Influence of burner nozzle configuration, and inlet gas composition on combustion, gas dynamics, temperature and concentration profile in a rotary hearth furnace
A CDF model for simulating gas dynamics, heat and mass transfer in the freeboard of a pilot-scale Rotary Hearth Furnace (RHF) is developed in conjunction with an independent solid reduction model at the bottom of the hearth. The effect of air-inlet configuration and inlet fuel composition on the fue...
Saved in:
Published in | Ironmaking & steelmaking Vol. 48; no. 3; pp. 229 - 241 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London, England
Taylor & Francis
16.03.2021
SAGE Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A CDF model for simulating gas dynamics, heat and mass transfer in the freeboard of a pilot-scale Rotary Hearth Furnace (RHF) is developed in conjunction with an independent solid reduction model at the bottom of the hearth. The effect of air-inlet configuration and inlet fuel composition on the fuel requirement, exit gas composition, fluid flow, temperature, and gaseous composition distribution have been investigated using this model. The lower air-inlet tubes orientated at 5° upwards keeping remaining air and fuel tubes horizontal emerged as the most recommended burner configuration. Various alternative fuels categorized in terms of calorific values, demonstrated that the fuel with high calorific value required less fuel and produced less CO
2
emission. Interestingly, it was found that for the same calorific value a combination of blast furnace gas and coke oven gas (BF+COG) produced less CO
2
emission compared to a combination of COG+BF+NG (Natural gas). |
---|---|
AbstractList | A CDF model for simulating gas dynamics, heat and mass transfer in the freeboard of a pilot-scale Rotary Hearth Furnace (RHF) is developed in conjunction with an independent solid reduction model at the bottom of the hearth. The effect of air-inlet configuration and inlet fuel composition on the fuel requirement, exit gas composition, fluid flow, temperature, and gaseous composition distribution have been investigated using this model. The lower air-inlet tubes orientated at 5° upwards keeping remaining air and fuel tubes horizontal emerged as the most recommended burner configuration. Various alternative fuels categorized in terms of calorific values, demonstrated that the fuel with high calorific value required less fuel and produced less CO2 emission. Interestingly, it was found that for the same calorific value a combination of blast furnace gas and coke oven gas (BF+COG) produced less CO2 emission compared to a combination of COG+BF+NG (Natural gas). A CDF model for simulating gas dynamics, heat and mass transfer in the freeboard of a pilot-scale Rotary Hearth Furnace (RHF) is developed in conjunction with an independent solid reduction model at the bottom of the hearth. The effect of air-inlet configuration and inlet fuel composition on the fuel requirement, exit gas composition, fluid flow, temperature, and gaseous composition distribution have been investigated using this model. The lower air-inlet tubes orientated at 5° upwards keeping remaining air and fuel tubes horizontal emerged as the most recommended burner configuration. Various alternative fuels categorized in terms of calorific values, demonstrated that the fuel with high calorific value required less fuel and produced less CO 2 emission. Interestingly, it was found that for the same calorific value a combination of blast furnace gas and coke oven gas (BF+COG) produced less CO 2 emission compared to a combination of COG+BF+NG (Natural gas). |
Author | Roy, Gour Gopal Saleem, Sooraj |
Author_xml | – sequence: 1 givenname: Sooraj orcidid: 0000-0002-7405-2052 surname: Saleem fullname: Saleem, Sooraj email: sooraj546@gmail.com organization: Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur – sequence: 2 givenname: Gour Gopal surname: Roy fullname: Roy, Gour Gopal organization: Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur |
BookMark | eNqFkN9KwzAUxoNMcE4fQcgD2Jmm69rcKcM_A8EbvQ4n6cmMtMlIWmS-jW9qavVWIRCS73y_8_GdkpnzDgm5yNkyZzW7YgXLBS-KJWc8fVVlLUR9ROZ5tSoyXud8RubjTDYOnZDTGN8YY1XFqzn53DrTDug0Um-oGoLDQJ3_-GiRau-M3Q0BeuvdJQXXUOta7OkOYhK7vY92lGg66amGOA2OcnNw0FkdL2mP3R4TYwj4jUhUja6fqHQfvLFpl3UUaPA9hAN9RQj9KzUpDGg8I8cG2ojnP_eCvNzdPm8essen--3m5jHTRVn02RrLZr1iShgUoCvIGQOhuEoFYYVotAaABmoQvFRM1QilUKu1aFba5EzpYkHKiauDjzGgkftgu5RH5kyOPcvfnuXYs_zpOfn45IuwQ_nmx9Rt_Nd0PZmsMz508O5D28geDq0PJoDTNsrib8QXfLeawA |
CitedBy_id | crossref_primary_10_1007_s12046_023_02095_2 crossref_primary_10_1002_srin_202300596 crossref_primary_10_1016_j_fuproc_2022_107450 crossref_primary_10_1007_s42243_023_01004_5 crossref_primary_10_1007_s12666_023_03036_7 crossref_primary_10_1007_s11663_020_01981_y |
Cites_doi | 10.1007/BF02913373 10.1007/s11663-020-01778-z 10.1007/s11367-015-0904-9 10.1007/BF02656367 10.1007/s12666-014-0434-3 10.1007/s11663-014-0160-6 10.2355/isijinternational.39.130 10.2355/isijinternational1966.23.490 10.1179/irs.2001.28.5.384 10.2355/isijinternational.32.829 10.1016/j.ijheatmasstransfer.2006.10.048 10.1016/S0021-8502(99)00530-3 10.1007/s11663-008-9201-3 10.1016/j.mcm.2005.05.014 10.1007/BF02657657 10.1007/s12613-013-0777-5 10.1007/s11663-003-0059-0 10.1016/j.compchemeng.2006.11.009 10.1016/S0082-0784(77)80366-4 10.1007/s12613-013-0832-2 10.1007/s11663-013-0021-8 |
ContentType | Journal Article |
Copyright | 2020 Institute of Materials, Minerals and Mining 2020 2020 Institute of Materials, Minerals and Mining |
Copyright_xml | – notice: 2020 Institute of Materials, Minerals and Mining 2020 – notice: 2020 Institute of Materials, Minerals and Mining |
DBID | AAYXX CITATION |
DOI | 10.1080/03019233.2020.1758998 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1743-2812 |
EndPage | 241 |
ExternalDocumentID | 10_1080_03019233_2020_1758998 10.1080_03019233.2020.1758998 1758998 |
Genre | Research Articles |
GroupedDBID | -~X 002 0BK 1~B 29J 4.4 5GY 7WY 8FL AAAVI AAJMT AALDU AAMIU AAPUL AAQRR ABBKH ABDBF ABFIM ABJVF ABLIJ ABPTK ABQHQ ABXUL ACFOO ACIWK ACTIO ADCVX ADGTB AEGYZ AEISY AENEX AFWLO AGDLA AHDLD AIJEM AIRXU AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AWQZV BLEHA CCCUG CS3 DGEBU DU5 E01 EAP EBS EMK EPL ESX GCUZY GROUPED_ABI_INFORM_COMPLETE H13 HCLVR HZ~ I-F IPNFZ IRD ITF ITG ITH K60 K6~ KYCEM LJTGL M4Z MV1 P2P P75 P7B RIG RNANH ROSJB RTWRZ TCY TEN TEX TFL TFT TFW TN5 TTHFI TUS ZGOLN ~02 0R~ 3V. 7RQ 883 8FE 8FG 8R4 8R5 AATAA ABJCF ABPNF ABRHV ABTAH ABUWG ABXYU ACOXC ACTTO ACUIR ACVGN ADVBO AEAXR AEXNY AFFNX AFION AFKRA AGKLV AGVKY AGWUF AI. ALKDR ALRRR ARTOV AWYRJ AZQEC BENPR BEZIV BGLVJ BPHCQ CCPQU CYRSC D1I DAOYK DWQXO EJD FRNLG HCIFZ J8X KB. M0F M46 OPCYK PDBOC PQBIZ PQBZA PQQKQ PROAC Q2X SCNPE SFC TDBHL VH1 ZY4 AAYXX ABKLS CITATION |
ID | FETCH-LOGICAL-c353t-6e5d640b9fe9ac7a100a9b2b080e7eefccaaada8a925b0b8ea59b469d4cf10bc3 |
ISSN | 0301-9233 |
IngestDate | Fri Aug 23 00:10:02 EDT 2024 Tue Jul 16 20:50:12 EDT 2024 Tue Jun 13 19:27:32 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | combustion burner configuration fuel gas composition gas dynamics DRI Rotary hearth furnace CO2 emission Reduction Kinetics |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c353t-6e5d640b9fe9ac7a100a9b2b080e7eefccaaada8a925b0b8ea59b469d4cf10bc3 |
ORCID | 0000-0002-7405-2052 |
PageCount | 13 |
ParticipantIDs | sage_journals_10_1080_03019233_2020_1758998 informaworld_taylorfrancis_310_1080_03019233_2020_1758998 crossref_primary_10_1080_03019233_2020_1758998 |
PublicationCentury | 2000 |
PublicationDate | 2021-03-16 |
PublicationDateYYYYMMDD | 2021-03-16 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England |
PublicationTitle | Ironmaking & steelmaking |
PublicationYear | 2021 |
Publisher | Taylor & Francis SAGE Publications |
Publisher_xml | – name: Taylor & Francis – name: SAGE Publications |
References | Kumari, Roy, Sen 2014; 68 Dasgupta, Saleem, Srirangam 2020; 51 Liu, Su, Wen 2014; 45B Seaton, Foster, Velasco 1983; 23 Shi, Donskoi 2005; 42 Ishikawa, Kopfle, Mcclelland 2008; 53 Liu, Wen, Lou 2014; 45B Donskoi, Mcelwain 2001; 28 Halder, Fruehan 2008; 39B Liu, Su, Wen 2013; 20 Han, Baek, Kang 2007; 50 Ristovski, Morawska, Thomas 2000; 31 Bieda, Grzesik, Sala 2015; 20 Wu, Jiang, Zhang 2013; 20 Rao 1971; 2 Fruehan 1977; 8B Habibi, Merci, Heynderickx 2007; 31 Donskoi, McElwain 2003; 34B Sun, Lu 1999; 39 Magnussen, Hjertager 1976; 16 Srinivasan, Lahiri 1977; 8B Akiyama, Ohta, Takahashi 1992; 32 Ishikawa H (CIT0001) 2008; 53 CIT0010 CIT0021 CIT0020 CIT0012 CIT0011 CIT0022 CIT0003 CIT0014 Rao YK. (CIT0002) 1971; 2 CIT0013 CIT0005 CIT0016 CIT0004 CIT0015 CIT0007 CIT0018 CIT0006 CIT0017 CIT0009 CIT0008 CIT0019 |
References_xml | – volume: 51 start-page: 818 year: 2020 end-page: 826 article-title: A computational study on the reduction behavior of iron ore/carbon composite pellets in both single and multi-layer bed rotary hearth furnace publication-title: Mater Trans B contributor: fullname: Srirangam – volume: 2 start-page: 1439 year: 1971 end-page: 1447 article-title: The kinetics of reduction of hematite by carbon publication-title: Metall Trans contributor: fullname: Rao – volume: 8B start-page: 279 year: 1977 end-page: 286 article-title: The rate of reduction of iron oxides by carbon publication-title: Metall Trans contributor: fullname: Fruehan – volume: 31 start-page: 1389 issue: 11 year: 2007 end-page: 1406 article-title: Impact of radiation models in CFD simulations of steam cracking furnaces publication-title: Comput Chem Eng contributor: fullname: Heynderickx – volume: 20 start-page: 1089 year: 2015 end-page: 1101 article-title: Life cycle inventory processes of the integrated steel plant (ISP) in Krakow, Poland—coke production, a case study publication-title: Int J Life Cycle Assess contributor: fullname: Sala – volume: 23 start-page: 490 year: 1983 end-page: 496 article-title: Reduction kinetics of hematite and magnetite pellets containing coal char publication-title: ISIJ Int contributor: fullname: Velasco – volume: 39B start-page: 809 year: 2008 end-page: 817 article-title: Reduction of iron-oxide-carbon composites: part III. Shrinkage of composite pellets during reduction publication-title: Metall Mater Trans contributor: fullname: Fruehan – volume: 45B start-page: 2370 year: 2014 end-page: 2380 article-title: Numerical investigation of the effect of C/O mole ratio on the performance of rotary hearth furnace using a combined model publication-title: Metall Trans B contributor: fullname: Lou – volume: 34B start-page: 93 year: 2003 end-page: 102 article-title: Estimation and modeling of parameters for direct reduction in iron ore/coal composites: part I. Physical parameters publication-title: Mater Trans B contributor: fullname: McElwain – volume: 31 start-page: 403 issue: 4 year: 2000 end-page: 413 article-title: Particle emissions from compressed natural gas engines publication-title: J Aerosol Sci contributor: fullname: Thomas – volume: 8B start-page: 175 year: 1977 end-page: 178 article-title: Studies on the reduction of hematite by carbon publication-title: Metall Trans contributor: fullname: Lahiri – volume: 39 start-page: 130 year: 1999 end-page: 138 article-title: Building of mathematical model for the reduction behaviour of iron ore/coal composites publication-title: ISIJ Int contributor: fullname: Lu – volume: 45B start-page: 251 year: 2014 end-page: 261 article-title: CFD modelling of flow temperature and concentration field in a pilot scale rotary hearth furnace publication-title: Metall Trans B contributor: fullname: Wen – volume: 53 start-page: 541 year: 2008 end-page: 545 article-title: Rotary hearth furnace technologies for iron ore and recycling applications publication-title: Arch Metall Mater contributor: fullname: Mcclelland – volume: 42 start-page: 45 year: 2005 end-page: 60 article-title: Modeling the reduction of an iron-ore-coal composite pellet with conduction and convection in an axisymmetric temperature field publication-title: Math Comput Model contributor: fullname: Donskoi – volume: 68 start-page: 109 year: 2014 end-page: 116 article-title: Mathematical modeling to estimate the rate parameters and thermal efficiency for the reduction of iron ore- coal composite pellets in the multi-layer bed at rotary hearth furnace publication-title: Trans Indian Inst Met contributor: fullname: Sen – volume: 20 start-page: 636 year: 2013 end-page: 644 article-title: Numerical simulation of the direct reduction of pellets in a rotary hearth furnace for zinc-containing metallurgical dust treatment publication-title: Int J Miner Metall Mater contributor: fullname: Zhang – volume: 50 start-page: 2019 year: 2007 end-page: 2023 article-title: Numerical analysis of heating characteristics of slab in a bench scale reheating furnace publication-title: Int J Heat Mass Transf contributor: fullname: Kang – volume: 28 start-page: 384 issue: 5 year: 2001 end-page: 389 article-title: Mathematical modeling of non-isothermal reduction in highly swelling iron ore – coal char composite pellet publication-title: Ironmak Steelmak contributor: fullname: Mcelwain – volume: 16 start-page: 719 issue: 1 year: 1976 end-page: 729 article-title: On mathematical models of turbulent combustion with special emphasis on soot formation and combustion publication-title: 16th Symp Combust contributor: fullname: Hjertager – volume: 32 start-page: 829 issue: 7 year: 1992 end-page: 837 article-title: Measurement and modeling of thermal conductivity for dense iron oxide and porous iron ore agglomerates in stepwise reduction publication-title: ISIJ Int contributor: fullname: Takahashi – volume: 20 start-page: 1042 year: 2013 end-page: 1049 article-title: Mathematical simulation of direct reduction process in zinc-bearing pellets publication-title: Int J Miner Metall Mater contributor: fullname: Wen – volume: 2 start-page: 1439 year: 1971 ident: CIT0002 publication-title: Metall Trans doi: 10.1007/BF02913373 contributor: fullname: Rao YK. – ident: CIT0020 doi: 10.1007/s11663-020-01778-z – ident: CIT0021 doi: 10.1007/s11367-015-0904-9 – ident: CIT0004 doi: 10.1007/BF02656367 – ident: CIT0010 doi: 10.1007/s12666-014-0434-3 – volume: 53 start-page: 541 year: 2008 ident: CIT0001 publication-title: Arch Metall Mater contributor: fullname: Ishikawa H – ident: CIT0014 doi: 10.1007/s11663-014-0160-6 – ident: CIT0006 doi: 10.2355/isijinternational.39.130 – ident: CIT0005 doi: 10.2355/isijinternational1966.23.490 – ident: CIT0008 doi: 10.1179/irs.2001.28.5.384 – ident: CIT0019 doi: 10.2355/isijinternational.32.829 – ident: CIT0015 doi: 10.1016/j.ijheatmasstransfer.2006.10.048 – ident: CIT0022 doi: 10.1016/S0021-8502(99)00530-3 – ident: CIT0009 doi: 10.1007/s11663-008-9201-3 – ident: CIT0007 doi: 10.1016/j.mcm.2005.05.014 – ident: CIT0003 doi: 10.1007/BF02657657 – ident: CIT0012 doi: 10.1007/s12613-013-0777-5 – ident: CIT0018 doi: 10.1007/s11663-003-0059-0 – ident: CIT0016 doi: 10.1016/j.compchemeng.2006.11.009 – ident: CIT0017 doi: 10.1016/S0082-0784(77)80366-4 – ident: CIT0011 doi: 10.1007/s12613-013-0832-2 – ident: CIT0013 doi: 10.1007/s11663-013-0021-8 |
SSID | ssj0007727 |
Score | 2.2961817 |
Snippet | A CDF model for simulating gas dynamics, heat and mass transfer in the freeboard of a pilot-scale Rotary Hearth Furnace (RHF) is developed in conjunction with... |
SourceID | crossref sage informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 229 |
SubjectTerms | burner configuration combustion DRI emission fuel gas composition gas dynamics Reduction Kinetics Rotary hearth furnace |
Title | Influence of burner nozzle configuration, and inlet gas composition on combustion, gas dynamics, temperature and concentration profile in a rotary hearth furnace |
URI | https://www.tandfonline.com/doi/abs/10.1080/03019233.2020.1758998 https://journals.sagepub.com/doi/full/10.1080/03019233.2020.1758998 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwFLamw6U9VKWLSmkrH3rLZJTFWXyEtggqtZcOErfIjm1KhRIEmcv8G8Qf5dnPmUkKops0siabnfH3zfOz_RZCPsR5DcOyikOjRBoyLU1YMl2GKskNaOexyiPrjfz1W354zL6cZCeTyc3AamnZyXm9utev5F9QhXOAq_WS_Qtk15XCCfgO-EIJCEP5Rxgf9RlGrMonXc76oGlXq3Nngm7OTpeIb2-iedYASsGpuHKW5N5cy24XwKG0ab3wVnuDwkz1DmUbvsrHXvZucA3adLrHfdZvu3Aigsu2s2Z4Nk129yMw9jfUI2OjI-tV5zJgOdIBx_Q5Hq_XemDI0o6l31vg58_NlhA61UDHQHHh-8YvWCTOYgv9KR3FFndyhwxEHoibEFROFHkaRbINopqU8Uhms3LAzXQogP36CY7lCQbVujNMeLvK1Om36RzeEk7CzIljRuxfInD7K4_IVgLSrJySrb39T_sH6wEfJigFblbhy_eOYjaE-31NjFSgUYDckTmh03AWz8hTPzWhe8izbTLRzXPyZBCw8gW5XjOOtoYi4ygyjo4YN6NAFOr4RoFOdMA3Cp8N32bucs-2GR1wzVUx4hr1XIOKqaDINYpco55rL8nxwefFx8PQJ_kI6zRLuzDXmcpZJLnRXNSFiKNIcJlI6D1daG1AwgihRCl4kslIllpkXLKcK1abOJJ1-opMm7bRrwnNYw2jpSwMKzTLJRNMRYWOVQkqaMG52CHzvt-rC4zlUsV9iFwPVGWBqjxQO4QP0ak6R12DrK3S3zwbWCgrLy6uHm7pzX-0tEseb_5mb8m0u1zqd6Apd_K9Z-otJkG-QQ |
link.rule.ids | 315,783,787,27938,27939 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+burner+nozzle+configuration%2C+and+inlet+gas+composition+on+combustion%2C+gas+dynamics%2C+temperature+and+concentration+profile+in+a+rotary+hearth+furnace&rft.jtitle=Ironmaking+%26+steelmaking&rft.au=Saleem%2C+Sooraj&rft.au=Roy%2C+Gour+Gopal&rft.date=2021-03-16&rft.pub=Taylor+%26+Francis&rft.issn=0301-9233&rft.eissn=1743-2812&rft.volume=48&rft.issue=3&rft.spage=229&rft.epage=241&rft_id=info:doi/10.1080%2F03019233.2020.1758998&rft.externalDocID=1758998 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-9233&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-9233&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-9233&client=summon |