Ontology-based categorization of clinical studies by their conditions

[Display omitted] The free-text Condition data field in the ClinicalTrials.gov is not amenable to computational processes for retrieving, aggregating and visualizing clinical studies by condition categories. This paper contributes a method for automated ontology-based categorization of clinical stud...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical informatics Vol. 135; p. 104235
Main Authors Liu, Hao, Carini, Simona, Chen, Zhehuan, Phillips Hey, Spencer, Sim, Ida, Weng, Chunhua
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] The free-text Condition data field in the ClinicalTrials.gov is not amenable to computational processes for retrieving, aggregating and visualizing clinical studies by condition categories. This paper contributes a method for automated ontology-based categorization of clinical studies by their conditions. Our method first maps text entries in ClinicalTrials.gov’s Condition field to standard condition concepts in the OMOP Common Data Model by using SNOMED CT as a reference ontology and using Usagi for concept normalization, followed by hierarchical traversal of the SNOMED ontology for concept expansion, ontology-driven condition categorization, and visualization. We compared the accuracy of this method to that of the MeSH-based method. We reviewed the 4,506 studies on Vivli.org categorized by our method. Condition terms of 4,501 (99.89%) studies were successfully mapped to SNOMED CT concepts, and with a minimum concept mapping score threshold, 4,428 (98.27%) studies were categorized into 31 predefined categories. When validating with manual categorization results on a random sample of 300 studies, our method achieved an estimated categorization accuracy of 95.7%, while the MeSH-based method had an accuracy of 85.0%. We showed that categorizing clinical studies using their Condition terms with referencing to SNOMED CT achieved a better accuracy and coverage than using MeSH terms. The proposed ontology-driven condition categorization was useful to create accurate clinical study categorization that enables clinical researchers to aggregate evidence from a large number of clinical studies.
AbstractList The free-text Condition data field in the ClinicalTrials.gov is not amenable to computational processes for retrieving, aggregating and visualizing clinical studies by condition categories. This paper contributes a method for automated ontology-based categorization of clinical studies by their conditions. Our method first maps text entries in ClinicalTrials.gov's Condition field to standard condition concepts in the OMOP Common Data Model by using SNOMED CT as a reference ontology and using Usagi for concept normalization, followed by hierarchical traversal of the SNOMED ontology for concept expansion, ontology-driven condition categorization, and visualization. We compared the accuracy of this method to that of the MeSH-based method. We reviewed the 4,506 studies on Vivli.org categorized by our method. Condition terms of 4,501 (99.89%) studies were successfully mapped to SNOMED CT concepts, and with a minimum concept mapping score threshold, 4,428 (98.27%) studies were categorized into 31 predefined categories. When validating with manual categorization results on a random sample of 300 studies, our method achieved an estimated categorization accuracy of 95.7%, while the MeSH-based method had an accuracy of 85.0%. We showed that categorizing clinical studies using their Condition terms with referencing to SNOMED CT achieved a better accuracy and coverage than using MeSH terms. The proposed ontology-driven condition categorization was useful to create accurate clinical study categorization that enables clinical researchers to aggregate evidence from a large number of clinical studies.
The free-text Condition data field in the ClinicalTrials.gov is not amenable to computational processes for retrieving, aggregating and visualizing clinical studies by condition categories. This paper contributes a method for automated ontology-based categorization of clinical studies by their conditions.OBJECTIVEThe free-text Condition data field in the ClinicalTrials.gov is not amenable to computational processes for retrieving, aggregating and visualizing clinical studies by condition categories. This paper contributes a method for automated ontology-based categorization of clinical studies by their conditions.Our method first maps text entries in ClinicalTrials.gov's Condition field to standard condition concepts in the OMOP Common Data Model by using SNOMED CT as a reference ontology and using Usagi for concept normalization, followed by hierarchical traversal of the SNOMED ontology for concept expansion, ontology-driven condition categorization, and visualization. We compared the accuracy of this method to that of the MeSH-based method.MATERIALS AND METHODSOur method first maps text entries in ClinicalTrials.gov's Condition field to standard condition concepts in the OMOP Common Data Model by using SNOMED CT as a reference ontology and using Usagi for concept normalization, followed by hierarchical traversal of the SNOMED ontology for concept expansion, ontology-driven condition categorization, and visualization. We compared the accuracy of this method to that of the MeSH-based method.We reviewed the 4,506 studies on Vivli.org categorized by our method. Condition terms of 4,501 (99.89%) studies were successfully mapped to SNOMED CT concepts, and with a minimum concept mapping score threshold, 4,428 (98.27%) studies were categorized into 31 predefined categories. When validating with manual categorization results on a random sample of 300 studies, our method achieved an estimated categorization accuracy of 95.7%, while the MeSH-based method had an accuracy of 85.0%.RESULTSWe reviewed the 4,506 studies on Vivli.org categorized by our method. Condition terms of 4,501 (99.89%) studies were successfully mapped to SNOMED CT concepts, and with a minimum concept mapping score threshold, 4,428 (98.27%) studies were categorized into 31 predefined categories. When validating with manual categorization results on a random sample of 300 studies, our method achieved an estimated categorization accuracy of 95.7%, while the MeSH-based method had an accuracy of 85.0%.We showed that categorizing clinical studies using their Condition terms with referencing to SNOMED CT achieved a better accuracy and coverage than using MeSH terms. The proposed ontology-driven condition categorization was useful to create accurate clinical study categorization that enables clinical researchers to aggregate evidence from a large number of clinical studies.CONCLUSIONWe showed that categorizing clinical studies using their Condition terms with referencing to SNOMED CT achieved a better accuracy and coverage than using MeSH terms. The proposed ontology-driven condition categorization was useful to create accurate clinical study categorization that enables clinical researchers to aggregate evidence from a large number of clinical studies.
[Display omitted] The free-text Condition data field in the ClinicalTrials.gov is not amenable to computational processes for retrieving, aggregating and visualizing clinical studies by condition categories. This paper contributes a method for automated ontology-based categorization of clinical studies by their conditions. Our method first maps text entries in ClinicalTrials.gov’s Condition field to standard condition concepts in the OMOP Common Data Model by using SNOMED CT as a reference ontology and using Usagi for concept normalization, followed by hierarchical traversal of the SNOMED ontology for concept expansion, ontology-driven condition categorization, and visualization. We compared the accuracy of this method to that of the MeSH-based method. We reviewed the 4,506 studies on Vivli.org categorized by our method. Condition terms of 4,501 (99.89%) studies were successfully mapped to SNOMED CT concepts, and with a minimum concept mapping score threshold, 4,428 (98.27%) studies were categorized into 31 predefined categories. When validating with manual categorization results on a random sample of 300 studies, our method achieved an estimated categorization accuracy of 95.7%, while the MeSH-based method had an accuracy of 85.0%. We showed that categorizing clinical studies using their Condition terms with referencing to SNOMED CT achieved a better accuracy and coverage than using MeSH terms. The proposed ontology-driven condition categorization was useful to create accurate clinical study categorization that enables clinical researchers to aggregate evidence from a large number of clinical studies.
ArticleNumber 104235
Author Liu, Hao
Sim, Ida
Phillips Hey, Spencer
Carini, Simona
Weng, Chunhua
Chen, Zhehuan
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0000-0002-1975-1272
  surname: Liu
  fullname: Liu, Hao
  organization: Department of Biomedical Informatics, Columbia University, New York, NY, USA
– sequence: 2
  givenname: Simona
  orcidid: 0000-0002-4054-9458
  surname: Carini
  fullname: Carini, Simona
  organization: Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
– sequence: 3
  givenname: Zhehuan
  surname: Chen
  fullname: Chen, Zhehuan
  organization: Department of Biomedical Informatics, Columbia University, New York, NY, USA
– sequence: 4
  givenname: Spencer
  surname: Phillips Hey
  fullname: Phillips Hey, Spencer
  organization: Prism Analytic Technologies, Boston, MA, USA
– sequence: 5
  givenname: Ida
  orcidid: 0000-0002-1045-8459
  surname: Sim
  fullname: Sim, Ida
  organization: Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
– sequence: 6
  givenname: Chunhua
  orcidid: 0000-0002-9624-0214
  surname: Weng
  fullname: Weng, Chunhua
  email: cw2384@cumc.columbia.edu
  organization: Department of Biomedical Informatics, Columbia University, New York, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36283581$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtKAzEUQINUfFQ_wI3M0s3UPCYzCa6k1AcI3eg65HFHU6aTmqRC_XqnVl246Co3cM6Fe07RqA89IHRB8IRgUl8vJgvjJxRTOvwryvgBOiGc0RJXAo_-5ro6RqcpLTAmhPP6CB2zmgrGBTlBs3mfQxdeN6XRCVxhdYbXEP2nzj70RWgL2_neW90VKa-dh1SYTZHfwMfCht75LZbO0GGruwTnP-8YvdzNnqcP5dP8_nF6-1RaxlkuayMxNKZmUlBaNdiCsG1jcdVQThhUrcHGcEdoQ7WVrRPSSEMqKSorpHYNG6Or3d5VDO9rSFktfbLQdbqHsE5qECWmQnI5oJc_6NoswalV9EsdN-r39AEgO8DGkFKE9g8hWG3zqoUa8qptXrXLOzjNP8f6_F0qR-27vebNzoQhz4eHqJL10FtwPoLNygW_x_4CDjyTYA
CitedBy_id crossref_primary_10_1093_database_baae117
crossref_primary_10_1371_journal_pone_0296864
crossref_primary_10_1093_jamia_ocad161
crossref_primary_10_3390_app13148159
crossref_primary_10_1016_j_jbi_2023_104509
Cites_doi 10.1093/bioinformatics/btt474
10.1016/S0140-6736(20)30925-9
10.1016/j.jbi.2015.07.010
10.1201/9780429246593
10.18653/v1/W18-5306
10.1093/bioinformatics/btz756
10.1093/bioinformatics/btw294
10.1093/bioinformatics/btv237
10.1162/089976698300017197
10.1186/s13326-017-0123-3
10.1186/s12859-016-1247-7
10.1056/NEJMp1605348
10.1136/jamia.2009.001560
10.1371/journal.pone.0033677
10.1093/bioinformatics/btz142
10.1016/S0140-6736(12)61899-6
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright © 2022 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Inc.
– notice: Copyright © 2022 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jbi.2022.104235
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Public Health
EISSN 1532-0480
ExternalDocumentID 36283581
10_1016_j_jbi_2022_104235
S1532046422002404
Genre Journal Article
Review
Research Support, N.I.H., Extramural
GroupedDBID ---
--K
--M
-~X
.DC
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAWTL
AAXUO
AAYFN
ABBOA
ABBQC
ABFRF
ABJNI
ABLVK
ABMAC
ABMZM
ABVKL
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BAWUL
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DIK
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LCYCR
LG5
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UAP
UHS
UNMZH
XPP
ZGI
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c353t-6b90e7b639822470ce8cf7c0472513e4fb0bb5d1272ac9fd89b9b14984c89ad73
IEDL.DBID IXB
ISSN 1532-0464
1532-0480
IngestDate Fri Jul 11 15:27:22 EDT 2025
Wed Feb 19 02:24:42 EST 2025
Thu Apr 24 23:00:55 EDT 2025
Tue Jul 01 04:12:11 EDT 2025
Fri Feb 23 02:39:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords SNOMED CT
Data Visualization
Ontology
Clinical Study
Categorization
Language English
License Copyright © 2022 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-6b90e7b639822470ce8cf7c0472513e4fb0bb5d1272ac9fd89b9b14984c89ad73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1975-1272
0000-0002-9624-0214
0000-0002-1045-8459
0000-0002-4054-9458
PMID 36283581
PQID 2729028959
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2729028959
pubmed_primary_36283581
crossref_primary_10_1016_j_jbi_2022_104235
crossref_citationtrail_10_1016_j_jbi_2022_104235
elsevier_sciencedirect_doi_10_1016_j_jbi_2022_104235
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of biomedical informatics
PublicationTitleAlternate J Biomed Inform
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Mork, Jimeno-Yepes, Aronson (b0055) 2013
B. Efron, R.J. Tibshirani, An introduction to the bootstrap. CRC press; 1994. 436 p. 184-188.
Dai, You, Lu, Huang, Mamitsuka, Zhu (b0130) 2020; 36
Savova, Masanz, Ogren, Zheng, Sohn, Kipper-Schuler (b0050) 2010; 17
Spectrum of diseases/conditions U.S. Food and Drug Administration: FDA; 2020 [updated 01/28/2020; cited 2021 09/09]. Available from: https://www.fda.gov/drugs/development-resources/spectrum-diseasesconditions.
SNOMED International [cited (b0080) 2021
International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM): National Center for Health Statistics; [cited (b0090) 2021
Davis, Wiegers, Rosenstein, Mattingly (b0045) 2012; 2012
Vos, Lim, Abbafati, Abbas, Abbasi, Abbasifard (b0150) 2020; 396
Schriml, Arze, Nadendla, Chang, Mazaitis, Felix (b0095) 2012; 40(Database issue):D940–D6
Liu, Peng, Wu, Zhai, Mamitsuka, Zhu (b0110) 2015; 31
OHDSI. Condition Domain: Observational Health Data Sciences and Informatics; [updated 03/12/2016; cited 2021 10/22]. Available from: https://www.ohdsi.org/web/wiki/doku.php?id=documentation:vocabulary:condition.
Leaman, Islamaj Doğan, Lu (b0040) 2013; 29
Atal, Zeitoun, Névéol, Ravaud, Porcher, Trinquart (b0135) 2016; 17
Leaman, Khare, Lu (b0025) 2015; 57
Peng, You, Wang, Zhai, Mamitsuka, Zhu (b0115) 2016; 32
Dietterich (b0170) 1998; 10
NIH Office of Data Science Strategy Announces New Initiative to Improve Access to NIH-funded Data [updated 01/26 2022; cited 2022 04/20]. Available from: https://datascience.nih.gov/news/nih-office-of-data-science-strategy-announces-new-initiative-to-improve-data-access.
Bodenreider (b0035) 2004; 32(suppl_1):D267–D70
International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM): National Center for Health Statistics; [cited (b0085) 2021
Jin Q, Dhingra B, Cohen W, Lu X. Attentionmesh: simple, effective and interpretable automatic mesh indexer. Proceedings of the 6th BioASQ Workshop A challenge on large-scale biomedical semantic indexing and question answering; 2018:47-56.
Aronson AR. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. Proceedings of the AMIA Symposium; 2001: American Medical Informatics Association:17.
Mao, Lu (b0105) 2017; 8
Hripcsak, Duke, Shah, Reich, Huser, Schuemie (b0075) 2015; 216
Medical Subject Headings: National Library of Medicine; 2021 [updated 09/08 2021; cited 2021 09/27]. Available from: https://www.nlm.nih.gov/mesh/meshhome.html.
Bierer, Li, Barnes, Sim (b0015) 2016; 374
Schuemie M. Usagi 2015 [cited 2021 10/25]. Available from: https://github.com/OHDSI/Usagi.
Clinicaltrials.gov protocol registration data element definitions for interventional and observational studies: Clinicaltrials.gov; 2020 [updated 10/01/2020; cited 2021 09/09]. Available from: https://prsinfo.clinicaltrials.gov/definitions.html#Conditions.
Tasneem, Aberle, Ananth, Chakraborty, Chiswell, McCourt (b0100) 2012; 7
WHO International Clinical Trials Registry Platform [cited (b0140) 2022
See Studies by Topic. ClinicalTrials.gov [cited 2022 May 16]. Available from: https://clinicaltrials.gov/ct2/search/browse?brwse=cond_cat.
Lee Y, Kang BR, Kim S. Development of a Deep Learning-Based Automated Mapping Tool in the Conversion Process of OMOP-CDM. OHDSI.
Xun, Jha, Yuan, Wang, Zhang (b0125) 2019; 35
Murray, Ezzati, Flaxman, Lim, Lozano, Michaud (b0145) 2012; 380
Bodenreider (10.1016/j.jbi.2022.104235_b0035) 2004; 32(suppl_1):D267–D70
10.1016/j.jbi.2022.104235_b0070
Peng (10.1016/j.jbi.2022.104235_b0115) 2016; 32
Murray (10.1016/j.jbi.2022.104235_b0145) 2012; 380
Hripcsak (10.1016/j.jbi.2022.104235_b0075) 2015; 216
International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM): National Center for Health Statistics; [cited (10.1016/j.jbi.2022.104235_b0085)
SNOMED International [cited (10.1016/j.jbi.2022.104235_b0080)
Dai (10.1016/j.jbi.2022.104235_b0130) 2020; 36
Vos (10.1016/j.jbi.2022.104235_b0150) 2020; 396
Savova (10.1016/j.jbi.2022.104235_b0050) 2010; 17
10.1016/j.jbi.2022.104235_b0155
10.1016/j.jbi.2022.104235_b0030
Mao (10.1016/j.jbi.2022.104235_b0105) 2017; 8
Liu (10.1016/j.jbi.2022.104235_b0110) 2015; 31
10.1016/j.jbi.2022.104235_b0060
Dietterich (10.1016/j.jbi.2022.104235_b0170) 1998; 10
Bierer (10.1016/j.jbi.2022.104235_b0015) 2016; 374
Xun (10.1016/j.jbi.2022.104235_b0125) 2019; 35
Leaman (10.1016/j.jbi.2022.104235_b0025) 2015; 57
Schriml (10.1016/j.jbi.2022.104235_b0095) 2012; 40(Database issue):D940–D6
Tasneem (10.1016/j.jbi.2022.104235_b0100) 2012; 7
cr-split#-10.1016/j.jbi.2022.104235_b0010.1
Mork (10.1016/j.jbi.2022.104235_b0055) 2013
cr-split#-10.1016/j.jbi.2022.104235_b0010.2
Atal (10.1016/j.jbi.2022.104235_b0135) 2016; 17
Leaman (10.1016/j.jbi.2022.104235_b0040) 2013; 29
10.1016/j.jbi.2022.104235_b0005
International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM): National Center for Health Statistics; [cited (10.1016/j.jbi.2022.104235_b0090)
WHO International Clinical Trials Registry Platform [cited (10.1016/j.jbi.2022.104235_b0140)
10.1016/j.jbi.2022.104235_b0065
10.1016/j.jbi.2022.104235_b0120
10.1016/j.jbi.2022.104235_b0165
10.1016/j.jbi.2022.104235_b0160
10.1016/j.jbi.2022.104235_b0020
Davis (10.1016/j.jbi.2022.104235_b0045) 2012
References_xml – year: 2021
  ident: b0085
  article-title: 10/25]
– reference: Clinicaltrials.gov protocol registration data element definitions for interventional and observational studies: Clinicaltrials.gov; 2020 [updated 10/01/2020; cited 2021 09/09]. Available from: https://prsinfo.clinicaltrials.gov/definitions.html#Conditions.
– volume: 374
  start-page: 2411
  year: 2016
  end-page: 2413
  ident: b0015
  article-title: A global, neutral platform for sharing trial data
  publication-title: N. Engl. J. Med.
– year: 2021
  ident: b0080
  article-title: 10/25]
– volume: 396
  start-page: 1204
  year: 2020
  end-page: 1222
  ident: b0150
  article-title: Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019
  publication-title: The Lancet.
– reference: Jin Q, Dhingra B, Cohen W, Lu X. Attentionmesh: simple, effective and interpretable automatic mesh indexer. Proceedings of the 6th BioASQ Workshop A challenge on large-scale biomedical semantic indexing and question answering; 2018:47-56.
– volume: 10
  start-page: 1895
  year: 1998
  end-page: 1923
  ident: b0170
  article-title: Approximate statistical tests for comparing supervised classification learning algorithms
  publication-title: Neural Comput.
– year: 2021
  ident: b0090
  article-title: 10/25]
– volume: 380
  start-page: 2063
  year: 2012
  end-page: 2066
  ident: b0145
  article-title: GBD 2010: design, definitions, and metrics
  publication-title: The Lancet.
– reference: Spectrum of diseases/conditions U.S. Food and Drug Administration: FDA; 2020 [updated 01/28/2020; cited 2021 09/09]. Available from: https://www.fda.gov/drugs/development-resources/spectrum-diseasesconditions.
– reference: B. Efron, R.J. Tibshirani, An introduction to the bootstrap. CRC press; 1994. 436 p. 184-188.
– start-page: bar065
  year: 2012; 2012:
  ident: b0045
  article-title: MEDIC: a practical disease vocabulary used at the Comparative Toxicogenomics Database
  publication-title: Database.
– volume: 36
  start-page: 1533
  year: 2020
  end-page: 1541
  ident: b0130
  article-title: FullMeSH: improving large-scale MeSH indexing with full text
  publication-title: Bioinformatics
– volume: 17
  start-page: 1
  year: 2016
  end-page: 14
  ident: b0135
  article-title: Automatic classification of registered clinical trials towards the Global Burden of Diseases taxonomy of diseases and injuries
  publication-title: BMC Bioinf.
– volume: 32(suppl_1):D267–D70
  year: 2004
  ident: b0035
  article-title: The unified medical language system (UMLS): integrating biomedical terminology
  publication-title: Nucleic Acids Res.
– volume: 29
  start-page: 2909
  year: 2013
  end-page: 2917
  ident: b0040
  article-title: DNorm: disease name normalization with pairwise learning to rank
  publication-title: Bioinformatics
– start-page: 1
  year: 2013
  ident: b0055
  article-title: The NLM Medical Text Indexer System for Indexing Biomedical Literature
  publication-title: BioASQ@ CLEF.
– volume: 216
  start-page: 574
  year: 2015
  ident: b0075
  article-title: Observational Health Data Sciences and Informatics (OHDSI): opportunities for observational researchers
  publication-title: Studies in health technology and informatics.
– reference: See Studies by Topic. ClinicalTrials.gov [cited 2022 May 16]. Available from: https://clinicaltrials.gov/ct2/search/browse?brwse=cond_cat.
– reference: Lee Y, Kang BR, Kim S. Development of a Deep Learning-Based Automated Mapping Tool in the Conversion Process of OMOP-CDM. OHDSI.
– reference: OHDSI. Condition Domain: Observational Health Data Sciences and Informatics; [updated 03/12/2016; cited 2021 10/22]. Available from: https://www.ohdsi.org/web/wiki/doku.php?id=documentation:vocabulary:condition.
– reference: NIH Office of Data Science Strategy Announces New Initiative to Improve Access to NIH-funded Data [updated 01/26 2022; cited 2022 04/20]. Available from: https://datascience.nih.gov/news/nih-office-of-data-science-strategy-announces-new-initiative-to-improve-data-access.
– volume: 35
  start-page: 3794
  year: 2019
  end-page: 3802
  ident: b0125
  article-title: MeSHProbeNet: a self-attentive probe net for MeSH indexing
  publication-title: Bioinformatics
– reference: Aronson AR. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. Proceedings of the AMIA Symposium; 2001: American Medical Informatics Association:17.
– reference: Medical Subject Headings: National Library of Medicine; 2021 [updated 09/08 2021; cited 2021 09/27]. Available from: https://www.nlm.nih.gov/mesh/meshhome.html.
– volume: 40(Database issue):D940–D6
  year: 2012
  ident: b0095
  article-title: Disease Ontology: a backbone for disease semantic integration
  publication-title: Nucleic Acids Res.
– volume: 32
  start-page: i70
  year: 2016
  end-page: i79
  ident: b0115
  article-title: DeepMeSH: deep semantic representation for improving large-scale MeSH indexing
  publication-title: Bioinformatics
– volume: 57
  start-page: 28
  year: 2015
  end-page: 37
  ident: b0025
  article-title: Challenges in clinical natural language processing for automated disorder normalization
  publication-title: J. Biomed. Inform.
– volume: 7
  start-page: e33677
  year: 2012
  ident: b0100
  article-title: The database for aggregate analysis of ClinicalTrials. gov (AACT) and subsequent regrouping by clinical specialty
  publication-title: PLoS ONE
– volume: 31
  start-page: i339
  year: 2015
  end-page: i347
  ident: b0110
  article-title: MeSHLabeler: improving the accuracy of large-scale MeSH indexing by integrating diverse evidence
  publication-title: Bioinformatics
– volume: 8
  start-page: 1
  year: 2017
  end-page: 9
  ident: b0105
  article-title: MeSH Now: automatic MeSH indexing at PubMed scale via learning to rank
  publication-title: Journal of biomedical semantics.
– year: 2022
  ident: b0140
  article-title: 09/21]
– volume: 17
  start-page: 507
  year: 2010
  end-page: 513
  ident: b0050
  article-title: Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications
  publication-title: J. Am. Med. Inform. Assoc.
– reference: Schuemie M. Usagi 2015 [cited 2021 10/25]. Available from: https://github.com/OHDSI/Usagi.
– volume: 29
  start-page: 2909
  issue: 22
  year: 2013
  ident: 10.1016/j.jbi.2022.104235_b0040
  article-title: DNorm: disease name normalization with pairwise learning to rank
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt474
– ident: 10.1016/j.jbi.2022.104235_b0080
– volume: 396
  start-page: 1204
  issue: 10258
  year: 2020
  ident: 10.1016/j.jbi.2022.104235_b0150
  article-title: Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019
  publication-title: The Lancet.
  doi: 10.1016/S0140-6736(20)30925-9
– ident: #cr-split#-10.1016/j.jbi.2022.104235_b0010.2
– volume: 216
  start-page: 574
  year: 2015
  ident: 10.1016/j.jbi.2022.104235_b0075
  article-title: Observational Health Data Sciences and Informatics (OHDSI): opportunities for observational researchers
  publication-title: Studies in health technology and informatics.
– volume: 57
  start-page: 28
  year: 2015
  ident: 10.1016/j.jbi.2022.104235_b0025
  article-title: Challenges in clinical natural language processing for automated disorder normalization
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2015.07.010
– ident: 10.1016/j.jbi.2022.104235_b0140
– ident: 10.1016/j.jbi.2022.104235_b0165
  doi: 10.1201/9780429246593
– start-page: bar065
  year: 2012
  ident: 10.1016/j.jbi.2022.104235_b0045
  article-title: MEDIC: a practical disease vocabulary used at the Comparative Toxicogenomics Database
  publication-title: Database.
– ident: 10.1016/j.jbi.2022.104235_b0120
  doi: 10.18653/v1/W18-5306
– ident: 10.1016/j.jbi.2022.104235_b0005
– ident: 10.1016/j.jbi.2022.104235_b0060
– ident: 10.1016/j.jbi.2022.104235_b0085
– volume: 36
  start-page: 1533
  issue: 5
  year: 2020
  ident: 10.1016/j.jbi.2022.104235_b0130
  article-title: FullMeSH: improving large-scale MeSH indexing with full text
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz756
– volume: 32
  start-page: i70
  issue: 12
  year: 2016
  ident: 10.1016/j.jbi.2022.104235_b0115
  article-title: DeepMeSH: deep semantic representation for improving large-scale MeSH indexing
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw294
– volume: 31
  start-page: i339
  issue: 12
  year: 2015
  ident: 10.1016/j.jbi.2022.104235_b0110
  article-title: MeSHLabeler: improving the accuracy of large-scale MeSH indexing by integrating diverse evidence
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv237
– ident: 10.1016/j.jbi.2022.104235_b0070
– ident: 10.1016/j.jbi.2022.104235_b0020
– volume: 10
  start-page: 1895
  issue: 7
  year: 1998
  ident: 10.1016/j.jbi.2022.104235_b0170
  article-title: Approximate statistical tests for comparing supervised classification learning algorithms
  publication-title: Neural Comput.
  doi: 10.1162/089976698300017197
– volume: 8
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.jbi.2022.104235_b0105
  article-title: MeSH Now: automatic MeSH indexing at PubMed scale via learning to rank
  publication-title: Journal of biomedical semantics.
  doi: 10.1186/s13326-017-0123-3
– volume: 17
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.jbi.2022.104235_b0135
  article-title: Automatic classification of registered clinical trials towards the Global Burden of Diseases taxonomy of diseases and injuries
  publication-title: BMC Bioinf.
  doi: 10.1186/s12859-016-1247-7
– volume: 374
  start-page: 2411
  issue: 25
  year: 2016
  ident: 10.1016/j.jbi.2022.104235_b0015
  article-title: A global, neutral platform for sharing trial data
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp1605348
– volume: 17
  start-page: 507
  issue: 5
  year: 2010
  ident: 10.1016/j.jbi.2022.104235_b0050
  article-title: Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1136/jamia.2009.001560
– ident: 10.1016/j.jbi.2022.104235_b0160
– volume: 32(suppl_1):D267–D70
  year: 2004
  ident: 10.1016/j.jbi.2022.104235_b0035
  article-title: The unified medical language system (UMLS): integrating biomedical terminology
  publication-title: Nucleic Acids Res.
– start-page: 1
  year: 2013
  ident: 10.1016/j.jbi.2022.104235_b0055
  article-title: The NLM Medical Text Indexer System for Indexing Biomedical Literature
  publication-title: BioASQ@ CLEF.
– ident: #cr-split#-10.1016/j.jbi.2022.104235_b0010.1
– volume: 7
  start-page: e33677
  issue: 3
  year: 2012
  ident: 10.1016/j.jbi.2022.104235_b0100
  article-title: The database for aggregate analysis of ClinicalTrials. gov (AACT) and subsequent regrouping by clinical specialty
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0033677
– ident: 10.1016/j.jbi.2022.104235_b0030
– volume: 35
  start-page: 3794
  issue: 19
  year: 2019
  ident: 10.1016/j.jbi.2022.104235_b0125
  article-title: MeSHProbeNet: a self-attentive probe net for MeSH indexing
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz142
– volume: 40(Database issue):D940–D6
  year: 2012
  ident: 10.1016/j.jbi.2022.104235_b0095
  article-title: Disease Ontology: a backbone for disease semantic integration
  publication-title: Nucleic Acids Res.
– ident: 10.1016/j.jbi.2022.104235_b0090
– ident: 10.1016/j.jbi.2022.104235_b0065
– volume: 380
  start-page: 2063
  issue: 9859
  year: 2012
  ident: 10.1016/j.jbi.2022.104235_b0145
  article-title: GBD 2010: design, definitions, and metrics
  publication-title: The Lancet.
  doi: 10.1016/S0140-6736(12)61899-6
– ident: 10.1016/j.jbi.2022.104235_b0155
SSID ssj0011556
Score 2.3968017
SecondaryResourceType review_article
Snippet [Display omitted] The free-text Condition data field in the ClinicalTrials.gov is not amenable to computational processes for retrieving, aggregating and...
The free-text Condition data field in the ClinicalTrials.gov is not amenable to computational processes for retrieving, aggregating and visualizing clinical...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104235
SubjectTerms Categorization
Clinical Study
Data Visualization
Medical Subject Headings
Ontology
SNOMED CT
Systematized Nomenclature of Medicine
Title Ontology-based categorization of clinical studies by their conditions
URI https://dx.doi.org/10.1016/j.jbi.2022.104235
https://www.ncbi.nlm.nih.gov/pubmed/36283581
https://www.proquest.com/docview/2729028959
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB48QBQRXa_1WCL4JNTtkW6bR12U9RYP2LfQXLIiXdH1wRd_u5mkXRTUB59KS0PbmWRm0vnmG4BdE3YE06kJjHWOAc2FXXM61AEiCmWhGJOuyvXistO7p6f9tD8B3boWBmGVle33Nt1Z6-pKu5Jm-3kwaN9G2NOA2vg5dkRdyAma0NwV8fUPx5kE6y87njM1RhgjrTObDuP1KAZ2ixjHmOmMXce3H33Tb7Gn80HHi7BQBY_kwL_fEkzosgFzXygFGzBzUSXLGzDvf8kRX2m0DEdXpWtW-x6g61IEsVAPw5eqEJMMDanLJMmrRxcS8U5cJoHYXbPy4K4VuD8-uuv2gqqLQiCTNBkFVhehzoSNRBAwmoVS59JkElki0yjR1IhQiFRFcRYXkhmVM8GE3TflVOasUFmyClPlsNTrQAqdJ0YlylChqO5Ya5AqZWLFCp0KHUVNCGv5cVlRjGOniydeY8keuRU5R5FzL_Im7I2HPHt-jb9uprVS-LdJwq39_2vYTq1AbhcPZkSKUg_fXrn9ZmSvYSlrwprX7PgtrGfPkRxu438P3YRZPPNli1swNXp509s2fhmJFkzuf0QtmD7o3pxf4_HkrHfZctP2Ey4-75U
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB48wAMRrVc9V_BJCM2xabKPKko9qg8q9G3JXtIiqdj2wX_v7G5SFNQHX5Ms2czszsxmvvkG4MSEbcF0agKDzjGgucA9p0MdWEShLBRj0lW5du_bnWd600t7M3BR18JYWGVl-71Nd9a6utKqpNl66_dbj5HtaUAxfo4dURedhXmMBjLbv-G6dz5NJaDDbHvS1NjiGGmd2nQgr4Ho4xkxjm2qM3Yt3350Tr8Fn84JXa3BahU9kjM_wXWY0WUDlr9wCjZgoVtlyxuw4v_JEV9qtAGXD6XrVvsRWN-liAVDvQzfq0pMMjSkrpMkIw8vJOKDuFQCwWOz8uiuTXi-uny66ARVG4VAJmkyDlAZoc4EhiIWMZqFUufSZNLSRKZRoqkRoRCpiuIsLiQzKmeCCTw45VTmrFBZsgVz5bDUO0AKnSdGJcpQoahuozlIlTKxYoVOhY6iJoS1_LisOMZtq4tXXoPJBhxFzq3IuRd5E06nQ948wcZfD9NaKfzbKuHoAP4adlwrkOPusSmRotTDyYjjN1v6GpayJmx7zU5nga49t-xwu_976REsdp66d_zu-v52D5bsHV_DuA9z4_eJPsBgZiwO3WL9BKNp7pM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ontology-based+categorization+of+clinical+studies+by+their+conditions&rft.jtitle=Journal+of+biomedical+informatics&rft.au=Liu%2C+Hao&rft.au=Carini%2C+Simona&rft.au=Chen%2C+Zhehuan&rft.au=Phillips+Hey%2C+Spencer&rft.date=2022-11-01&rft.eissn=1532-0480&rft.volume=135&rft.spage=104235&rft_id=info:doi/10.1016%2Fj.jbi.2022.104235&rft_id=info%3Apmid%2F36283581&rft.externalDocID=36283581
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0464&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0464&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0464&client=summon