Plasma-assisted synthesis and pressure-induced structural transition of single-crystalline SnSe nanosheets

Two-dimensional tin selenide (SnSe) nanosheets were synthesized using a plasma-assisted direct current arc discharge method. The structural characterization indicates that the nanosheets are single-crystalline with an average thickness of ∼25 nm and a lateral dimension of ∼500 nm. The high pressure...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 7; no. 24; pp. 10807 - 10816
Main Authors Jian Zhang, Jian Zhang, Zhu, Hongyang, Wu, Xiaoxin, Cui, Hang, Li, Dongmei, Jiang, Junru, Gao, Chunxiao, Wang, Qiushi, Cui, Qiliang
Format Journal Article
LanguageEnglish
Published England 28.06.2015
Online AccessGet full text

Cover

Loading…
Abstract Two-dimensional tin selenide (SnSe) nanosheets were synthesized using a plasma-assisted direct current arc discharge method. The structural characterization indicates that the nanosheets are single-crystalline with an average thickness of ∼25 nm and a lateral dimension of ∼500 nm. The high pressure behaviors of the as-synthesized SnSe nanosheets were investigated by in situ high-pressure synchrotron angle-dispersive X-ray diffraction and Raman scattering up to ∼30 GPa in diamond anvil cells at room temperature. A second-order isostructural continuous phase transition ( Pnma → Cmcm ) was observed at ∼7 GPa, which is considerably lower than the transition pressure of bulk SnSe. The reduction of transition pressure is induced by the volumetric expansion with softening of the Poisson ratio and shear modulus. Moreover, the measured zero-pressure bulk modulus of the SnSe nanosheets coincides with bulk SnSe. This abnormal phenomenon is attributed to the unique intrinsic geometry in the nanosheets. The high-pressure bulk modulus is considerably higher than the theoretical value. The pressure-induced morphology change should be responsible for the improved bulk modulus.
AbstractList Two-dimensional tin selenide (SnSe) nanosheets were synthesized using a plasma-assisted direct current arc discharge method. The structural characterization indicates that the nanosheets are single-crystalline with an average thickness of ~25 nm and a lateral dimension of 500 nm. The high pressure behaviors of the as-synthesized SnSe nanosheets were investigated by in situ high-pressure synchrotron angle-dispersive X-ray diffraction and Raman scattering up to ~30 GPa in diamond anvil cells at room temperature. A second-order isostructural continuous phase transition (Pnma → Cmcm) was observed at ~7 GPa, which is considerably lower than the transition pressure of bulk SnSe. The reduction of transition pressure is induced by the volumetric expansion with softening of the Poisson ratio and shear modulus. Moreover, the measured zero-pressure bulk modulus of the SnSe nanosheets coincides with bulk SnSe. This abnormal phenomenon is attributed to the unique intrinsic geometry in the nanosheets. The high-pressure bulk modulus is considerably higher than the theoretical value. The pressure-induced morphology change should be responsible for the improved bulk modulus.
Two-dimensional tin selenide (SnSe) nanosheets were synthesized using a plasma-assisted direct current arc discharge method. The structural characterization indicates that the nanosheets are single-crystalline with an average thickness of ∼25 nm and a lateral dimension of ∼500 nm. The high pressure behaviors of the as-synthesized SnSe nanosheets were investigated by in situ high-pressure synchrotron angle-dispersive X-ray diffraction and Raman scattering up to ∼30 GPa in diamond anvil cells at room temperature. A second-order isostructural continuous phase transition ( Pnma → Cmcm ) was observed at ∼7 GPa, which is considerably lower than the transition pressure of bulk SnSe. The reduction of transition pressure is induced by the volumetric expansion with softening of the Poisson ratio and shear modulus. Moreover, the measured zero-pressure bulk modulus of the SnSe nanosheets coincides with bulk SnSe. This abnormal phenomenon is attributed to the unique intrinsic geometry in the nanosheets. The high-pressure bulk modulus is considerably higher than the theoretical value. The pressure-induced morphology change should be responsible for the improved bulk modulus.
Two-dimensional tin selenide (SnSe) nanosheets were synthesized using a plasma-assisted direct current arc discharge method. The structural characterization indicates that the nanosheets are single-crystalline with an average thickness of ~25 nm and a lateral dimension of 500 nm. The high pressure behaviors of the as-synthesized SnSe nanosheets were investigated by in situ high-pressure synchrotron angle-dispersive X-ray diffraction and Raman scattering up to ~30 GPa in diamond anvil cells at room temperature. A second-order isostructural continuous phase transition (Pnma → Cmcm) was observed at ~7 GPa, which is considerably lower than the transition pressure of bulk SnSe. The reduction of transition pressure is induced by the volumetric expansion with softening of the Poisson ratio and shear modulus. Moreover, the measured zero-pressure bulk modulus of the SnSe nanosheets coincides with bulk SnSe. This abnormal phenomenon is attributed to the unique intrinsic geometry in the nanosheets. The high-pressure bulk modulus is considerably higher than the theoretical value. The pressure-induced morphology change should be responsible for the improved bulk modulus.Two-dimensional tin selenide (SnSe) nanosheets were synthesized using a plasma-assisted direct current arc discharge method. The structural characterization indicates that the nanosheets are single-crystalline with an average thickness of ~25 nm and a lateral dimension of 500 nm. The high pressure behaviors of the as-synthesized SnSe nanosheets were investigated by in situ high-pressure synchrotron angle-dispersive X-ray diffraction and Raman scattering up to ~30 GPa in diamond anvil cells at room temperature. A second-order isostructural continuous phase transition (Pnma → Cmcm) was observed at ~7 GPa, which is considerably lower than the transition pressure of bulk SnSe. The reduction of transition pressure is induced by the volumetric expansion with softening of the Poisson ratio and shear modulus. Moreover, the measured zero-pressure bulk modulus of the SnSe nanosheets coincides with bulk SnSe. This abnormal phenomenon is attributed to the unique intrinsic geometry in the nanosheets. The high-pressure bulk modulus is considerably higher than the theoretical value. The pressure-induced morphology change should be responsible for the improved bulk modulus.
Author Jian Zhang, Jian Zhang
Li, Dongmei
Wu, Xiaoxin
Zhu, Hongyang
Jiang, Junru
Cui, Hang
Gao, Chunxiao
Wang, Qiushi
Cui, Qiliang
Author_xml – sequence: 1
  givenname: Jian Zhang
  surname: Jian Zhang
  fullname: Jian Zhang, Jian Zhang
  organization: State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
– sequence: 2
  givenname: Hongyang
  surname: Zhu
  fullname: Zhu, Hongyang
  organization: State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
– sequence: 3
  givenname: Xiaoxin
  surname: Wu
  fullname: Wu, Xiaoxin
  organization: State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
– sequence: 4
  givenname: Hang
  surname: Cui
  fullname: Cui, Hang
  organization: College of Physics, Jilin University, Changchun 130012, China
– sequence: 5
  givenname: Dongmei
  surname: Li
  fullname: Li, Dongmei
  organization: State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
– sequence: 6
  givenname: Junru
  surname: Jiang
  fullname: Jiang, Junru
  organization: State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
– sequence: 7
  givenname: Chunxiao
  surname: Gao
  fullname: Gao, Chunxiao
  organization: State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
– sequence: 8
  givenname: Qiushi
  surname: Wang
  fullname: Wang, Qiushi
  organization: College of New Energy, Bohai University, JinZhou 121013, China
– sequence: 9
  givenname: Qiliang
  surname: Cui
  fullname: Cui, Qiliang
  organization: State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26269801$$D View this record in MEDLINE/PubMed
BookMark eNptkFFLwzAQx4Mozk1f_ADSRxGqSZOm7aMMp4KoOH0uaXJ1kSydufRh396OTQXx6e643x1_fmOy7zsPhJwyeskor66m-eMLzRhnsz1ylFFBU86LbP-nl2JExogflMqKS35IRpnMZFVSdkQ-np3CpUoVosUIJsG1jwsYhkR5k6wCIPYBUutNrzfrGHod-6BcEoPyaKPtfNK1CVr_7iDVYY1ROWc9JHM_h8Qr3-ECIOIxOWiVQzjZ1Ql5m928Tu_Sh6fb--n1Q6p5zmNayKIdgotyEzZvctVyWTSFFKbUimuhGmBN0ZrSaF3mhhtBVSEM17Kk3FSST8j59u8qdJ89YKyXFjU4pzx0PdasoILnglVsQM92aN8swdSrYJcqrOtvPwNwsQV06BADtD8Io_VGfv0rf4DpH1jbqDaCBlXW_XfyBbzXiAI
CitedBy_id crossref_primary_10_1039_D1DT01312B
crossref_primary_10_1103_PhysRevLett_122_226601
crossref_primary_10_3938_jkps_72_238
crossref_primary_10_1039_D3NR00645J
crossref_primary_10_1016_j_jallcom_2022_165458
crossref_primary_10_1109_LED_2018_2884325
crossref_primary_10_1107_S2052520619001847
crossref_primary_10_1007_s10854_023_11343_4
crossref_primary_10_1039_C5CP07377D
crossref_primary_10_1016_j_apsusc_2020_146825
crossref_primary_10_1016_j_mssp_2022_107186
crossref_primary_10_1088_1361_6528_ac4354
crossref_primary_10_1021_acsami_1c24679
crossref_primary_10_1021_acsnano_4c04128
crossref_primary_10_1103_PhysRevB_101_155202
crossref_primary_10_1007_s10854_024_12269_1
crossref_primary_10_1016_j_jcis_2017_03_056
crossref_primary_10_3390_ma16072863
crossref_primary_10_1007_s11664_021_09064_7
crossref_primary_10_1016_j_ceramint_2023_01_117
crossref_primary_10_1063_1_5018860
crossref_primary_10_1016_j_jlumin_2021_118657
crossref_primary_10_1002_advs_201600177
crossref_primary_10_1007_s10854_022_07998_0
crossref_primary_10_1016_j_jallcom_2023_172637
crossref_primary_10_1016_j_jcis_2019_02_082
crossref_primary_10_1039_C8DT00285A
crossref_primary_10_1016_j_jlumin_2017_08_026
crossref_primary_10_1039_D3EE02507A
crossref_primary_10_1016_j_solidstatesciences_2016_12_015
crossref_primary_10_1016_j_vacuum_2020_109343
crossref_primary_10_1038_ncomms14176
crossref_primary_10_1021_acs_jpcc_6b11016
crossref_primary_10_2139_ssrn_4074398
crossref_primary_10_1016_j_mseb_2016_09_001
crossref_primary_10_3390_polym14204261
crossref_primary_10_1002_eem2_12361
crossref_primary_10_1039_C5CE02437D
crossref_primary_10_1016_j_jallcom_2020_153804
crossref_primary_10_1016_j_jallcom_2022_164461
crossref_primary_10_12677_ms_2024_145081
crossref_primary_10_1002_adma_202002702
crossref_primary_10_1002_aelm_201600144
crossref_primary_10_1021_acs_langmuir_9b01906
crossref_primary_10_1016_j_tca_2020_178614
crossref_primary_10_1016_j_ceramint_2023_07_124
crossref_primary_10_1021_acs_jpcc_6b12059
crossref_primary_10_1007_s13391_020_00200_9
crossref_primary_10_1016_j_matlet_2021_131152
crossref_primary_10_1007_s12274_017_1712_2
crossref_primary_10_3390_molecules28247971
crossref_primary_10_1103_PhysRevB_96_165123
crossref_primary_10_1016_j_jlumin_2018_10_020
crossref_primary_10_3390_nano10091780
crossref_primary_10_1088_1361_6463_acc9d0
crossref_primary_10_1016_j_jallcom_2020_155915
crossref_primary_10_1016_j_optmat_2022_112110
crossref_primary_10_1016_j_mssp_2024_108862
crossref_primary_10_1039_D2NA00434H
crossref_primary_10_1002_advs_201700602
crossref_primary_10_1002_adfm_202200516
crossref_primary_10_1039_C9CP00897G
crossref_primary_10_1002_admt_202201968
crossref_primary_10_1063_5_0166387
crossref_primary_10_1039_D1RA05182B
crossref_primary_10_1016_j_mtcomm_2023_107250
crossref_primary_10_1016_j_sna_2024_115348
Cites_doi 10.1038/nmat1849
10.1007/BF00921254
10.1103/PhysRevB.64.012102
10.1021/ja3108017
10.1002/anie.200905634
10.1039/C4CC06792D
10.1021/nn800184w
10.1021/ja100249m
10.1063/1.1655019
10.1039/c1nr10084j
10.1021/jp9727658
10.1126/science.265.5170.373
10.1021/ja1013745
10.1002/adma.201101334
10.1126/science.1188035
10.1134/S106378341404009X
10.1021/la501722d
10.1002/anie.201105614
10.1038/nchem.898
10.1063/1.1527229
10.1103/PhysRevB.41.5227
10.1021/jp4124666
10.1021/nl071016r
10.1016/S1359-6462(02)00511-0
10.1021/jp0766555
10.1021/jp512565b
10.1073/pnas.1011224107
10.1103/PhysRevB.41.5893
10.1016/j.ssc.2010.02.002
10.1063/1.2806937
10.1126/science.1216466
10.1029/JB091iB05p04673
10.1002/pssb.201200672
10.1039/C4CE00213J
10.1002/cssc.201300241
10.1088/0022-3727/42/12/125306
10.1021/jp036436t
10.1103/PhysRevB.73.153301
10.1016/j.tsf.2007.08.100
10.1146/annurev.pc.46.100195.003115
10.1007/s00894-011-1019-2
10.1103/PhysRevB.72.144106
10.1039/b820160a
10.1021/jp808244a
10.1063/1.2713172
10.1038/nnano.2010.235
10.1103/PhysRevLett.84.923
10.1209/epl/i1999-00158-3
10.1021/ja0394582
10.1051/rphysap:01984001909080700
10.1021/cr00033a003
10.1021/cm501023w
10.1126/science.1194975
10.1002/anie.201001521
10.1002/pssb.2221350130
10.1103/PhysRev.71.809
10.1103/PhysRevB.64.245407
10.1557/JMR.1995.2892
10.1246/cl.2003.426
10.1038/nature13184
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1039/C5NR02131F
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 10816
ExternalDocumentID 26269801
10_1039_C5NR02131F
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABIQK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGQPQ
AGRSR
AHGCF
AHGXI
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BLAPV
BSQNT
C6K
CAG
CITATION
COF
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
FEDTE
GGIMP
H13
HVGLF
HZ~
H~N
J3G
J3H
J3I
L-8
O-G
O9-
OK1
P2P
R56
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
-JG
AGSTE
NPM
RRC
7X8
ID FETCH-LOGICAL-c353t-767f2044869365b5af367b764d8ca3c4abe1b7fd8dcc85d3d40a74d3c6803d963
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 12:34:19 EDT 2025
Wed Feb 19 01:59:12 EST 2025
Thu Apr 24 23:08:39 EDT 2025
Tue Jul 01 00:33:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c353t-767f2044869365b5af367b764d8ca3c4abe1b7fd8dcc85d3d40a74d3c6803d963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26269801
PQID 1704354191
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1704354191
pubmed_primary_26269801
crossref_primary_10_1039_C5NR02131F
crossref_citationtrail_10_1039_C5NR02131F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-28
PublicationDateYYYYMMDD 2015-06-28
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-28
  day: 28
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2015
References Huang (C5NR02131F-(cit3)/*[position()=1]) 2011; 6
Wang (C5NR02131F-(cit61)/*[position()=1]) 2010; 107
Drozd (C5NR02131F-(cit41)/*[position()=1]) 2009; 42
Efthimiopoulos (C5NR02131F-(cit46)/*[position()=1]) 2014; 118
Wickham (C5NR02131F-(cit57)/*[position()=1]) 2000; 84
Yu (C5NR02131F-(cit4)/*[position()=1]) 2010; 49
Chattopadhyay (C5NR02131F-(cit29)/*[position()=1]) 1984; 19
Coronado (C5NR02131F-(cit14)/*[position()=1]) 2010; 2
Pejova (C5NR02131F-(cit42)/*[position()=1]) 2008; 112
Ma (C5NR02131F-(cit28)/*[position()=1]) 2014; 16
Baumgardner (C5NR02131F-(cit22)/*[position()=1]) 2010; 132
Geim (C5NR02131F-(cit6)/*[position()=1]) 2007; 6
Chun (C5NR02131F-(cit43)/*[position()=1]) 1974; 24
Schliehe (C5NR02131F-(cit5)/*[position()=1]) 2010; 329
Valiukonis (C5NR02131F-(cit18)/*[position()=1]) 1986; 135
Ludemann (C5NR02131F-(cit63)/*[position()=1]) 2014; 30
Li (C5NR02131F-(cit25)/*[position()=1]) 2013; 135
Hagfeldt (C5NR02131F-(cit40)/*[position()=1]) 1995; 95
Wang (C5NR02131F-(cit58)/*[position()=1]) 2009; 113
Lei (C5NR02131F-(cit38)/*[position()=1]) 2010; 49
Wang (C5NR02131F-(cit48)/*[position()=1]) 2003; 107
Franzman (C5NR02131F-(cit21)/*[position()=1]) 2010; 132
Wang (C5NR02131F-(cit54)/*[position()=1]) 2001; 64
Son (C5NR02131F-(cit2)/*[position()=1]) 2011; 23
Birch (C5NR02131F-(cit45)/*[position()=1]) 1947; 71
Parenteau (C5NR02131F-(cit31)/*[position()=1]) 1990; 41
Gashimzade (C5NR02131F-(cit35)/*[position()=1]) 2014; 56
Zhou (C5NR02131F-(cit52)/*[position()=1]) 2003; 48
Wang (C5NR02131F-(cit20)/*[position()=1]) 2014; 7
Coleman (C5NR02131F-(cit1)/*[position()=1]) 2011; 331
Peters (C5NR02131F-(cit30)/*[position()=1]) 1990; 41
Sasaki (C5NR02131F-(cit8)/*[position()=1]) 1997; 101
Xiao (C5NR02131F-(cit62)/*[position()=1]) 2015; 119
Agarwal (C5NR02131F-(cit32)/*[position()=1]) 1994; 5
Wang (C5NR02131F-(cit55)/*[position()=1]) 2001; 13
Zhao (C5NR02131F-(cit64)/*[position()=1]) 2014; 508
Shen (C5NR02131F-(cit51)/*[position()=1]) 1995; 10
Wang (C5NR02131F-(cit15)/*[position()=1]) 2012; 336
Fukuda (C5NR02131F-(cit9)/*[position()=1]) 2008; 2
Liu (C5NR02131F-(cit19)/*[position()=1]) 2014; 26
Alptekin (C5NR02131F-(cit36)/*[position()=1]) 2010; 150
Villain (C5NR02131F-(cit50)/*[position()=1]) 2002; 81
Spanier (C5NR02131F-(cit53)/*[position()=1]) 2001; 64
Shen (C5NR02131F-(cit23)/*[position()=1]) 2003; 32
Zhang (C5NR02131F-(cit13)/*[position()=1]) 2007; 7
Loa (C5NR02131F-(cit33)/*[position()=1]) 2015; 27
Lee (C5NR02131F-(cit7)/*[position()=1]) 2007; 91
Osada (C5NR02131F-(cit12)/*[position()=1]) 2006; 73
Alptekin (C5NR02131F-(cit37)/*[position()=1]) 2011; 17
Sakai (C5NR02131F-(cit11)/*[position()=1]) 2004; 126
Jiang (C5NR02131F-(cit56)/*[position()=1]) 1999; 45
Liu (C5NR02131F-(cit17)/*[position()=1]) 2011; 50
Mao (C5NR02131F-(cit39)/*[position()=1]) 1986; 91
Von. Schnering (C5NR02131F-(cit44)/*[position()=1]) 1981; 156
Kevin (C5NR02131F-(cit26)/*[position()=1]) 2014; 50
Vaughn (C5NR02131F-(cit24)/*[position()=1]) 2011; 5
Durandurdu (C5NR02131F-(cit34)/*[position()=1]) 2005; 72
Boscher (C5NR02131F-(cit27)/*[position()=1]) 2008; 516
Tolbert (C5NR02131F-(cit59)/*[position()=1]) 1995; 46
Wang (C5NR02131F-(cit60)/*[position()=1]) 2007; 90
Tolbert (C5NR02131F-(cit49)/*[position()=1]) 1994; 265
Antunez (C5NR02131F-(cit16)/*[position()=1]) 2011; 3
Osada (C5NR02131F-(cit10)/*[position()=1]) 2009; 19
Manjón (C5NR02131F-(cit47)/*[position()=1]) 2013; 250
References_xml – volume: 6
  start-page: 183
  year: 2007
  ident: C5NR02131F-(cit6)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 5
  start-page: 287
  year: 1994
  ident: C5NR02131F-(cit32)/*[position()=1]
  publication-title: J. Mater. Sci-Mater. El.
  doi: 10.1007/BF00921254
– volume: 27
  start-page: 072202
  year: 2015
  ident: C5NR02131F-(cit33)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 64
  start-page: 012102
  year: 2001
  ident: C5NR02131F-(cit54)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.64.012102
– volume: 135
  start-page: 1213
  year: 2013
  ident: C5NR02131F-(cit25)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3108017
– volume: 49
  start-page: 173
  year: 2010
  ident: C5NR02131F-(cit38)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200905634
– volume: 50
  start-page: 14328
  year: 2014
  ident: C5NR02131F-(cit26)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC06792D
– volume: 2
  start-page: 1689
  year: 2008
  ident: C5NR02131F-(cit9)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn800184w
– volume: 132
  start-page: 4060
  year: 2010
  ident: C5NR02131F-(cit21)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja100249m
– volume: 24
  start-page: 479
  year: 1974
  ident: C5NR02131F-(cit43)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1655019
– volume: 3
  start-page: 2399
  year: 2011
  ident: C5NR02131F-(cit16)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c1nr10084j
– volume: 101
  start-page: 10159
  year: 1997
  ident: C5NR02131F-(cit8)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp9727658
– volume: 265
  start-page: 373
  year: 1994
  ident: C5NR02131F-(cit49)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.265.5170.373
– volume: 132
  start-page: 9519
  year: 2010
  ident: C5NR02131F-(cit22)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1013745
– volume: 23
  start-page: 3214
  year: 2011
  ident: C5NR02131F-(cit2)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201101334
– volume: 329
  start-page: 550
  year: 2010
  ident: C5NR02131F-(cit5)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1188035
– volume: 56
  start-page: 761
  year: 2014
  ident: C5NR02131F-(cit35)/*[position()=1]
  publication-title: Phys. Solid State
  doi: 10.1134/S106378341404009X
– volume: 156
  start-page: 143
  year: 1981
  ident: C5NR02131F-(cit44)/*[position()=1]
  publication-title: Z. Kristallogr.
– volume: 30
  start-page: 8209
  year: 2014
  ident: C5NR02131F-(cit63)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la501722d
– volume: 50
  start-page: 12050
  year: 2011
  ident: C5NR02131F-(cit17)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201105614
– volume: 2
  start-page: 1031
  year: 2010
  ident: C5NR02131F-(cit14)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.898
– volume: 81
  start-page: 4365
  year: 2002
  ident: C5NR02131F-(cit50)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1527229
– volume: 41
  start-page: 5227
  year: 1990
  ident: C5NR02131F-(cit31)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.41.5227
– volume: 118
  start-page: 1713
  year: 2014
  ident: C5NR02131F-(cit46)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp4124666
– volume: 7
  start-page: 2370
  year: 2007
  ident: C5NR02131F-(cit13)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl071016r
– volume: 48
  start-page: 825
  year: 2003
  ident: C5NR02131F-(cit52)/*[position()=1]
  publication-title: Scripta Mater.
  doi: 10.1016/S1359-6462(02)00511-0
– volume: 112
  start-page: 3525
  year: 2008
  ident: C5NR02131F-(cit42)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0766555
– volume: 119
  start-page: 3843
  year: 2015
  ident: C5NR02131F-(cit62)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp512565b
– volume: 107
  start-page: 17119
  year: 2010
  ident: C5NR02131F-(cit61)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1011224107
– volume: 41
  start-page: 5893
  year: 1990
  ident: C5NR02131F-(cit30)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.41.5893
– volume: 150
  start-page: 870
  year: 2010
  ident: C5NR02131F-(cit36)/*[position()=1]
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2010.02.002
– volume: 5
  volume-title: ACS Nano
  year: 2011
  ident: C5NR02131F-(cit24)/*[position()=1]
– volume: 91
  start-page: 201901
  year: 2007
  ident: C5NR02131F-(cit7)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2806937
– volume: 336
  start-page: 52
  year: 2012
  ident: C5NR02131F-(cit15)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1216466
– volume: 91
  start-page: 4673
  year: 1986
  ident: C5NR02131F-(cit39)/*[position()=1]
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/JB091iB05p04673
– volume: 250
  start-page: 669
  year: 2013
  ident: C5NR02131F-(cit47)/*[position()=1]
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.201200672
– volume: 16
  start-page: 5080
  year: 2014
  ident: C5NR02131F-(cit28)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C4CE00213J
– volume: 7
  start-page: 308
  year: 2014
  ident: C5NR02131F-(cit20)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201300241
– volume: 42
  start-page: 125306
  year: 2009
  ident: C5NR02131F-(cit41)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/42/12/125306
– volume: 107
  start-page: 14151
  year: 2003
  ident: C5NR02131F-(cit48)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp036436t
– volume: 73
  start-page: 153301
  year: 2006
  ident: C5NR02131F-(cit12)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.73.153301
– volume: 516
  start-page: 4750
  year: 2008
  ident: C5NR02131F-(cit27)/*[position()=1]
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2007.08.100
– volume: 46
  start-page: 595
  year: 1995
  ident: C5NR02131F-(cit59)/*[position()=1]
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.pc.46.100195.003115
– volume: 17
  start-page: 2989
  year: 2011
  ident: C5NR02131F-(cit37)/*[position()=1]
  publication-title: J. Mol. Model
  doi: 10.1007/s00894-011-1019-2
– volume: 72
  start-page: 144106
  year: 2005
  ident: C5NR02131F-(cit34)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.72.144106
– volume: 19
  start-page: 2503
  year: 2009
  ident: C5NR02131F-(cit10)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/b820160a
– volume: 113
  start-page: 4286
  year: 2009
  ident: C5NR02131F-(cit58)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp808244a
– volume: 90
  start-page: 113115
  year: 2007
  ident: C5NR02131F-(cit60)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2713172
– volume: 6
  start-page: 28
  year: 2011
  ident: C5NR02131F-(cit3)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.235
– volume: 13
  start-page: 8317
  year: 2001
  ident: C5NR02131F-(cit55)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 84
  start-page: 923
  year: 2000
  ident: C5NR02131F-(cit57)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.923
– volume: 45
  start-page: 275
  year: 1999
  ident: C5NR02131F-(cit56)/*[position()=1]
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i1999-00158-3
– volume: 126
  start-page: 5851
  year: 2004
  ident: C5NR02131F-(cit11)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0394582
– volume: 19
  start-page: 807
  year: 1984
  ident: C5NR02131F-(cit29)/*[position()=1]
  publication-title: Rev. Phys. Appl.
  doi: 10.1051/rphysap:01984001909080700
– volume: 95
  start-page: 49
  year: 1995
  ident: C5NR02131F-(cit40)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr00033a003
– volume: 26
  start-page: 3515
  year: 2014
  ident: C5NR02131F-(cit19)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm501023w
– volume: 331
  start-page: 568
  year: 2011
  ident: C5NR02131F-(cit1)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1194975
– volume: 49
  start-page: 4484
  year: 2010
  ident: C5NR02131F-(cit4)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201001521
– volume: 135
  start-page: 299
  year: 1986
  ident: C5NR02131F-(cit18)/*[position()=1]
  publication-title: Phys. Status. Solidi. B
  doi: 10.1002/pssb.2221350130
– volume: 71
  start-page: 809
  year: 1947
  ident: C5NR02131F-(cit45)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.71.809
– volume: 64
  start-page: 245407
  year: 2001
  ident: C5NR02131F-(cit53)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.64.245407
– volume: 10
  start-page: 2892
  year: 1995
  ident: C5NR02131F-(cit51)/*[position()=1]
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1995.2892
– volume: 32
  start-page: 426
  year: 2003
  ident: C5NR02131F-(cit23)/*[position()=1]
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2003.426
– volume: 508
  start-page: 373
  year: 2014
  ident: C5NR02131F-(cit64)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature13184
SSID ssj0069363
Score 2.4220908
Snippet Two-dimensional tin selenide (SnSe) nanosheets were synthesized using a plasma-assisted direct current arc discharge method. The structural characterization...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 10807
Title Plasma-assisted synthesis and pressure-induced structural transition of single-crystalline SnSe nanosheets
URI https://www.ncbi.nlm.nih.gov/pubmed/26269801
https://www.proquest.com/docview/1704354191
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9gIHxJuUhxbBBSEX27v22scSNVShBEQTEXGx1vugQamNmlii_Hpm_KYEqXCxrNVm5cx8mvn29Q0hL-KQe66OuKNtqB2uNXdiISMnMIgfICC2vOX6fhoezflkESwGg0nv1FKxSffVz633Sv7Hq9AGfsVbsv_g2XZQaIB38C88wcPwvJKPPwL1PZMO8F90lkb5AeBzKDFSX_9f4_qfA9PuArf5K63YUmdjgylq2bBFXC9YGUedXwBXXJXE8yQ7Ma8ymeXrU2MqtaeGw06xFVzbQqJddJ70sPbltCjTWp59vZB1esTgX7YuljL_sWz7joqqdnbTr16F8AI8LeX3AqePJxMZq8rw7JstbXW0FT1Q-bwXOvGwo9ga1F2GmqgqyM6BkDDPdqmr2a6ffkjG8-PjZHa4mF0juz5MGSDm7R68e_P2c5OXw5iVdfXar2rEaln8uhv7d3rylzlHyT1mt8jNetJADyoE3CYDk90hN3pSknfJt0tYoC0WKGCBXsYC7bBAOyzQ3NI_sUARC7TDwj0yHx_ORkdOXUfDUSxgG0eEwsK_5hGaIEgDaVkoUhFyHSnJFJep8VJhdaSVigLNNHel4JqpMHKZhgh9n-xkeWYeEupZAxQ_CiWwcFTii5g1YG2V-hqFkeyQvGzMl6haZB5rnayS8rADi5NRMP1Umno8JM_bvt8raZWtvZ41Xkgg8uF2lsxMXqwTT7jA9bkXe0PyoHJPO44P8_QYyNfeFX79iFzvEP2Y7ID9zRNgmpv0aQ2hXz7Pg60
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasma-assisted+synthesis+and+pressure-induced+structural+transition+of+single-crystalline+SnSe+nanosheets&rft.jtitle=Nanoscale&rft.au=Zhang%2C+Jian&rft.au=Zhu%2C+Hongyang&rft.au=Wu%2C+Xiaoxin&rft.au=Cui%2C+Hang&rft.date=2015-06-28&rft.issn=2040-3372&rft.eissn=2040-3372&rft.volume=7&rft.issue=24&rft.spage=10807&rft_id=info:doi/10.1039%2Fc5nr02131f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon