An image-driven micromechanical approach to characterize multiscale remodeling in infarcted myocardium
Myocardial infarction (MI) is accompanied by the formation of a fibrotic scar in the left ventricle (LV) and initiates significant alterations in the architecture and constituents of the LV free wall (LVFW). Previous studies have shown that LV adaptation is highly individual, indicating that the ide...
Saved in:
Published in | Acta biomaterialia Vol. 173; pp. 109 - 122 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1742-7061 1878-7568 1878-7568 |
DOI | 10.1016/j.actbio.2023.10.027 |
Cover
Abstract | Myocardial infarction (MI) is accompanied by the formation of a fibrotic scar in the left ventricle (LV) and initiates significant alterations in the architecture and constituents of the LV free wall (LVFW). Previous studies have shown that LV adaptation is highly individual, indicating that the identification of remodeling mechanisms post-MI demands a fully subject-specific approach that can integrate a host of structural alterations at the fiber-level to changes in bulk biomechanical adaptation at the tissue-level. We present an image-driven micromechanical approach to characterize remodeling, assimilating new biaxial mechanical data, histological studies, and digital image correlation data within an in-silico framework to elucidate the fiber-level remodeling mechanisms that drive tissue-level adaptation for each subject. We found that a progressively diffused collagen fiber structure combined with similarly disorganized myofiber architecture in the healthy region leads to the loss of LVFW anisotropy post-MI, offering an important tissue-level hallmark for LV maladaptation. In contrast, our results suggest that reductions in collagen undulation are an adaptive mechanism competing against LVFW thinning. Additionally, we show that the inclusion of subject-specific geometry when modeling myocardial tissue is essential for accurate prediction of tissue kinematics. Our approach serves as an essential step toward identifying fiber-level remodeling indices that govern the transition of MI to systolic heart failure. These indices complement the traditional, organ-level measures of LV anatomy and function that often fall short of early prognostication of heart failure in MI. In addition, our approach offers an integrated methodology to advance the design of personalized interventions, such as hydrogel injection, to reinforce and suppress native adaptive and maladaptive mechanisms, respectively, to prevent the transition of MI to heart failure. STATEMENT OF SIGNIFICANCE: Biomechanical and architectural adaptation of the LVFW remains a central, yet overlooked, remodeling process post-MI. Our study indicates the biomechanical adaptation of the LVFW post-MI is highly individual and driven by altered fiber network architecture and collective changes in collagen fiber content, undulation, and stiffness. Our findings demonstrate the possibility of using cardiac strains to infer such fiber-level remodeling events through in-silico modeling, paving the way for in-vivo characterization of multiscale biomechanical indices in humans. Such indices will complement the traditional, organ-level measures of LV anatomy and function that often fall short of early prognostication of heart failure in MI. |
---|---|
AbstractList | Myocardial infarction (MI) is accompanied by the formation of a fibrotic scar in the left ventricle (LV) and initiates significant alterations in the architecture and constituents of the LV free wall (LVFW). Previous studies have shown that LV adaptation is highly individual, indicating that the identification of remodeling mechanisms post-MI demands a fully subject-specific approach that can integrate a host of structural alterations at the fiber-level to changes in bulk biomechanical adaptation at the tissue-level. We present an image-driven micromechanical approach to characterize remodeling, assimilating new biaxial mechanical data, histological studies, and digital image correlation data within an in-silico framework to elucidate the fiber-level remodeling mechanisms that drive tissue-level adaptation for each subject. We found that a progressively diffused collagen fiber structure combined with similarly disorganized myofiber architecture in the healthy region leads to the loss of LVFW anisotropy post-MI, offering an important tissue-level hallmark for LV maladaptation. In contrast, our results suggest that reductions in collagen undulation are an adaptive mechanism competing against LVFW thinning. Additionally, we show that the inclusion of subject-specific geometry when modeling myocardial tissue is essential for accurate prediction of tissue kinematics. Our approach serves as an essential step toward identifying fiber-level remodeling indices that govern the transition of MI to systolic heart failure. These indices complement the traditional, organ-level measures of LV anatomy and function that often fall short of early prognostication of heart failure in MI. In addition, our approach offers an integrated methodology to advance the design of personalized interventions, such as hydrogel injection, to reinforce and suppress native adaptive and maladaptive mechanisms, respectively, to prevent the transition of MI to heart failure. STATEMENT OF SIGNIFICANCE: Biomechanical and architectural adaptation of the LVFW remains a central, yet overlooked, remodeling process post-MI. Our study indicates the biomechanical adaptation of the LVFW post-MI is highly individual and driven by altered fiber network architecture and collective changes in collagen fiber content, undulation, and stiffness. Our findings demonstrate the possibility of using cardiac strains to infer such fiber-level remodeling events through in-silico modeling, paving the way for in-vivo characterization of multiscale biomechanical indices in humans. Such indices will complement the traditional, organ-level measures of LV anatomy and function that often fall short of early prognostication of heart failure in MI.Myocardial infarction (MI) is accompanied by the formation of a fibrotic scar in the left ventricle (LV) and initiates significant alterations in the architecture and constituents of the LV free wall (LVFW). Previous studies have shown that LV adaptation is highly individual, indicating that the identification of remodeling mechanisms post-MI demands a fully subject-specific approach that can integrate a host of structural alterations at the fiber-level to changes in bulk biomechanical adaptation at the tissue-level. We present an image-driven micromechanical approach to characterize remodeling, assimilating new biaxial mechanical data, histological studies, and digital image correlation data within an in-silico framework to elucidate the fiber-level remodeling mechanisms that drive tissue-level adaptation for each subject. We found that a progressively diffused collagen fiber structure combined with similarly disorganized myofiber architecture in the healthy region leads to the loss of LVFW anisotropy post-MI, offering an important tissue-level hallmark for LV maladaptation. In contrast, our results suggest that reductions in collagen undulation are an adaptive mechanism competing against LVFW thinning. Additionally, we show that the inclusion of subject-specific geometry when modeling myocardial tissue is essential for accurate prediction of tissue kinematics. Our approach serves as an essential step toward identifying fiber-level remodeling indices that govern the transition of MI to systolic heart failure. These indices complement the traditional, organ-level measures of LV anatomy and function that often fall short of early prognostication of heart failure in MI. In addition, our approach offers an integrated methodology to advance the design of personalized interventions, such as hydrogel injection, to reinforce and suppress native adaptive and maladaptive mechanisms, respectively, to prevent the transition of MI to heart failure. STATEMENT OF SIGNIFICANCE: Biomechanical and architectural adaptation of the LVFW remains a central, yet overlooked, remodeling process post-MI. Our study indicates the biomechanical adaptation of the LVFW post-MI is highly individual and driven by altered fiber network architecture and collective changes in collagen fiber content, undulation, and stiffness. Our findings demonstrate the possibility of using cardiac strains to infer such fiber-level remodeling events through in-silico modeling, paving the way for in-vivo characterization of multiscale biomechanical indices in humans. Such indices will complement the traditional, organ-level measures of LV anatomy and function that often fall short of early prognostication of heart failure in MI. Myocardial infarction (MI) is accompanied by the formation of a fibrotic scar in the left ventricle (LV) and initiates significant alterations in the architecture and constituents of the LV free wall (LVFW). Previous studies have shown that LV adaptation is highly individual, indicating that the identification of remodeling mechanisms post-MI demands a fully subject-specific approach that can integrate a host of structural alterations at the fiber-level to changes in bulk biomechanical adaptation at the tissue-level. We present an image-driven micromechanical approach to characterize remodeling, assimilating new biaxial mechanical data, histological studies, and digital image correlation data within an in-silico framework to elucidate the fiber-level remodeling mechanisms that drive tissue-level adaptation for each subject. We found that a progressively diffused collagen fiber structure combined with similarly disorganized myofiber architecture in the healthy region leads to the loss of LVFW anisotropy post-MI, offering an important tissue-level hallmark for LV maladaptation. In contrast, our results suggest that reductions in collagen undulation are an adaptive mechanism competing against LVFW thinning. Additionally, we show that the inclusion of subject-specific geometry when modeling myocardial tissue is essential for accurate prediction of tissue kinematics. Our approach serves as an essential step toward identifying fiber-level remodeling indices that govern the transition of MI to systolic heart failure. These indices complement the traditional, organ-level measures of LV anatomy and function that often fall short of early prognostication of heart failure in MI. In addition, our approach offers an integrated methodology to advance the design of personalized interventions, such as hydrogel injection, to reinforce and suppress native adaptive and maladaptive mechanisms, respectively, to prevent the transition of MI to heart failure. STATEMENT OF SIGNIFICANCE: Biomechanical and architectural adaptation of the LVFW remains a central, yet overlooked, remodeling process post-MI. Our study indicates the biomechanical adaptation of the LVFW post-MI is highly individual and driven by altered fiber network architecture and collective changes in collagen fiber content, undulation, and stiffness. Our findings demonstrate the possibility of using cardiac strains to infer such fiber-level remodeling events through in-silico modeling, paving the way for in-vivo characterization of multiscale biomechanical indices in humans. Such indices will complement the traditional, organ-level measures of LV anatomy and function that often fall short of early prognostication of heart failure in MI. |
Author | Neelakantan, Sunder Vanderslice, Peter Avazmohammadi, Reza Mendiola, Emilio A. Serpooshan, Vahid Xia, Shuda Zhang, Jianyi Xiang, Qian |
Author_xml | – sequence: 1 givenname: Emilio A. orcidid: 0000-0002-7774-0811 surname: Mendiola fullname: Mendiola, Emilio A. – sequence: 2 givenname: Sunder surname: Neelakantan fullname: Neelakantan, Sunder – sequence: 3 givenname: Qian surname: Xiang fullname: Xiang, Qian – sequence: 4 givenname: Shuda orcidid: 0000-0003-4958-808X surname: Xia fullname: Xia, Shuda – sequence: 5 givenname: Jianyi surname: Zhang fullname: Zhang, Jianyi – sequence: 6 givenname: Vahid surname: Serpooshan fullname: Serpooshan, Vahid – sequence: 7 givenname: Peter orcidid: 0000-0003-2990-6124 surname: Vanderslice fullname: Vanderslice, Peter – sequence: 8 givenname: Reza orcidid: 0000-0001-9787-1117 surname: Avazmohammadi fullname: Avazmohammadi, Reza |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37925122$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1r3DAQxUVJab76H5SgYy_e6mPtkXsLoW0CgV6asxhL40SLJW1ku5D-9dWyyaWHnjQMv_c0vHfOTlJOxNgnKTZSyO7LboNuGULeKKF0XW2EgnfsTBowDbSdOakzbFUDopOn7Hyed0JoI5X5wE419KqVSp2x8TrxEPGRGl_Cb0o8BldyJPeEKTicOO73JaN74kvmdVnqp1TCH-JxnZYwV4R4oZg9TSE98lDt0oilUp7Hl-yw-LDGS_Z-xGmmj6_vBXv4_u3XzW1z__PH3c31feN0q5cGBonY9luAHoQS7UA0AGinQQhAGAUIszWt9gq71nmQvSCle6-RJCgv9QX7fPStRz-vNC821htpmjBRXmerjOm06jvRVvTqFV2HSN7uS82hvNi3bCrw9QjUQOa50GhdWHAJOS0Fw2SlsIci7M4ei7CHIg7bWkQVb_8Rv_n_V_YXeE2PjA |
CitedBy_id | crossref_primary_10_1016_j_mtbio_2024_101331 |
Cites_doi | 10.1016/j.yjmcc.2015.11.028 10.1161/CIRCULATIONAHA.121.055393 10.1146/annurev-bioeng-062117-121129 10.1073/pnas.1004097107 10.5114/aic.2022.121345 10.1038/s41598-022-09128-6 10.1152/ajpheart.1997.272.5.H2123 10.1016/j.jmbbm.2019.103591 10.1007/s10665-014-9740-3 10.1146/annurev-bioeng-110220-025309 10.1161/01.CIR.71.5.994 10.1063/1.5011639 10.1152/ajpheart.00279.2018 10.1016/j.jacc.2010.06.044 10.1098/rsta.2001.0828 10.1016/S0008-6363(96)00206-4 10.1152/ajpheart.00127.2017 10.1152/ajpheart.00495.2009 10.1161/circ.144.suppl_1.14303 10.1007/s12265-010-9241-3 10.1044/2022_JSLHR-22-00040 10.1161/01.CIR.89.5.2315 10.1152/ajpheart.1998.274.5.H1627 10.1148/radiol.2018181253 10.1152/ajpheart.01240.2005 10.1016/j.matbio.2021.05.005 10.1172/JCI108079 10.1016/j.actbio.2023.03.022 10.1016/j.biomaterials.2008.09.059 10.1016/S0025-6196(12)61345-7 10.1016/j.jacc.2011.07.022 10.1007/s00395-002-0365-8 10.1016/j.athoracsur.2016.02.082 10.1007/s10237-017-0943-1 10.1146/annurev.bioeng.7.060804.100453 10.1115/1.4043865 10.1016/j.jacc.2008.01.011 10.1016/j.yjmcc.2009.08.003 10.1016/j.biomaterials.2015.08.011 10.1016/j.actbio.2020.07.046 10.1007/s10237-016-0837-7 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: Copyright © 2023 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.actbio.2023.10.027 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-7568 |
EndPage | 122 |
ExternalDocumentID | 37925122 10_1016_j_actbio_2023_10_027 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEZYN AFJKZ AFPUW AFRAH AFRZQ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC BNPGV CITATION CS3 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSH SSM SSU SSZ T5K ~G- AACTN CGR CUY CVF ECM EIF NPM 7X8 EFKBS EFLBG |
ID | FETCH-LOGICAL-c353t-7b1aa59477970205beeb773c37007a7f07084853d2a65cd7190e239d3ae172d13 |
ISSN | 1742-7061 1878-7568 |
IngestDate | Fri Sep 05 12:23:57 EDT 2025 Thu Apr 03 07:05:20 EDT 2025 Tue Jul 01 01:17:46 EDT 2025 Thu Apr 24 23:00:32 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Myocardial infarction In-silico modeling Cardiac strains Scar maturation Multiscale remodeling |
Language | English |
License | Copyright © 2023 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c353t-7b1aa59477970205beeb773c37007a7f07084853d2a65cd7190e239d3ae172d13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9787-1117 0000-0003-2990-6124 0000-0002-7774-0811 0000-0003-4958-808X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/10924194 |
PMID | 37925122 |
PQID | 2886329605 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2886329605 pubmed_primary_37925122 crossref_citationtrail_10_1016_j_actbio_2023_10_027 crossref_primary_10_1016_j_actbio_2023_10_027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-00 2024-Jan-01 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-00 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Acta biomaterialia |
PublicationTitleAlternate | Acta Biomater |
PublicationYear | 2024 |
References | Holmes (10.1016/j.actbio.2023.10.027_bib0005) 1996; 1 Li (10.1016/j.actbio.2023.10.027_bib0015) 2019 Torres (10.1016/j.actbio.2023.10.027_bib0027) 2020; 5 Omens (10.1016/j.actbio.2023.10.027_bib0033) 1997; 33 Gaasch (10.1016/j.actbio.2023.10.027_bib0010) 2011; 58 Gao (10.1016/j.actbio.2023.10.027_bib0020) 2015; 95 Clarke (10.1016/j.actbio.2023.10.027_bib0008) 2016; 93 Avazmohammadi (10.1016/j.actbio.2023.10.027_bib0014) 2018 Neelakantan (10.1016/j.actbio.2023.10.027_bib0034) 2023; 162 Korenczuk (10.1016/j.actbio.2023.10.027_bib0013) 2019; 141 Hsu (10.1016/j.actbio.2023.10.027_sbref0017) 1998; 274 Fomovsky (10.1016/j.actbio.2023.10.027_bib0004) 2010; 298 Mendiola (10.1016/j.actbio.2023.10.027_bib0011) 2022; 16 Li (10.1016/j.actbio.2023.10.027_bib0009) 2020; 103 Richardson (10.1016/j.actbio.2023.10.027_bib0002) 2018; 5 Torres (10.1016/j.actbio.2023.10.027_bib0037) 2018; 315 Bonnemain (10.1016/j.actbio.2023.10.027_bib0048) 2022; 24 Holmes (10.1016/j.actbio.2023.10.027_bib0001) 2005; 7 Bujak (10.1016/j.actbio.2023.10.027_bib0053) 2008; 51 Klotz (10.1016/j.actbio.2023.10.027_bib0025) 2006; 291 Fomovsky (10.1016/j.actbio.2023.10.027_bib0007) 2011; 4 Avazmohammadi (10.1016/j.actbio.2023.10.027_bib0028) 2017; 1 Yu (10.1016/j.actbio.2023.10.027_bib0042) 2009; 30 Zhu (10.1016/j.actbio.2023.10.027_bib0044) 2016; 102 Mangion (10.1016/j.actbio.2023.10.027_sbref0038) 2019; 290 Gupta (10.1016/j.actbio.2023.10.027_bib0003) 1994; 89 Espe (10.1016/j.actbio.2023.10.027_bib0039) 2017; 10 Li (10.1016/j.actbio.2023.10.027_bib0045) 2020; 114 Liang (10.1016/j.actbio.2023.10.027_bib0018) 2022; 17 Grossman (10.1016/j.actbio.2023.10.027_bib0036) 1975; 56 Neelakantan (10.1016/j.actbio.2023.10.027_sbref0016) 2021; 144 Sun (10.1016/j.actbio.2023.10.027_bib0041) 2002; 97 Holzapfel (10.1016/j.actbio.2023.10.027_bib0019) 2000; 61 Babaei (10.1016/j.actbio.2023.10.027_bib0022) 2022; 12 Avazmohammadi (10.1016/j.actbio.2023.10.027_bib0012) 2019; 21 Costa (10.1016/j.actbio.2023.10.027_bib0032) 2001; 359 Holmes (10.1016/j.actbio.2023.10.027_sbref0031) 1997; 272 Mendiola (10.1016/j.actbio.2023.10.027_bib0023) 2023 Chen (10.1016/j.actbio.2023.10.027_sbref0040) 2017; 313 Glower (10.1016/j.actbio.2023.10.027_bib0029) 1985; 71 Dorsey (10.1016/j.actbio.2023.10.027_bib0043) 2015; 69 Chung (10.1016/j.actbio.2023.10.027_bib0047) 2010; 3 Usman (10.1016/j.actbio.2023.10.027_bib0050) 2023 Hung (10.1016/j.actbio.2023.10.027_bib0051) 2010; 56 Rumberger (10.1016/j.actbio.2023.10.027_bib0035) 1994; 69 Ifkovits (10.1016/j.actbio.2023.10.027_bib0046) 2010; 107 Fomovsky (10.1016/j.actbio.2023.10.027_bib0006) 2010; 48 Hanna (10.1016/j.actbio.2023.10.027_bib0030) 2021; 99 Althouse (10.1016/j.actbio.2023.10.027_bib0026) 2021; 144 Avazmohammadi (10.1016/j.actbio.2023.10.027_bib0024) 2017; 16 Li (10.1016/j.actbio.2023.10.027_bib0021) 2021 Mazur (10.1016/j.actbio.2023.10.027_bib0049) 2022; 18 Reindl (10.1016/j.actbio.2023.10.027_bib0052) 2019; 12 |
References_xml | – volume: 5 start-page: 1877 issue: 4 year: 2018 ident: 10.1016/j.actbio.2023.10.027_bib0002 article-title: Physiological implications of myocardial scar structure publication-title: Comprehens. Physiol. – volume: 93 start-page: 115 year: 2016 ident: 10.1016/j.actbio.2023.10.027_bib0008 article-title: Modifying the mechanics of healing infarcts: is better the enemy of good? publication-title: J. Mol. Cellul. Cardiol. doi: 10.1016/j.yjmcc.2015.11.028 – volume: 144 start-page: e70 issue: 4 year: 2021 ident: 10.1016/j.actbio.2023.10.027_bib0026 article-title: Recommendations for statistical reporting in cardiovascular medicine: a special report from the american heart association publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.121.055393 – volume: 21 start-page: 417 year: 2019 ident: 10.1016/j.actbio.2023.10.027_bib0012 article-title: A contemporary look at biomechanical models of myocardium publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-062117-121129 – volume: 107 start-page: 11507 issue: 25 year: 2010 ident: 10.1016/j.actbio.2023.10.027_bib0046 article-title: Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1004097107 – volume: 1 start-page: 15 year: 1996 ident: 10.1016/j.actbio.2023.10.027_bib0005 article-title: Collagen fiber orientation in myocardial scar tissue publication-title: Cardiovasc. Pathobiol. – volume: 18 start-page: 350 year: 2022 ident: 10.1016/j.actbio.2023.10.027_bib0049 article-title: Diffusion-weighted imaging and diffusion tensor imaging of the heart in vivo: major developments publication-title: Adv. Intervent. Cardiol./Postepy w Kardiologii Interwencyjnej doi: 10.5114/aic.2022.121345 – volume: 12 year: 2022 ident: 10.1016/j.actbio.2023.10.027_bib0022 article-title: A machine learning model to estimate myocardial stiffness from edpvr publication-title: Sci. Rep. doi: 10.1038/s41598-022-09128-6 – volume: 272 year: 1997 ident: 10.1016/j.actbio.2023.10.027_sbref0031 article-title: Functional implications of myocardial scar structure publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.1997.272.5.H2123 – start-page: 34 year: 2023 ident: 10.1016/j.actbio.2023.10.027_bib0023 article-title: A micro-anatomical model of the infarcted left ventricle border zone to study the influence of collagen undulation – volume: 103 start-page: 103591 year: 2020 ident: 10.1016/j.actbio.2023.10.027_bib0009 article-title: Biomechanics of infarcted left ventricle-a review of experiments publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2019.103591 – volume: 95 start-page: 231 issue: 1 year: 2015 ident: 10.1016/j.actbio.2023.10.027_bib0020 article-title: Parameter estimation in a holzapfel–ogden law for healthy myocardium publication-title: J. Eng. Math. doi: 10.1007/s10665-014-9740-3 – volume: 24 start-page: 137 year: 2022 ident: 10.1016/j.actbio.2023.10.027_bib0048 article-title: Direct cardiac compression devices to augment heart biomechanics and function publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-110220-025309 – volume: 71 start-page: 994 issue: 5 year: 1985 ident: 10.1016/j.actbio.2023.10.027_bib0029 article-title: Linearity of the frank-starling relationship in the intact heart: the concept of preload recruitable stroke work publication-title: Circulation doi: 10.1161/01.CIR.71.5.994 – volume: 16 start-page: 721 issue: 2 year: 2022 ident: 10.1016/j.actbio.2023.10.027_bib0011 article-title: Contractile adaptation of the left ventricle post-myocardial infarction: predictions by rodent-specific computational modeling publication-title: Ann. Biomed. Eng. – volume: 1 start-page: 016105 issue: 1 year: 2017 ident: 10.1016/j.actbio.2023.10.027_bib0028 article-title: Transmural remodeling of right ventricular myocardium in response to pulmonary arterial hypertension publication-title: APL Bioeng. doi: 10.1063/1.5011639 – volume: 315 start-page: H958 issue: 4 year: 2018 ident: 10.1016/j.actbio.2023.10.027_bib0037 article-title: Regional and temporal changes in left ventricular strain and stiffness in a porcine model of myocardial infarction publication-title: Am. J. Physiol.-Heart Circulat. Physiol. doi: 10.1152/ajpheart.00279.2018 – volume: 56 start-page: 1812 issue: 22 year: 2010 ident: 10.1016/j.actbio.2023.10.027_bib0051 article-title: Longitudinal and circumferential strain rate, left ventricular remodeling, and prognosis after myocardial infarction publication-title: J. Am. College Cardiol. doi: 10.1016/j.jacc.2010.06.044 – volume: 359 start-page: 1233 year: 2001 ident: 10.1016/j.actbio.2023.10.027_bib0032 article-title: Modelling cardiac mechanical properties in three dimensions publication-title: Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. doi: 10.1098/rsta.2001.0828 – volume: 5 start-page: 463 issue: 5 year: 2020 ident: 10.1016/j.actbio.2023.10.027_bib0027 article-title: Changes in myocardial microstructure and mechanics with progressive left ventricular pressure overload publication-title: JACC: Basic Transl. Sci. – start-page: 103508 year: 2019 ident: 10.1016/j.actbio.2023.10.027_bib0015 article-title: Insights into the passive mechanical behavior of left ventricular myocardium using a robust constitutive model based on full 3d kinematics publication-title: J. Mech. Behav. Biomed. Mater. – volume: 10 start-page: e005997 issue: 9 year: 2017 ident: 10.1016/j.actbio.2023.10.027_bib0039 article-title: Regional dysfunction after myocardial infarction in rats publication-title: Circulation: Cardiovasc. Imag. – volume: 33 start-page: 351 issue: 2 year: 1997 ident: 10.1016/j.actbio.2023.10.027_bib0033 article-title: Relationship between passive tissue strain and collagen uncoiling during healing of infarcted myocardium publication-title: Cardiovasc. Res. doi: 10.1016/S0008-6363(96)00206-4 – volume: 313 start-page: H275 issue: 2 year: 2017 ident: 10.1016/j.actbio.2023.10.027_sbref0040 article-title: Variability in coronary artery anatomy affects consistency of cardiac damage after myocardial infarction in mice publication-title: Am. J. Physiol.-Heart Circulat. Physiol. doi: 10.1152/ajpheart.00127.2017 – volume: 298 start-page: H221 issue: 1 year: 2010 ident: 10.1016/j.actbio.2023.10.027_bib0004 article-title: Evolution of scar structure, mechanics, and ventricular function after myocardial infarction in the rat publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00495.2009 – volume: 144 issue: Suppl_1 year: 2021 ident: 10.1016/j.actbio.2023.10.027_sbref0016 article-title: Abstract 14303: structural remodeling in the left ventricular myocardium underlies systolic dysfunction in myocardial infarction publication-title: Circulation doi: 10.1161/circ.144.suppl_1.14303 – volume: 4 start-page: 82 year: 2011 ident: 10.1016/j.actbio.2023.10.027_bib0007 article-title: Model-based design of mechanical therapies for myocardial infarction publication-title: J. Cardiovasc. Trans. Res. doi: 10.1007/s12265-010-9241-3 – volume: 17 start-page: 3661 year: 2022 ident: 10.1016/j.actbio.2023.10.027_bib0018 article-title: Direct cardiac compression devices to augment heart biomechanics and function publication-title: Speech Lang Hear Res. doi: 10.1044/2022_JSLHR-22-00040 – volume: 89 start-page: 2315 issue: 5 year: 1994 ident: 10.1016/j.actbio.2023.10.027_bib0003 article-title: Changes in passive mechanical stiffness of myocardial tissue with aneurysm formation publication-title: Circulation doi: 10.1161/01.CIR.89.5.2315 – volume: 274 start-page: H1627 issue: 5 year: 1998 ident: 10.1016/j.actbio.2023.10.027_sbref0017 article-title: Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation publication-title: Am. J. Physiol.-Heart Circulat. Physiol. doi: 10.1152/ajpheart.1998.274.5.H1627 – volume: 290 start-page: 329 issue: 2 year: 2019 ident: 10.1016/j.actbio.2023.10.027_sbref0038 article-title: Circumferential strain predicts major adverse cardiovascular events following an acute ST-segmentelevation myocardial infarction publication-title: Radiology doi: 10.1148/radiol.2018181253 – start-page: 168 year: 2021 ident: 10.1016/j.actbio.2023.10.027_bib0021 article-title: A high-fidelity 3d micromechanical model of ventricular myocardium – volume: 291 start-page: H403 issue: 1 year: 2006 ident: 10.1016/j.actbio.2023.10.027_bib0025 article-title: Single-beat estimation of end-diastolic pressure-volume relationship: a novel method with potential for noninvasive application publication-title: Am. J. Physiol.-Heart Circulat. Physiol. doi: 10.1152/ajpheart.01240.2005 – volume: 99 start-page: 18 year: 2021 ident: 10.1016/j.actbio.2023.10.027_bib0030 article-title: Collagen denaturation in the infarcted myocardium involves temporally distinct effects of mt1-mmp-dependent proteolysis and mechanical tension publication-title: Matrix Biol. doi: 10.1016/j.matbio.2021.05.005 – start-page: 74 year: 2023 ident: 10.1016/j.actbio.2023.10.027_bib0050 article-title: On the possibility of estimating myocardial fiber architecture from cardiac strains – volume: 56 start-page: 56 issue: 1 year: 1975 ident: 10.1016/j.actbio.2023.10.027_bib0036 article-title: Wall stress and patterns of hypertrophy in the human left ventricle publication-title: J. Clin. Investigat. doi: 10.1172/JCI108079 – volume: 162 start-page: 240 year: 2023 ident: 10.1016/j.actbio.2023.10.027_bib0034 article-title: Multiscale characterization of left ventricle active behavior in the mouse publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2023.03.022 – volume: 30 start-page: 751 issue: 5 year: 2009 ident: 10.1016/j.actbio.2023.10.027_bib0042 article-title: The effect of injected rgd modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.09.059 – volume: 69 start-page: 664 issue: 7 year: 1994 ident: 10.1016/j.actbio.2023.10.027_bib0035 article-title: Ventricular dilatation and remodeling after myocardial infarction publication-title: Mayo Clinic Proc. doi: 10.1016/S0025-6196(12)61345-7 – volume: 58 start-page: 1733 issue: 17 year: 2011 ident: 10.1016/j.actbio.2023.10.027_bib0010 article-title: Left ventricular structural remodeling in health and disease: with special emphasis on volume, mass, and geometry publication-title: J. Am. College Cardiol. doi: 10.1016/j.jacc.2011.07.022 – volume: 97 start-page: 343 year: 2002 ident: 10.1016/j.actbio.2023.10.027_bib0041 article-title: Infarct scar as living tissue publication-title: Basic Res. Cardiol. doi: 10.1007/s00395-002-0365-8 – volume: 102 start-page: 780 issue: 3 year: 2016 ident: 10.1016/j.actbio.2023.10.027_bib0044 article-title: Design of a coupled thermoresponsive hydrogel and robotic system for postinfarct biomaterial injection therapy publication-title: Annal. Thoracic Surg. doi: 10.1016/j.athoracsur.2016.02.082 – year: 2018 ident: 10.1016/j.actbio.2023.10.027_bib0014 article-title: An integrated inverse model-experimental approach to determine soft tissue three-dimensional constitutive parameters: application to post-infarcted myocardium publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-017-0943-1 – volume: 3 start-page: 650 issue: 6 year: 2010 ident: 10.1016/j.actbio.2023.10.027_bib0047 article-title: Effect of peri-infarct pacing early after myocardial infarction publication-title: Circulation: Heart Failure – volume: 12 start-page: e009404 issue: 11 year: 2019 ident: 10.1016/j.actbio.2023.10.027_bib0052 article-title: Prognostic implications of global longitudinal strain by feature-tracking cardiac magnetic resonance in ST-elevation myocardial infarction publication-title: Circulation: Cardiovasc. Imag. – volume: 7 start-page: 223 issue: 1 year: 2005 ident: 10.1016/j.actbio.2023.10.027_bib0001 article-title: Structure and mechanics of healing myocardial infarcts publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.7.060804.100453 – volume: 141 year: 2019 ident: 10.1016/j.actbio.2023.10.027_bib0013 article-title: Effects of collagen heterogeneity on myocardial infarct mechanics in a multiscale fiber network model publication-title: J. Biomech. Eng. doi: 10.1115/1.4043865 – volume: 51 start-page: 1384 year: 2008 ident: 10.1016/j.actbio.2023.10.027_bib0053 article-title: Aging-related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2008.01.011 – volume: 48 start-page: 490 issue: 3 year: 2010 ident: 10.1016/j.actbio.2023.10.027_bib0006 article-title: Contribution of extracellular matrix to the mechanical properties of the heart publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2009.08.003 – volume: 69 start-page: 65 year: 2015 ident: 10.1016/j.actbio.2023.10.027_bib0043 article-title: Mri evaluation of injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling after myocardial infarction publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.08.011 – volume: 114 start-page: 296 year: 2020 ident: 10.1016/j.actbio.2023.10.027_bib0045 article-title: How hydrogel inclusions modulate the local mechanical response in early and fully formed post-infarcted myocardium publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2020.07.046 – volume: 16 start-page: 561 issue: 2 year: 2017 ident: 10.1016/j.actbio.2023.10.027_bib0024 article-title: A novel constitutive model for passive right ventricular myocardium: evidence for myofiber–collagen fiber mechanical coupling publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-016-0837-7 – volume: 61 start-page: 1 issue: 1 year: 2000 ident: 10.1016/j.actbio.2023.10.027_bib0019 article-title: A new constitutive framework for arterial wall mechanics and a comparative study of material models publication-title: J. Elastic. Phys. Sci. Solid. |
SSID | ssj0038128 |
Score | 2.4918056 |
Snippet | Myocardial infarction (MI) is accompanied by the formation of a fibrotic scar in the left ventricle (LV) and initiates significant alterations in the... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 109 |
SubjectTerms | Collagen Heart Failure - pathology Humans Myocardial Infarction - pathology Myocardium - pathology Ventricular Remodeling |
Title | An image-driven micromechanical approach to characterize multiscale remodeling in infarcted myocardium |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37925122 https://www.proquest.com/docview/2886329605 |
Volume | 173 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXOCAeNPykJG4rRJ14yROjivUqkLtIsSulFvkJBORsput2uyBHvrb-WznVVpE4RJFVuJ1PN-OP4_nwdjHsPRLBarqSH3-72cCejATU2AZq2EcUCBMsueTeXi09D8nQTKEEJjokiZz88tb40r-R6pog1x1lOw_SLbvFA24h3xxhYRxvZOMZ_WkWkMhOMW5VlqTtfGuIx3Ma5MAnA0BU3mfmfmSrBvhBR7RRVNMMZw2tAWjAvI1C13_xCoH9LSpGrpEtXmjJjpkXzXmA6teq59QXVTYJxvluq5W1WYwk86JVuoHZNhaW3XgWu8UnFStyfrrCKmJ9eH99n3bWgxaw4TnjwwTVpdG2KDKwFbNcemWtk4BSzFSoVOTLuGmardWhlPArMFnurrsu6v98mxqgeuZtOdf0sPl8XG6OEgW99kDT0pzhO9e9e4_ICqm7m4_oC6s0vj-3fyN67TlD3sRw0kWT9jjdjPBZxYZT9k9qp-xR6MUk89ZOav5GCP8N4zwDiO82fAxRviAET5ghFforsMIHzDygi0PDxafjpy2toaTi0A0jsymSgWxL2WMf-l-kBFlUopcSJBGJUusBJEPKld4KgzyQoI3kifiQigC5S2m4iXbqTc1vWbcz6kk7DopjKY-1tZYRGo_Lz1SMiYRBrtMdFOX5m3ieV3_ZJV2HoanqZ3wVE-4bsWE7zKnf-vMJl75y_MfOqmk0JD62EvVtNlepF4UhcLDTh0jeWXF1fcoZKwJvrd3h7ffsIcDzN-yneZ8S-_ASJvsvYHWLw2sji8 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+image-driven+micromechanical+approach+to+characterize+multiscale+remodeling+in+infarcted+myocardium&rft.jtitle=Acta+biomaterialia&rft.au=Mendiola%2C+Emilio+A&rft.au=Neelakantan%2C+Sunder&rft.au=Xiang%2C+Qian&rft.au=Xia%2C+Shuda&rft.date=2024-01-01&rft.issn=1878-7568&rft.eissn=1878-7568&rft.volume=173&rft.spage=109&rft_id=info:doi/10.1016%2Fj.actbio.2023.10.027&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon |