Plasma-assisted synthesis and pressure-induced structural transition of single-crystalline SnSe nanosheets
Two-dimensional tin selenide (SnSe) nanosheets were synthesized using a plasma-assisted direct current arc discharge method. The structural characterization indicates that the nanosheets are single-crystalline with an average thickness of ∼25 nm and a lateral dimension of ∼500 nm. The high pressure...
Saved in:
Published in | Nanoscale Vol. 7; no. 24; pp. 10807 - 10816 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
28.06.2015
|
Online Access | Get full text |
Cover
Loading…
Abstract | Two-dimensional tin selenide (SnSe) nanosheets were synthesized using a plasma-assisted direct current arc discharge method. The structural characterization indicates that the nanosheets are single-crystalline with an average thickness of ∼25 nm and a lateral dimension of ∼500 nm. The high pressure behaviors of the as-synthesized SnSe nanosheets were investigated by
in situ
high-pressure synchrotron angle-dispersive X-ray diffraction and Raman scattering up to ∼30 GPa in diamond anvil cells at room temperature. A second-order isostructural continuous phase transition (
Pnma
→
Cmcm
) was observed at ∼7 GPa, which is considerably lower than the transition pressure of bulk SnSe. The reduction of transition pressure is induced by the volumetric expansion with softening of the Poisson ratio and shear modulus. Moreover, the measured zero-pressure bulk modulus of the SnSe nanosheets coincides with bulk SnSe. This abnormal phenomenon is attributed to the unique intrinsic geometry in the nanosheets. The high-pressure bulk modulus is considerably higher than the theoretical value. The pressure-induced morphology change should be responsible for the improved bulk modulus. |
---|---|
AbstractList | Two-dimensional tin selenide (SnSe) nanosheets were synthesized using a plasma-assisted direct current arc discharge method. The structural characterization indicates that the nanosheets are single-crystalline with an average thickness of ~25 nm and a lateral dimension of 500 nm. The high pressure behaviors of the as-synthesized SnSe nanosheets were investigated by in situ high-pressure synchrotron angle-dispersive X-ray diffraction and Raman scattering up to ~30 GPa in diamond anvil cells at room temperature. A second-order isostructural continuous phase transition (Pnma → Cmcm) was observed at ~7 GPa, which is considerably lower than the transition pressure of bulk SnSe. The reduction of transition pressure is induced by the volumetric expansion with softening of the Poisson ratio and shear modulus. Moreover, the measured zero-pressure bulk modulus of the SnSe nanosheets coincides with bulk SnSe. This abnormal phenomenon is attributed to the unique intrinsic geometry in the nanosheets. The high-pressure bulk modulus is considerably higher than the theoretical value. The pressure-induced morphology change should be responsible for the improved bulk modulus. Two-dimensional tin selenide (SnSe) nanosheets were synthesized using a plasma-assisted direct current arc discharge method. The structural characterization indicates that the nanosheets are single-crystalline with an average thickness of ∼25 nm and a lateral dimension of ∼500 nm. The high pressure behaviors of the as-synthesized SnSe nanosheets were investigated by in situ high-pressure synchrotron angle-dispersive X-ray diffraction and Raman scattering up to ∼30 GPa in diamond anvil cells at room temperature. A second-order isostructural continuous phase transition ( Pnma → Cmcm ) was observed at ∼7 GPa, which is considerably lower than the transition pressure of bulk SnSe. The reduction of transition pressure is induced by the volumetric expansion with softening of the Poisson ratio and shear modulus. Moreover, the measured zero-pressure bulk modulus of the SnSe nanosheets coincides with bulk SnSe. This abnormal phenomenon is attributed to the unique intrinsic geometry in the nanosheets. The high-pressure bulk modulus is considerably higher than the theoretical value. The pressure-induced morphology change should be responsible for the improved bulk modulus. Two-dimensional tin selenide (SnSe) nanosheets were synthesized using a plasma-assisted direct current arc discharge method. The structural characterization indicates that the nanosheets are single-crystalline with an average thickness of ~25 nm and a lateral dimension of 500 nm. The high pressure behaviors of the as-synthesized SnSe nanosheets were investigated by in situ high-pressure synchrotron angle-dispersive X-ray diffraction and Raman scattering up to ~30 GPa in diamond anvil cells at room temperature. A second-order isostructural continuous phase transition (Pnma → Cmcm) was observed at ~7 GPa, which is considerably lower than the transition pressure of bulk SnSe. The reduction of transition pressure is induced by the volumetric expansion with softening of the Poisson ratio and shear modulus. Moreover, the measured zero-pressure bulk modulus of the SnSe nanosheets coincides with bulk SnSe. This abnormal phenomenon is attributed to the unique intrinsic geometry in the nanosheets. The high-pressure bulk modulus is considerably higher than the theoretical value. The pressure-induced morphology change should be responsible for the improved bulk modulus.Two-dimensional tin selenide (SnSe) nanosheets were synthesized using a plasma-assisted direct current arc discharge method. The structural characterization indicates that the nanosheets are single-crystalline with an average thickness of ~25 nm and a lateral dimension of 500 nm. The high pressure behaviors of the as-synthesized SnSe nanosheets were investigated by in situ high-pressure synchrotron angle-dispersive X-ray diffraction and Raman scattering up to ~30 GPa in diamond anvil cells at room temperature. A second-order isostructural continuous phase transition (Pnma → Cmcm) was observed at ~7 GPa, which is considerably lower than the transition pressure of bulk SnSe. The reduction of transition pressure is induced by the volumetric expansion with softening of the Poisson ratio and shear modulus. Moreover, the measured zero-pressure bulk modulus of the SnSe nanosheets coincides with bulk SnSe. This abnormal phenomenon is attributed to the unique intrinsic geometry in the nanosheets. The high-pressure bulk modulus is considerably higher than the theoretical value. The pressure-induced morphology change should be responsible for the improved bulk modulus. |
Author | Jian Zhang, Jian Zhang Li, Dongmei Wu, Xiaoxin Zhu, Hongyang Jiang, Junru Cui, Hang Gao, Chunxiao Wang, Qiushi Cui, Qiliang |
Author_xml | – sequence: 1 givenname: Jian Zhang surname: Jian Zhang fullname: Jian Zhang, Jian Zhang organization: State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China – sequence: 2 givenname: Hongyang surname: Zhu fullname: Zhu, Hongyang organization: State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China – sequence: 3 givenname: Xiaoxin surname: Wu fullname: Wu, Xiaoxin organization: State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China – sequence: 4 givenname: Hang surname: Cui fullname: Cui, Hang organization: College of Physics, Jilin University, Changchun 130012, China – sequence: 5 givenname: Dongmei surname: Li fullname: Li, Dongmei organization: State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China – sequence: 6 givenname: Junru surname: Jiang fullname: Jiang, Junru organization: State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China – sequence: 7 givenname: Chunxiao surname: Gao fullname: Gao, Chunxiao organization: State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China – sequence: 8 givenname: Qiushi surname: Wang fullname: Wang, Qiushi organization: College of New Energy, Bohai University, JinZhou 121013, China – sequence: 9 givenname: Qiliang surname: Cui fullname: Cui, Qiliang organization: State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26269801$$D View this record in MEDLINE/PubMed |
BookMark | eNptkFFLwzAQx4Mozk1f_ADSRxGqSZOm7aMMp4KoOH0uaXJ1kSydufRh396OTQXx6e643x1_fmOy7zsPhJwyeskor66m-eMLzRhnsz1ylFFBU86LbP-nl2JExogflMqKS35IRpnMZFVSdkQ-np3CpUoVosUIJsG1jwsYhkR5k6wCIPYBUutNrzfrGHod-6BcEoPyaKPtfNK1CVr_7iDVYY1ROWc9JHM_h8Qr3-ECIOIxOWiVQzjZ1Ql5m928Tu_Sh6fb--n1Q6p5zmNayKIdgotyEzZvctVyWTSFFKbUimuhGmBN0ZrSaF3mhhtBVSEM17Kk3FSST8j59u8qdJ89YKyXFjU4pzx0PdasoILnglVsQM92aN8swdSrYJcqrOtvPwNwsQV06BADtD8Io_VGfv0rf4DpH1jbqDaCBlXW_XfyBbzXiAI |
CitedBy_id | crossref_primary_10_1039_D1DT01312B crossref_primary_10_1103_PhysRevLett_122_226601 crossref_primary_10_3938_jkps_72_238 crossref_primary_10_1039_D3NR00645J crossref_primary_10_1016_j_jallcom_2022_165458 crossref_primary_10_1109_LED_2018_2884325 crossref_primary_10_1107_S2052520619001847 crossref_primary_10_1007_s10854_023_11343_4 crossref_primary_10_1039_C5CP07377D crossref_primary_10_1016_j_apsusc_2020_146825 crossref_primary_10_1016_j_mssp_2022_107186 crossref_primary_10_1088_1361_6528_ac4354 crossref_primary_10_1021_acsami_1c24679 crossref_primary_10_1021_acsnano_4c04128 crossref_primary_10_1103_PhysRevB_101_155202 crossref_primary_10_1007_s10854_024_12269_1 crossref_primary_10_1016_j_jcis_2017_03_056 crossref_primary_10_3390_ma16072863 crossref_primary_10_1007_s11664_021_09064_7 crossref_primary_10_1016_j_ceramint_2023_01_117 crossref_primary_10_1063_1_5018860 crossref_primary_10_1016_j_jlumin_2021_118657 crossref_primary_10_1002_advs_201600177 crossref_primary_10_1007_s10854_022_07998_0 crossref_primary_10_1016_j_jallcom_2023_172637 crossref_primary_10_1016_j_jcis_2019_02_082 crossref_primary_10_1039_C8DT00285A crossref_primary_10_1016_j_jlumin_2017_08_026 crossref_primary_10_1039_D3EE02507A crossref_primary_10_1016_j_solidstatesciences_2016_12_015 crossref_primary_10_1016_j_vacuum_2020_109343 crossref_primary_10_1038_ncomms14176 crossref_primary_10_1021_acs_jpcc_6b11016 crossref_primary_10_2139_ssrn_4074398 crossref_primary_10_1016_j_mseb_2016_09_001 crossref_primary_10_3390_polym14204261 crossref_primary_10_1002_eem2_12361 crossref_primary_10_1039_C5CE02437D crossref_primary_10_1016_j_jallcom_2020_153804 crossref_primary_10_1016_j_jallcom_2022_164461 crossref_primary_10_12677_ms_2024_145081 crossref_primary_10_1002_adma_202002702 crossref_primary_10_1002_aelm_201600144 crossref_primary_10_1021_acs_langmuir_9b01906 crossref_primary_10_1016_j_tca_2020_178614 crossref_primary_10_1016_j_ceramint_2023_07_124 crossref_primary_10_1021_acs_jpcc_6b12059 crossref_primary_10_1007_s13391_020_00200_9 crossref_primary_10_1016_j_matlet_2021_131152 crossref_primary_10_1007_s12274_017_1712_2 crossref_primary_10_3390_molecules28247971 crossref_primary_10_1103_PhysRevB_96_165123 crossref_primary_10_1016_j_jlumin_2018_10_020 crossref_primary_10_3390_nano10091780 crossref_primary_10_1088_1361_6463_acc9d0 crossref_primary_10_1016_j_jallcom_2020_155915 crossref_primary_10_1016_j_optmat_2022_112110 crossref_primary_10_1016_j_mssp_2024_108862 crossref_primary_10_1039_D2NA00434H crossref_primary_10_1002_advs_201700602 crossref_primary_10_1002_adfm_202200516 crossref_primary_10_1039_C9CP00897G crossref_primary_10_1002_admt_202201968 crossref_primary_10_1063_5_0166387 crossref_primary_10_1039_D1RA05182B crossref_primary_10_1016_j_mtcomm_2023_107250 crossref_primary_10_1016_j_sna_2024_115348 |
Cites_doi | 10.1038/nmat1849 10.1007/BF00921254 10.1103/PhysRevB.64.012102 10.1021/ja3108017 10.1002/anie.200905634 10.1039/C4CC06792D 10.1021/nn800184w 10.1021/ja100249m 10.1063/1.1655019 10.1039/c1nr10084j 10.1021/jp9727658 10.1126/science.265.5170.373 10.1021/ja1013745 10.1002/adma.201101334 10.1126/science.1188035 10.1134/S106378341404009X 10.1021/la501722d 10.1002/anie.201105614 10.1038/nchem.898 10.1063/1.1527229 10.1103/PhysRevB.41.5227 10.1021/jp4124666 10.1021/nl071016r 10.1016/S1359-6462(02)00511-0 10.1021/jp0766555 10.1021/jp512565b 10.1073/pnas.1011224107 10.1103/PhysRevB.41.5893 10.1016/j.ssc.2010.02.002 10.1063/1.2806937 10.1126/science.1216466 10.1029/JB091iB05p04673 10.1002/pssb.201200672 10.1039/C4CE00213J 10.1002/cssc.201300241 10.1088/0022-3727/42/12/125306 10.1021/jp036436t 10.1103/PhysRevB.73.153301 10.1016/j.tsf.2007.08.100 10.1146/annurev.pc.46.100195.003115 10.1007/s00894-011-1019-2 10.1103/PhysRevB.72.144106 10.1039/b820160a 10.1021/jp808244a 10.1063/1.2713172 10.1038/nnano.2010.235 10.1103/PhysRevLett.84.923 10.1209/epl/i1999-00158-3 10.1021/ja0394582 10.1051/rphysap:01984001909080700 10.1021/cr00033a003 10.1021/cm501023w 10.1126/science.1194975 10.1002/anie.201001521 10.1002/pssb.2221350130 10.1103/PhysRev.71.809 10.1103/PhysRevB.64.245407 10.1557/JMR.1995.2892 10.1246/cl.2003.426 10.1038/nature13184 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1039/C5NR02131F |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 10816 |
ExternalDocumentID | 26269801 10_1039_C5NR02131F |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABIQK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGQPQ AGRSR AHGCF AHGXI AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BLAPV BSQNT C6K CAG CITATION COF DU5 EBS ECGLT EE0 EF- EJD F5P FEDTE GGIMP H13 HVGLF HZ~ H~N J3G J3H J3I L-8 O-G O9- OK1 P2P R56 RAOCF RCNCU RNS RPMJG RSCEA RVUXY -JG AGSTE NPM RRC 7X8 |
ID | FETCH-LOGICAL-c353t-767f2044869365b5af367b764d8ca3c4abe1b7fd8dcc85d3d40a74d3c6803d963 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 12:34:19 EDT 2025 Wed Feb 19 01:59:12 EST 2025 Thu Apr 24 23:08:39 EDT 2025 Tue Jul 01 00:33:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c353t-767f2044869365b5af367b764d8ca3c4abe1b7fd8dcc85d3d40a74d3c6803d963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26269801 |
PQID | 1704354191 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1704354191 pubmed_primary_26269801 crossref_primary_10_1039_C5NR02131F crossref_citationtrail_10_1039_C5NR02131F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-28 |
PublicationDateYYYYMMDD | 2015-06-28 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2015 |
References | Huang (C5NR02131F-(cit3)/*[position()=1]) 2011; 6 Wang (C5NR02131F-(cit61)/*[position()=1]) 2010; 107 Drozd (C5NR02131F-(cit41)/*[position()=1]) 2009; 42 Efthimiopoulos (C5NR02131F-(cit46)/*[position()=1]) 2014; 118 Wickham (C5NR02131F-(cit57)/*[position()=1]) 2000; 84 Yu (C5NR02131F-(cit4)/*[position()=1]) 2010; 49 Chattopadhyay (C5NR02131F-(cit29)/*[position()=1]) 1984; 19 Coronado (C5NR02131F-(cit14)/*[position()=1]) 2010; 2 Pejova (C5NR02131F-(cit42)/*[position()=1]) 2008; 112 Ma (C5NR02131F-(cit28)/*[position()=1]) 2014; 16 Baumgardner (C5NR02131F-(cit22)/*[position()=1]) 2010; 132 Geim (C5NR02131F-(cit6)/*[position()=1]) 2007; 6 Chun (C5NR02131F-(cit43)/*[position()=1]) 1974; 24 Schliehe (C5NR02131F-(cit5)/*[position()=1]) 2010; 329 Valiukonis (C5NR02131F-(cit18)/*[position()=1]) 1986; 135 Ludemann (C5NR02131F-(cit63)/*[position()=1]) 2014; 30 Li (C5NR02131F-(cit25)/*[position()=1]) 2013; 135 Hagfeldt (C5NR02131F-(cit40)/*[position()=1]) 1995; 95 Wang (C5NR02131F-(cit58)/*[position()=1]) 2009; 113 Lei (C5NR02131F-(cit38)/*[position()=1]) 2010; 49 Wang (C5NR02131F-(cit48)/*[position()=1]) 2003; 107 Franzman (C5NR02131F-(cit21)/*[position()=1]) 2010; 132 Wang (C5NR02131F-(cit54)/*[position()=1]) 2001; 64 Son (C5NR02131F-(cit2)/*[position()=1]) 2011; 23 Birch (C5NR02131F-(cit45)/*[position()=1]) 1947; 71 Parenteau (C5NR02131F-(cit31)/*[position()=1]) 1990; 41 Gashimzade (C5NR02131F-(cit35)/*[position()=1]) 2014; 56 Zhou (C5NR02131F-(cit52)/*[position()=1]) 2003; 48 Wang (C5NR02131F-(cit20)/*[position()=1]) 2014; 7 Coleman (C5NR02131F-(cit1)/*[position()=1]) 2011; 331 Peters (C5NR02131F-(cit30)/*[position()=1]) 1990; 41 Sasaki (C5NR02131F-(cit8)/*[position()=1]) 1997; 101 Xiao (C5NR02131F-(cit62)/*[position()=1]) 2015; 119 Agarwal (C5NR02131F-(cit32)/*[position()=1]) 1994; 5 Wang (C5NR02131F-(cit55)/*[position()=1]) 2001; 13 Zhao (C5NR02131F-(cit64)/*[position()=1]) 2014; 508 Shen (C5NR02131F-(cit51)/*[position()=1]) 1995; 10 Wang (C5NR02131F-(cit15)/*[position()=1]) 2012; 336 Fukuda (C5NR02131F-(cit9)/*[position()=1]) 2008; 2 Liu (C5NR02131F-(cit19)/*[position()=1]) 2014; 26 Alptekin (C5NR02131F-(cit36)/*[position()=1]) 2010; 150 Villain (C5NR02131F-(cit50)/*[position()=1]) 2002; 81 Spanier (C5NR02131F-(cit53)/*[position()=1]) 2001; 64 Shen (C5NR02131F-(cit23)/*[position()=1]) 2003; 32 Zhang (C5NR02131F-(cit13)/*[position()=1]) 2007; 7 Loa (C5NR02131F-(cit33)/*[position()=1]) 2015; 27 Lee (C5NR02131F-(cit7)/*[position()=1]) 2007; 91 Osada (C5NR02131F-(cit12)/*[position()=1]) 2006; 73 Alptekin (C5NR02131F-(cit37)/*[position()=1]) 2011; 17 Sakai (C5NR02131F-(cit11)/*[position()=1]) 2004; 126 Jiang (C5NR02131F-(cit56)/*[position()=1]) 1999; 45 Liu (C5NR02131F-(cit17)/*[position()=1]) 2011; 50 Mao (C5NR02131F-(cit39)/*[position()=1]) 1986; 91 Von. Schnering (C5NR02131F-(cit44)/*[position()=1]) 1981; 156 Kevin (C5NR02131F-(cit26)/*[position()=1]) 2014; 50 Vaughn (C5NR02131F-(cit24)/*[position()=1]) 2011; 5 Durandurdu (C5NR02131F-(cit34)/*[position()=1]) 2005; 72 Boscher (C5NR02131F-(cit27)/*[position()=1]) 2008; 516 Tolbert (C5NR02131F-(cit59)/*[position()=1]) 1995; 46 Wang (C5NR02131F-(cit60)/*[position()=1]) 2007; 90 Tolbert (C5NR02131F-(cit49)/*[position()=1]) 1994; 265 Antunez (C5NR02131F-(cit16)/*[position()=1]) 2011; 3 Osada (C5NR02131F-(cit10)/*[position()=1]) 2009; 19 Manjón (C5NR02131F-(cit47)/*[position()=1]) 2013; 250 |
References_xml | – volume: 6 start-page: 183 year: 2007 ident: C5NR02131F-(cit6)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 5 start-page: 287 year: 1994 ident: C5NR02131F-(cit32)/*[position()=1] publication-title: J. Mater. Sci-Mater. El. doi: 10.1007/BF00921254 – volume: 27 start-page: 072202 year: 2015 ident: C5NR02131F-(cit33)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 64 start-page: 012102 year: 2001 ident: C5NR02131F-(cit54)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.64.012102 – volume: 135 start-page: 1213 year: 2013 ident: C5NR02131F-(cit25)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3108017 – volume: 49 start-page: 173 year: 2010 ident: C5NR02131F-(cit38)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200905634 – volume: 50 start-page: 14328 year: 2014 ident: C5NR02131F-(cit26)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC06792D – volume: 2 start-page: 1689 year: 2008 ident: C5NR02131F-(cit9)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn800184w – volume: 132 start-page: 4060 year: 2010 ident: C5NR02131F-(cit21)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja100249m – volume: 24 start-page: 479 year: 1974 ident: C5NR02131F-(cit43)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.1655019 – volume: 3 start-page: 2399 year: 2011 ident: C5NR02131F-(cit16)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c1nr10084j – volume: 101 start-page: 10159 year: 1997 ident: C5NR02131F-(cit8)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp9727658 – volume: 265 start-page: 373 year: 1994 ident: C5NR02131F-(cit49)/*[position()=1] publication-title: Science doi: 10.1126/science.265.5170.373 – volume: 132 start-page: 9519 year: 2010 ident: C5NR02131F-(cit22)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1013745 – volume: 23 start-page: 3214 year: 2011 ident: C5NR02131F-(cit2)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201101334 – volume: 329 start-page: 550 year: 2010 ident: C5NR02131F-(cit5)/*[position()=1] publication-title: Science doi: 10.1126/science.1188035 – volume: 56 start-page: 761 year: 2014 ident: C5NR02131F-(cit35)/*[position()=1] publication-title: Phys. Solid State doi: 10.1134/S106378341404009X – volume: 156 start-page: 143 year: 1981 ident: C5NR02131F-(cit44)/*[position()=1] publication-title: Z. Kristallogr. – volume: 30 start-page: 8209 year: 2014 ident: C5NR02131F-(cit63)/*[position()=1] publication-title: Langmuir doi: 10.1021/la501722d – volume: 50 start-page: 12050 year: 2011 ident: C5NR02131F-(cit17)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201105614 – volume: 2 start-page: 1031 year: 2010 ident: C5NR02131F-(cit14)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.898 – volume: 81 start-page: 4365 year: 2002 ident: C5NR02131F-(cit50)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.1527229 – volume: 41 start-page: 5227 year: 1990 ident: C5NR02131F-(cit31)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.41.5227 – volume: 118 start-page: 1713 year: 2014 ident: C5NR02131F-(cit46)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp4124666 – volume: 7 start-page: 2370 year: 2007 ident: C5NR02131F-(cit13)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl071016r – volume: 48 start-page: 825 year: 2003 ident: C5NR02131F-(cit52)/*[position()=1] publication-title: Scripta Mater. doi: 10.1016/S1359-6462(02)00511-0 – volume: 112 start-page: 3525 year: 2008 ident: C5NR02131F-(cit42)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp0766555 – volume: 119 start-page: 3843 year: 2015 ident: C5NR02131F-(cit62)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp512565b – volume: 107 start-page: 17119 year: 2010 ident: C5NR02131F-(cit61)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1011224107 – volume: 41 start-page: 5893 year: 1990 ident: C5NR02131F-(cit30)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.41.5893 – volume: 150 start-page: 870 year: 2010 ident: C5NR02131F-(cit36)/*[position()=1] publication-title: Solid State Commun. doi: 10.1016/j.ssc.2010.02.002 – volume: 5 volume-title: ACS Nano year: 2011 ident: C5NR02131F-(cit24)/*[position()=1] – volume: 91 start-page: 201901 year: 2007 ident: C5NR02131F-(cit7)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2806937 – volume: 336 start-page: 52 year: 2012 ident: C5NR02131F-(cit15)/*[position()=1] publication-title: Science doi: 10.1126/science.1216466 – volume: 91 start-page: 4673 year: 1986 ident: C5NR02131F-(cit39)/*[position()=1] publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/JB091iB05p04673 – volume: 250 start-page: 669 year: 2013 ident: C5NR02131F-(cit47)/*[position()=1] publication-title: Phys. Status Solidi B doi: 10.1002/pssb.201200672 – volume: 16 start-page: 5080 year: 2014 ident: C5NR02131F-(cit28)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C4CE00213J – volume: 7 start-page: 308 year: 2014 ident: C5NR02131F-(cit20)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201300241 – volume: 42 start-page: 125306 year: 2009 ident: C5NR02131F-(cit41)/*[position()=1] publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/42/12/125306 – volume: 107 start-page: 14151 year: 2003 ident: C5NR02131F-(cit48)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp036436t – volume: 73 start-page: 153301 year: 2006 ident: C5NR02131F-(cit12)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.73.153301 – volume: 516 start-page: 4750 year: 2008 ident: C5NR02131F-(cit27)/*[position()=1] publication-title: Thin Solid Films doi: 10.1016/j.tsf.2007.08.100 – volume: 46 start-page: 595 year: 1995 ident: C5NR02131F-(cit59)/*[position()=1] publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.pc.46.100195.003115 – volume: 17 start-page: 2989 year: 2011 ident: C5NR02131F-(cit37)/*[position()=1] publication-title: J. Mol. Model doi: 10.1007/s00894-011-1019-2 – volume: 72 start-page: 144106 year: 2005 ident: C5NR02131F-(cit34)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.72.144106 – volume: 19 start-page: 2503 year: 2009 ident: C5NR02131F-(cit10)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/b820160a – volume: 113 start-page: 4286 year: 2009 ident: C5NR02131F-(cit58)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp808244a – volume: 90 start-page: 113115 year: 2007 ident: C5NR02131F-(cit60)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2713172 – volume: 6 start-page: 28 year: 2011 ident: C5NR02131F-(cit3)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.235 – volume: 13 start-page: 8317 year: 2001 ident: C5NR02131F-(cit55)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 84 start-page: 923 year: 2000 ident: C5NR02131F-(cit57)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.923 – volume: 45 start-page: 275 year: 1999 ident: C5NR02131F-(cit56)/*[position()=1] publication-title: Europhys. Lett. doi: 10.1209/epl/i1999-00158-3 – volume: 126 start-page: 5851 year: 2004 ident: C5NR02131F-(cit11)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0394582 – volume: 19 start-page: 807 year: 1984 ident: C5NR02131F-(cit29)/*[position()=1] publication-title: Rev. Phys. Appl. doi: 10.1051/rphysap:01984001909080700 – volume: 95 start-page: 49 year: 1995 ident: C5NR02131F-(cit40)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr00033a003 – volume: 26 start-page: 3515 year: 2014 ident: C5NR02131F-(cit19)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm501023w – volume: 331 start-page: 568 year: 2011 ident: C5NR02131F-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.1194975 – volume: 49 start-page: 4484 year: 2010 ident: C5NR02131F-(cit4)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201001521 – volume: 135 start-page: 299 year: 1986 ident: C5NR02131F-(cit18)/*[position()=1] publication-title: Phys. Status. Solidi. B doi: 10.1002/pssb.2221350130 – volume: 71 start-page: 809 year: 1947 ident: C5NR02131F-(cit45)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.71.809 – volume: 64 start-page: 245407 year: 2001 ident: C5NR02131F-(cit53)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.64.245407 – volume: 10 start-page: 2892 year: 1995 ident: C5NR02131F-(cit51)/*[position()=1] publication-title: J. Mater. Res. doi: 10.1557/JMR.1995.2892 – volume: 32 start-page: 426 year: 2003 ident: C5NR02131F-(cit23)/*[position()=1] publication-title: Chem. Lett. doi: 10.1246/cl.2003.426 – volume: 508 start-page: 373 year: 2014 ident: C5NR02131F-(cit64)/*[position()=1] publication-title: Nature doi: 10.1038/nature13184 |
SSID | ssj0069363 |
Score | 2.4220908 |
Snippet | Two-dimensional tin selenide (SnSe) nanosheets were synthesized using a plasma-assisted direct current arc discharge method. The structural characterization... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 10807 |
Title | Plasma-assisted synthesis and pressure-induced structural transition of single-crystalline SnSe nanosheets |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26269801 https://www.proquest.com/docview/1704354191 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9gIHxJuUhxbBBSEX27v22scSNVShBEQTEXGx1vugQamNmlii_Hpm_KYEqXCxrNVm5cx8mvn29Q0hL-KQe66OuKNtqB2uNXdiISMnMIgfICC2vOX6fhoezflkESwGg0nv1FKxSffVz633Sv7Hq9AGfsVbsv_g2XZQaIB38C88wcPwvJKPPwL1PZMO8F90lkb5AeBzKDFSX_9f4_qfA9PuArf5K63YUmdjgylq2bBFXC9YGUedXwBXXJXE8yQ7Ma8ymeXrU2MqtaeGw06xFVzbQqJddJ70sPbltCjTWp59vZB1esTgX7YuljL_sWz7joqqdnbTr16F8AI8LeX3AqePJxMZq8rw7JstbXW0FT1Q-bwXOvGwo9ga1F2GmqgqyM6BkDDPdqmr2a6ffkjG8-PjZHa4mF0juz5MGSDm7R68e_P2c5OXw5iVdfXar2rEaln8uhv7d3rylzlHyT1mt8jNetJADyoE3CYDk90hN3pSknfJt0tYoC0WKGCBXsYC7bBAOyzQ3NI_sUARC7TDwj0yHx_ORkdOXUfDUSxgG0eEwsK_5hGaIEgDaVkoUhFyHSnJFJep8VJhdaSVigLNNHel4JqpMHKZhgh9n-xkeWYeEupZAxQ_CiWwcFTii5g1YG2V-hqFkeyQvGzMl6haZB5rnayS8rADi5NRMP1Umno8JM_bvt8raZWtvZ41Xkgg8uF2lsxMXqwTT7jA9bkXe0PyoHJPO44P8_QYyNfeFX79iFzvEP2Y7ID9zRNgmpv0aQ2hXz7Pg60 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasma-assisted+synthesis+and+pressure-induced+structural+transition+of+single-crystalline+SnSe+nanosheets&rft.jtitle=Nanoscale&rft.au=Zhang%2C+Jian&rft.au=Zhu%2C+Hongyang&rft.au=Wu%2C+Xiaoxin&rft.au=Cui%2C+Hang&rft.date=2015-06-28&rft.issn=2040-3372&rft.eissn=2040-3372&rft.volume=7&rft.issue=24&rft.spage=10807&rft_id=info:doi/10.1039%2Fc5nr02131f&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |