XEM: An explainable-by-design ensemble method for multivariate time series classification

We present XEM, an eXplainable-by-design Ensemble method for Multivariate time series classification. XEM relies on a new hybrid ensemble method that combines an explicit boosting-bagging approach to handle the bias-variance trade-off faced by machine learning models and an implicit divide-and-conqu...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 36; no. 3; pp. 917 - 957
Main Authors Fauvel, Kevin, Fromont, Élisa, Masson, Véronique, Faverdin, Philippe, Termier, Alexandre
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2022
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present XEM, an eXplainable-by-design Ensemble method for Multivariate time series classification. XEM relies on a new hybrid ensemble method that combines an explicit boosting-bagging approach to handle the bias-variance trade-off faced by machine learning models and an implicit divide-and-conquer approach to individualize classifier errors on different parts of the training data. Our evaluation shows that XEM outperforms the state-of-the-art MTS classifiers on the public UEA datasets. Furthermore, XEM provides faithful explainability-by-design and manifests robust performance when faced with challenges arising from continuous data collection (different MTS length, missing data and noise).
AbstractList We present XEM, an eXplainable-by-design Ensemble method for Multivariate time series classification. XEM relies on a new hybrid ensemble method that combines an explicit boosting-bagging approach to handle the bias-variance trade-off faced by machine learning models and an implicit divide-and-conquer approach to individualize classifier errors on different parts of the training data. Our evaluation shows that XEM outperforms the state-of-the-art MTS classifiers on the public UEA datasets. Furthermore, XEM provides faithful explainability by-design and manifests robust performance when faced with challenges arising from continuous data collection (different MTS length, missing data and noise).
Author Masson, Véronique
Fromont, Élisa
Faverdin, Philippe
Termier, Alexandre
Fauvel, Kevin
Author_xml – sequence: 1
  givenname: Kevin
  surname: Fauvel
  fullname: Fauvel, Kevin
  email: kevin.fauvel@inria.fr
  organization: Inria, Univ Rennes, CNRS, IRISA
– sequence: 2
  givenname: Élisa
  surname: Fromont
  fullname: Fromont, Élisa
  organization: Univ Rennes, IUF, Inria, CNRS, IRISA
– sequence: 3
  givenname: Véronique
  surname: Masson
  fullname: Masson, Véronique
  organization: Inria, Univ Rennes, CNRS, IRISA
– sequence: 4
  givenname: Philippe
  surname: Faverdin
  fullname: Faverdin, Philippe
  organization: PEGASE, INRAE, AGROCAMPUS OUEST
– sequence: 5
  givenname: Alexandre
  surname: Termier
  fullname: Termier, Alexandre
  organization: Inria, Univ Rennes, CNRS, IRISA
BackLink https://inria.hal.science/hal-03599214$$DView record in HAL
BookMark eNp9kE1rFTEUhoNUsK3-AVcDrlxET3ImmYy7S6mtcMWNhXYVMpkzbcp8XJPcYv99czui4KKrhDfvc3J4TtjRvMzE2HsBnwRA8zkJ0MJwkJIDGIlcv2LHQjXIG6Wvj8odTc2VEfCGnaR0DwBKIhyzm-vz71-qzVzR793owuy6kXj3yHtK4bakc6KpRNVE-W7pq2GJ1bQfc3hwMbhMVQ4TVYlioFT50aUUhuBdDsv8lr0e3Jjo3Z_zlF19Pf95dsm3Py6-nW223KPCzJu2FiSUhqZHKaBzhN40vTdDJ_taeRSI6IDQtZ0H0KZxA5YXo6nufN3hKfu4zr1zo93FMLn4aBcX7OVmaw8ZoGpbKeoHUbof1u4uLr_2lLK9X_ZxLutZqXXdKlWbQ0uuLR-XlCINf8cKsAfddtVti277rNvqApn_IB_ys4gcXRhfRnFFU_lnvqX4b6sXqCcKMpWN
CitedBy_id crossref_primary_10_1002_ohn_840
crossref_primary_10_3390_bdcc7040173
crossref_primary_10_3390_app13095436
crossref_primary_10_1007_s10618_023_00969_x
crossref_primary_10_1016_j_pacfin_2024_102612
crossref_primary_10_1016_j_neunet_2024_106896
crossref_primary_10_1109_TCDS_2024_3370219
crossref_primary_10_1109_TIM_2022_3201203
crossref_primary_10_3390_s23125621
crossref_primary_10_1115_1_4066947
crossref_primary_10_1109_TAI_2024_3360180
crossref_primary_10_1016_j_eja_2024_127338
crossref_primary_10_3390_app13126983
crossref_primary_10_3390_su152115386
crossref_primary_10_1007_s10661_023_11388_2
crossref_primary_10_1007_s13143_024_00351_x
crossref_primary_10_3233_IDT_240224
crossref_primary_10_3390_app14093797
crossref_primary_10_1007_s10994_023_06502_x
crossref_primary_10_1016_j_ijdrr_2023_104109
crossref_primary_10_1016_j_ins_2023_119354
crossref_primary_10_1061_JSDCCC_SCENG_1611
crossref_primary_10_1109_TSMC_2023_3342640
crossref_primary_10_1016_j_ins_2022_09_009
crossref_primary_10_1016_j_knosys_2024_112015
crossref_primary_10_1016_j_jappgeo_2023_105143
crossref_primary_10_1016_j_ecoenv_2023_115250
crossref_primary_10_1016_j_jhep_2023_10_004
Cites_doi 10.1109/MIS.2019.2957223
10.1007/s10115-019-01389-4
10.1007/3-540-45014-9_1
10.1007/BF00058655
10.1023/A:1007652114878
10.1609/aaai.v34i04.6165
10.1145/2939672.2939785
10.1145/3219819.3219831
10.1145/3132847.3132980
10.1145/3292500.3330654
10.1016/j.artint.2018.07.007
10.1162/neco.1991.3.1.79
10.1007/s10618-016-0473-y
10.1007/s10462-012-9338-y
10.1111/j.1467-9868.2005.00503.x
10.1023/A:1010933404324
10.1016/S0893-6080(99)00073-8
10.1016/j.neunet.2019.04.014
10.1007/s11263-019-01228-7
10.1007/s10618-016-0455-0
10.1007/s10618-015-0425-y
10.1002/widm.1143
10.1609/aaai.v34i01.5376
10.1145/2247596.2247656
10.1109/SSCI.2015.199
10.1109/IJCNN.2017.7966039
10.1609/aaai.v32i1.11491
10.1109/CVPR.2016.90
10.1145/3447548.3467401
10.1038/s41591-018-0316-z
10.1017/S0269888997003123
10.1007/s10618-014-0349-y
10.1016/j.patcog.2017.08.016
10.1038/s42256-019-0048-x
10.1145/3359786
10.1145/2939672.2939778
10.1145/3292500.3330712
10.1162/neco.1996.8.7.1341
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
1XC
VOOES
DOI 10.1007/s10618-022-00823-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library (ProQuest)
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 957
ExternalDocumentID oai_HAL_hal_03599214v1
10_1007_s10618_022_00823_6
GrantInformation_xml – fundername: Agence Nationale de la Recherche
  grantid: ANR-16-CONV-0004
  funderid: http://dx.doi.org/10.13039/501100001665
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
1XC
VOOES
ID FETCH-LOGICAL-c353t-7941e15607d3210bae3c87dc8fb2d45c31333a0e3a9bc00687af32d486e4bc4b3
IEDL.DBID U2A
ISSN 1384-5810
IngestDate Fri May 09 12:20:55 EDT 2025
Sat Aug 16 15:52:58 EDT 2025
Tue Jul 01 00:40:32 EDT 2025
Thu Apr 24 22:58:25 EDT 2025
Fri Feb 21 02:45:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Multivariate time series
Ensemble learning
Explainability
Classification
Multivariate Time Series
Ensemble Learning
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-7941e15607d3210bae3c87dc8fb2d45c31333a0e3a9bc00687af32d486e4bc4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3883-8389
0000-0003-0133-3491
0000-0003-1784-0017
OpenAccessLink https://inria.hal.science/hal-03599214
PQID 2664955481
PQPubID 43030
PageCount 41
ParticipantIDs hal_primary_oai_HAL_hal_03599214v1
proquest_journals_2664955481
crossref_primary_10_1007_s10618_022_00823_6
crossref_citationtrail_10_1007_s10618_022_00823_6
springer_journals_10_1007_s10618_022_00823_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Springer
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer
References Shokoohi-YektaMHuBJinHWangJKeoghEGeneralizing DTW to the multi-dimensional case requires an adaptive approachData Min Knowl Disc201731131359681510.1007/s10618-016-0455-0
Zerveas G, Jayaraman S, Patel D, Bhamidipaty A, Eickhoff C (2021) A transformer-based framework for multivariate time series representation learning. In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery and data mining
KarimFMajumdarSDarabiHHarfordSMultivariate LSTM-FCNs for time series classificationNeural Netw201911623724510.1016/j.neunet.2019.04.014
Dua D, Graff C (2017) UCI machine learning repository
KarlssonIRebaneJPapapetrouPGionisALocally and globally explainable time series tweakingKnowl Inf Syst2020621671170010.1007/s10115-019-01389-4
Jiang R, Song X, Huang D, Song X, Xia T, Cai Z, Wang Z, Kim K, Shibasaki R (2019) DeepUrbanEvent: a system for predicting citywide crowd dynamics at big events. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining
KotsiantisSPintelasPCombining bagging and boostingInt J Comput Intell200518372381
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in python. J Mach Learn Res
Schäfer P, Högqvist M (2012) SFA: a symbolic fourier approximation and index for similarity search in high dimensional datasets. In: Proceedings of the 15th international conference on extending database technology, pp 516–527
SharkeyASharkeyNCombining diverse neural netsKnowl Eng Rev199712323124710.1017/S0269888997003123
LiuYYaoXEnsemble learning via negative correlationNeural Netw199912101399140410.1016/S0893-6080(99)00073-8
Fauvel K, Masson V, Fromont É, Faverdin P, Termier A (2019) Towards sustainable dairy management - a machine learning enhanced method for estrus detection. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining
Schäfer P, Leser U (2017) Multivariate time series classification with WEASEL+MUSE
MasoudniaSEbrahimpourRMixture of experts: a literature surveyArtif Intell Rev201442227529310.1007/s10462-012-9338-y
SelvarajuRDasAVedantamRCogswellMParikhDBatraDGrad-CAM: visual explanations from deep networks via gradient-based localizationInt J Comput Vision201912833635910.1007/s11263-019-01228-7
Fauvel K, Balouek-Thomert D, Melgar D, Silva P, Simonet A, Antoniu G, Costan A, Masson V, Parashar M, Rodero I, Termier A (2020a) A distributed multi-sensor machine learning approach to earthquake early warning. In: Proceedings of the 34th AAAI conference on artificial intelligence
BaydoganMRungerGTime series representation and similarity based on local autopatternsData Min Knowl Disc2016302476509345820210.1007/s10618-015-0425-y
SesmeroMLedezmaASanchisAGenerating ensembles of heterogeneous classifiers using stacked generalizationWiley Interdiscip Rev Data Min Knowl Discov201551213410.1002/widm.1143
TuncelKBaydoganMAutoregressive forests for multivariate time series modelingPattern Recogn20187320221510.1016/j.patcog.2017.08.016
ZouHHastieTRegularization and variable selection via the elastic netJ R Stat Soc Ser B (Stat Methodol)2005672301320213732710.1111/j.1467-9868.2005.00503.x
Zhang X, Gao Y, Lin J, Lu C (2020) TapNet: multivariate time series classification with attentional prototypical network. In: Proceedings of the 34th AAAI conference on artificial intelligence
MillerTExplanation in artificial intelligence: insights from the social sciencesArtif Intell2019267138387451110.1016/j.artint.2018.07.007
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the 2016 IEEE conference on computer vision and pattern recognition
RudinCStop explaining black box machine learning models for high stakes decisions and use interpretable models insteadNat Mach Intell2019120621510.1038/s42256-019-0048-x
GamaJBrazdilPCascade generalizationMach Learn200041331534310.1023/A:1007652114878
DemšarJStatistical comparisons of classifiers over multiple data setsJ Mach Learn Res2006713022743601222.68184
Bagnall A, Lines J, Keogh E (2018) The UEA UCR time series classification archive
Ribeiro M, Singh S, Guestrin C (2016) “Why should i trust you?”: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining
Breiman L (2001) Random forests. Mach Learn, pp 5–32
EbrahimpourRSadeghnejadNAraniSMohammadiNBoost-wise pre-loaded mixture of experts for classification tasksNeural Comput Appl2012221365377
Bergstra J, Bardenet R, Bengio Y, Kégl B (2011) Algorithms for hyper-parameter optimization. In: Proceedings of the 25th international conference on neural information processing systems
Ransbotham S, Khodabandeh S, Fehling R, LaFountain B, Kiron D (2019) Winning with AI. In: MIT sloan management review and boston consulting group
Lundberg S, Lee S (2017) A unified approach to interpreting model predictions. In: Proceedings of the 31st international conference on neural information processing systems
Wang Z, Yan W, Oates T (2017) Time series classification from scratch with deep neural networks: a strong baseline. In: Proceedings of the 2017 international joint conference on neural networks
Fauvel K, Masson V, Fromont É (2020b) A performance-explainability framework to benchmark machine learning methods: application to multivariate time series classifiers. In: Proceedings of the IJCAI-PRICAI workshop on explainable artificial intelligence
Ribeiro M, Singh S, Guestrin C (2018) Anchors: high-precision model-agnostic explanations. In: Proceedings of the 32nd AAAI conference on artificial intelligence
JacobsRJordanMNowlanSHintonGAdaptive mixtures of local expertsNeural Comput199131798710.1162/neco.1991.3.1.79
Breiman L (1996) Bagging predictors. Mach Learn, pp 123–140
SchapireRThe strength of weak learnabilityMach Learn19905197227
Dietterich T (2000) Ensemble methods in machine learning. Multiple Classifier Syst, pp 1–15
WolpertDThe lack of a priori distinctions between learning algorithmsNeural Comput1996871341139010.1162/neco.1996.8.7.1341
Breiman L, Friedman J, Stone C, Olshen R (1984) Classification and regression trees. The Wadsworth and Brooks-Cole statistics-probability series. Taylor & Francis
Freund Y, Schapire R (1996) Experiments with a new boosting algorithm. In: Proceedings of the 13th international conference on machine learning
EstevaARobicquetARamsundarBKuleshovVDePristoMChouKCuiCCorradoGThrunSDeanJA guide to deep learning in healthcareNat Med201925242910.1038/s41591-018-0316-z
BaydoganMRungerGLearning a symbolic representation for multivariate time series classificationData Min Knowl Disc2014292400422331246610.1007/s10618-014-0349-y
Du M, Liu N, Hu X (2020) Techniques for interpretable machine learning. Commun ACM
KarlssonIPapapetrouPBoströmHGeneralized random shapelet forestsData Min Knowl Disc201630510531085353997310.1007/s10618-016-0473-y
Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining
Seto S, Zhang W, Zhou Y (2015) Multivariate time series classification using dynamic time warping template selection for human activity recognition. In: Proceedings of the 2015 IEEE symposium series on computational intelligence
Lipton Z (2016) The mythos of model interpretability. In: Proceedings of the ICML workshop on human interpretability in machine learning
Cussins Newman J (2019) Toward AI security: global aspirations for a more resilient future. In: Center for long-term cybersecurity
GuidottiRMonrealeAGiannottiFPedreschiDRuggieriSTuriniFFactual and counterfactual explanations for black box decision makingIEEE Intell Syst2019346142310.1109/MIS.2019.2957223
Wistuba M, Grabocka J, Schmidt-Thieme L (2015) Ultra-fast shapelets for time series classification
Li J, Rong Y, Meng H, Lu Z, Kwok T, Cheng H (2018) TATC: Predicting Alzheimer’s disease with actigraphy data. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery and data mining
Zhang H (2004) The optimality of Naïve Bayes. In: Proceedings of the 17th Florida artificial intelligence research society conference
823_CR38
M Baydogan (823_CR3) 2016; 30
823_CR36
D Wolpert (823_CR51) 1996; 8
823_CR37
823_CR30
S Kotsiantis (823_CR28) 2005; 1
I Karlsson (823_CR26) 2016; 30
823_CR35
823_CR32
M Shokoohi-Yekta (823_CR47) 2017; 31
823_CR49
M Baydogan (823_CR2) 2014; 29
K Tuncel (823_CR48) 2018; 73
J Gama (823_CR20) 2000; 41
823_CR41
823_CR40
R Ebrahimpour (823_CR14) 2012; 22
823_CR45
J Demšar (823_CR10) 2006; 7
F Karim (823_CR25) 2019; 116
R Jacobs (823_CR23) 1991; 3
H Zou (823_CR55) 2005; 67
A Esteva (823_CR15) 2019; 25
R Guidotti (823_CR21) 2019; 34
823_CR16
A Sharkey (823_CR46) 1997; 12
823_CR17
823_CR18
823_CR19
823_CR7
823_CR52
823_CR8
823_CR53
823_CR5
823_CR50
823_CR6
M Sesmero (823_CR44) 2015; 5
823_CR12
823_CR13
823_CR9
823_CR54
823_CR11
R Selvaraju (823_CR43) 2019; 128
Y Liu (823_CR31) 1999; 12
C Rudin (823_CR39) 2019; 1
823_CR29
T Miller (823_CR34) 2019; 267
R Schapire (823_CR42) 1990; 5
823_CR24
823_CR22
I Karlsson (823_CR27) 2020; 62
823_CR4
823_CR1
S Masoudnia (823_CR33) 2014; 42
References_xml – reference: BaydoganMRungerGTime series representation and similarity based on local autopatternsData Min Knowl Disc2016302476509345820210.1007/s10618-015-0425-y
– reference: Schäfer P, Högqvist M (2012) SFA: a symbolic fourier approximation and index for similarity search in high dimensional datasets. In: Proceedings of the 15th international conference on extending database technology, pp 516–527
– reference: Ransbotham S, Khodabandeh S, Fehling R, LaFountain B, Kiron D (2019) Winning with AI. In: MIT sloan management review and boston consulting group
– reference: SharkeyASharkeyNCombining diverse neural netsKnowl Eng Rev199712323124710.1017/S0269888997003123
– reference: Freund Y, Schapire R (1996) Experiments with a new boosting algorithm. In: Proceedings of the 13th international conference on machine learning
– reference: Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining
– reference: DemšarJStatistical comparisons of classifiers over multiple data setsJ Mach Learn Res2006713022743601222.68184
– reference: GamaJBrazdilPCascade generalizationMach Learn200041331534310.1023/A:1007652114878
– reference: Ribeiro M, Singh S, Guestrin C (2018) Anchors: high-precision model-agnostic explanations. In: Proceedings of the 32nd AAAI conference on artificial intelligence
– reference: JacobsRJordanMNowlanSHintonGAdaptive mixtures of local expertsNeural Comput199131798710.1162/neco.1991.3.1.79
– reference: KarlssonIRebaneJPapapetrouPGionisALocally and globally explainable time series tweakingKnowl Inf Syst2020621671170010.1007/s10115-019-01389-4
– reference: TuncelKBaydoganMAutoregressive forests for multivariate time series modelingPattern Recogn20187320221510.1016/j.patcog.2017.08.016
– reference: EbrahimpourRSadeghnejadNAraniSMohammadiNBoost-wise pre-loaded mixture of experts for classification tasksNeural Comput Appl2012221365377
– reference: He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the 2016 IEEE conference on computer vision and pattern recognition
– reference: Breiman L (2001) Random forests. Mach Learn, pp 5–32
– reference: Shokoohi-YektaMHuBJinHWangJKeoghEGeneralizing DTW to the multi-dimensional case requires an adaptive approachData Min Knowl Disc201731131359681510.1007/s10618-016-0455-0
– reference: Wang Z, Yan W, Oates T (2017) Time series classification from scratch with deep neural networks: a strong baseline. In: Proceedings of the 2017 international joint conference on neural networks
– reference: Schäfer P, Leser U (2017) Multivariate time series classification with WEASEL+MUSE
– reference: MillerTExplanation in artificial intelligence: insights from the social sciencesArtif Intell2019267138387451110.1016/j.artint.2018.07.007
– reference: Zhang H (2004) The optimality of Naïve Bayes. In: Proceedings of the 17th Florida artificial intelligence research society conference
– reference: Fauvel K, Masson V, Fromont É (2020b) A performance-explainability framework to benchmark machine learning methods: application to multivariate time series classifiers. In: Proceedings of the IJCAI-PRICAI workshop on explainable artificial intelligence
– reference: Wistuba M, Grabocka J, Schmidt-Thieme L (2015) Ultra-fast shapelets for time series classification
– reference: BaydoganMRungerGLearning a symbolic representation for multivariate time series classificationData Min Knowl Disc2014292400422331246610.1007/s10618-014-0349-y
– reference: SelvarajuRDasAVedantamRCogswellMParikhDBatraDGrad-CAM: visual explanations from deep networks via gradient-based localizationInt J Comput Vision201912833635910.1007/s11263-019-01228-7
– reference: EstevaARobicquetARamsundarBKuleshovVDePristoMChouKCuiCCorradoGThrunSDeanJA guide to deep learning in healthcareNat Med201925242910.1038/s41591-018-0316-z
– reference: Fauvel K, Balouek-Thomert D, Melgar D, Silva P, Simonet A, Antoniu G, Costan A, Masson V, Parashar M, Rodero I, Termier A (2020a) A distributed multi-sensor machine learning approach to earthquake early warning. In: Proceedings of the 34th AAAI conference on artificial intelligence
– reference: Li J, Rong Y, Meng H, Lu Z, Kwok T, Cheng H (2018) TATC: Predicting Alzheimer’s disease with actigraphy data. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery and data mining
– reference: SesmeroMLedezmaASanchisAGenerating ensembles of heterogeneous classifiers using stacked generalizationWiley Interdiscip Rev Data Min Knowl Discov201551213410.1002/widm.1143
– reference: Seto S, Zhang W, Zhou Y (2015) Multivariate time series classification using dynamic time warping template selection for human activity recognition. In: Proceedings of the 2015 IEEE symposium series on computational intelligence
– reference: Bagnall A, Lines J, Keogh E (2018) The UEA UCR time series classification archive
– reference: WolpertDThe lack of a priori distinctions between learning algorithmsNeural Comput1996871341139010.1162/neco.1996.8.7.1341
– reference: SchapireRThe strength of weak learnabilityMach Learn19905197227
– reference: Fauvel K, Masson V, Fromont É, Faverdin P, Termier A (2019) Towards sustainable dairy management - a machine learning enhanced method for estrus detection. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining
– reference: KarimFMajumdarSDarabiHHarfordSMultivariate LSTM-FCNs for time series classificationNeural Netw201911623724510.1016/j.neunet.2019.04.014
– reference: KotsiantisSPintelasPCombining bagging and boostingInt J Comput Intell200518372381
– reference: Breiman L, Friedman J, Stone C, Olshen R (1984) Classification and regression trees. The Wadsworth and Brooks-Cole statistics-probability series. Taylor & Francis
– reference: Ribeiro M, Singh S, Guestrin C (2016) “Why should i trust you?”: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining
– reference: ZouHHastieTRegularization and variable selection via the elastic netJ R Stat Soc Ser B (Stat Methodol)2005672301320213732710.1111/j.1467-9868.2005.00503.x
– reference: KarlssonIPapapetrouPBoströmHGeneralized random shapelet forestsData Min Knowl Disc201630510531085353997310.1007/s10618-016-0473-y
– reference: Lundberg S, Lee S (2017) A unified approach to interpreting model predictions. In: Proceedings of the 31st international conference on neural information processing systems
– reference: Du M, Liu N, Hu X (2020) Techniques for interpretable machine learning. Commun ACM
– reference: Zhang X, Gao Y, Lin J, Lu C (2020) TapNet: multivariate time series classification with attentional prototypical network. In: Proceedings of the 34th AAAI conference on artificial intelligence
– reference: LiuYYaoXEnsemble learning via negative correlationNeural Netw199912101399140410.1016/S0893-6080(99)00073-8
– reference: Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in python. J Mach Learn Res
– reference: Zerveas G, Jayaraman S, Patel D, Bhamidipaty A, Eickhoff C (2021) A transformer-based framework for multivariate time series representation learning. In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery and data mining
– reference: Breiman L (1996) Bagging predictors. Mach Learn, pp 123–140
– reference: RudinCStop explaining black box machine learning models for high stakes decisions and use interpretable models insteadNat Mach Intell2019120621510.1038/s42256-019-0048-x
– reference: GuidottiRMonrealeAGiannottiFPedreschiDRuggieriSTuriniFFactual and counterfactual explanations for black box decision makingIEEE Intell Syst2019346142310.1109/MIS.2019.2957223
– reference: MasoudniaSEbrahimpourRMixture of experts: a literature surveyArtif Intell Rev201442227529310.1007/s10462-012-9338-y
– reference: Lipton Z (2016) The mythos of model interpretability. In: Proceedings of the ICML workshop on human interpretability in machine learning
– reference: Dua D, Graff C (2017) UCI machine learning repository
– reference: Bergstra J, Bardenet R, Bengio Y, Kégl B (2011) Algorithms for hyper-parameter optimization. In: Proceedings of the 25th international conference on neural information processing systems
– reference: Jiang R, Song X, Huang D, Song X, Xia T, Cai Z, Wang Z, Kim K, Shibasaki R (2019) DeepUrbanEvent: a system for predicting citywide crowd dynamics at big events. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining
– reference: Cussins Newman J (2019) Toward AI security: global aspirations for a more resilient future. In: Center for long-term cybersecurity
– reference: Dietterich T (2000) Ensemble methods in machine learning. Multiple Classifier Syst, pp 1–15
– ident: 823_CR9
– volume: 22
  start-page: 365
  issue: 1
  year: 2012
  ident: 823_CR14
  publication-title: Neural Comput Appl
– ident: 823_CR18
– volume: 34
  start-page: 14
  issue: 6
  year: 2019
  ident: 823_CR21
  publication-title: IEEE Intell Syst
  doi: 10.1109/MIS.2019.2957223
– volume: 62
  start-page: 1671
  year: 2020
  ident: 823_CR27
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-019-01389-4
– ident: 823_CR11
  doi: 10.1007/3-540-45014-9_1
– volume: 1
  start-page: 372
  issue: 8
  year: 2005
  ident: 823_CR28
  publication-title: Int J Comput Intell
– ident: 823_CR5
  doi: 10.1007/BF00058655
– ident: 823_CR1
– volume: 41
  start-page: 315
  issue: 3
  year: 2000
  ident: 823_CR20
  publication-title: Mach Learn
  doi: 10.1023/A:1007652114878
– ident: 823_CR54
  doi: 10.1609/aaai.v34i04.6165
– ident: 823_CR8
  doi: 10.1145/2939672.2939785
– ident: 823_CR29
  doi: 10.1145/3219819.3219831
– ident: 823_CR41
  doi: 10.1145/3132847.3132980
– ident: 823_CR24
  doi: 10.1145/3292500.3330654
– volume: 267
  start-page: 1
  year: 2019
  ident: 823_CR34
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2018.07.007
– ident: 823_CR13
– volume: 3
  start-page: 79
  issue: 1
  year: 1991
  ident: 823_CR23
  publication-title: Neural Comput
  doi: 10.1162/neco.1991.3.1.79
– ident: 823_CR4
– volume: 30
  start-page: 1053
  issue: 5
  year: 2016
  ident: 823_CR26
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-016-0473-y
– volume: 42
  start-page: 275
  issue: 2
  year: 2014
  ident: 823_CR33
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-012-9338-y
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  ident: 823_CR55
  publication-title: J R Stat Soc Ser B (Stat Methodol)
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: 823_CR6
  doi: 10.1023/A:1010933404324
– volume: 12
  start-page: 1399
  issue: 10
  year: 1999
  ident: 823_CR31
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(99)00073-8
– ident: 823_CR30
– volume: 116
  start-page: 237
  year: 2019
  ident: 823_CR25
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2019.04.014
– volume: 128
  start-page: 336
  year: 2019
  ident: 823_CR43
  publication-title: Int J Comput Vision
  doi: 10.1007/s11263-019-01228-7
– ident: 823_CR7
– volume: 31
  start-page: 1
  year: 2017
  ident: 823_CR47
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-016-0455-0
– ident: 823_CR35
– volume: 30
  start-page: 476
  issue: 2
  year: 2016
  ident: 823_CR3
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-015-0425-y
– volume: 5
  start-page: 21
  issue: 1
  year: 2015
  ident: 823_CR44
  publication-title: Wiley Interdiscip Rev Data Min Knowl Discov
  doi: 10.1002/widm.1143
– ident: 823_CR17
  doi: 10.1609/aaai.v34i01.5376
– ident: 823_CR40
  doi: 10.1145/2247596.2247656
– ident: 823_CR45
  doi: 10.1109/SSCI.2015.199
– ident: 823_CR49
  doi: 10.1109/IJCNN.2017.7966039
– ident: 823_CR38
  doi: 10.1609/aaai.v32i1.11491
– ident: 823_CR50
– ident: 823_CR22
  doi: 10.1109/CVPR.2016.90
– ident: 823_CR52
  doi: 10.1145/3447548.3467401
– volume: 25
  start-page: 24
  year: 2019
  ident: 823_CR15
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0316-z
– volume: 12
  start-page: 231
  issue: 3
  year: 1997
  ident: 823_CR46
  publication-title: Knowl Eng Rev
  doi: 10.1017/S0269888997003123
– volume: 29
  start-page: 400
  issue: 2
  year: 2014
  ident: 823_CR2
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-014-0349-y
– volume: 73
  start-page: 202
  year: 2018
  ident: 823_CR48
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.08.016
– ident: 823_CR19
– ident: 823_CR36
– ident: 823_CR32
– volume: 1
  start-page: 206
  year: 2019
  ident: 823_CR39
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-019-0048-x
– ident: 823_CR12
  doi: 10.1145/3359786
– ident: 823_CR37
  doi: 10.1145/2939672.2939778
– ident: 823_CR53
– ident: 823_CR16
  doi: 10.1145/3292500.3330712
– volume: 8
  start-page: 1341
  issue: 7
  year: 1996
  ident: 823_CR51
  publication-title: Neural Comput
  doi: 10.1162/neco.1996.8.7.1341
– volume: 5
  start-page: 197
  year: 1990
  ident: 823_CR42
  publication-title: Mach Learn
– volume: 7
  start-page: 1
  year: 2006
  ident: 823_CR10
  publication-title: J Mach Learn Res
SSID ssj0005230
Score 2.4904912
Snippet We present XEM, an eXplainable-by-design Ensemble method for Multivariate time series classification. XEM relies on a new hybrid ensemble method that combines...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 917
SubjectTerms Artificial Intelligence
Chemistry and Earth Sciences
Classification
Classifiers
Computer Science
Data collection
Data Mining and Knowledge Discovery
Information Storage and Retrieval
Machine learning
Missing data
Multivariate analysis
Physics
Statistics for Engineering
Time series
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED7cfPHF3-L8RRDfNNg2SZv6IlMmQ9wQcTCfSptm-KBzuin633uXpU4FfW3SFnJ3yZfku_sADlId6ygdKJ5GpeFS5hhzwSDkSunABmUuYqex1OnG7Z687Ku-P3Abe1plNSe6ibp8MnRGfowLCWJ5xNfh6eiZk2oU3a56CY0azOMUrHUd5s9a3eubbyQPMc0T1pIrHQY-bcYnz8Wh5sRmd9dNPP6xNNXuiRj5DXX-uih168_FMix64MiaU0uvwJwdrsJSJcrAfIyuwV2_1TlhzSGz76MHnxrFiw9eOqoGw12rfcRHbCodzRCzMkcqfMNNM-JORmLzjPzSjpkhaE1cIme-dehdtG7P29zrJ3AjlJhwDLXQUqZ0UlKmTpFbYXRSGj0oolIqI3B_KvLAijwtDOWKJPlAYIuOrSyMLMQG1IdPQ7sJDEMfoUdilRSJLBKrI2lSKYUxRhlEjA0Iq6HLjC8uThoXD9msLDINd4bDnbnhzuIGHH69M5qW1vi39z5a5KsjVcVuN68yekZVCNMolG9hA3Yqg2U-FsfZzHMacFQZcdb89y-3_v_aNixEznuI_bgD9cnLq91FhDIp9rwbfgKsmt5Q
  priority: 102
  providerName: ProQuest
Title XEM: An explainable-by-design ensemble method for multivariate time series classification
URI https://link.springer.com/article/10.1007/s10618-022-00823-6
https://www.proquest.com/docview/2664955481
https://inria.hal.science/hal-03599214
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7chuCLv8X5YwTxTQNtk7Spb1W6DXUi4mA-lTbN8EGn2Dn0v_eStXOKCj4VkrSFu1z7Hfm-O4DDUPrSC4eChl6uKOcpxpwzdKkQ0tFOnjLf9ljqXfndPj8fiEEpCisqtnt1JGm_1HNiN9-V1LDP7fEQ9WvQEJi7GyJX34vmiB1sqg2WnArpOqVU5udnfPkd1e4NGXIOaX47HLX_nPYqLJdgkURT767Bgh6tw0rViIGUcbkOi5bHqYoNuBvEvRMSjYh-e34ohVE0e6e5JWoQzFn1Iw6RaeNogoiVWErhBFNmRJ3EtJonZlfqgigDrA2TyDpvE_rt-PasS8vuCVQxwcYUA83VRicd5Eank6WaKRnkSg4zL-dCMcxOWepoloaZMkqRIB0ynJG-5pniGduC-uhppLeBYOAj8Ai04CzgWaClx1XIOVNKCYV4sQluZcRElaXFTYeLh-SzKLIxfIKGT6zhE78JR7N7nqeFNf5cfYC-mS00NbG70WVixkwNwtBz-cRtwl7luqSMxCJBAII5IOZlOH1cufNz-vdX7vxv-S4seXZfGS7kHtTHL696H_HKOGtBTbY7LWhEnbuLGK-n8dX1Tctu2g_k3uDK
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOJQLjxbE8rSq9tRaTWI7cSohtGpZlrLLCaTl5CaOVxxgWdjl9af6G5lxEpYiwY2rnTjSzNjzTTzfDMCXVMc6SvuKp1FhuZQZ7rmgH3KldOCCIhOx77HUPYrbJ_JPT_Wm4F_NhaG0yvpM9Ad1cWnpH_kPdCSI5RFfh7vDK05do-h2tW6hUZrFoXu4w5BttHPwG_X7NYpae8e_2rzqKsCtUGLM0QBDR_zhpCD-Sp45YXVSWN3Po0IqKzBqE1ngRJbmlhgUSdYXOKNjJ3Mrc4HrTsOsFOjJiZne2n-WUiJKVrKWXOkwqEg6FVUvDjWn3Hl_ucXj_xzh9BmlYT7DuC-uZb23ay3CfAVTWbO0qyWYcoOPsFC3gGDVifAJTnt73Z-sOWDufnheEbF4_sALnxjCMEZ2FzjEykbVDBEy8ymMtxiiI8pl1Nqe0S5wI2YJyFPmkjeWZTh5F7muwMzgcuBWgeFBg0AncUqKROaJ05G0qZTCWqss4tMGhLXojK1KmVNHjXMzKcJM4jYobuPFbeIGfHt6Z1gW8njz6c-okacHqQZ3u9kxNEY1D9MolLdhAzZqhZlq54_MxE4b8L1W4mT69U-uvb3aNnxoH3c7pnNwdLgOc5G3JMq73ICZ8fWN20RsNM63vEEy-PveO-ARL0oZcw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tnYR4gfElCtuwEDyBtSS2Ewdpmgpr1bGtmhCTypOXOI54GF2hZR__Gn_d7hxnHUjsba924kh35_Pv4t_dAbzJdaqTvFY8TyrLpSxwz0V1zJXSkYuqQqS-x9LBKB0eyc9jNV6CP20uDNEqW5_oHXV1aukf-SYeJIjlEV_Hm3WgRRzuDLanPzl1kKKb1radRmMie-7yHMO32dbuDur6bZIM-l8_DXnoMMCtUGLO0RhjR7nEWUW5LGXhhNVZZXVdJpVUVmAEJ4rIiSIvLWVTZEUtcEanTpZWlgLXXYaVjKKiDqx87I8Ov9wgmIgmR1lLrnQchZSdkLiXxpoTk95fdfH0r2Nx-TuRMm8g3n8uaf3ZN1iFBwG0sl5jZY9gyU0ew8O2IQQL_uEJfBv3Dz6w3oS5i-lJSMvi5SWvPE2EYcTsfuAQa9pWM8TLzBMazzBgR8zLqNE9oz3hZswSrCcekzedp3B0J5J9Bp3J6cQ9B4ZuB2FP5pQUmSwzpxNpcymFtVZZRKtdiFvRGRsKm1N_jROzKMlM4jYobuPFbdIuvLt-Z9qU9bj16deokesHqSL3sLdvaIwqIOZJLM_iLqy1CjPBD8zMwmq78L5V4mL6_598cftqr-AeWr_Z3x3tvYT7iTckImGuQWf-67dbR6A0LzeCRTI4vutNcAVNtB8F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=XEM%3A+An+explainable-by-design+ensemble+method+for+multivariate+time+series+classification&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Fauvel%2C+Kevin&rft.au=Fromont%2C+%C3%89lisa&rft.au=Masson%2C+V%C3%A9ronique&rft.au=Faverdin%2C+Philippe&rft.date=2022-05-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=36&rft.issue=3&rft.spage=917&rft.epage=957&rft_id=info:doi/10.1007%2Fs10618-022-00823-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10618_022_00823_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon