Integration and management of renewables into Total Sites with variable supply and demand

Reducing CO 2 emissions could be achieved by maximising heat recovery and increasing the share of renewables in the primary energy mix. Process Integration has developed over the years into a credible process system engineering tool. One of its important developments has been Total Site Heat Integra...

Full description

Saved in:
Bibliographic Details
Published inComputers & chemical engineering Vol. 35; no. 9; pp. 1815 - 1826
Main Authors Varbanov, Petar Sabev, Klemeš, Jiří Jaromír
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 14.09.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reducing CO 2 emissions could be achieved by maximising heat recovery and increasing the share of renewables in the primary energy mix. Process Integration has developed over the years into a credible process system engineering tool. One of its important developments has been Total Site Heat Integration, which has combined the heating and cooling requirements of individual processes unlocking, allowing better integration. The current paper presents an extension of the Total Site methodology covering industrial, residential, service, business and agricultural customers and the incorporation of renewable energy sources (solar, wind, biomass, and some types of waste), accounting for the often substantial variability on the supply and demand sides and for the use of non-isothermal utilities. It further applies the extension of the heat cascade principle with inclusion of heat storage and minimises the heat waste and carbon footprint of the considered sites. This is illustrated with a comprehensive case study.
AbstractList Reducing CO 2 emissions could be achieved by maximising heat recovery and increasing the share of renewables in the primary energy mix. Process Integration has developed over the years into a credible process system engineering tool. One of its important developments has been Total Site Heat Integration, which has combined the heating and cooling requirements of individual processes unlocking, allowing better integration. The current paper presents an extension of the Total Site methodology covering industrial, residential, service, business and agricultural customers and the incorporation of renewable energy sources (solar, wind, biomass, and some types of waste), accounting for the often substantial variability on the supply and demand sides and for the use of non-isothermal utilities. It further applies the extension of the heat cascade principle with inclusion of heat storage and minimises the heat waste and carbon footprint of the considered sites. This is illustrated with a comprehensive case study.
Reducing CO2 emissions could be achieved by maximising heat recovery and increasing the share of renewables in the primary energy mix. Process Integration has developed over the years into a credible process system engineering tool. One of its important developments has been Total Site Heat Integration, which has combined the heating and cooling requirements of individual processes unlocking, allowing better integration. The current paper presents an extension of the Total Site methodology covering industrial, residential, service, business and agricultural customers and the incorporation of renewable energy sources (solar, wind, biomass, and some types of waste), accounting for the often substantial variability on the supply and demand sides and for the use of non-isothermal utilities. It further applies the extension of the heat cascade principle with inclusion of heat storage and minimises the heat waste and carbon footprint of the considered sites. This is illustrated with a comprehensive case study.
Author Varbanov, Petar Sabev
Klemeš, Jiří Jaromír
Author_xml – sequence: 1
  givenname: Petar Sabev
  surname: Varbanov
  fullname: Varbanov, Petar Sabev
  email: varbanov@cpi.uni-pannon.hu
– sequence: 2
  givenname: Jiří Jaromír
  surname: Klemeš
  fullname: Klemeš, Jiří Jaromír
BookMark eNqNkM1O6zAQRi0EEqXwDmbFKmFsJ42zRBV_EtJd3G7uynLsSXGV2MF2Qbw9KWXB8q5Gmvm-I825IKc-eCTkmkHJgK1ud6UJ42RecUS_LTkwVgIvAdoTsmCyEUUlmvqULOaNLJioq3NykdIOAHgl5YL8e_YZt1FnFzzV3tJRe7090DINPY3o8UN3AybqfA50E7Ie6F-X58WHy6_0XUd3uNO0n6bh8xthcYbYS3LW6yHh1c9cks3D_Wb9VLz8eXxe370URtQiFytpbS1bxhshrLG6tl3FuZb9indV34rKSNTSosAOTAcaOqstrOoGeFfzVizJzRE7xfC2x5TV6JLBYdAewz6pFppWNKyt5mR7TJoYUorYqym6UcdPxUAdZKqd-iVTHWQq4GpWN3fXxy7On7w7jCoZh96gdRFNVja4_6B8ATzehxs
CitedBy_id crossref_primary_10_1016_j_energy_2024_132113
crossref_primary_10_1016_j_energy_2012_07_052
crossref_primary_10_1016_j_rser_2016_05_086
crossref_primary_10_1016_j_energy_2018_10_152
crossref_primary_10_1016_j_compchemeng_2013_02_007
crossref_primary_10_1016_j_energy_2017_09_148
crossref_primary_10_1016_j_apenergy_2016_05_078
crossref_primary_10_1016_j_energy_2020_117959
crossref_primary_10_3390_en13082038
crossref_primary_10_1016_j_jclepro_2017_06_044
crossref_primary_10_1016_j_energy_2022_123958
crossref_primary_10_1016_j_apenergy_2023_121933
crossref_primary_10_1016_j_jclepro_2020_124602
crossref_primary_10_1007_s10098_014_0837_1
crossref_primary_10_1016_j_energy_2019_04_112
crossref_primary_10_1016_j_energy_2016_12_071
crossref_primary_10_1016_j_applthermaleng_2014_03_014
crossref_primary_10_1016_j_energy_2022_123928
crossref_primary_10_1016_j_applthermaleng_2012_12_038
crossref_primary_10_1016_j_coche_2013_10_003
crossref_primary_10_1016_j_energy_2013_03_001
crossref_primary_10_1016_j_applthermaleng_2011_11_033
crossref_primary_10_1016_j_coche_2012_03_007
crossref_primary_10_1016_j_coche_2014_03_005
crossref_primary_10_1002_er_3260
crossref_primary_10_1016_j_applthermaleng_2012_02_026
crossref_primary_10_1007_s10098_015_0995_9
crossref_primary_10_1016_j_solener_2024_112624
crossref_primary_10_1007_s10098_012_0457_6
crossref_primary_10_1016_j_energy_2018_04_090
crossref_primary_10_1016_j_energy_2016_12_116
crossref_primary_10_1016_j_compchemeng_2019_06_022
crossref_primary_10_1016_j_applthermaleng_2015_07_060
crossref_primary_10_1016_j_energy_2017_04_142
crossref_primary_10_1016_j_jclepro_2018_11_129
crossref_primary_10_1016_j_jenvman_2020_111829
crossref_primary_10_1016_j_apenergy_2012_01_039
crossref_primary_10_1088_1757_899X_555_1_012005
crossref_primary_10_1016_j_enconman_2014_12_061
crossref_primary_10_1016_j_cherd_2012_12_002
crossref_primary_10_1016_j_jclepro_2013_12_047
crossref_primary_10_1016_j_rser_2021_111232
crossref_primary_10_1021_ie500111z
crossref_primary_10_4028_www_scientific_net_AMM_625_454
crossref_primary_10_1177_0954408915589513
crossref_primary_10_3390_en12061030
crossref_primary_10_1016_j_apenergy_2014_03_090
crossref_primary_10_1016_j_jclepro_2017_10_325
crossref_primary_10_1016_j_jenvman_2021_112596
crossref_primary_10_3390_en12214092
crossref_primary_10_1016_j_jclepro_2022_132790
crossref_primary_10_1016_j_energy_2011_12_025
crossref_primary_10_1016_j_energy_2018_04_184
crossref_primary_10_1016_j_applthermaleng_2015_09_101
crossref_primary_10_1016_j_applthermaleng_2011_05_046
crossref_primary_10_1016_j_compchemeng_2016_06_017
crossref_primary_10_1016_j_jclepro_2017_09_183
crossref_primary_10_1016_j_jclepro_2016_07_175
crossref_primary_10_1016_j_compchemeng_2018_06_018
crossref_primary_10_1016_j_rser_2021_111482
crossref_primary_10_1002_aic_14292
crossref_primary_10_1016_j_energy_2017_09_039
crossref_primary_10_1016_j_energy_2015_02_106
crossref_primary_10_1016_j_cherd_2018_03_014
crossref_primary_10_1016_j_rser_2018_09_030
crossref_primary_10_1016_j_energy_2019_115896
crossref_primary_10_1021_acs_iecr_1c00831
crossref_primary_10_1016_j_compchemeng_2019_04_013
crossref_primary_10_1016_j_applthermaleng_2013_10_015
crossref_primary_10_1016_j_cjche_2020_04_007
crossref_primary_10_1016_j_applthermaleng_2012_03_009
crossref_primary_10_1016_j_energy_2015_06_128
crossref_primary_10_1016_j_applthermaleng_2015_01_037
crossref_primary_10_1016_j_energy_2012_01_005
crossref_primary_10_1016_j_energy_2011_12_036
crossref_primary_10_1016_j_energy_2014_04_111
crossref_primary_10_1007_s11814_012_0218_6
crossref_primary_10_1021_acs_iecr_9b00440
crossref_primary_10_1016_j_applthermaleng_2012_03_044
crossref_primary_10_1016_j_cherd_2013_08_019
Cites_doi 10.1002/aic.690240411
10.1016/0098-1354(79)80049-6
10.1016/0098-1354(93)80214-8
10.1016/B978-0-444-54298-4.50167-7
10.1016/j.energy.2009.05.017
10.1016/S1359-4311(96)00087-7
10.1016/j.energy.2008.03.008
10.1016/0009-2509(83)80185-7
10.1016/j.rser.2007.10.005
10.1016/j.applthermaleng.2004.06.023
10.1016/j.vacuum.2007.10.018
10.1016/j.compchemeng.2004.01.010
10.1016/j.renene.2005.03.008
10.1016/j.applthermaleng.2010.04.030
10.1016/j.applthermaleng.2008.02.006
ContentType Journal Article
Copyright 2011 Elsevier Ltd
Copyright_xml – notice: 2011 Elsevier Ltd
DBID AAYXX
CITATION
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.compchemeng.2011.02.009
DatabaseName CrossRef
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4375
EndPage 1826
ExternalDocumentID 10_1016_j_compchemeng_2011_02_009
S0098135411000718
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
VH1
WUQ
ZY4
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c353t-68dd58912733dcda5db422a8f62b4f934c8ea8de3eb0cb0a0bdad065702b5293
IEDL.DBID AIKHN
ISSN 0098-1354
IngestDate Fri Oct 25 09:19:21 EDT 2024
Thu Sep 26 17:11:10 EDT 2024
Fri Feb 23 02:24:15 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Total Site Integration
Integration of renewables
Total Site Heat Cascade
Energy management
Varying energy demand
Varying energy supply
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-68dd58912733dcda5db422a8f62b4f934c8ea8de3eb0cb0a0bdad065702b5293
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 907937194
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_907937194
crossref_primary_10_1016_j_compchemeng_2011_02_009
elsevier_sciencedirect_doi_10_1016_j_compchemeng_2011_02_009
PublicationCentury 2000
PublicationDate 2011-09-14
PublicationDateYYYYMMDD 2011-09-14
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-14
  day: 14
PublicationDecade 2010
PublicationTitle Computers & chemical engineering
PublicationYear 2011
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kemp, Deakin (bib0040) 1989; 67
Friedler (bib0020) 2009; 18
Linnhoff, Townsend, Boland, Hewitt, Thomas, Guy, Marsland (bib0085) 1982
Linnhoff, Flower (bib0070) 1978; 24
Gogenko, Anipko, Arsenyeva, Kapustenko (bib0030) 2007; 12
Dhole, Linnhoff (bib0010) 1993; 17
Linnhoff, Hindmarsh (bib0075) 1983; 38
Klemeš, Dhole, Raissi, Perry, Puigjaner (bib0055) 1997; 7
Kemp, Deakin (bib0045) 1989; 67
Linnhoff, Mason, Wardle (bib0080) 1979; 3
Klemeš, Linnhoff, Kotjabasakis, Zhelev, Gremouti, Kaliventzeff, Heyen, Maréchal, Lebon, Puigjaner, Espuña, Graells, Santos, Prokopakis, Ashton, Murphy, Paor de, Kemp (bib0065) 1994
Bance, P. (2008). Residential-scale fuel cell CHP: A better match for domestic loads.
(3).
Hohmann, E. C. (1971). Optimum networks for heat exchange. PhD Thesis, University of Southern California, Los Angeles, United States.
Friedler (bib0025) 2010; 30
Nemet, A., Klemeš, J. J., & Varbanov, P. S. (2011). Methodology for maximising the use of renewables with variable availability.
Last accessed 04.07.2010.
Varbanov, Perry, Klemeš, Smith (bib0125) 2005; 25
Linnhoff, Vredeveld (bib0090) 1984; 80
Foo, Chew, Lee (bib0015) 2008; 28
.
Klemeš, Friedler, Bulatov, Varbanov (bib0060) 2010
Shang, Kokossis (bib0115) 2004; 28
Weber, Dorer (bib0130) 2008; 82
Sharma, Tyagi, Chen, Buddhi (bib0120) 2009; 13
Kemp, Deakin (bib0050) 1989; 67
Matsuda, Hirochi, Tatsumi, Shire (bib0100) 2009; 34
Masruroh, Li, Klemeš (bib0095) 2006; 31
Perry, Klemeš, Bulatov (bib0110) 2008; 33
10.1016/j.compchemeng.2011.02.009_bib0005
10.1016/j.compchemeng.2011.02.009_bib0105
Linnhoff (10.1016/j.compchemeng.2011.02.009_bib0090) 1984; 80
Linnhoff (10.1016/j.compchemeng.2011.02.009_bib0085) 1982
Matsuda (10.1016/j.compchemeng.2011.02.009_bib0100) 2009; 34
Shang (10.1016/j.compchemeng.2011.02.009_bib0115) 2004; 28
Weber (10.1016/j.compchemeng.2011.02.009_bib0130) 2008; 82
Dhole (10.1016/j.compchemeng.2011.02.009_bib0010) 1993; 17
Kemp (10.1016/j.compchemeng.2011.02.009_bib0040) 1989; 67
Klemeš (10.1016/j.compchemeng.2011.02.009_bib0060) 2010
Linnhoff (10.1016/j.compchemeng.2011.02.009_bib0080) 1979; 3
Linnhoff (10.1016/j.compchemeng.2011.02.009_bib0075) 1983; 38
Kemp (10.1016/j.compchemeng.2011.02.009_bib0050) 1989; 67
Varbanov (10.1016/j.compchemeng.2011.02.009_bib0125) 2005; 25
Masruroh (10.1016/j.compchemeng.2011.02.009_bib0095) 2006; 31
Sharma (10.1016/j.compchemeng.2011.02.009_bib0120) 2009; 13
Klemeš (10.1016/j.compchemeng.2011.02.009_bib0055) 1997; 7
Perry (10.1016/j.compchemeng.2011.02.009_bib0110) 2008; 33
Friedler (10.1016/j.compchemeng.2011.02.009_bib0025) 2010; 30
Friedler (10.1016/j.compchemeng.2011.02.009_bib0020) 2009; 18
Kemp (10.1016/j.compchemeng.2011.02.009_bib0045) 1989; 67
Linnhoff (10.1016/j.compchemeng.2011.02.009_bib0070) 1978; 24
Gogenko (10.1016/j.compchemeng.2011.02.009_bib0030) 2007; 12
Klemeš (10.1016/j.compchemeng.2011.02.009_bib0065) 1994
Foo (10.1016/j.compchemeng.2011.02.009_bib0015) 2008; 28
10.1016/j.compchemeng.2011.02.009_bib0035
References_xml – volume: 28
  start-page: 2089
  year: 2008
  end-page: 2099
  ident: bib0015
  article-title: Minimum units targeting and network evolution for batch heat exchanger network
  publication-title: Applied Thermal Engineering
  contributor:
    fullname: Lee
– volume: 25
  start-page: 985
  year: 2005
  end-page: 1001
  ident: bib0125
  article-title: Synthesis of industrial utility systems: Cost-effective de-carbonization
  publication-title: Applied Thermal Engineering
  contributor:
    fullname: Smith
– volume: 67
  start-page: 517
  year: 1989
  end-page: 525
  ident: bib0050
  article-title: The cascade analysis for energy and process integration of batch processes. Part 3. A case study
  publication-title: Chemical Engineering Research and Design
  contributor:
    fullname: Deakin
– volume: 13
  start-page: 318
  year: 2009
  end-page: 345
  ident: bib0120
  article-title: Review on thermal energy storage with phase change materials and applications
  publication-title: Renewable and Sustainable Energy Reviews
  contributor:
    fullname: Buddhi
– volume: 24
  start-page: 633
  year: 1978
  end-page: 642
  ident: bib0070
  article-title: Synthesis of heat exchanger networks. 1. Systematic generation of energy optimal networks
  publication-title: AIChE Journal
  contributor:
    fullname: Flower
– volume: 28
  start-page: 1673
  year: 2004
  end-page: 1688
  ident: bib0115
  article-title: A transhipment model for the optimisation of steam levels of total site utility system for multiperiod operation
  publication-title: Computers and Chemical Engineering
  contributor:
    fullname: Kokossis
– volume: 67
  start-page: 495
  year: 1989
  end-page: 509
  ident: bib0040
  article-title: The cascade analysis for energy and process integration of batch processes. Part 1. Calculation of energy targets
  publication-title: Chemical Engineering Research and Design
  contributor:
    fullname: Deakin
– volume: 30
  start-page: 2270
  year: 2010
  end-page: 2280
  ident: bib0025
  article-title: Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction
  publication-title: Applied Thermal Engineering
  contributor:
    fullname: Friedler
– volume: 67
  start-page: 510
  year: 1989
  end-page: 516
  ident: bib0045
  article-title: The cascade analysis for energy and process integration of batch processes. Part 3. Network design and process scheduling
  publication-title: Chemical Engineering Research and Design
  contributor:
    fullname: Deakin
– volume: 17
  start-page: S101
  year: 1993
  end-page: S109
  ident: bib0010
  article-title: Total site targets for fuel, co-generation, emissions, and cooling
  publication-title: Computers and Chemical Engineering
  contributor:
    fullname: Linnhoff
– volume: 7
  start-page: 993
  year: 1997
  end-page: 1003
  ident: bib0055
  article-title: Targeting and design methodology for reduction of fuel, power and CO
  publication-title: Applied Thermal Engineering
  contributor:
    fullname: Puigjaner
– year: 1994
  ident: bib0065
  article-title: Design and operation of energy efficient batch processes. Final report
  contributor:
    fullname: Kemp
– volume: 82
  start-page: 708
  year: 2008
  end-page: 716
  ident: bib0130
  article-title: Long-term heat storage with NaOH
  publication-title: Vacuum
  contributor:
    fullname: Dorer
– volume: 80
  start-page: 33
  year: 1984
  end-page: 40
  ident: bib0090
  article-title: Pinch technology has come of age
  publication-title: Chemical Engineering Progress
  contributor:
    fullname: Vredeveld
– volume: 31
  start-page: 537
  year: 2006
  end-page: 548
  ident: bib0095
  article-title: Life cycle analysis of a solar thermal system with thermochemical storage process
  publication-title: Renewable Energy
  contributor:
    fullname: Klemeš
– volume: 34
  start-page: 1687
  year: 2009
  end-page: 1692
  ident: bib0100
  article-title: Applying heat integration total site based pinch technology to a large industrial area in Japan to further improve performance of highly efficient process plants
  publication-title: Energy
  contributor:
    fullname: Shire
– volume: 38
  start-page: 745
  year: 1983
  end-page: 763
  ident: bib0075
  article-title: The pinch design method for heat exchanger networks
  publication-title: Chemical Engineering Science
  contributor:
    fullname: Hindmarsh
– volume: 33
  start-page: 1489
  year: 2008
  end-page: 1497
  ident: bib0110
  article-title: Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors
  publication-title: Energy
  contributor:
    fullname: Bulatov
– volume: 18
  start-page: 1
  year: 2009
  end-page: 26
  ident: bib0020
  article-title: Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction
  publication-title: Chemical Engineering Transactions
  contributor:
    fullname: Friedler
– volume: 12
  start-page: 207
  year: 2007
  end-page: 212
  ident: bib0030
  article-title: Accounting for fouling in plate heat exchanger design
  publication-title: Chemical Engineering Transactions
  contributor:
    fullname: Kapustenko
– volume: 3
  start-page: 295
  year: 1979
  end-page: 302
  ident: bib0080
  article-title: Understanding heat exchanger networks
  publication-title: Computers and Chemical Engineering
  contributor:
    fullname: Wardle
– year: 1982
  ident: bib0085
  article-title: A user guide to process integration for the efficient use of energy
  contributor:
    fullname: Marsland
– year: 2010
  ident: bib0060
  article-title: Sustainability in the process industry: Integration and optimization
  contributor:
    fullname: Varbanov
– volume: 24
  start-page: 633
  issue: 4
  year: 1978
  ident: 10.1016/j.compchemeng.2011.02.009_bib0070
  article-title: Synthesis of heat exchanger networks. 1. Systematic generation of energy optimal networks
  publication-title: AIChE Journal
  doi: 10.1002/aic.690240411
  contributor:
    fullname: Linnhoff
– volume: 3
  start-page: 295
  issue: 1–4
  year: 1979
  ident: 10.1016/j.compchemeng.2011.02.009_bib0080
  article-title: Understanding heat exchanger networks
  publication-title: Computers and Chemical Engineering
  doi: 10.1016/0098-1354(79)80049-6
  contributor:
    fullname: Linnhoff
– volume: 17
  start-page: S101
  issue: Suppl.
  year: 1993
  ident: 10.1016/j.compchemeng.2011.02.009_bib0010
  article-title: Total site targets for fuel, co-generation, emissions, and cooling
  publication-title: Computers and Chemical Engineering
  doi: 10.1016/0098-1354(93)80214-8
  contributor:
    fullname: Dhole
– ident: 10.1016/j.compchemeng.2011.02.009_bib0105
  doi: 10.1016/B978-0-444-54298-4.50167-7
– volume: 34
  start-page: 1687
  issue: 10
  year: 2009
  ident: 10.1016/j.compchemeng.2011.02.009_bib0100
  article-title: Applying heat integration total site based pinch technology to a large industrial area in Japan to further improve performance of highly efficient process plants
  publication-title: Energy
  doi: 10.1016/j.energy.2009.05.017
  contributor:
    fullname: Matsuda
– volume: 7
  start-page: 993
  year: 1997
  ident: 10.1016/j.compchemeng.2011.02.009_bib0055
  article-title: Targeting and design methodology for reduction of fuel, power and CO2 on total sites
  publication-title: Applied Thermal Engineering
  doi: 10.1016/S1359-4311(96)00087-7
  contributor:
    fullname: Klemeš
– volume: 33
  start-page: 1489
  issue: 10
  year: 2008
  ident: 10.1016/j.compchemeng.2011.02.009_bib0110
  article-title: Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors
  publication-title: Energy
  doi: 10.1016/j.energy.2008.03.008
  contributor:
    fullname: Perry
– volume: 18
  start-page: 1
  year: 2009
  ident: 10.1016/j.compchemeng.2011.02.009_bib0020
  article-title: Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction
  publication-title: Chemical Engineering Transactions
  contributor:
    fullname: Friedler
– volume: 38
  start-page: 745
  issue: 5
  year: 1983
  ident: 10.1016/j.compchemeng.2011.02.009_bib0075
  article-title: The pinch design method for heat exchanger networks
  publication-title: Chemical Engineering Science
  doi: 10.1016/0009-2509(83)80185-7
  contributor:
    fullname: Linnhoff
– ident: 10.1016/j.compchemeng.2011.02.009_bib0005
– volume: 67
  start-page: 495
  year: 1989
  ident: 10.1016/j.compchemeng.2011.02.009_bib0040
  article-title: The cascade analysis for energy and process integration of batch processes. Part 1. Calculation of energy targets
  publication-title: Chemical Engineering Research and Design
  contributor:
    fullname: Kemp
– volume: 67
  start-page: 517
  year: 1989
  ident: 10.1016/j.compchemeng.2011.02.009_bib0050
  article-title: The cascade analysis for energy and process integration of batch processes. Part 3. A case study
  publication-title: Chemical Engineering Research and Design
  contributor:
    fullname: Kemp
– volume: 13
  start-page: 318
  year: 2009
  ident: 10.1016/j.compchemeng.2011.02.009_bib0120
  article-title: Review on thermal energy storage with phase change materials and applications
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2007.10.005
  contributor:
    fullname: Sharma
– volume: 25
  start-page: 985
  issue: 7
  year: 2005
  ident: 10.1016/j.compchemeng.2011.02.009_bib0125
  article-title: Synthesis of industrial utility systems: Cost-effective de-carbonization
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2004.06.023
  contributor:
    fullname: Varbanov
– volume: 82
  start-page: 708
  year: 2008
  ident: 10.1016/j.compchemeng.2011.02.009_bib0130
  article-title: Long-term heat storage with NaOH
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2007.10.018
  contributor:
    fullname: Weber
– volume: 28
  start-page: 1673
  issue: 9
  year: 2004
  ident: 10.1016/j.compchemeng.2011.02.009_bib0115
  article-title: A transhipment model for the optimisation of steam levels of total site utility system for multiperiod operation
  publication-title: Computers and Chemical Engineering
  doi: 10.1016/j.compchemeng.2004.01.010
  contributor:
    fullname: Shang
– year: 2010
  ident: 10.1016/j.compchemeng.2011.02.009_bib0060
  contributor:
    fullname: Klemeš
– year: 1982
  ident: 10.1016/j.compchemeng.2011.02.009_bib0085
  contributor:
    fullname: Linnhoff
– volume: 31
  start-page: 537
  issue: 4
  year: 2006
  ident: 10.1016/j.compchemeng.2011.02.009_bib0095
  article-title: Life cycle analysis of a solar thermal system with thermochemical storage process
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2005.03.008
  contributor:
    fullname: Masruroh
– volume: 30
  start-page: 2270
  issue: 16
  year: 2010
  ident: 10.1016/j.compchemeng.2011.02.009_bib0025
  article-title: Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2010.04.030
  contributor:
    fullname: Friedler
– volume: 67
  start-page: 510
  year: 1989
  ident: 10.1016/j.compchemeng.2011.02.009_bib0045
  article-title: The cascade analysis for energy and process integration of batch processes. Part 3. Network design and process scheduling
  publication-title: Chemical Engineering Research and Design
  contributor:
    fullname: Kemp
– volume: 12
  start-page: 207
  year: 2007
  ident: 10.1016/j.compchemeng.2011.02.009_bib0030
  article-title: Accounting for fouling in plate heat exchanger design
  publication-title: Chemical Engineering Transactions
  contributor:
    fullname: Gogenko
– volume: 80
  start-page: 33
  issue: 7
  year: 1984
  ident: 10.1016/j.compchemeng.2011.02.009_bib0090
  article-title: Pinch technology has come of age
  publication-title: Chemical Engineering Progress
  contributor:
    fullname: Linnhoff
– year: 1994
  ident: 10.1016/j.compchemeng.2011.02.009_bib0065
  contributor:
    fullname: Klemeš
– ident: 10.1016/j.compchemeng.2011.02.009_bib0035
– volume: 28
  start-page: 2089
  issue: 16
  year: 2008
  ident: 10.1016/j.compchemeng.2011.02.009_bib0015
  article-title: Minimum units targeting and network evolution for batch heat exchanger network
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2008.02.006
  contributor:
    fullname: Foo
SSID ssj0002488
Score 2.4044876
Snippet Reducing CO 2 emissions could be achieved by maximising heat recovery and increasing the share of renewables in the primary energy mix. Process Integration has...
Reducing CO2 emissions could be achieved by maximising heat recovery and increasing the share of renewables in the primary energy mix. Process Integration has...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 1815
SubjectTerms Biomass
Carbon
Cascades
Energy management
Heating
Inclusions
Integration of renewables
Supply and demand
Total Site Heat Cascade
Total Site Integration
Varying energy demand
Varying energy supply
Wastes
Title Integration and management of renewables into Total Sites with variable supply and demand
URI https://dx.doi.org/10.1016/j.compchemeng.2011.02.009
https://search.proquest.com/docview/907937194
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90A9EH8RPnFxF8reuSdkvAFxnKpuiLE_QpJE0qE9YONxVf_Nu961q_QBB8bUhafmnuLsnvfgdwqDrCchviQhI8oQ1KGqjYyyD00tuUd7wRlDt8edXu3UTnt_HtHHSrXBiiVZa2f2bTC2tdPmmWaDbHwyHl-CrZEnFEomfoKOU81ItLohrUT_oXvasPg8wjKSvpTOqwAAefNC9ibiM8I5_dl4KepOCpfnNTPwx24YXOVmC5DB_ZyewLV2HOZ2uw9EVUcB3u-qUCBCLOTObY6IPhwvKUkYTlC-VLTdgwm-ZskGP4za4x8pwwOpRlz7h7pnY2oYKfr8UQzuMgbgMGZ6eDbi8oCygEiYjFNGhL56hqIIYowiXOxM5GnBuZtrmNUiWiRHojnRfehokNTWidcSGRYbiNMQ7YhFqWZ34LmLUd4ww2pYmk6uno0zpGJOjbU5VIbhrAK7j0eCaToSv-2IP-grEmjHXINWLcgOMKWP1tzjWa8790Z9VkaFwTdNFhMp8_TbQqVP9aKtr-3xt2YHF2hKyCVrQLtenjk9_DGGRq92H-6K21X_5p7wwb3nY
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qCz4O4hPrM4LXxW2y2ybgRURpffRiBT2FZJOVCt0ttlX89860u75AELxuSHb5ksx8yc58A3CkWsJyG-JGEjyhA0oaqNjLIPTS25S3vBGUO3zTbbbvosv7-L4CZ2UuDIVVFrZ_ZtOn1rp4clygeTzs9ynHV8mGiCMSPUNHKeeghmxA4WKvnXau2t0Pg8wjKUvpTOowD4efYV4UuY3wDHz2WAh6koKn-s1N_TDYUy90sQLLBX1kp7MvXIWKz9Zg6Yuo4Do8dAoFCEScmcyxwUeEC8tTRhKWr5QvNWL9bJyzXo70m90i8xwxupRlL3h6pnY2ooKfb9MhnMdB3Ab0Ls57Z-2gKKAQJCIW46ApnaOqgUhRhEuciZ2NODcybXIbpUpEifRGOi-8DRMbmtA640IKhuE2Rh6wCdUsz_wWMGtbxhlsShNJ1dPRp7WMSNC3pyqR3NSBl3Dp4UwmQ5fxY0_6C8aaMNYh14hxHU5KYPW3Oddozv_SnZWToXFP0I8Ok_l8MtJqqvrXUNH2_95wAAvt3s21vu50r3ZgcXadrIJGtAvV8fPE7yEfGdv9Yr29A4YJ4HM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+and+management+of+renewables+into+Total+Sites+with+variable+supply+and+demand&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Varbanov%2C+Petar+Sabev&rft.au=Kleme%C5%A1%2C+Ji%C5%99%C3%AD+Jarom%C3%ADr&rft.date=2011-09-14&rft.pub=Elsevier+Ltd&rft.issn=0098-1354&rft.eissn=1873-4375&rft.volume=35&rft.issue=9&rft.spage=1815&rft.epage=1826&rft_id=info:doi/10.1016%2Fj.compchemeng.2011.02.009&rft.externalDocID=S0098135411000718
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon