ-level measures of LV anatomy and function that often fall short of early prognostication of heart failure in MI.
AbstractList Myocardial infarction (MI) is accompanied by the formation of a fibrotic scar in the left ventricle (LV) and initiates significant alterations in the architecture and constituents of the LV free wall (LVFW). Previous studies have shown that LV adaptation is highly individual, indicating that the identification of remodeling mechanisms post-MI demands a fully subject-specific approach that can integrate a host of structural alterations at the fiber-level to changes in bulk biomechanical adaptation at the tissue-level. We present an image-driven micromechanical approach to characterize remodeling, assimilating new biaxial mechanical data, histological studies, and digital image correlation data within an in-silico framework to elucidate the fiber-level remodeling mechanisms that drive tissue-level adaptation for each subject. We found that a progressively diffused collagen fiber structure combined with similarly disorganized myofiber architecture in the healthy region leads to the loss of LVFW anisotropy post-MI, offering an important tissue-level hallmark for LV maladaptation. In contrast, our results suggest that reductions in collagen undulation are an adaptive mechanism competing against LVFW thinning. Additionally, we show that the inclusion of subject-specific geometry when modeling myocardial tissue is essential for accurate prediction of tissue kinematics. Our approach serves as an essential step toward identifying fiber-level remodeling indices that govern the transition of MI to systolic heart failure. These indices complement the traditional, organ-level measures of LV anatomy and function that often fall short of early prognostication of heart failure in MI. In addition, our approach offers an integrated methodology to advance the design of personalized interventions, such as hydrogel injection, to reinforce and suppress native adaptive and maladaptive mechanisms, respectively, to prevent the transition of MI to heart failure. STATEMENT OF SIGNIFICANCE: Biomechanical and architectural adaptation of the LVFW remains a central, yet overlooked, remodeling process post-MI. Our study indicates the biomechanical adaptation of the LVFW post-MI is highly individual and driven by altered fiber network architecture and collective changes in collagen fiber content, undulation, and stiffness. Our findings demonstrate the possibility of using cardiac strains to infer such fiber-level remodeling events through in-silico modeling, paving the way for in-vivo characterization of multiscale biomechanical indices in humans. Such indices will complement the traditional, organ-level measures of LV anatomy and function that often fall short of early prognostication of heart failure in MI.Myocardial infarction (MI) is accompanied by the formation of a fibrotic scar in the left ventricle (LV) and initiates significant alterations in the architecture and constituents of the LV free wall (LVFW). Previous studies have shown that LV adaptation is highly individual, indicating that the identification of remodeling mechanisms post-MI demands a fully subject-specific approach that can integrate a host of structural alterations at the fiber-level to changes in bulk biomechanical adaptation at the tissue-level. We present an image-driven micromechanical approach to characterize remodeling, assimilating new biaxial mechanical data, histological studies, and digital image correlation data within an in-silico framework to elucidate the fiber-level remodeling mechanisms that drive tissue-level adaptation for each subject. We found that a progressively diffused collagen fiber structure combined with similarly disorganized myofiber architecture in the healthy region leads to the loss of LVFW anisotropy post-MI, offering an important tissue-level hallmark for LV maladaptation. In contrast, our results suggest that reductions in collagen undulation are an adaptive mechanism competing against LVFW thinning. Additionally, we show that the inclusion of subject-specific geometry when modeling myocardial tissue is essential for accurate prediction of tissue kinematics. Our approach serves as an essential step toward identifying fiber-level remodeling indices that govern the transition of MI to systolic heart failure. These indices complement the traditional, organ-level measures of LV anatomy and function that often fall short of early prognostication of heart failure in MI. In addition, our approach offers an integrated methodology to advance the design of personalized interventions, such as hydrogel injection, to reinforce and suppress native adaptive and maladaptive mechanisms, respectively, to prevent the transition of MI to heart failure. STATEMENT OF SIGNIFICANCE: Biomechanical and architectural adaptation of the LVFW remains a central, yet overlooked, remodeling process post-MI. Our study indicates the biomechanical adaptation of the LVFW post-MI is highly individual and driven by altered fiber network architecture and collective changes in collagen fiber content, undulation, and stiffness. Our findings demonstrate the possibility of using cardiac strains to infer such fiber-level remodeling events through in-silico modeling, paving the way for in-vivo characterization of multiscale biomechanical indices in humans. Such indices will complement the traditional, organ-level measures of LV anatomy and function that often fall short of early prognostication of heart failure in MI.
Myocardial infarction (MI) is accompanied by the formation of a fibrotic scar in the left ventricle (LV) and initiates significant alterations in the architecture and constituents of the LV free wall (LVFW). Previous studies have shown that LV adaptation is highly individual, indicating that the identification of remodeling mechanisms post-MI demands a fully subject-specific approach that can integrate a host of structural alterations at the fiber-level to changes in bulk biomechanical adaptation at the tissue-level. We present an image-driven micromechanical approach to characterize remodeling, assimilating new biaxial mechanical data, histological studies, and digital image correlation data within an in-silico framework to elucidate the fiber-level remodeling mechanisms that drive tissue-level adaptation for each subject. We found that a progressively diffused collagen fiber structure combined with similarly disorganized myofiber architecture in the healthy region leads to the loss of LVFW anisotropy post-MI, offering an important tissue-level hallmark for LV maladaptation. In contrast, our results suggest that reductions in collagen undulation are an adaptive mechanism competing against LVFW thinning. Additionally, we show that the inclusion of subject-specific geometry when modeling myocardial tissue is essential for accurate prediction of tissue kinematics. Our approach serves as an essential step toward identifying fiber-level remodeling indices that govern the transition of MI to systolic heart failure. These indices complement the traditional, organ-level measures of LV anatomy and function that often fall short of early prognostication of heart failure in MI. In addition, our approach offers an integrated methodology to advance the design of personalized interventions, such as hydrogel injection, to reinforce and suppress native adaptive and maladaptive mechanisms, respectively, to prevent the transition of MI to heart failure. STATEMENT OF SIGNIFICANCE: Biomechanical and architectural adaptation of the LVFW remains a central, yet overlooked, remodeling process post-MI. Our study indicates the biomechanical adaptation of the LVFW post-MI is highly individual and driven by altered fiber network architecture and collective changes in collagen fiber content, undulation, and stiffness. Our findings demonstrate the possibility of using cardiac strains to infer such fiber-level remodeling events through in-silico modeling, paving the way for in-vivo characterization of multiscale biomechanical indices in humans. Such indices will complement the traditional, organ-level measures of LV anatomy and function that often fall short of early prognostication of heart failure in MI.
Author Neelakantan, Sunder
Vanderslice, Peter
Avazmohammadi, Reza
Mendiola, Emilio A.
Serpooshan, Vahid
Xia, Shuda
Zhang, Jianyi
Xiang, Qian
Author_xml – sequence: 1
  givenname: Emilio A.
  orcidid: 0000-0002-7774-0811
  surname: Mendiola
  fullname: Mendiola, Emilio A.
– sequence: 2
  givenname: Sunder
  surname: Neelakantan
  fullname: Neelakantan, Sunder
– sequence: 3
  givenname: Qian
  surname: Xiang
  fullname: Xiang, Qian
– sequence: 4
  givenname: Shuda
  orcidid: 0000-0003-4958-808X
  surname: Xia
  fullname: Xia, Shuda
– sequence: 5
  givenname: Jianyi
  surname: Zhang
  fullname: Zhang, Jianyi
– sequence: 6
  givenname: Vahid
  surname: Serpooshan
  fullname: Serpooshan, Vahid
– sequence: 7
  givenname: Peter
  orcidid: 0000-0003-2990-6124
  surname: Vanderslice
  fullname: Vanderslice, Peter
– sequence: 8
  givenname: Reza
  orcidid: 0000-0001-9787-1117
  surname: Avazmohammadi
  fullname: Avazmohammadi, Reza
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37925122$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1r3DAQxUVJab76H5SgYy_e6mPtkXsLoW0CgV6asxhL40SLJW1ku5D-9dWyyaWHnjQMv_c0vHfOTlJOxNgnKTZSyO7LboNuGULeKKF0XW2EgnfsTBowDbSdOakzbFUDopOn7Hyed0JoI5X5wE419KqVSp2x8TrxEPGRGl_Cb0o8BldyJPeEKTicOO73JaN74kvmdVnqp1TCH-JxnZYwV4R4oZg9TSE98lDt0oilUp7Hl-yw-LDGS_Z-xGmmj6_vBXv4_u3XzW1z__PH3c31feN0q5cGBonY9luAHoQS7UA0AGinQQhAGAUIszWt9gq71nmQvSCle6-RJCgv9QX7fPStRz-vNC821htpmjBRXmerjOm06jvRVvTqFV2HSN7uS82hvNi3bCrw9QjUQOa50GhdWHAJOS0Fw2SlsIci7M4ei7CHIg7bWkQVb_8Rv_n_V_YXeE2PjA
CitedBy_id crossref_primary_10_1016_j_mtbio_2024_101331
Cites_doi 10.1016/j.yjmcc.2015.11.028
10.1161/CIRCULATIONAHA.121.055393
10.1146/annurev-bioeng-062117-121129
10.1073/pnas.1004097107
10.5114/aic.2022.121345
10.1038/s41598-022-09128-6
10.1152/ajpheart.1997.272.5.H2123
10.1016/j.jmbbm.2019.103591
10.1007/s10665-014-9740-3
10.1146/annurev-bioeng-110220-025309
10.1161/01.CIR.71.5.994
10.1063/1.5011639
10.1152/ajpheart.00279.2018
10.1016/j.jacc.2010.06.044
10.1098/rsta.2001.0828
10.1016/S0008-6363(96)00206-4
10.1152/ajpheart.00127.2017
10.1152/ajpheart.00495.2009
10.1161/circ.144.suppl_1.14303
10.1007/s12265-010-9241-3
10.1044/2022_JSLHR-22-00040
10.1161/01.CIR.89.5.2315
10.1152/ajpheart.1998.274.5.H1627
10.1148/radiol.2018181253
10.1152/ajpheart.01240.2005
10.1016/j.matbio.2021.05.005
10.1172/JCI108079
10.1016/j.actbio.2023.03.022
10.1016/j.biomaterials.2008.09.059
10.1016/S0025-6196(12)61345-7
10.1016/j.jacc.2011.07.022
10.1007/s00395-002-0365-8
10.1016/j.athoracsur.2016.02.082
10.1007/s10237-017-0943-1
10.1146/annurev.bioeng.7.060804.100453
10.1115/1.4043865
10.1016/j.jacc.2008.01.011
10.1016/j.yjmcc.2009.08.003
10.1016/j.biomaterials.2015.08.011
10.1016/j.actbio.2020.07.046
10.1007/s10237-016-0837-7
ContentType Journal Article
Copyright Copyright © 2023 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: Copyright © 2023 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.actbio.2023.10.027
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-7568
EndPage 122
ExternalDocumentID 37925122
10_1016_j_actbio_2023_10_027
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABXZ
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFJKZ
AFPUW
AFRAH
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CITATION
CS3
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSH
SSM
SSU
SSZ
T5K
~G-
AACTN
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
EFLBG
ID FETCH-LOGICAL-c353t-7b1aa59477970205beeb773c37007a7f07084853d2a65cd7190e239d3ae172d13
ISSN 1742-7061
1878-7568
IngestDate Fri Sep 05 12:23:57 EDT 2025
Thu Apr 03 07:05:20 EDT 2025
Tue Jul 01 01:17:46 EDT 2025
Thu Apr 24 23:00:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Myocardial infarction
In-silico modeling
Cardiac strains
Scar maturation
Multiscale remodeling
Language English
License Copyright © 2023 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c353t-7b1aa59477970205beeb773c37007a7f07084853d2a65cd7190e239d3ae172d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9787-1117
0000-0003-2990-6124
0000-0002-7774-0811
0000-0003-4958-808X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10924194
PMID 37925122
PQID 2886329605
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2886329605
pubmed_primary_37925122
crossref_citationtrail_10_1016_j_actbio_2023_10_027
crossref_primary_10_1016_j_actbio_2023_10_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-00
2024-Jan-01
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-00
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Acta biomaterialia
PublicationTitleAlternate Acta Biomater
PublicationYear 2024
References Holmes (10.1016/j.actbio.2023.10.027_bib0005) 1996; 1
Li (10.1016/j.actbio.2023.10.027_bib0015) 2019
Torres (10.1016/j.actbio.2023.10.027_bib0027) 2020; 5
Omens (10.1016/j.actbio.2023.10.027_bib0033) 1997; 33
Gaasch (10.1016/j.actbio.2023.10.027_bib0010) 2011; 58
Gao (10.1016/j.actbio.2023.10.027_bib0020) 2015; 95
Clarke (10.1016/j.actbio.2023.10.027_bib0008) 2016; 93
Avazmohammadi (10.1016/j.actbio.2023.10.027_bib0014) 2018
Neelakantan (10.1016/j.actbio.2023.10.027_bib0034) 2023; 162
Korenczuk (10.1016/j.actbio.2023.10.027_bib0013) 2019; 141
Hsu (10.1016/j.actbio.2023.10.027_sbref0017) 1998; 274
Fomovsky (10.1016/j.actbio.2023.10.027_bib0004) 2010; 298
Mendiola (10.1016/j.actbio.2023.10.027_bib0011) 2022; 16
Li (10.1016/j.actbio.2023.10.027_bib0009) 2020; 103
Richardson (10.1016/j.actbio.2023.10.027_bib0002) 2018; 5
Torres (10.1016/j.actbio.2023.10.027_bib0037) 2018; 315
Bonnemain (10.1016/j.actbio.2023.10.027_bib0048) 2022; 24
Holmes (10.1016/j.actbio.2023.10.027_bib0001) 2005; 7
Bujak (10.1016/j.actbio.2023.10.027_bib0053) 2008; 51
Klotz (10.1016/j.actbio.2023.10.027_bib0025) 2006; 291
Fomovsky (10.1016/j.actbio.2023.10.027_bib0007) 2011; 4
Avazmohammadi (10.1016/j.actbio.2023.10.027_bib0028) 2017; 1
Yu (10.1016/j.actbio.2023.10.027_bib0042) 2009; 30
Zhu (10.1016/j.actbio.2023.10.027_bib0044) 2016; 102
Mangion (10.1016/j.actbio.2023.10.027_sbref0038) 2019; 290
Gupta (10.1016/j.actbio.2023.10.027_bib0003) 1994; 89
Espe (10.1016/j.actbio.2023.10.027_bib0039) 2017; 10
Li (10.1016/j.actbio.2023.10.027_bib0045) 2020; 114
Liang (10.1016/j.actbio.2023.10.027_bib0018) 2022; 17
Grossman (10.1016/j.actbio.2023.10.027_bib0036) 1975; 56
Neelakantan (10.1016/j.actbio.2023.10.027_sbref0016) 2021; 144
Sun (10.1016/j.actbio.2023.10.027_bib0041) 2002; 97
Holzapfel (10.1016/j.actbio.2023.10.027_bib0019) 2000; 61
Babaei (10.1016/j.actbio.2023.10.027_bib0022) 2022; 12
Avazmohammadi (10.1016/j.actbio.2023.10.027_bib0012) 2019; 21
Costa (10.1016/j.actbio.2023.10.027_bib0032) 2001; 359
Holmes (10.1016/j.actbio.2023.10.027_sbref0031) 1997; 272
Mendiola (10.1016/j.actbio.2023.10.027_bib0023) 2023
Chen (10.1016/j.actbio.2023.10.027_sbref0040) 2017; 313
Glower (10.1016/j.actbio.2023.10.027_bib0029) 1985; 71
Dorsey (10.1016/j.actbio.2023.10.027_bib0043) 2015; 69
Chung (10.1016/j.actbio.2023.10.027_bib0047) 2010; 3
Usman (10.1016/j.actbio.2023.10.027_bib0050) 2023
Hung (10.1016/j.actbio.2023.10.027_bib0051) 2010; 56
Rumberger (10.1016/j.actbio.2023.10.027_bib0035) 1994; 69
Ifkovits (10.1016/j.actbio.2023.10.027_bib0046) 2010; 107
Fomovsky (10.1016/j.actbio.2023.10.027_bib0006) 2010; 48
Hanna (10.1016/j.actbio.2023.10.027_bib0030) 2021; 99
Althouse (10.1016/j.actbio.2023.10.027_bib0026) 2021; 144
Avazmohammadi (10.1016/j.actbio.2023.10.027_bib0024) 2017; 16
Li (10.1016/j.actbio.2023.10.027_bib0021) 2021
Mazur (10.1016/j.actbio.2023.10.027_bib0049) 2022; 18
Reindl (10.1016/j.actbio.2023.10.027_bib0052) 2019; 12
References_xml – volume: 5
  start-page: 1877
  issue: 4
  year: 2018
  ident: 10.1016/j.actbio.2023.10.027_bib0002
  article-title: Physiological implications of myocardial scar structure
  publication-title: Comprehens. Physiol.
– volume: 93
  start-page: 115
  year: 2016
  ident: 10.1016/j.actbio.2023.10.027_bib0008
  article-title: Modifying the mechanics of healing infarcts: is better the enemy of good?
  publication-title: J. Mol. Cellul. Cardiol.
  doi: 10.1016/j.yjmcc.2015.11.028
– volume: 144
  start-page: e70
  issue: 4
  year: 2021
  ident: 10.1016/j.actbio.2023.10.027_bib0026
  article-title: Recommendations for statistical reporting in cardiovascular medicine: a special report from the american heart association
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.121.055393
– volume: 21
  start-page: 417
  year: 2019
  ident: 10.1016/j.actbio.2023.10.027_bib0012
  article-title: A contemporary look at biomechanical models of myocardium
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-062117-121129
– volume: 107
  start-page: 11507
  issue: 25
  year: 2010
  ident: 10.1016/j.actbio.2023.10.027_bib0046
  article-title: Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1004097107
– volume: 1
  start-page: 15
  year: 1996
  ident: 10.1016/j.actbio.2023.10.027_bib0005
  article-title: Collagen fiber orientation in myocardial scar tissue
  publication-title: Cardiovasc. Pathobiol.
– volume: 18
  start-page: 350
  year: 2022
  ident: 10.1016/j.actbio.2023.10.027_bib0049
  article-title: Diffusion-weighted imaging and diffusion tensor imaging of the heart in vivo: major developments
  publication-title: Adv. Intervent. Cardiol./Postepy w Kardiologii Interwencyjnej
  doi: 10.5114/aic.2022.121345
– volume: 12
  year: 2022
  ident: 10.1016/j.actbio.2023.10.027_bib0022
  article-title: A machine learning model to estimate myocardial stiffness from edpvr
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-09128-6
– volume: 272
  year: 1997
  ident: 10.1016/j.actbio.2023.10.027_sbref0031
  article-title: Functional implications of myocardial scar structure
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.1997.272.5.H2123
– start-page: 34
  year: 2023
  ident: 10.1016/j.actbio.2023.10.027_bib0023
  article-title: A micro-anatomical model of the infarcted left ventricle border zone to study the influence of collagen undulation
– volume: 103
  start-page: 103591
  year: 2020
  ident: 10.1016/j.actbio.2023.10.027_bib0009
  article-title: Biomechanics of infarcted left ventricle-a review of experiments
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2019.103591
– volume: 95
  start-page: 231
  issue: 1
  year: 2015
  ident: 10.1016/j.actbio.2023.10.027_bib0020
  article-title: Parameter estimation in a holzapfel–ogden law for healthy myocardium
  publication-title: J. Eng. Math.
  doi: 10.1007/s10665-014-9740-3
– volume: 24
  start-page: 137
  year: 2022
  ident: 10.1016/j.actbio.2023.10.027_bib0048
  article-title: Direct cardiac compression devices to augment heart biomechanics and function
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-110220-025309
– volume: 71
  start-page: 994
  issue: 5
  year: 1985
  ident: 10.1016/j.actbio.2023.10.027_bib0029
  article-title: Linearity of the frank-starling relationship in the intact heart: the concept of preload recruitable stroke work
  publication-title: Circulation
  doi: 10.1161/01.CIR.71.5.994
– volume: 16
  start-page: 721
  issue: 2
  year: 2022
  ident: 10.1016/j.actbio.2023.10.027_bib0011
  article-title: Contractile adaptation of the left ventricle post-myocardial infarction: predictions by rodent-specific computational modeling
  publication-title: Ann. Biomed. Eng.
– volume: 1
  start-page: 016105
  issue: 1
  year: 2017
  ident: 10.1016/j.actbio.2023.10.027_bib0028
  article-title: Transmural remodeling of right ventricular myocardium in response to pulmonary arterial hypertension
  publication-title: APL Bioeng.
  doi: 10.1063/1.5011639
– volume: 315
  start-page: H958
  issue: 4
  year: 2018
  ident: 10.1016/j.actbio.2023.10.027_bib0037
  article-title: Regional and temporal changes in left ventricular strain and stiffness in a porcine model of myocardial infarction
  publication-title: Am. J. Physiol.-Heart Circulat. Physiol.
  doi: 10.1152/ajpheart.00279.2018
– volume: 56
  start-page: 1812
  issue: 22
  year: 2010
  ident: 10.1016/j.actbio.2023.10.027_bib0051
  article-title: Longitudinal and circumferential strain rate, left ventricular remodeling, and prognosis after myocardial infarction
  publication-title: J. Am. College Cardiol.
  doi: 10.1016/j.jacc.2010.06.044
– volume: 359
  start-page: 1233
  year: 2001
  ident: 10.1016/j.actbio.2023.10.027_bib0032
  article-title: Modelling cardiac mechanical properties in three dimensions
  publication-title: Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2001.0828
– volume: 5
  start-page: 463
  issue: 5
  year: 2020
  ident: 10.1016/j.actbio.2023.10.027_bib0027
  article-title: Changes in myocardial microstructure and mechanics with progressive left ventricular pressure overload
  publication-title: JACC: Basic Transl. Sci.
– start-page: 103508
  year: 2019
  ident: 10.1016/j.actbio.2023.10.027_bib0015
  article-title: Insights into the passive mechanical behavior of left ventricular myocardium using a robust constitutive model based on full 3d kinematics
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 10
  start-page: e005997
  issue: 9
  year: 2017
  ident: 10.1016/j.actbio.2023.10.027_bib0039
  article-title: Regional dysfunction after myocardial infarction in rats
  publication-title: Circulation: Cardiovasc. Imag.
– volume: 33
  start-page: 351
  issue: 2
  year: 1997
  ident: 10.1016/j.actbio.2023.10.027_bib0033
  article-title: Relationship between passive tissue strain and collagen uncoiling during healing of infarcted myocardium
  publication-title: Cardiovasc. Res.
  doi: 10.1016/S0008-6363(96)00206-4
– volume: 313
  start-page: H275
  issue: 2
  year: 2017
  ident: 10.1016/j.actbio.2023.10.027_sbref0040
  article-title: Variability in coronary artery anatomy affects consistency of cardiac damage after myocardial infarction in mice
  publication-title: Am. J. Physiol.-Heart Circulat. Physiol.
  doi: 10.1152/ajpheart.00127.2017
– volume: 298
  start-page: H221
  issue: 1
  year: 2010
  ident: 10.1016/j.actbio.2023.10.027_bib0004
  article-title: Evolution of scar structure, mechanics, and ventricular function after myocardial infarction in the rat
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00495.2009
– volume: 144
  issue: Suppl_1
  year: 2021
  ident: 10.1016/j.actbio.2023.10.027_sbref0016
  article-title: Abstract 14303: structural remodeling in the left ventricular myocardium underlies systolic dysfunction in myocardial infarction
  publication-title: Circulation
  doi: 10.1161/circ.144.suppl_1.14303
– volume: 4
  start-page: 82
  year: 2011
  ident: 10.1016/j.actbio.2023.10.027_bib0007
  article-title: Model-based design of mechanical therapies for myocardial infarction
  publication-title: J. Cardiovasc. Trans. Res.
  doi: 10.1007/s12265-010-9241-3
– volume: 17
  start-page: 3661
  year: 2022
  ident: 10.1016/j.actbio.2023.10.027_bib0018
  article-title: Direct cardiac compression devices to augment heart biomechanics and function
  publication-title: Speech Lang Hear Res.
  doi: 10.1044/2022_JSLHR-22-00040
– volume: 89
  start-page: 2315
  issue: 5
  year: 1994
  ident: 10.1016/j.actbio.2023.10.027_bib0003
  article-title: Changes in passive mechanical stiffness of myocardial tissue with aneurysm formation
  publication-title: Circulation
  doi: 10.1161/01.CIR.89.5.2315
– volume: 274
  start-page: H1627
  issue: 5
  year: 1998
  ident: 10.1016/j.actbio.2023.10.027_sbref0017
  article-title: Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation
  publication-title: Am. J. Physiol.-Heart Circulat. Physiol.
  doi: 10.1152/ajpheart.1998.274.5.H1627
– volume: 290
  start-page: 329
  issue: 2
  year: 2019
  ident: 10.1016/j.actbio.2023.10.027_sbref0038
  article-title: Circumferential strain predicts major adverse cardiovascular events following an acute ST-segmentelevation myocardial infarction
  publication-title: Radiology
  doi: 10.1148/radiol.2018181253
– start-page: 168
  year: 2021
  ident: 10.1016/j.actbio.2023.10.027_bib0021
  article-title: A high-fidelity 3d micromechanical model of ventricular myocardium
– volume: 291
  start-page: H403
  issue: 1
  year: 2006
  ident: 10.1016/j.actbio.2023.10.027_bib0025
  article-title: Single-beat estimation of end-diastolic pressure-volume relationship: a novel method with potential for noninvasive application
  publication-title: Am. J. Physiol.-Heart Circulat. Physiol.
  doi: 10.1152/ajpheart.01240.2005
– volume: 99
  start-page: 18
  year: 2021
  ident: 10.1016/j.actbio.2023.10.027_bib0030
  article-title: Collagen denaturation in the infarcted myocardium involves temporally distinct effects of mt1-mmp-dependent proteolysis and mechanical tension
  publication-title: Matrix Biol.
  doi: 10.1016/j.matbio.2021.05.005
– start-page: 74
  year: 2023
  ident: 10.1016/j.actbio.2023.10.027_bib0050
  article-title: On the possibility of estimating myocardial fiber architecture from cardiac strains
– volume: 56
  start-page: 56
  issue: 1
  year: 1975
  ident: 10.1016/j.actbio.2023.10.027_bib0036
  article-title: Wall stress and patterns of hypertrophy in the human left ventricle
  publication-title: J. Clin. Investigat.
  doi: 10.1172/JCI108079
– volume: 162
  start-page: 240
  year: 2023
  ident: 10.1016/j.actbio.2023.10.027_bib0034
  article-title: Multiscale characterization of left ventricle active behavior in the mouse
  publication-title: Acta Biomaterialia
  doi: 10.1016/j.actbio.2023.03.022
– volume: 30
  start-page: 751
  issue: 5
  year: 2009
  ident: 10.1016/j.actbio.2023.10.027_bib0042
  article-title: The effect of injected rgd modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.09.059
– volume: 69
  start-page: 664
  issue: 7
  year: 1994
  ident: 10.1016/j.actbio.2023.10.027_bib0035
  article-title: Ventricular dilatation and remodeling after myocardial infarction
  publication-title: Mayo Clinic Proc.
  doi: 10.1016/S0025-6196(12)61345-7
– volume: 58
  start-page: 1733
  issue: 17
  year: 2011
  ident: 10.1016/j.actbio.2023.10.027_bib0010
  article-title: Left ventricular structural remodeling in health and disease: with special emphasis on volume, mass, and geometry
  publication-title: J. Am. College Cardiol.
  doi: 10.1016/j.jacc.2011.07.022
– volume: 97
  start-page: 343
  year: 2002
  ident: 10.1016/j.actbio.2023.10.027_bib0041
  article-title: Infarct scar as living tissue
  publication-title: Basic Res. Cardiol.
  doi: 10.1007/s00395-002-0365-8
– volume: 102
  start-page: 780
  issue: 3
  year: 2016
  ident: 10.1016/j.actbio.2023.10.027_bib0044
  article-title: Design of a coupled thermoresponsive hydrogel and robotic system for postinfarct biomaterial injection therapy
  publication-title: Annal. Thoracic Surg.
  doi: 10.1016/j.athoracsur.2016.02.082
– year: 2018
  ident: 10.1016/j.actbio.2023.10.027_bib0014
  article-title: An integrated inverse model-experimental approach to determine soft tissue three-dimensional constitutive parameters: application to post-infarcted myocardium
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-017-0943-1
– volume: 3
  start-page: 650
  issue: 6
  year: 2010
  ident: 10.1016/j.actbio.2023.10.027_bib0047
  article-title: Effect of peri-infarct pacing early after myocardial infarction
  publication-title: Circulation: Heart Failure
– volume: 12
  start-page: e009404
  issue: 11
  year: 2019
  ident: 10.1016/j.actbio.2023.10.027_bib0052
  article-title: Prognostic implications of global longitudinal strain by feature-tracking cardiac magnetic resonance in ST-elevation myocardial infarction
  publication-title: Circulation: Cardiovasc. Imag.
– volume: 7
  start-page: 223
  issue: 1
  year: 2005
  ident: 10.1016/j.actbio.2023.10.027_bib0001
  article-title: Structure and mechanics of healing myocardial infarcts
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.7.060804.100453
– volume: 141
  year: 2019
  ident: 10.1016/j.actbio.2023.10.027_bib0013
  article-title: Effects of collagen heterogeneity on myocardial infarct mechanics in a multiscale fiber network model
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4043865
– volume: 51
  start-page: 1384
  year: 2008
  ident: 10.1016/j.actbio.2023.10.027_bib0053
  article-title: Aging-related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2008.01.011
– volume: 48
  start-page: 490
  issue: 3
  year: 2010
  ident: 10.1016/j.actbio.2023.10.027_bib0006
  article-title: Contribution of extracellular matrix to the mechanical properties of the heart
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2009.08.003
– volume: 69
  start-page: 65
  year: 2015
  ident: 10.1016/j.actbio.2023.10.027_bib0043
  article-title: Mri evaluation of injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling after myocardial infarction
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.08.011
– volume: 114
  start-page: 296
  year: 2020
  ident: 10.1016/j.actbio.2023.10.027_bib0045
  article-title: How hydrogel inclusions modulate the local mechanical response in early and fully formed post-infarcted myocardium
  publication-title: Acta Biomaterialia
  doi: 10.1016/j.actbio.2020.07.046
– volume: 16
  start-page: 561
  issue: 2
  year: 2017
  ident: 10.1016/j.actbio.2023.10.027_bib0024
  article-title: A novel constitutive model for passive right ventricular myocardium: evidence for myofiber–collagen fiber mechanical coupling
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-016-0837-7
– volume: 61
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.actbio.2023.10.027_bib0019
  article-title: A new constitutive framework for arterial wall mechanics and a comparative study of material models
  publication-title: J. Elastic. Phys. Sci. Solid.
SSID ssj0038128
Score 2.4918056
Snippet Myocardial infarction (MI) is accompanied by the formation of a fibrotic scar in the left ventricle (LV) and initiates significant alterations in the...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 109
SubjectTerms Collagen
Heart Failure - pathology
Humans
Myocardial Infarction - pathology
Myocardium - pathology
Ventricular Remodeling
Title An image-driven micromechanical approach to characterize multiscale remodeling in infarcted myocardium
URI https://www.ncbi.nlm.nih.gov/pubmed/37925122
https://www.proquest.com/docview/2886329605
Volume 173
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXOCAeNPykJG4rRJ14yROjivUqkLtIsSulFvkJBORsput2uyBHvrb-WznVVpE4RJFVuJ1PN-OP4_nwdjHsPRLBarqSH3-72cCejATU2AZq2EcUCBMsueTeXi09D8nQTKEEJjokiZz88tb40r-R6pog1x1lOw_SLbvFA24h3xxhYRxvZOMZ_WkWkMhOMW5VlqTtfGuIx3Ma5MAnA0BU3mfmfmSrBvhBR7RRVNMMZw2tAWjAvI1C13_xCoH9LSpGrpEtXmjJjpkXzXmA6teq59QXVTYJxvluq5W1WYwk86JVuoHZNhaW3XgWu8UnFStyfrrCKmJ9eH99n3bWgxaw4TnjwwTVpdG2KDKwFbNcemWtk4BSzFSoVOTLuGmardWhlPArMFnurrsu6v98mxqgeuZtOdf0sPl8XG6OEgW99kDT0pzhO9e9e4_ICqm7m4_oC6s0vj-3fyN67TlD3sRw0kWT9jjdjPBZxYZT9k9qp-xR6MUk89ZOav5GCP8N4zwDiO82fAxRviAET5ghFforsMIHzDygi0PDxafjpy2toaTi0A0jsymSgWxL2WMf-l-kBFlUopcSJBGJUusBJEPKld4KgzyQoI3kifiQigC5S2m4iXbqTc1vWbcz6kk7DopjKY-1tZYRGo_Lz1SMiYRBrtMdFOX5m3ieV3_ZJV2HoanqZ3wVE-4bsWE7zKnf-vMJl75y_MfOqmk0JD62EvVtNlepF4UhcLDTh0jeWXF1fcoZKwJvrd3h7ffsIcDzN-yneZ8S-_ASJvsvYHWLw2sji8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+image-driven+micromechanical+approach+to+characterize+multiscale+remodeling+in+infarcted+myocardium&rft.jtitle=Acta+biomaterialia&rft.au=Mendiola%2C+Emilio+A&rft.au=Neelakantan%2C+Sunder&rft.au=Xiang%2C+Qian&rft.au=Xia%2C+Shuda&rft.date=2024-01-01&rft.issn=1878-7568&rft.eissn=1878-7568&rft.volume=173&rft.spage=109&rft_id=info:doi/10.1016%2Fj.actbio.2023.10.027&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon