Detection of COPD and Lung Cancer with electronic nose using ensemble learning methods

•An e-nose system was developed with five MOS gas sensors.•Non-invasive diagnosis of COPD and lung cancer was done through breath analysis.•Selecting patients and controls of almost same age group is a challenging task.•Proper selection of sensors and classifiers can give better classification resul...

Full description

Saved in:
Bibliographic Details
Published inClinica chimica acta Vol. 523; pp. 231 - 238
Main Authors V.A., Binson, Subramoniam, M., Mathew, Luke
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •An e-nose system was developed with five MOS gas sensors.•Non-invasive diagnosis of COPD and lung cancer was done through breath analysis.•Selecting patients and controls of almost same age group is a challenging task.•Proper selection of sensors and classifiers can give better classification results.•Ensemble learning method XGBoost had given better results in the discrimination. The chemical gas sensor array based electronic-nose (e-nose) devices with machine learning algorithms can detect and differentiate expelled breath samples of patients with various respiratory ailments and controls. It is by the recognition of levels and variations of volatile organic compounds (VOC) in the exhaled air. Here, we aimed to differentiate chronic obstructive pulmonary disease (COPD) and lung cancer from controls. This work presents the details of the developed e-nose system, selection of the study subjects, exhaled breath sampling method and detection, and the data analysis algorithms. The developed device is tested in 199 participants including 93 controls, 55 COPD patients, and 51 lung cancer patients. The main advantage of the device is robustness and portability and cost-effectiveness. In the training phase and model validation phase, the ensemble learning method XGBoost outperformed the other two models. In the prediction of lung cancer, XGBoost method attained a classification accuracy of 79.31%. In COPD prediction also the same method had given the better results with 76.67% accuracy. The e-nose system developed with TGS gas sensors was portable, low cost, and gave a rapid response. It has been demonstrated that the VOC profiles of patients with pulmonary diseases and healthy controls are different and hence the e-nose system can be used as a potential diagnostic device for patients with lung diseases.
AbstractList The chemical gas sensor array based electronic-nose (e-nose) devices with machine learning algorithms can detect and differentiate expelled breath samples of patients with various respiratory ailments and controls. It is by the recognition of levels and variations of volatile organic compounds (VOC) in the exhaled air. Here, we aimed to differentiate chronic obstructive pulmonary disease (COPD) and lung cancer from controls. This work presents the details of the developed e-nose system, selection of the study subjects, exhaled breath sampling method and detection, and the data analysis algorithms. The developed device is tested in 199 participants including 93 controls, 55 COPD patients, and 51 lung cancer patients. The main advantage of the device is robustness and portability and cost-effectiveness. In the training phase and model validation phase, the ensemble learning method XGBoost outperformed the other two models. In the prediction of lung cancer, XGBoost method attained a classification accuracy of 79.31%. In COPD prediction also the same method had given the better results with 76.67% accuracy. The e-nose system developed with TGS gas sensors was portable, low cost, and gave a rapid response. It has been demonstrated that the VOC profiles of patients with pulmonary diseases and healthy controls are different and hence the e-nose system can be used as a potential diagnostic device for patients with lung diseases.
The chemical gas sensor array based electronic-nose (e-nose) devices with machine learning algorithms can detect and differentiate expelled breath samples of patients with various respiratory ailments and controls. It is by the recognition of levels and variations of volatile organic compounds (VOC) in the exhaled air. Here, we aimed to differentiate chronic obstructive pulmonary disease (COPD) and lung cancer from controls.BACKGROUND AND AIMSThe chemical gas sensor array based electronic-nose (e-nose) devices with machine learning algorithms can detect and differentiate expelled breath samples of patients with various respiratory ailments and controls. It is by the recognition of levels and variations of volatile organic compounds (VOC) in the exhaled air. Here, we aimed to differentiate chronic obstructive pulmonary disease (COPD) and lung cancer from controls.This work presents the details of the developed e-nose system, selection of the study subjects, exhaled breath sampling method and detection, and the data analysis algorithms. The developed device is tested in 199 participants including 93 controls, 55 COPD patients, and 51 lung cancer patients. The main advantage of the device is robustness and portability and cost-effectiveness.MATERIALS AND METHODSThis work presents the details of the developed e-nose system, selection of the study subjects, exhaled breath sampling method and detection, and the data analysis algorithms. The developed device is tested in 199 participants including 93 controls, 55 COPD patients, and 51 lung cancer patients. The main advantage of the device is robustness and portability and cost-effectiveness.In the training phase and model validation phase, the ensemble learning method XGBoost outperformed the other two models. In the prediction of lung cancer, XGBoost method attained a classification accuracy of 79.31%. In COPD prediction also the same method had given the better results with 76.67% accuracy.RESULTSIn the training phase and model validation phase, the ensemble learning method XGBoost outperformed the other two models. In the prediction of lung cancer, XGBoost method attained a classification accuracy of 79.31%. In COPD prediction also the same method had given the better results with 76.67% accuracy.The e-nose system developed with TGS gas sensors was portable, low cost, and gave a rapid response. It has been demonstrated that the VOC profiles of patients with pulmonary diseases and healthy controls are different and hence the e-nose system can be used as a potential diagnostic device for patients with lung diseases.CONCLUSIONThe e-nose system developed with TGS gas sensors was portable, low cost, and gave a rapid response. It has been demonstrated that the VOC profiles of patients with pulmonary diseases and healthy controls are different and hence the e-nose system can be used as a potential diagnostic device for patients with lung diseases.
•An e-nose system was developed with five MOS gas sensors.•Non-invasive diagnosis of COPD and lung cancer was done through breath analysis.•Selecting patients and controls of almost same age group is a challenging task.•Proper selection of sensors and classifiers can give better classification results.•Ensemble learning method XGBoost had given better results in the discrimination. The chemical gas sensor array based electronic-nose (e-nose) devices with machine learning algorithms can detect and differentiate expelled breath samples of patients with various respiratory ailments and controls. It is by the recognition of levels and variations of volatile organic compounds (VOC) in the exhaled air. Here, we aimed to differentiate chronic obstructive pulmonary disease (COPD) and lung cancer from controls. This work presents the details of the developed e-nose system, selection of the study subjects, exhaled breath sampling method and detection, and the data analysis algorithms. The developed device is tested in 199 participants including 93 controls, 55 COPD patients, and 51 lung cancer patients. The main advantage of the device is robustness and portability and cost-effectiveness. In the training phase and model validation phase, the ensemble learning method XGBoost outperformed the other two models. In the prediction of lung cancer, XGBoost method attained a classification accuracy of 79.31%. In COPD prediction also the same method had given the better results with 76.67% accuracy. The e-nose system developed with TGS gas sensors was portable, low cost, and gave a rapid response. It has been demonstrated that the VOC profiles of patients with pulmonary diseases and healthy controls are different and hence the e-nose system can be used as a potential diagnostic device for patients with lung diseases.
Author V.A., Binson
Mathew, Luke
Subramoniam, M.
Author_xml – sequence: 1
  givenname: Binson
  surname: V.A.
  fullname: V.A., Binson
  email: binsonvsabraham@gmail.com
  organization: Department of Electronics Engineering, Sathyabama Institute of Science and Technology, Tamil Nadu, India
– sequence: 2
  givenname: M.
  surname: Subramoniam
  fullname: Subramoniam, M.
  organization: Department of Electronics Engineering, Sathyabama Institute of Science and Technology, Tamil Nadu, India
– sequence: 3
  givenname: Luke
  surname: Mathew
  fullname: Mathew, Luke
  organization: Department of Pulmonology, Believers Church Medical College Hospital, Thiruvalla, Kerala, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34627826$$D View this record in MEDLINE/PubMed
BookMark eNp9kLFO5DAQQC3ECZaFD6BBLmmyZ8eOk4gKLRyctBJXAK3lTCasV4kNdsKJvz9HC80VVNaM3hvJ74QcOu-QkHPOVpxx9XO3AjCrnOU8zSvGigOy4FUpMiHr_JAsGGN1VtUVPyYnMe7SKJniR-RYSJWXVa4W5PkGR4TRekd9R9cPf26ocS3dTO6Fro0DDPSvHbcU-0QF7yxQ5yPSKdpEoIs4ND3SHk1w82bAcevbeEp-dKaPePb5LsnTr9vH9X22ebj7vb7eZCAKMWZloQqQpeQta4qOI3AGouxqVHX6VCW6yqiyaxkUUEhUwIRqmlZiKVBCUsWSXO7vvgb_NmEc9WAjYN8bh36KOi8qVkuWmiT04hOdmgFb_RrsYMKH_mqRgHIPQPAxBuw02NHMacZgbK8503N1vdOpup6rz6tUPZn8P_Pr-HfO1d7BlOfdYtARLKbgrQ0ptW69_cb-B8vAmLY
CitedBy_id crossref_primary_10_1080_14737159_2024_2316755
crossref_primary_10_1515_cclm_2023_1037
crossref_primary_10_1016_j_matpr_2022_02_388
crossref_primary_10_48084_etasr_8913
crossref_primary_10_1038_s41598_024_74104_1
crossref_primary_10_1007_s42979_023_02529_y
crossref_primary_10_1016_j_cmpb_2023_107746
crossref_primary_10_2174_2210681212666220609104504
crossref_primary_10_1109_JSEN_2023_3324216
crossref_primary_10_4103_mgr_MEDGASRES_D_24_00101
crossref_primary_10_1039_D4TC00707G
crossref_primary_10_2147_COPD_S428984
crossref_primary_10_1016_j_jsamd_2023_100562
crossref_primary_10_3389_fphar_2022_1093244
crossref_primary_10_1007_s41870_023_01713_w
crossref_primary_10_1016_j_snb_2022_133010
crossref_primary_10_1183_16000617_0125_2023
crossref_primary_10_3233_THC_231980
crossref_primary_10_1016_j_apsusc_2025_162985
crossref_primary_10_1016_j_measurement_2024_114978
crossref_primary_10_1109_JSEN_2023_3343762
crossref_primary_10_1080_08839514_2023_2166222
crossref_primary_10_1016_j_ica_2024_122003
crossref_primary_10_1016_j_compag_2024_108947
crossref_primary_10_1016_j_jpba_2025_116787
crossref_primary_10_3390_chemosensors11070356
crossref_primary_10_1016_j_pnsc_2024_01_018
crossref_primary_10_1016_j_cej_2022_140956
crossref_primary_10_1016_j_bj_2023_100623
crossref_primary_10_1016_j_sna_2024_115650
crossref_primary_10_1088_2631_8695_ac6487
crossref_primary_10_1016_j_talanta_2024_127140
crossref_primary_10_1186_s12931_024_02840_z
crossref_primary_10_3390_s24237868
crossref_primary_10_3390_ijms24010129
crossref_primary_10_1007_s42690_024_01207_7
crossref_primary_10_1016_j_jocs_2024_102476
crossref_primary_10_1242_bio_060468
crossref_primary_10_1016_j_jhazmat_2024_134151
crossref_primary_10_1515_ntrev_2022_0056
crossref_primary_10_1016_j_aiia_2022_08_001
crossref_primary_10_1080_17476348_2024_2302940
crossref_primary_10_1007_s00432_024_05925_w
crossref_primary_10_1109_JSEN_2023_3348514
crossref_primary_10_1016_j_cpt_2024_12_004
crossref_primary_10_1097_JS9_0000000000000999
crossref_primary_10_1016_j_microc_2024_110051
crossref_primary_10_1002_cam4_70545
crossref_primary_10_1016_j_snb_2024_136342
crossref_primary_10_1016_j_snb_2024_136222
crossref_primary_10_1371_journal_pone_0316136
crossref_primary_10_1016_j_mehy_2024_111521
Cites_doi 10.1007/s00604-006-0623-9
10.1063/1.3156579
10.1016/j.cca.2016.05.013
10.1109/JSEN.2021.3100390
10.3390/s110101105
10.37190/ABB-01737-2020-03
10.1007/s11306-018-1449-2
10.1080/10408340600976499
10.1109/JSEN.2017.2657653
10.1097/JTO.0b013e3182637d5f
10.1016/j.cca.2021.03.016
10.1016/j.compbiomed.2019.103375
10.1016/j.dss.2007.12.002
10.1016/j.compbiomed.2021.104294
10.3390/s17081919
10.21037/jtd.2016.10.30
10.1016/j.cca.2008.02.021
10.1016/j.cccn.2004.04.023
10.1016/j.snb.2017.08.057
10.3390/molecules21080983
10.1088/1752-7163/ac1326
10.1023/A:1010933404324
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cca.2021.10.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
EISSN 1873-3492
EndPage 238
ExternalDocumentID 34627826
10_1016_j_cca_2021_10_005
S0009898121003491
Genre Journal Article
GroupedDBID ---
--K
--M
.55
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABLVK
ABMAC
ABMZM
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
LCYCR
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBG
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
WH7
WUQ
X7M
XPP
ZA5
ZGI
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c353t-7565c4741d0b5f1ec10c37f9e6902183f8a67fd0c5c54e6c036bbd4e73e4c65c3
IEDL.DBID .~1
ISSN 0009-8981
1873-3492
IngestDate Fri Jul 11 09:01:27 EDT 2025
Thu Apr 03 06:58:11 EDT 2025
Tue Jul 01 03:32:06 EDT 2025
Thu Apr 24 23:02:32 EDT 2025
Fri Feb 23 02:37:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords KPCA
Ensemble learning
Lung cancer
Electronic nose
Breath analysis
COPD
Language English
License Copyright © 2021 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-7565c4741d0b5f1ec10c37f9e6902183f8a67fd0c5c54e6c036bbd4e73e4c65c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 34627826
PQID 2580940873
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2580940873
pubmed_primary_34627826
crossref_citationtrail_10_1016_j_cca_2021_10_005
crossref_primary_10_1016_j_cca_2021_10_005
elsevier_sciencedirect_doi_10_1016_j_cca_2021_10_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
2021-Dec
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Clinica chimica acta
PublicationTitleAlternate Clin Chim Acta
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Binson, Subramoniam (b0040) 2021; 23
Chen, He, Benesty, Khotilovich, Tang, Cho (b0110) 2015; 1
Breiman (b0130) 2001; 45
Peled, Hakim, Bunn, Miller, Kennedy, Mattei, Mitchell, Hirsch, Haick (b0015) 2012; 7
Binson, Subramoniam, Sunny, Mathew (b0060) 2021
A. Velásquez, C.M. Durán, O. Gualdron, J.C. Rodríguez, L. Manjarres, Electronic nose to detect patients with COPD from exhaled breath, in: AIP Conference Proceedings, vol. 1137, no. 1, pp. 452-454, 2009.
Scott, James, Ali (b0035) 2006; 156
Phillips, Altorki, Austin, Cameron, Cataneo, Kloss, Maxfield (b0070) 2008; 393
Marzorati, Mainardi, Sedda, Gasparri, Spaggiari, Cerveri (b0065) 2019
Li, Gu, Wang (b0135) 2017; 17
Alfaro, García, Gámez, Elizondo (b0125) 2008; 45
Cao, Duan (b0025) 2007; 37
Tan, Yong, Liam (b0075) 2016; 8
Wilson, Baietto (b0010) 2011; 11
Li, Liu, Xie, He, Pi (b0055) 2017, 2017,; 7
Binson, Subramoniam, Mathew (b0085) 2021; 15
Beale, Pinu, Kouremenos, Poojary, Narayana, Boughton, Kanojia, Dayalan, Jones, Dias (b0030) 2018; 14
Rodríguez-Aguilar, Maribel, Lorena Díaz de León-Martínez, Patricia Gorocica-Rosete, Rogelio Pérez-Padilla, Carlos Alberto Domínguez Reyes, Juan Alberto Tenorio-Torres, Omar Ornelas-Rebolledo, Garima Mehta, Blanca Nohemí Zamora Mendoza, Rogelio Flores-Ramírez, Application of chemoresistive gas sensors and chemometric analysis to differentiate the fingerprints of global volatile organic compounds from diseases. Preliminary results of COPD, lung cancer and breast cancer, Clin. Chim. Acta (2021).
Miekisch, Schubert, Noeldge-Schomburg (b0020) 2004; 347
Siegel, Miller, Jemal (b0045) 2016; 66
Remeseiro, Bolon-Canedo (b0090) 2019; 112
Chang, Lee, Ban, Oh, Jung, Kim, Jheon (b0050) 2018; 255
Horowitz (b0145) 2014; 20
Binson, Subramoniam (b0100) 2021; 1950
Babajide Mustapha, Saeed (b0115) 2016; 21
Chen, Liu, Nie, Lu, Fu, He, Li, Pi, Liu (b0095) 2021; 131
Saalberg, Wolff (b0140) 2016; 459
Ying, Qi-Guang, Jia-Chen, Lin (b0120) 2013; 39
Pasinszki, Krebsz, Tung, Losic (b0005) 2017; 17
Zhou (b0105) 2021
10.1016/j.cca.2021.10.005_b0150
Binson (10.1016/j.cca.2021.10.005_b0040) 2021; 23
Chen (10.1016/j.cca.2021.10.005_b0110) 2015; 1
Breiman (10.1016/j.cca.2021.10.005_b0130) 2001; 45
Ying (10.1016/j.cca.2021.10.005_b0120) 2013; 39
Pasinszki (10.1016/j.cca.2021.10.005_b0005) 2017; 17
Zhou (10.1016/j.cca.2021.10.005_b0105) 2021
Miekisch (10.1016/j.cca.2021.10.005_b0020) 2004; 347
Wilson (10.1016/j.cca.2021.10.005_b0010) 2011; 11
Phillips (10.1016/j.cca.2021.10.005_b0070) 2008; 393
Saalberg (10.1016/j.cca.2021.10.005_b0140) 2016; 459
Alfaro (10.1016/j.cca.2021.10.005_b0125) 2008; 45
Marzorati (10.1016/j.cca.2021.10.005_b0065) 2019
Chen (10.1016/j.cca.2021.10.005_b0095) 2021; 131
Binson (10.1016/j.cca.2021.10.005_b0060) 2021
Cao (10.1016/j.cca.2021.10.005_b0025) 2007; 37
Li (10.1016/j.cca.2021.10.005_b0135) 2017; 17
10.1016/j.cca.2021.10.005_b0080
Babajide Mustapha (10.1016/j.cca.2021.10.005_b0115) 2016; 21
Horowitz (10.1016/j.cca.2021.10.005_b0145) 2014; 20
Siegel (10.1016/j.cca.2021.10.005_b0045) 2016; 66
Peled (10.1016/j.cca.2021.10.005_b0015) 2012; 7
Li (10.1016/j.cca.2021.10.005_b0055) 2017; 7
Scott (10.1016/j.cca.2021.10.005_b0035) 2006; 156
Chang (10.1016/j.cca.2021.10.005_b0050) 2018; 255
Tan (10.1016/j.cca.2021.10.005_b0075) 2016; 8
Binson (10.1016/j.cca.2021.10.005_b0085) 2021; 15
Remeseiro (10.1016/j.cca.2021.10.005_b0090) 2019; 112
Binson (10.1016/j.cca.2021.10.005_b0100) 2021; 1950
Beale (10.1016/j.cca.2021.10.005_b0030) 2018; 14
References_xml – volume: 37
  start-page: 3
  year: 2007
  end-page: 13
  ident: b0025
  article-title: Current status of methods and techniques for breath analysis
  publication-title: Crit. Rev. Anal. Chem.
– volume: 15
  year: 2021
  ident: b0085
  article-title: Discrimination of COPD and lung cancer from controls through breath analysis using a self-developed e-nose
  publication-title: J. Breath Res.
– volume: 21
  start-page: 983
  year: 2016
  ident: b0115
  article-title: Bioactive molecule prediction using extreme gradient boosting
  publication-title: Molecules
– reference: Rodríguez-Aguilar, Maribel, Lorena Díaz de León-Martínez, Patricia Gorocica-Rosete, Rogelio Pérez-Padilla, Carlos Alberto Domínguez Reyes, Juan Alberto Tenorio-Torres, Omar Ornelas-Rebolledo, Garima Mehta, Blanca Nohemí Zamora Mendoza, Rogelio Flores-Ramírez, Application of chemoresistive gas sensors and chemometric analysis to differentiate the fingerprints of global volatile organic compounds from diseases. Preliminary results of COPD, lung cancer and breast cancer, Clin. Chim. Acta (2021).
– volume: 347
  start-page: 25
  year: 2004
  end-page: 39
  ident: b0020
  article-title: Diagnostic potential of breath analysis—focus on volatile organic compounds
  publication-title: Clin. Chim. Acta
– reference: A. Velásquez, C.M. Durán, O. Gualdron, J.C. Rodríguez, L. Manjarres, Electronic nose to detect patients with COPD from exhaled breath, in: AIP Conference Proceedings, vol. 1137, no. 1, pp. 452-454, 2009.
– volume: 17
  start-page: 1919
  year: 2017
  ident: b0005
  article-title: Carbon nanomaterial based biosensors for non-invasive detection of cancer and disease biomarkers for clinical diagnosis
  publication-title: Sensors
– volume: 459
  start-page: 5
  year: 2016
  end-page: 9
  ident: b0140
  article-title: VOC breath biomarkers in lung cancer
  publication-title: Clin. Chim. Acta
– volume: 1
  start-page: 1
  year: 2015
  end-page: 4
  ident: b0110
  article-title: Xgboost: extreme gradient boosting
  publication-title: R package version 0.4-2
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0130
  article-title: Random forests
  publication-title: Machine Learning
– volume: 20
  start-page: 130
  year: 2014
  end-page: 135
  ident: b0145
  article-title: The olfactory sense and its clinical applications
  publication-title: J. Alternative Complement. Med.
– volume: 11
  start-page: 1105
  year: 2011
  end-page: 1176
  ident: b0010
  article-title: Advances in electronic-nose technologies developed for biomedical applications
  publication-title: Sensors
– volume: 14
  start-page: 1
  year: 2018
  end-page: 31
  ident: b0030
  article-title: Review of recent developments in GC–MS approaches to metabolomics-based research
  publication-title: Metabolomics
– volume: 393
  start-page: 76
  year: 2008
  end-page: 84
  ident: b0070
  article-title: Detection of lung cancer using weighted digital analysis of breath biomarkers
  publication-title: Clin. Chim. Acta
– volume: 7
  start-page: 1528
  year: 2012
  end-page: 1533
  ident: b0015
  article-title: Non-invasive breath analysis of pulmonary nodules
  publication-title: J. Thoracic Oncol.
– volume: 23
  start-page: 35
  year: 2021
  end-page: 44
  ident: b0040
  article-title: Design and development of an e-nose system for the diagnosis of pulmonary diseases
  publication-title: Acta Bioeng. Biomech.
– volume: 8
  start-page: 2772
  year: 2016
  ident: b0075
  article-title: Using a chemiresistor-based alkane sensor to distinguish exhaled breaths of lung cancer patients from subjects with no lung cancer
  publication-title: J. Thorac. Dis.
– start-page: 1584
  year: 2019
  end-page: 1587
  ident: b0065
  article-title: A Metal Oxide Gas Sensors Array for Lung Cancer Diagnosis Through Exhaled Breath Analysis
  publication-title: In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 1950
  year: 2021
  ident: b0100
  article-title: Artificial Intelligence Based Breath Analysis System for the Diagnosis of lung cancer
  publication-title: Journal of Physics: Conference Series
– volume: 156
  start-page: 183
  year: 2006
  end-page: 207
  ident: b0035
  article-title: Data analysis for electronic nose systems
  publication-title: Microchim. Acta
– year: 2021
  ident: b0060
  article-title: Prediction of pulmonary diseases with electronic nose using SVM and XGBoost
  publication-title: IEEE Sens. J.
– volume: 17
  start-page: 1788
  year: 2017
  end-page: 1794
  ident: b0135
  article-title: Application of random forest classifier by means of a QCM-based e-nose in the identification of Chinese liquor flavors
  publication-title: IEEE Sens. J.
– volume: 131
  year: 2021
  ident: b0095
  article-title: Recognizing lung cancer and stages using a self-developed electronic nose system
  publication-title: Comput. Biol. Med.
– start-page: 181
  year: 2021
  end-page: 210
  ident: b0105
  article-title: Ensemble learning
  publication-title: Machine Learning
– volume: 7
  start-page: 1
  year: 2017, 2017,
  end-page: 12
  ident: b0055
  article-title: Lung cancer screening based on type-different sensor arrays
  publication-title: Sci. Rep.-UK
– volume: 45
  start-page: 110
  year: 2008
  end-page: 122
  ident: b0125
  article-title: Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks
  publication-title: Decis. Support Syst.
– volume: 66
  start-page: 7
  year: 2016
  end-page: 30
  ident: b0045
  article-title: Cancer statistics, 2016
  publication-title: CA: Cancer J. Clinicians
– volume: 112
  year: 2019
  ident: b0090
  article-title: A review of feature selection methods in medical applications
  publication-title: Comput. Biol. Med.
– volume: 255
  start-page: 800
  year: 2018
  end-page: 807
  ident: b0050
  article-title: Analysis of volatile organic compounds in exhaled breath for lung cancer diagnosis using a sensor system
  publication-title: Sensor. Actuat. B – Chem.
– volume: 39
  start-page: 745
  year: 2013
  end-page: 758
  ident: b0120
  article-title: Advance and prospects of AdaBoost algorithm
  publication-title: Acta Autom. Sin.
– volume: 1950
  issue: 1
  year: 2021
  ident: 10.1016/j.cca.2021.10.005_b0100
  article-title: Artificial Intelligence Based Breath Analysis System for the Diagnosis of lung cancer
  publication-title: Journal of Physics: Conference Series
– volume: 39
  start-page: 745
  issue: 6
  year: 2013
  ident: 10.1016/j.cca.2021.10.005_b0120
  article-title: Advance and prospects of AdaBoost algorithm
  publication-title: Acta Autom. Sin.
– start-page: 181
  year: 2021
  ident: 10.1016/j.cca.2021.10.005_b0105
  article-title: Ensemble learning
– volume: 156
  start-page: 183
  issue: 3–4
  year: 2006
  ident: 10.1016/j.cca.2021.10.005_b0035
  article-title: Data analysis for electronic nose systems
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-006-0623-9
– start-page: 1584
  year: 2019
  ident: 10.1016/j.cca.2021.10.005_b0065
  article-title: A Metal Oxide Gas Sensors Array for Lung Cancer Diagnosis Through Exhaled Breath Analysis
– ident: 10.1016/j.cca.2021.10.005_b0080
  doi: 10.1063/1.3156579
– volume: 459
  start-page: 5
  issue: 2016
  year: 2016
  ident: 10.1016/j.cca.2021.10.005_b0140
  article-title: VOC breath biomarkers in lung cancer
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cca.2016.05.013
– year: 2021
  ident: 10.1016/j.cca.2021.10.005_b0060
  article-title: Prediction of pulmonary diseases with electronic nose using SVM and XGBoost
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3100390
– volume: 11
  start-page: 1105
  issue: 1
  year: 2011
  ident: 10.1016/j.cca.2021.10.005_b0010
  article-title: Advances in electronic-nose technologies developed for biomedical applications
  publication-title: Sensors
  doi: 10.3390/s110101105
– volume: 23
  start-page: 35
  issue: 1
  year: 2021
  ident: 10.1016/j.cca.2021.10.005_b0040
  article-title: Design and development of an e-nose system for the diagnosis of pulmonary diseases
  publication-title: Acta Bioeng. Biomech.
  doi: 10.37190/ABB-01737-2020-03
– volume: 66
  start-page: 7
  issue: 1
  year: 2016
  ident: 10.1016/j.cca.2021.10.005_b0045
  article-title: Cancer statistics, 2016
  publication-title: CA: Cancer J. Clinicians
– volume: 14
  start-page: 1
  issue: 11
  year: 2018
  ident: 10.1016/j.cca.2021.10.005_b0030
  article-title: Review of recent developments in GC–MS approaches to metabolomics-based research
  publication-title: Metabolomics
  doi: 10.1007/s11306-018-1449-2
– volume: 37
  start-page: 3
  issue: 1
  year: 2007
  ident: 10.1016/j.cca.2021.10.005_b0025
  article-title: Current status of methods and techniques for breath analysis
  publication-title: Crit. Rev. Anal. Chem.
  doi: 10.1080/10408340600976499
– volume: 17
  start-page: 1788
  issue: 6
  year: 2017
  ident: 10.1016/j.cca.2021.10.005_b0135
  article-title: Application of random forest classifier by means of a QCM-based e-nose in the identification of Chinese liquor flavors
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2657653
– volume: 7
  start-page: 1528
  issue: 10
  year: 2012
  ident: 10.1016/j.cca.2021.10.005_b0015
  article-title: Non-invasive breath analysis of pulmonary nodules
  publication-title: J. Thoracic Oncol.
  doi: 10.1097/JTO.0b013e3182637d5f
– ident: 10.1016/j.cca.2021.10.005_b0150
  doi: 10.1016/j.cca.2021.03.016
– volume: 112
  year: 2019
  ident: 10.1016/j.cca.2021.10.005_b0090
  article-title: A review of feature selection methods in medical applications
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103375
– volume: 45
  start-page: 110
  issue: 1
  year: 2008
  ident: 10.1016/j.cca.2021.10.005_b0125
  article-title: Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2007.12.002
– volume: 131
  year: 2021
  ident: 10.1016/j.cca.2021.10.005_b0095
  article-title: Recognizing lung cancer and stages using a self-developed electronic nose system
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104294
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.cca.2021.10.005_b0055
  article-title: Lung cancer screening based on type-different sensor arrays
  publication-title: Sci. Rep.-UK
– volume: 17
  start-page: 1919
  issue: 8
  year: 2017
  ident: 10.1016/j.cca.2021.10.005_b0005
  article-title: Carbon nanomaterial based biosensors for non-invasive detection of cancer and disease biomarkers for clinical diagnosis
  publication-title: Sensors
  doi: 10.3390/s17081919
– volume: 8
  start-page: 2772
  issue: 10
  year: 2016
  ident: 10.1016/j.cca.2021.10.005_b0075
  article-title: Using a chemiresistor-based alkane sensor to distinguish exhaled breaths of lung cancer patients from subjects with no lung cancer
  publication-title: J. Thorac. Dis.
  doi: 10.21037/jtd.2016.10.30
– volume: 393
  start-page: 76
  issue: 2
  year: 2008
  ident: 10.1016/j.cca.2021.10.005_b0070
  article-title: Detection of lung cancer using weighted digital analysis of breath biomarkers
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cca.2008.02.021
– volume: 347
  start-page: 25
  issue: 1–2
  year: 2004
  ident: 10.1016/j.cca.2021.10.005_b0020
  article-title: Diagnostic potential of breath analysis—focus on volatile organic compounds
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cccn.2004.04.023
– volume: 1
  start-page: 1
  issue: 4
  year: 2015
  ident: 10.1016/j.cca.2021.10.005_b0110
  article-title: Xgboost: extreme gradient boosting
  publication-title: R package version 0.4-2
– volume: 255
  start-page: 800
  year: 2018
  ident: 10.1016/j.cca.2021.10.005_b0050
  article-title: Analysis of volatile organic compounds in exhaled breath for lung cancer diagnosis using a sensor system
  publication-title: Sensor. Actuat. B – Chem.
  doi: 10.1016/j.snb.2017.08.057
– volume: 20
  start-page: 130
  issue: 2
  year: 2014
  ident: 10.1016/j.cca.2021.10.005_b0145
  article-title: The olfactory sense and its clinical applications
  publication-title: J. Alternative Complement. Med.
– volume: 21
  start-page: 983
  issue: 8
  year: 2016
  ident: 10.1016/j.cca.2021.10.005_b0115
  article-title: Bioactive molecule prediction using extreme gradient boosting
  publication-title: Molecules
  doi: 10.3390/molecules21080983
– volume: 15
  issue: 4
  year: 2021
  ident: 10.1016/j.cca.2021.10.005_b0085
  article-title: Discrimination of COPD and lung cancer from controls through breath analysis using a self-developed e-nose
  publication-title: J. Breath Res.
  doi: 10.1088/1752-7163/ac1326
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.cca.2021.10.005_b0130
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
SSID ssj0004061
Score 2.5588481
Snippet •An e-nose system was developed with five MOS gas sensors.•Non-invasive diagnosis of COPD and lung cancer was done through breath analysis.•Selecting patients...
The chemical gas sensor array based electronic-nose (e-nose) devices with machine learning algorithms can detect and differentiate expelled breath samples of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 231
SubjectTerms Breath analysis
Breath Tests
COPD
Electronic Nose
Ensemble learning
Humans
KPCA
Lung cancer
Lung Neoplasms - diagnosis
Machine Learning
Pulmonary Disease, Chronic Obstructive - diagnosis
Volatile Organic Compounds
Title Detection of COPD and Lung Cancer with electronic nose using ensemble learning methods
URI https://dx.doi.org/10.1016/j.cca.2021.10.005
https://www.ncbi.nlm.nih.gov/pubmed/34627826
https://www.proquest.com/docview/2580940873
Volume 523
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1VIAEXxE7ZZCROSClJbGc5VgFUlhYOgHqLEseuikpadbny7cxkKeIAB45xPIo1Y888ZzaACzu1VaiEa5lApZbgyuCZM47lKi2NzELDQ8pG7va8zqu478t-A6I6F4bCKivdX-r0QltXI1cVN68mwyHl-NrU_JAqYFGRlSKDXfi0y1uf32EeZLDqbmo0u_ZsFjFeuHy8IrpOqwjwkr_Zpt-wZ2GDbrdgswKPrF2ubxsaOt-B9aju2bYDa93KVb4Lb9d6XoRZ5WxsWPT0fM2SPGOPeLhZRKKeMvoHy7774LB8PNOMAuEHDC-3-iMdaVZ1lRiwstX0bA9eb29eoo5VNVGwFJd8bvmI2JRA3JDZqTSOVo6tuG9CjddigkcmSDzfZLaSSgrtKbRoaZoJ7XMtFJLyfVjJx7k-BEYuy8SzlWM8tH0ySAS-TkPlE-7jOmyCXbMvVlWFcWp0MYrrULL3GDkeE8dpCMmacLkkmZTlNf6aLGqZxD_2SIzq_y-y81p-MYqDHCJJrseLWezKgMoHBj5vwkEp2OUquPBcRE_e0f8-egwb9FQGvpzAyny60KcIX-bpWbE_z2C1fffQ6X0BTOvrjQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6hRYJeUNm-tuXhSpyQUpzYzuO4CqCFfcABKm5W4tiICrKIXf5_ZxJnEQc4cLUzijNje2Yyjw_ggJfcZEZGgUtNGUhhHJ45FwaRscqpKnMio2rk6SweXcvzG3WzBnlXC0Nplf7ub-_05rb2I0eem0ePd3dU48sJ_JA6YFGTFXSB1qk7lerB-vBsPJq9lEfyOOwA1YigC242aV74BeglRuGfJsdLvaWe3jI_GzV0-hm2vP3Ihu0St2HN1n3YzDvYtj5sTH20_Av8PbbLJtOqZnPH8ovLY1bUFZvg-WY5SfuJ0W9Y9gKFw-r5wjLKhb9l6N_ah_LeMg8scctatOnFV7g-PbnKR4HHUQiMUGIZJGi0GYmmQ8VL5UJrQm5E4jKLnjFZSC4t4sRV3CijpI0NKrWyrKRNhJUGScU36NXz2v4ARlHLIuYmdDGqP5UWEqfLzCRk-gmbDYB37NPGNxknrIt73WWT_dPIcU0cpyEkG8DhiuSx7bDx3sOyk4l-tU00aoD3yH538tMoDoqJFLWdPy90pFLqIJgmYgDfW8GuViFkHKEBFf_82Ev3YXN0NZ3oydls_As-0UybB7MDveXTs91Fa2ZZ7vnd-h9t7u4-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+COPD+and+Lung+Cancer+with+electronic+nose+using+ensemble+learning+methods&rft.jtitle=Clinica+chimica+acta&rft.au=V+A%2C+Binson&rft.au=Subramoniam%2C+M&rft.au=Mathew%2C+Luke&rft.date=2021-12-01&rft.issn=1873-3492&rft.eissn=1873-3492&rft.volume=523&rft.spage=231&rft_id=info:doi/10.1016%2Fj.cca.2021.10.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-8981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-8981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-8981&client=summon