Integration and management of renewables into Total Sites with variable supply and demand
Reducing CO 2 emissions could be achieved by maximising heat recovery and increasing the share of renewables in the primary energy mix. Process Integration has developed over the years into a credible process system engineering tool. One of its important developments has been Total Site Heat Integra...
Saved in:
Published in | Computers & chemical engineering Vol. 35; no. 9; pp. 1815 - 1826 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
14.09.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reducing CO
2 emissions could be achieved by maximising heat recovery and increasing the share of renewables in the primary energy mix. Process Integration has developed over the years into a credible process system engineering tool. One of its important developments has been Total Site Heat Integration, which has combined the heating and cooling requirements of individual processes unlocking, allowing better integration. The current paper presents an extension of the Total Site methodology covering industrial, residential, service, business and agricultural customers and the incorporation of renewable energy sources (solar, wind, biomass, and some types of waste), accounting for the often substantial variability on the supply and demand sides and for the use of non-isothermal utilities. It further applies the extension of the heat cascade principle with inclusion of heat storage and minimises the heat waste and carbon footprint of the considered sites. This is illustrated with a comprehensive case study. |
---|---|
AbstractList | Reducing CO
2 emissions could be achieved by maximising heat recovery and increasing the share of renewables in the primary energy mix. Process Integration has developed over the years into a credible process system engineering tool. One of its important developments has been Total Site Heat Integration, which has combined the heating and cooling requirements of individual processes unlocking, allowing better integration. The current paper presents an extension of the Total Site methodology covering industrial, residential, service, business and agricultural customers and the incorporation of renewable energy sources (solar, wind, biomass, and some types of waste), accounting for the often substantial variability on the supply and demand sides and for the use of non-isothermal utilities. It further applies the extension of the heat cascade principle with inclusion of heat storage and minimises the heat waste and carbon footprint of the considered sites. This is illustrated with a comprehensive case study. Reducing CO2 emissions could be achieved by maximising heat recovery and increasing the share of renewables in the primary energy mix. Process Integration has developed over the years into a credible process system engineering tool. One of its important developments has been Total Site Heat Integration, which has combined the heating and cooling requirements of individual processes unlocking, allowing better integration. The current paper presents an extension of the Total Site methodology covering industrial, residential, service, business and agricultural customers and the incorporation of renewable energy sources (solar, wind, biomass, and some types of waste), accounting for the often substantial variability on the supply and demand sides and for the use of non-isothermal utilities. It further applies the extension of the heat cascade principle with inclusion of heat storage and minimises the heat waste and carbon footprint of the considered sites. This is illustrated with a comprehensive case study. |
Author | Varbanov, Petar Sabev Klemeš, Jiří Jaromír |
Author_xml | – sequence: 1 givenname: Petar Sabev surname: Varbanov fullname: Varbanov, Petar Sabev email: varbanov@cpi.uni-pannon.hu – sequence: 2 givenname: Jiří Jaromír surname: Klemeš fullname: Klemeš, Jiří Jaromír |
BookMark | eNqNkM1O6zAQRi0EEqXwDmbFKmFsJ42zRBV_EtJd3G7uynLsSXGV2MF2Qbw9KWXB8q5Gmvm-I825IKc-eCTkmkHJgK1ud6UJ42RecUS_LTkwVgIvAdoTsmCyEUUlmvqULOaNLJioq3NykdIOAHgl5YL8e_YZt1FnFzzV3tJRe7090DINPY3o8UN3AybqfA50E7Ie6F-X58WHy6_0XUd3uNO0n6bh8xthcYbYS3LW6yHh1c9cks3D_Wb9VLz8eXxe370URtQiFytpbS1bxhshrLG6tl3FuZb9indV34rKSNTSosAOTAcaOqstrOoGeFfzVizJzRE7xfC2x5TV6JLBYdAewz6pFppWNKyt5mR7TJoYUorYqym6UcdPxUAdZKqd-iVTHWQq4GpWN3fXxy7On7w7jCoZh96gdRFNVja4_6B8ATzehxs |
CitedBy_id | crossref_primary_10_1016_j_energy_2024_132113 crossref_primary_10_1016_j_energy_2012_07_052 crossref_primary_10_1016_j_rser_2016_05_086 crossref_primary_10_1016_j_energy_2018_10_152 crossref_primary_10_1016_j_compchemeng_2013_02_007 crossref_primary_10_1016_j_energy_2017_09_148 crossref_primary_10_1016_j_apenergy_2016_05_078 crossref_primary_10_1016_j_energy_2020_117959 crossref_primary_10_3390_en13082038 crossref_primary_10_1016_j_jclepro_2017_06_044 crossref_primary_10_1016_j_energy_2022_123958 crossref_primary_10_1016_j_apenergy_2023_121933 crossref_primary_10_1016_j_jclepro_2020_124602 crossref_primary_10_1007_s10098_014_0837_1 crossref_primary_10_1016_j_energy_2019_04_112 crossref_primary_10_1016_j_energy_2016_12_071 crossref_primary_10_1016_j_applthermaleng_2014_03_014 crossref_primary_10_1016_j_energy_2022_123928 crossref_primary_10_1016_j_applthermaleng_2012_12_038 crossref_primary_10_1016_j_coche_2013_10_003 crossref_primary_10_1016_j_energy_2013_03_001 crossref_primary_10_1016_j_applthermaleng_2011_11_033 crossref_primary_10_1016_j_coche_2012_03_007 crossref_primary_10_1016_j_coche_2014_03_005 crossref_primary_10_1002_er_3260 crossref_primary_10_1016_j_applthermaleng_2012_02_026 crossref_primary_10_1007_s10098_015_0995_9 crossref_primary_10_1016_j_solener_2024_112624 crossref_primary_10_1007_s10098_012_0457_6 crossref_primary_10_1016_j_energy_2018_04_090 crossref_primary_10_1016_j_energy_2016_12_116 crossref_primary_10_1016_j_compchemeng_2019_06_022 crossref_primary_10_1016_j_applthermaleng_2015_07_060 crossref_primary_10_1016_j_energy_2017_04_142 crossref_primary_10_1016_j_jclepro_2018_11_129 crossref_primary_10_1016_j_jenvman_2020_111829 crossref_primary_10_1016_j_apenergy_2012_01_039 crossref_primary_10_1088_1757_899X_555_1_012005 crossref_primary_10_1016_j_enconman_2014_12_061 crossref_primary_10_1016_j_cherd_2012_12_002 crossref_primary_10_1016_j_jclepro_2013_12_047 crossref_primary_10_1016_j_rser_2021_111232 crossref_primary_10_1021_ie500111z crossref_primary_10_4028_www_scientific_net_AMM_625_454 crossref_primary_10_1177_0954408915589513 crossref_primary_10_3390_en12061030 crossref_primary_10_1016_j_apenergy_2014_03_090 crossref_primary_10_1016_j_jclepro_2017_10_325 crossref_primary_10_1016_j_jenvman_2021_112596 crossref_primary_10_3390_en12214092 crossref_primary_10_1016_j_jclepro_2022_132790 crossref_primary_10_1016_j_energy_2011_12_025 crossref_primary_10_1016_j_energy_2018_04_184 crossref_primary_10_1016_j_applthermaleng_2015_09_101 crossref_primary_10_1016_j_applthermaleng_2011_05_046 crossref_primary_10_1016_j_compchemeng_2016_06_017 crossref_primary_10_1016_j_jclepro_2017_09_183 crossref_primary_10_1016_j_jclepro_2016_07_175 crossref_primary_10_1016_j_compchemeng_2018_06_018 crossref_primary_10_1016_j_rser_2021_111482 crossref_primary_10_1002_aic_14292 crossref_primary_10_1016_j_energy_2017_09_039 crossref_primary_10_1016_j_energy_2015_02_106 crossref_primary_10_1016_j_cherd_2018_03_014 crossref_primary_10_1016_j_rser_2018_09_030 crossref_primary_10_1016_j_energy_2019_115896 crossref_primary_10_1021_acs_iecr_1c00831 crossref_primary_10_1016_j_compchemeng_2019_04_013 crossref_primary_10_1016_j_applthermaleng_2013_10_015 crossref_primary_10_1016_j_cjche_2020_04_007 crossref_primary_10_1016_j_applthermaleng_2012_03_009 crossref_primary_10_1016_j_energy_2015_06_128 crossref_primary_10_1016_j_applthermaleng_2015_01_037 crossref_primary_10_1016_j_energy_2012_01_005 crossref_primary_10_1016_j_energy_2011_12_036 crossref_primary_10_1016_j_energy_2014_04_111 crossref_primary_10_1007_s11814_012_0218_6 crossref_primary_10_1021_acs_iecr_9b00440 crossref_primary_10_1016_j_applthermaleng_2012_03_044 crossref_primary_10_1016_j_cherd_2013_08_019 |
Cites_doi | 10.1002/aic.690240411 10.1016/0098-1354(79)80049-6 10.1016/0098-1354(93)80214-8 10.1016/B978-0-444-54298-4.50167-7 10.1016/j.energy.2009.05.017 10.1016/S1359-4311(96)00087-7 10.1016/j.energy.2008.03.008 10.1016/0009-2509(83)80185-7 10.1016/j.rser.2007.10.005 10.1016/j.applthermaleng.2004.06.023 10.1016/j.vacuum.2007.10.018 10.1016/j.compchemeng.2004.01.010 10.1016/j.renene.2005.03.008 10.1016/j.applthermaleng.2010.04.030 10.1016/j.applthermaleng.2008.02.006 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Ltd |
Copyright_xml | – notice: 2011 Elsevier Ltd |
DBID | AAYXX CITATION 7SC 7U5 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.compchemeng.2011.02.009 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4375 |
EndPage | 1826 |
ExternalDocumentID | 10_1016_j_compchemeng_2011_02_009 S0098135411000718 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SST SSZ T5K VH1 WUQ ZY4 ~G- AAXKI AAYXX AFJKZ AKRWK CITATION 7SC 7U5 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c353t-68dd58912733dcda5db422a8f62b4f934c8ea8de3eb0cb0a0bdad065702b5293 |
IEDL.DBID | AIKHN |
ISSN | 0098-1354 |
IngestDate | Fri Oct 25 09:19:21 EDT 2024 Thu Sep 26 17:11:10 EDT 2024 Fri Feb 23 02:24:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Total Site Integration Integration of renewables Total Site Heat Cascade Energy management Varying energy demand Varying energy supply |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-68dd58912733dcda5db422a8f62b4f934c8ea8de3eb0cb0a0bdad065702b5293 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 907937194 |
PQPubID | 23500 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_907937194 crossref_primary_10_1016_j_compchemeng_2011_02_009 elsevier_sciencedirect_doi_10_1016_j_compchemeng_2011_02_009 |
PublicationCentury | 2000 |
PublicationDate | 2011-09-14 |
PublicationDateYYYYMMDD | 2011-09-14 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-14 day: 14 |
PublicationDecade | 2010 |
PublicationTitle | Computers & chemical engineering |
PublicationYear | 2011 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kemp, Deakin (bib0040) 1989; 67 Friedler (bib0020) 2009; 18 Linnhoff, Townsend, Boland, Hewitt, Thomas, Guy, Marsland (bib0085) 1982 Linnhoff, Flower (bib0070) 1978; 24 Gogenko, Anipko, Arsenyeva, Kapustenko (bib0030) 2007; 12 Dhole, Linnhoff (bib0010) 1993; 17 Linnhoff, Hindmarsh (bib0075) 1983; 38 Klemeš, Dhole, Raissi, Perry, Puigjaner (bib0055) 1997; 7 Kemp, Deakin (bib0045) 1989; 67 Linnhoff, Mason, Wardle (bib0080) 1979; 3 Klemeš, Linnhoff, Kotjabasakis, Zhelev, Gremouti, Kaliventzeff, Heyen, Maréchal, Lebon, Puigjaner, Espuña, Graells, Santos, Prokopakis, Ashton, Murphy, Paor de, Kemp (bib0065) 1994 Bance, P. (2008). Residential-scale fuel cell CHP: A better match for domestic loads. (3). Hohmann, E. C. (1971). Optimum networks for heat exchange. PhD Thesis, University of Southern California, Los Angeles, United States. Friedler (bib0025) 2010; 30 Nemet, A., Klemeš, J. J., & Varbanov, P. S. (2011). Methodology for maximising the use of renewables with variable availability. Last accessed 04.07.2010. Varbanov, Perry, Klemeš, Smith (bib0125) 2005; 25 Linnhoff, Vredeveld (bib0090) 1984; 80 Foo, Chew, Lee (bib0015) 2008; 28 . Klemeš, Friedler, Bulatov, Varbanov (bib0060) 2010 Shang, Kokossis (bib0115) 2004; 28 Weber, Dorer (bib0130) 2008; 82 Sharma, Tyagi, Chen, Buddhi (bib0120) 2009; 13 Kemp, Deakin (bib0050) 1989; 67 Matsuda, Hirochi, Tatsumi, Shire (bib0100) 2009; 34 Masruroh, Li, Klemeš (bib0095) 2006; 31 Perry, Klemeš, Bulatov (bib0110) 2008; 33 10.1016/j.compchemeng.2011.02.009_bib0005 10.1016/j.compchemeng.2011.02.009_bib0105 Linnhoff (10.1016/j.compchemeng.2011.02.009_bib0090) 1984; 80 Linnhoff (10.1016/j.compchemeng.2011.02.009_bib0085) 1982 Matsuda (10.1016/j.compchemeng.2011.02.009_bib0100) 2009; 34 Shang (10.1016/j.compchemeng.2011.02.009_bib0115) 2004; 28 Weber (10.1016/j.compchemeng.2011.02.009_bib0130) 2008; 82 Dhole (10.1016/j.compchemeng.2011.02.009_bib0010) 1993; 17 Kemp (10.1016/j.compchemeng.2011.02.009_bib0040) 1989; 67 Klemeš (10.1016/j.compchemeng.2011.02.009_bib0060) 2010 Linnhoff (10.1016/j.compchemeng.2011.02.009_bib0080) 1979; 3 Linnhoff (10.1016/j.compchemeng.2011.02.009_bib0075) 1983; 38 Kemp (10.1016/j.compchemeng.2011.02.009_bib0050) 1989; 67 Varbanov (10.1016/j.compchemeng.2011.02.009_bib0125) 2005; 25 Masruroh (10.1016/j.compchemeng.2011.02.009_bib0095) 2006; 31 Sharma (10.1016/j.compchemeng.2011.02.009_bib0120) 2009; 13 Klemeš (10.1016/j.compchemeng.2011.02.009_bib0055) 1997; 7 Perry (10.1016/j.compchemeng.2011.02.009_bib0110) 2008; 33 Friedler (10.1016/j.compchemeng.2011.02.009_bib0025) 2010; 30 Friedler (10.1016/j.compchemeng.2011.02.009_bib0020) 2009; 18 Kemp (10.1016/j.compchemeng.2011.02.009_bib0045) 1989; 67 Linnhoff (10.1016/j.compchemeng.2011.02.009_bib0070) 1978; 24 Gogenko (10.1016/j.compchemeng.2011.02.009_bib0030) 2007; 12 Klemeš (10.1016/j.compchemeng.2011.02.009_bib0065) 1994 Foo (10.1016/j.compchemeng.2011.02.009_bib0015) 2008; 28 10.1016/j.compchemeng.2011.02.009_bib0035 |
References_xml | – volume: 28 start-page: 2089 year: 2008 end-page: 2099 ident: bib0015 article-title: Minimum units targeting and network evolution for batch heat exchanger network publication-title: Applied Thermal Engineering contributor: fullname: Lee – volume: 25 start-page: 985 year: 2005 end-page: 1001 ident: bib0125 article-title: Synthesis of industrial utility systems: Cost-effective de-carbonization publication-title: Applied Thermal Engineering contributor: fullname: Smith – volume: 67 start-page: 517 year: 1989 end-page: 525 ident: bib0050 article-title: The cascade analysis for energy and process integration of batch processes. Part 3. A case study publication-title: Chemical Engineering Research and Design contributor: fullname: Deakin – volume: 13 start-page: 318 year: 2009 end-page: 345 ident: bib0120 article-title: Review on thermal energy storage with phase change materials and applications publication-title: Renewable and Sustainable Energy Reviews contributor: fullname: Buddhi – volume: 24 start-page: 633 year: 1978 end-page: 642 ident: bib0070 article-title: Synthesis of heat exchanger networks. 1. Systematic generation of energy optimal networks publication-title: AIChE Journal contributor: fullname: Flower – volume: 28 start-page: 1673 year: 2004 end-page: 1688 ident: bib0115 article-title: A transhipment model for the optimisation of steam levels of total site utility system for multiperiod operation publication-title: Computers and Chemical Engineering contributor: fullname: Kokossis – volume: 67 start-page: 495 year: 1989 end-page: 509 ident: bib0040 article-title: The cascade analysis for energy and process integration of batch processes. Part 1. Calculation of energy targets publication-title: Chemical Engineering Research and Design contributor: fullname: Deakin – volume: 30 start-page: 2270 year: 2010 end-page: 2280 ident: bib0025 article-title: Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction publication-title: Applied Thermal Engineering contributor: fullname: Friedler – volume: 67 start-page: 510 year: 1989 end-page: 516 ident: bib0045 article-title: The cascade analysis for energy and process integration of batch processes. Part 3. Network design and process scheduling publication-title: Chemical Engineering Research and Design contributor: fullname: Deakin – volume: 17 start-page: S101 year: 1993 end-page: S109 ident: bib0010 article-title: Total site targets for fuel, co-generation, emissions, and cooling publication-title: Computers and Chemical Engineering contributor: fullname: Linnhoff – volume: 7 start-page: 993 year: 1997 end-page: 1003 ident: bib0055 article-title: Targeting and design methodology for reduction of fuel, power and CO publication-title: Applied Thermal Engineering contributor: fullname: Puigjaner – year: 1994 ident: bib0065 article-title: Design and operation of energy efficient batch processes. Final report contributor: fullname: Kemp – volume: 82 start-page: 708 year: 2008 end-page: 716 ident: bib0130 article-title: Long-term heat storage with NaOH publication-title: Vacuum contributor: fullname: Dorer – volume: 80 start-page: 33 year: 1984 end-page: 40 ident: bib0090 article-title: Pinch technology has come of age publication-title: Chemical Engineering Progress contributor: fullname: Vredeveld – volume: 31 start-page: 537 year: 2006 end-page: 548 ident: bib0095 article-title: Life cycle analysis of a solar thermal system with thermochemical storage process publication-title: Renewable Energy contributor: fullname: Klemeš – volume: 34 start-page: 1687 year: 2009 end-page: 1692 ident: bib0100 article-title: Applying heat integration total site based pinch technology to a large industrial area in Japan to further improve performance of highly efficient process plants publication-title: Energy contributor: fullname: Shire – volume: 38 start-page: 745 year: 1983 end-page: 763 ident: bib0075 article-title: The pinch design method for heat exchanger networks publication-title: Chemical Engineering Science contributor: fullname: Hindmarsh – volume: 33 start-page: 1489 year: 2008 end-page: 1497 ident: bib0110 article-title: Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors publication-title: Energy contributor: fullname: Bulatov – volume: 18 start-page: 1 year: 2009 end-page: 26 ident: bib0020 article-title: Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction publication-title: Chemical Engineering Transactions contributor: fullname: Friedler – volume: 12 start-page: 207 year: 2007 end-page: 212 ident: bib0030 article-title: Accounting for fouling in plate heat exchanger design publication-title: Chemical Engineering Transactions contributor: fullname: Kapustenko – volume: 3 start-page: 295 year: 1979 end-page: 302 ident: bib0080 article-title: Understanding heat exchanger networks publication-title: Computers and Chemical Engineering contributor: fullname: Wardle – year: 1982 ident: bib0085 article-title: A user guide to process integration for the efficient use of energy contributor: fullname: Marsland – year: 2010 ident: bib0060 article-title: Sustainability in the process industry: Integration and optimization contributor: fullname: Varbanov – volume: 24 start-page: 633 issue: 4 year: 1978 ident: 10.1016/j.compchemeng.2011.02.009_bib0070 article-title: Synthesis of heat exchanger networks. 1. Systematic generation of energy optimal networks publication-title: AIChE Journal doi: 10.1002/aic.690240411 contributor: fullname: Linnhoff – volume: 3 start-page: 295 issue: 1–4 year: 1979 ident: 10.1016/j.compchemeng.2011.02.009_bib0080 article-title: Understanding heat exchanger networks publication-title: Computers and Chemical Engineering doi: 10.1016/0098-1354(79)80049-6 contributor: fullname: Linnhoff – volume: 17 start-page: S101 issue: Suppl. year: 1993 ident: 10.1016/j.compchemeng.2011.02.009_bib0010 article-title: Total site targets for fuel, co-generation, emissions, and cooling publication-title: Computers and Chemical Engineering doi: 10.1016/0098-1354(93)80214-8 contributor: fullname: Dhole – ident: 10.1016/j.compchemeng.2011.02.009_bib0105 doi: 10.1016/B978-0-444-54298-4.50167-7 – volume: 34 start-page: 1687 issue: 10 year: 2009 ident: 10.1016/j.compchemeng.2011.02.009_bib0100 article-title: Applying heat integration total site based pinch technology to a large industrial area in Japan to further improve performance of highly efficient process plants publication-title: Energy doi: 10.1016/j.energy.2009.05.017 contributor: fullname: Matsuda – volume: 7 start-page: 993 year: 1997 ident: 10.1016/j.compchemeng.2011.02.009_bib0055 article-title: Targeting and design methodology for reduction of fuel, power and CO2 on total sites publication-title: Applied Thermal Engineering doi: 10.1016/S1359-4311(96)00087-7 contributor: fullname: Klemeš – volume: 33 start-page: 1489 issue: 10 year: 2008 ident: 10.1016/j.compchemeng.2011.02.009_bib0110 article-title: Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors publication-title: Energy doi: 10.1016/j.energy.2008.03.008 contributor: fullname: Perry – volume: 18 start-page: 1 year: 2009 ident: 10.1016/j.compchemeng.2011.02.009_bib0020 article-title: Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction publication-title: Chemical Engineering Transactions contributor: fullname: Friedler – volume: 38 start-page: 745 issue: 5 year: 1983 ident: 10.1016/j.compchemeng.2011.02.009_bib0075 article-title: The pinch design method for heat exchanger networks publication-title: Chemical Engineering Science doi: 10.1016/0009-2509(83)80185-7 contributor: fullname: Linnhoff – ident: 10.1016/j.compchemeng.2011.02.009_bib0005 – volume: 67 start-page: 495 year: 1989 ident: 10.1016/j.compchemeng.2011.02.009_bib0040 article-title: The cascade analysis for energy and process integration of batch processes. Part 1. Calculation of energy targets publication-title: Chemical Engineering Research and Design contributor: fullname: Kemp – volume: 67 start-page: 517 year: 1989 ident: 10.1016/j.compchemeng.2011.02.009_bib0050 article-title: The cascade analysis for energy and process integration of batch processes. Part 3. A case study publication-title: Chemical Engineering Research and Design contributor: fullname: Kemp – volume: 13 start-page: 318 year: 2009 ident: 10.1016/j.compchemeng.2011.02.009_bib0120 article-title: Review on thermal energy storage with phase change materials and applications publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2007.10.005 contributor: fullname: Sharma – volume: 25 start-page: 985 issue: 7 year: 2005 ident: 10.1016/j.compchemeng.2011.02.009_bib0125 article-title: Synthesis of industrial utility systems: Cost-effective de-carbonization publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2004.06.023 contributor: fullname: Varbanov – volume: 82 start-page: 708 year: 2008 ident: 10.1016/j.compchemeng.2011.02.009_bib0130 article-title: Long-term heat storage with NaOH publication-title: Vacuum doi: 10.1016/j.vacuum.2007.10.018 contributor: fullname: Weber – volume: 28 start-page: 1673 issue: 9 year: 2004 ident: 10.1016/j.compchemeng.2011.02.009_bib0115 article-title: A transhipment model for the optimisation of steam levels of total site utility system for multiperiod operation publication-title: Computers and Chemical Engineering doi: 10.1016/j.compchemeng.2004.01.010 contributor: fullname: Shang – year: 2010 ident: 10.1016/j.compchemeng.2011.02.009_bib0060 contributor: fullname: Klemeš – year: 1982 ident: 10.1016/j.compchemeng.2011.02.009_bib0085 contributor: fullname: Linnhoff – volume: 31 start-page: 537 issue: 4 year: 2006 ident: 10.1016/j.compchemeng.2011.02.009_bib0095 article-title: Life cycle analysis of a solar thermal system with thermochemical storage process publication-title: Renewable Energy doi: 10.1016/j.renene.2005.03.008 contributor: fullname: Masruroh – volume: 30 start-page: 2270 issue: 16 year: 2010 ident: 10.1016/j.compchemeng.2011.02.009_bib0025 article-title: Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2010.04.030 contributor: fullname: Friedler – volume: 67 start-page: 510 year: 1989 ident: 10.1016/j.compchemeng.2011.02.009_bib0045 article-title: The cascade analysis for energy and process integration of batch processes. Part 3. Network design and process scheduling publication-title: Chemical Engineering Research and Design contributor: fullname: Kemp – volume: 12 start-page: 207 year: 2007 ident: 10.1016/j.compchemeng.2011.02.009_bib0030 article-title: Accounting for fouling in plate heat exchanger design publication-title: Chemical Engineering Transactions contributor: fullname: Gogenko – volume: 80 start-page: 33 issue: 7 year: 1984 ident: 10.1016/j.compchemeng.2011.02.009_bib0090 article-title: Pinch technology has come of age publication-title: Chemical Engineering Progress contributor: fullname: Linnhoff – year: 1994 ident: 10.1016/j.compchemeng.2011.02.009_bib0065 contributor: fullname: Klemeš – ident: 10.1016/j.compchemeng.2011.02.009_bib0035 – volume: 28 start-page: 2089 issue: 16 year: 2008 ident: 10.1016/j.compchemeng.2011.02.009_bib0015 article-title: Minimum units targeting and network evolution for batch heat exchanger network publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2008.02.006 contributor: fullname: Foo |
SSID | ssj0002488 |
Score | 2.4044876 |
Snippet | Reducing CO
2 emissions could be achieved by maximising heat recovery and increasing the share of renewables in the primary energy mix. Process Integration has... Reducing CO2 emissions could be achieved by maximising heat recovery and increasing the share of renewables in the primary energy mix. Process Integration has... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 1815 |
SubjectTerms | Biomass Carbon Cascades Energy management Heating Inclusions Integration of renewables Supply and demand Total Site Heat Cascade Total Site Integration Varying energy demand Varying energy supply Wastes |
Title | Integration and management of renewables into Total Sites with variable supply and demand |
URI | https://dx.doi.org/10.1016/j.compchemeng.2011.02.009 https://search.proquest.com/docview/907937194 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90A9EH8RPnFxF8reuSdkvAFxnKpuiLE_QpJE0qE9YONxVf_Nu961q_QBB8bUhafmnuLsnvfgdwqDrCchviQhI8oQ1KGqjYyyD00tuUd7wRlDt8edXu3UTnt_HtHHSrXBiiVZa2f2bTC2tdPmmWaDbHwyHl-CrZEnFEomfoKOU81ItLohrUT_oXvasPg8wjKSvpTOqwAAefNC9ibiM8I5_dl4KepOCpfnNTPwx24YXOVmC5DB_ZyewLV2HOZ2uw9EVUcB3u-qUCBCLOTObY6IPhwvKUkYTlC-VLTdgwm-ZskGP4za4x8pwwOpRlz7h7pnY2oYKfr8UQzuMgbgMGZ6eDbi8oCygEiYjFNGhL56hqIIYowiXOxM5GnBuZtrmNUiWiRHojnRfehokNTWidcSGRYbiNMQ7YhFqWZ34LmLUd4ww2pYmk6uno0zpGJOjbU5VIbhrAK7j0eCaToSv-2IP-grEmjHXINWLcgOMKWP1tzjWa8790Z9VkaFwTdNFhMp8_TbQqVP9aKtr-3xt2YHF2hKyCVrQLtenjk9_DGGRq92H-6K21X_5p7wwb3nY |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qCz4O4hPrM4LXxW2y2ybgRURpffRiBT2FZJOVCt0ttlX89860u75AELxuSHb5ksx8yc58A3CkWsJyG-JGEjyhA0oaqNjLIPTS25S3vBGUO3zTbbbvosv7-L4CZ2UuDIVVFrZ_ZtOn1rp4clygeTzs9ynHV8mGiCMSPUNHKeeghmxA4WKvnXau2t0Pg8wjKUvpTOowD4efYV4UuY3wDHz2WAh6koKn-s1N_TDYUy90sQLLBX1kp7MvXIWKz9Zg6Yuo4Do8dAoFCEScmcyxwUeEC8tTRhKWr5QvNWL9bJyzXo70m90i8xwxupRlL3h6pnY2ooKfb9MhnMdB3Ab0Ls57Z-2gKKAQJCIW46ApnaOqgUhRhEuciZ2NODcybXIbpUpEifRGOi-8DRMbmtA640IKhuE2Rh6wCdUsz_wWMGtbxhlsShNJ1dPRp7WMSNC3pyqR3NSBl3Dp4UwmQ5fxY0_6C8aaMNYh14hxHU5KYPW3Oddozv_SnZWToXFP0I8Ok_l8MtJqqvrXUNH2_95wAAvt3s21vu50r3ZgcXadrIJGtAvV8fPE7yEfGdv9Yr29A4YJ4HM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+and+management+of+renewables+into+Total+Sites+with+variable+supply+and+demand&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Varbanov%2C+Petar+Sabev&rft.au=Kleme%C5%A1%2C+Ji%C5%99%C3%AD+Jarom%C3%ADr&rft.date=2011-09-14&rft.pub=Elsevier+Ltd&rft.issn=0098-1354&rft.eissn=1873-4375&rft.volume=35&rft.issue=9&rft.spage=1815&rft.epage=1826&rft_id=info:doi/10.1016%2Fj.compchemeng.2011.02.009&rft.externalDocID=S0098135411000718 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon |