Empirical Mode Decomposition based ensemble deep learning for load demand time series forecasting
[Display omitted] •An ensemble deep learning method has been proposed for load demand forecasting.•The hybrid method composes of Empirical Mode Decomposition and Deep Belief Network.•Empirical Mode Decomposition based methods outperform the single structure models.•Deep learning shows more advantage...
Saved in:
Published in | Applied soft computing Vol. 54; pp. 246 - 255 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1568-4946 1872-9681 |
DOI | 10.1016/j.asoc.2017.01.015 |
Cover
Loading…
Abstract | [Display omitted]
•An ensemble deep learning method has been proposed for load demand forecasting.•The hybrid method composes of Empirical Mode Decomposition and Deep Belief Network.•Empirical Mode Decomposition based methods outperform the single structure models.•Deep learning shows more advantages when the forecasting horizon increases.
Load demand forecasting is a critical process in the planning of electric utilities. An ensemble method composed of Empirical Mode Decomposition (EMD) algorithm and deep learning approach is presented in this work. For this purpose, the load demand series were first decomposed into several intrinsic mode functions (IMFs). Then a Deep Belief Network (DBN) including two restricted Boltzmann machines (RBMs) was used to model each of the extracted IMFs, so that the tendencies of these IMFs can be accurately predicted. Finally, the prediction results of all IMFs can be combined by either unbiased or weighted summation to obtain an aggregated output for load demand. The electricity load demand data sets from Australian Energy Market Operator (AEMO) are used to test the effectiveness of the proposed EMD-based DBN approach. Simulation results demonstrated attractiveness of the proposed method compared with nine forecasting methods. |
---|---|
AbstractList | [Display omitted]
•An ensemble deep learning method has been proposed for load demand forecasting.•The hybrid method composes of Empirical Mode Decomposition and Deep Belief Network.•Empirical Mode Decomposition based methods outperform the single structure models.•Deep learning shows more advantages when the forecasting horizon increases.
Load demand forecasting is a critical process in the planning of electric utilities. An ensemble method composed of Empirical Mode Decomposition (EMD) algorithm and deep learning approach is presented in this work. For this purpose, the load demand series were first decomposed into several intrinsic mode functions (IMFs). Then a Deep Belief Network (DBN) including two restricted Boltzmann machines (RBMs) was used to model each of the extracted IMFs, so that the tendencies of these IMFs can be accurately predicted. Finally, the prediction results of all IMFs can be combined by either unbiased or weighted summation to obtain an aggregated output for load demand. The electricity load demand data sets from Australian Energy Market Operator (AEMO) are used to test the effectiveness of the proposed EMD-based DBN approach. Simulation results demonstrated attractiveness of the proposed method compared with nine forecasting methods. |
Author | Ren, Ye Suganthan, Ponnuthurai Nagaratnam Amaratunga, Gehan A.J. Qiu, Xueheng |
Author_xml | – sequence: 1 givenname: Xueheng surname: Qiu fullname: Qiu, Xueheng email: qiux0004@e.ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore – sequence: 2 givenname: Ye surname: Ren fullname: Ren, Ye email: re0003ye@e.ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore – sequence: 3 givenname: Ponnuthurai Nagaratnam surname: Suganthan fullname: Suganthan, Ponnuthurai Nagaratnam email: epnsugan@e.ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore – sequence: 4 givenname: Gehan A.J. surname: Amaratunga fullname: Amaratunga, Gehan A.J. organization: Centre for Advanced Photonics and Electronics, Electrical Engineering Division, Engineering Department, University of Cambridge, Cambridge CB3 0FA, UK |
BookMark | eNp9kM9KxDAQxoOs4O7qC3jKC7QmTdom4EXW9Q-seNFzSJOpZGmTkhTBtzdlPXlYGJhhZn7DfN8GrXzwgNAtJSUltLk7ljoFU1aEtiWhOeoLtKairQrZCLrKdd2IgkveXKFNSkeSIVmJNdL7cXLRGT3gt2ABP4IJ4xSSm13wuNMJLAafYOwGwBZgwgPo6J3_wn2IeAja5vaovcWzGwEniA7SMgOj05z3rtFlr4cEN395iz6f9h-7l-Lw_vy6ezgUhtVsLhrSsfxv3VGrNSEdtyBrwWTVM8F5I1teNX0rpLFaWK6hYi1Yy4iVRvBWMLZF1emuiSGlCL2aoht1_FGUqMUkdVSLSWoxSRGao86Q-AcZN-tF-xy1G86j9ycUsqhvB1El48AbsC5rn5UN7hz-C-Dvhf8 |
CitedBy_id | crossref_primary_10_1016_j_rser_2019_109632 crossref_primary_10_1007_s10489_022_04174_z crossref_primary_10_1016_j_asoc_2020_106579 crossref_primary_10_1155_2024_5587728 crossref_primary_10_1016_j_energy_2020_117514 crossref_primary_10_1177_03019233241235596 crossref_primary_10_1016_j_apenergy_2022_119525 crossref_primary_10_1016_j_scs_2021_103484 crossref_primary_10_1016_j_asoc_2022_109726 crossref_primary_10_1016_j_asoc_2019_02_030 crossref_primary_10_1016_j_chemolab_2019_01_008 crossref_primary_10_1177_0047287520919522 crossref_primary_10_1016_j_catena_2019_02_012 crossref_primary_10_1016_j_engappai_2024_108942 crossref_primary_10_62762_TIS_2024_136898 crossref_primary_10_1016_j_neucom_2018_08_067 crossref_primary_10_3390_en11061554 crossref_primary_10_1007_s00202_023_02138_1 crossref_primary_10_1002_er_5331 crossref_primary_10_1016_j_egyai_2024_100343 crossref_primary_10_1080_02533839_2022_2034052 crossref_primary_10_1016_j_apenergy_2023_120920 crossref_primary_10_1016_j_epsr_2020_106733 crossref_primary_10_1016_j_energy_2017_12_049 crossref_primary_10_1007_s42835_022_01127_x crossref_primary_10_3390_forecast2020009 crossref_primary_10_1016_j_epsr_2023_109967 crossref_primary_10_1007_s12293_022_00355_y crossref_primary_10_1007_s11071_021_06742_3 crossref_primary_10_1007_s00202_021_01389_0 crossref_primary_10_3390_electronics12061381 crossref_primary_10_1007_s00202_020_01135_y crossref_primary_10_1089_big_2020_0159 crossref_primary_10_3390_en11102744 crossref_primary_10_1109_ACCESS_2021_3068652 crossref_primary_10_1142_S0218539319500293 crossref_primary_10_3390_a13110274 crossref_primary_10_3390_en17020307 crossref_primary_10_1007_s40031_020_00477_2 crossref_primary_10_1155_2021_6694538 crossref_primary_10_1021_acs_est_1c02479 crossref_primary_10_1016_j_apenergy_2021_118266 crossref_primary_10_1007_s00202_025_03034_6 crossref_primary_10_1016_j_engappai_2020_104000 crossref_primary_10_1007_s00500_020_05176_0 crossref_primary_10_1016_j_eswa_2024_125259 crossref_primary_10_3390_en16114294 crossref_primary_10_1109_ACCESS_2020_3034113 crossref_primary_10_1016_j_compeleceng_2025_110174 crossref_primary_10_1016_j_energy_2022_126012 crossref_primary_10_15446_innovar_v32n85_100979 crossref_primary_10_1016_j_engappai_2021_104645 crossref_primary_10_1016_j_watres_2019_115454 crossref_primary_10_1155_2019_9067367 crossref_primary_10_1016_j_tws_2021_108076 crossref_primary_10_3390_electronics9030420 crossref_primary_10_1016_j_bspc_2020_102076 crossref_primary_10_1016_j_promfg_2020_03_056 crossref_primary_10_1109_ACCESS_2018_2877153 crossref_primary_10_1007_s13762_022_04525_w crossref_primary_10_1016_j_asoc_2022_109632 crossref_primary_10_1016_j_engappai_2023_106352 crossref_primary_10_3390_en13092390 crossref_primary_10_1109_ACCESS_2020_3010702 crossref_primary_10_1109_ACCESS_2022_3227512 crossref_primary_10_1016_j_asoc_2021_108345 crossref_primary_10_1016_j_isatra_2019_07_004 crossref_primary_10_3390_math10162999 crossref_primary_10_1016_j_engappai_2019_03_012 crossref_primary_10_1016_j_asoc_2018_12_028 crossref_primary_10_3390_en14175510 crossref_primary_10_1016_j_asoc_2018_04_049 crossref_primary_10_1016_j_apenergy_2018_12_042 crossref_primary_10_3389_fenrg_2023_1296800 crossref_primary_10_3390_s20051334 crossref_primary_10_1515_kbo_2017_0154 crossref_primary_10_1016_j_heliyon_2022_e08803 crossref_primary_10_1016_j_apenergy_2018_09_190 crossref_primary_10_1016_j_cjche_2024_09_028 crossref_primary_10_1016_j_measurement_2023_113450 crossref_primary_10_1007_s00500_020_04855_2 crossref_primary_10_1109_TCYB_2018_2863020 crossref_primary_10_1016_j_neucom_2018_08_021 crossref_primary_10_1109_ACCESS_2022_3195053 crossref_primary_10_1109_ACCESS_2019_2935121 crossref_primary_10_1016_j_eneco_2023_106793 crossref_primary_10_1002_er_6745 crossref_primary_10_1016_j_energy_2018_06_012 crossref_primary_10_1109_ACCESS_2019_2920436 crossref_primary_10_3390_w13182457 crossref_primary_10_1109_JSEN_2019_2923982 crossref_primary_10_3390_en12193603 crossref_primary_10_1007_s13131_022_1994_4 crossref_primary_10_1016_j_enconman_2018_03_098 crossref_primary_10_1007_s00202_021_01420_4 crossref_primary_10_1016_j_energy_2024_134168 crossref_primary_10_1088_1742_6596_1518_1_012082 crossref_primary_10_1016_j_eneco_2018_10_001 crossref_primary_10_3390_math10224387 crossref_primary_10_1007_s11831_024_10155_x crossref_primary_10_1016_j_apenergy_2019_114243 crossref_primary_10_3390_en17174377 crossref_primary_10_1016_j_asoc_2019_02_006 crossref_primary_10_1016_j_energy_2017_11_142 crossref_primary_10_1016_j_eswa_2023_121642 crossref_primary_10_1155_2018_4276176 crossref_primary_10_1016_j_neucom_2018_05_068 crossref_primary_10_3390_en11051138 crossref_primary_10_1016_j_apenergy_2019_114368 crossref_primary_10_1016_j_energy_2019_116045 crossref_primary_10_3390_pr10061137 crossref_primary_10_1016_j_asoc_2019_105963 crossref_primary_10_1016_j_chaos_2021_111453 crossref_primary_10_1016_j_jclepro_2020_121027 crossref_primary_10_1007_s10479_021_04429_x crossref_primary_10_1137_21M1417867 crossref_primary_10_1016_j_chaos_2022_112982 crossref_primary_10_3390_systems11020055 crossref_primary_10_1007_s40684_023_00537_0 crossref_primary_10_1007_s42835_020_00358_0 crossref_primary_10_1016_j_asoc_2020_106919 crossref_primary_10_1109_ACCESS_2020_2989510 crossref_primary_10_1175_JTECH_D_18_0141_1 crossref_primary_10_1007_s00521_023_08222_8 crossref_primary_10_1016_j_apenergy_2024_123531 crossref_primary_10_3390_en11123433 crossref_primary_10_1016_j_ins_2022_01_010 crossref_primary_10_1016_j_asoc_2019_105736 crossref_primary_10_1016_j_asoc_2018_09_005 crossref_primary_10_1016_j_asoc_2019_105975 crossref_primary_10_1016_j_asoc_2021_107730 crossref_primary_10_3390_app112311263 crossref_primary_10_1016_j_apenergy_2018_04_001 crossref_primary_10_1016_j_engappai_2023_107649 crossref_primary_10_3390_su10093282 crossref_primary_10_1016_j_asoc_2020_106900 crossref_primary_10_3390_math8020214 crossref_primary_10_3390_en17102251 crossref_primary_10_1080_03610926_2018_1554132 crossref_primary_10_1109_ACCESS_2020_2966641 crossref_primary_10_1007_s00521_021_06773_2 crossref_primary_10_1109_TNNLS_2019_2956195 crossref_primary_10_1016_j_rser_2021_110992 crossref_primary_10_3390_en12061140 crossref_primary_10_1016_j_renene_2021_03_020 crossref_primary_10_2139_ssrn_4117249 crossref_primary_10_1016_j_apr_2021_101153 crossref_primary_10_22144_ctujoisd_2024_324 crossref_primary_10_1016_j_enconman_2017_10_008 crossref_primary_10_1016_j_asoc_2018_09_018 crossref_primary_10_1007_s11063_021_10651_2 crossref_primary_10_1016_j_epsr_2019_106106 crossref_primary_10_1109_TII_2021_3057943 crossref_primary_10_1007_s10614_021_10172_z crossref_primary_10_1016_j_energy_2019_03_080 crossref_primary_10_3390_s23135819 crossref_primary_10_1016_j_apenergy_2020_116415 crossref_primary_10_3390_en16031404 crossref_primary_10_1016_j_apenergy_2020_114915 crossref_primary_10_1155_2019_1279565 crossref_primary_10_1007_s10489_021_02864_8 crossref_primary_10_3390_en10040490 crossref_primary_10_48175_IJARSCT_V4_I3_020 crossref_primary_10_7498_aps_69_20200625 crossref_primary_10_3390_forecast4020031 crossref_primary_10_1007_s10462_022_10283_5 crossref_primary_10_1049_gtd2_12265 crossref_primary_10_3390_en14144378 crossref_primary_10_1007_s42786_018_00006_2 crossref_primary_10_1016_j_asoc_2018_05_007 crossref_primary_10_3390_electronics12132811 crossref_primary_10_1155_jama_7706431 crossref_primary_10_1007_s00521_021_06212_2 crossref_primary_10_1109_ACCESS_2019_2901842 crossref_primary_10_1016_j_geoen_2025_213771 crossref_primary_10_1109_ACCESS_2021_3073708 crossref_primary_10_3390_sym13101942 crossref_primary_10_1016_j_eswa_2024_123208 crossref_primary_10_1016_j_energy_2023_127430 crossref_primary_10_3390_app12104942 crossref_primary_10_1109_ACCESS_2021_3063123 crossref_primary_10_1007_s11356_022_21277_9 crossref_primary_10_1007_s12652_019_01432_w crossref_primary_10_1016_j_displa_2021_102020 crossref_primary_10_3390_atmos12050607 crossref_primary_10_2139_ssrn_4849885 crossref_primary_10_1051_e3sconf_202123102001 crossref_primary_10_1007_s11771_021_4773_z crossref_primary_10_1016_j_energy_2022_123483 crossref_primary_10_1109_TPWRS_2019_2946701 crossref_primary_10_1016_j_asoc_2020_106294 crossref_primary_10_1016_j_engappai_2022_105151 crossref_primary_10_1016_j_physa_2019_123360 crossref_primary_10_1016_j_earscirev_2019_103076 crossref_primary_10_1108_GS_08_2020_0101 crossref_primary_10_1016_j_egyr_2021_01_030 crossref_primary_10_1016_j_scs_2020_102052 crossref_primary_10_1016_j_epsr_2022_108065 crossref_primary_10_1051_e3sconf_202021013036 crossref_primary_10_1109_TITS_2020_2979390 crossref_primary_10_1016_j_procs_2018_10_528 crossref_primary_10_4018_IRMJ_291692 crossref_primary_10_1016_j_mtcomm_2024_108595 crossref_primary_10_1016_j_procs_2018_10_526 crossref_primary_10_1016_j_ijhydene_2021_01_126 crossref_primary_10_1007_s00500_021_05608_5 crossref_primary_10_1155_2020_1209547 crossref_primary_10_1016_j_asoc_2018_01_017 crossref_primary_10_1016_j_envpol_2020_114635 crossref_primary_10_1016_j_eswa_2020_114527 crossref_primary_10_1080_15325008_2021_1937401 crossref_primary_10_1016_j_engappai_2024_108434 crossref_primary_10_1109_ACCESS_2019_2937222 crossref_primary_10_1016_j_ins_2018_07_015 crossref_primary_10_1016_j_knosys_2018_01_015 crossref_primary_10_1016_j_eswa_2022_117784 crossref_primary_10_1016_j_physa_2018_11_016 crossref_primary_10_1177_0958305X19842061 crossref_primary_10_1002_for_2831 crossref_primary_10_1016_j_neunet_2023_06_042 crossref_primary_10_1007_s10586_024_04684_0 crossref_primary_10_1016_j_jenvman_2021_113951 crossref_primary_10_1007_s10489_019_01426_3 crossref_primary_10_1016_j_istruc_2021_05_097 crossref_primary_10_1177_13548166211025160 crossref_primary_10_1016_j_istruc_2021_05_096 crossref_primary_10_1002_er_4855 crossref_primary_10_1016_j_ijepes_2021_107595 crossref_primary_10_2147_IDR_S299704 crossref_primary_10_3390_en13040886 crossref_primary_10_1002_for_2717 crossref_primary_10_1109_ACCESS_2020_3038853 crossref_primary_10_1016_j_energy_2023_129142 crossref_primary_10_1109_ACCESS_2021_3086039 crossref_primary_10_1007_s10489_021_02229_1 crossref_primary_10_1016_j_energy_2023_129387 crossref_primary_10_3390_atmos12070924 crossref_primary_10_1109_ACCESS_2022_3187839 crossref_primary_10_1016_j_dsp_2020_102741 crossref_primary_10_1109_TETC_2022_3143154 crossref_primary_10_1016_j_energy_2023_129938 crossref_primary_10_1080_15435075_2021_1875474 crossref_primary_10_1109_ACCESS_2019_2908385 crossref_primary_10_1109_JIOT_2018_2878477 crossref_primary_10_1016_j_scs_2019_101642 crossref_primary_10_1016_j_asoc_2022_109259 crossref_primary_10_15406_ijfcm_2024_08_00369 crossref_primary_10_1016_j_apenergy_2022_119963 crossref_primary_10_1002_hbm_70032 crossref_primary_10_1007_s11227_022_04646_6 crossref_primary_10_1016_j_asoc_2017_05_031 crossref_primary_10_1016_j_epsr_2022_108150 crossref_primary_10_1016_j_rineng_2024_102773 crossref_primary_10_3103_S0146411624700986 crossref_primary_10_1111_exsy_13467 crossref_primary_10_1016_j_energy_2022_126561 crossref_primary_10_1049_tje2_12132 crossref_primary_10_1007_s12145_024_01514_0 crossref_primary_10_1038_s41598_024_80018_9 crossref_primary_10_1186_s13677_023_00527_2 crossref_primary_10_1016_j_compeleceng_2021_107663 crossref_primary_10_1038_s41598_022_17754_3 crossref_primary_10_1016_j_asoc_2020_107066 crossref_primary_10_3390_s23031490 crossref_primary_10_1016_j_swevo_2018_03_009 crossref_primary_10_1016_j_asoc_2020_106515 crossref_primary_10_1038_s41598_021_00948_6 crossref_primary_10_1016_j_engappai_2023_105970 crossref_primary_10_1155_2021_6620368 crossref_primary_10_1016_j_chaos_2020_110366 crossref_primary_10_1016_j_neucom_2020_01_031 crossref_primary_10_30516_bilgesci_531801 crossref_primary_10_1016_j_tws_2022_109489 crossref_primary_10_1109_ACCESS_2020_2984588 crossref_primary_10_1007_s00521_020_05658_0 crossref_primary_10_1109_ACCESS_2024_3370679 crossref_primary_10_1109_JESTIE_2022_3218257 crossref_primary_10_1360_SSPMA_2024_0337 crossref_primary_10_1016_j_rser_2020_110052 crossref_primary_10_1007_s10489_021_02442_y crossref_primary_10_1016_j_asoc_2021_107450 crossref_primary_10_3233_JIFS_201279 crossref_primary_10_1007_s00521_020_05113_0 crossref_primary_10_1177_1550147719877616 crossref_primary_10_3389_fenrg_2021_799039 crossref_primary_10_1016_j_asoc_2020_107059 crossref_primary_10_1016_j_dss_2018_08_010 crossref_primary_10_3390_math10142446 crossref_primary_10_1109_TII_2021_3065718 crossref_primary_10_1016_j_asoc_2018_03_042 crossref_primary_10_1177_0142331219860279 crossref_primary_10_1007_s11518_018_5390_8 crossref_primary_10_1038_s41598_024_67626_1 crossref_primary_10_3390_data9010013 crossref_primary_10_4018_IJSIR_2019010101 crossref_primary_10_1049_tje2_12151 crossref_primary_10_1016_j_asoc_2023_110670 crossref_primary_10_1007_s10853_024_10178_6 crossref_primary_10_1109_ACCESS_2019_2902510 crossref_primary_10_1016_j_procs_2019_11_252 crossref_primary_10_1016_j_asoc_2021_107223 |
Cites_doi | 10.1016/S0169-2070(99)00045-X 10.1016/j.knosys.2015.02.017 10.1002/er.3048 10.1016/j.asoc.2014.09.007 10.1109/TNN.2007.891656 10.1016/j.enconman.2008.08.031 10.1561/2200000006 10.1016/j.energy.2012.11.015 10.1016/j.energy.2011.07.015 10.1016/j.energy.2014.07.065 10.1023/A:1010933404324 10.1162/089976602760128018 10.1016/j.patcog.2014.04.001 10.1016/j.asoc.2016.01.027 10.1016/j.enconman.2007.06.015 10.1162/neco.1992.4.1.1 10.1126/science.1127647 10.3390/en81112361 10.1016/j.neucom.2006.04.005 10.1016/j.ijforecast.2003.09.015 10.1016/j.renene.2012.06.012 10.1016/j.epsr.2014.09.002 10.1109/59.99410 10.1007/BF00994018 10.1162/neco.2006.18.7.1527 10.1016/j.patcog.2014.07.028 10.1162/NECO_a_00052 10.1109/TCYB.2014.2366468 10.1016/j.neunet.2014.09.003 10.1016/j.enpol.2009.06.046 10.1109/34.709601 10.1016/j.energy.2011.10.034 10.1016/j.patcog.2014.08.017 10.1109/TSTE.2014.2365580 10.1145/1961189.1961199 10.1007/BF00058655 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2017.01.015 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
EndPage | 255 |
ExternalDocumentID | 10_1016_j_asoc_2017_01_015 S1568494617300273 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c353t-60b38725b1daa00b4de958392f3844697426f789cda8d4ae237edd30d9c847833 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:49:58 EDT 2025 Thu Apr 24 23:03:08 EDT 2025 Fri Feb 23 02:24:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Empirical Mode Decomposition Load demand forecasting Neural networks Time series forecasting Support vector regression Ensemble method Random forests |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-60b38725b1daa00b4de958392f3844697426f789cda8d4ae237edd30d9c847833 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2017_01_015 crossref_citationtrail_10_1016_j_asoc_2017_01_015 elsevier_sciencedirect_doi_10_1016_j_asoc_2017_01_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-01 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied soft computing |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Papalexopoulos, Hesterberg (bib0040) 1990; 5 Ho (bib0200) 1995 Box, Jenkins (bib0035) 1976 Ho (bib0205) 1998; 20 Ye, Liu (bib0285) 2011 Martínez-Álvarez, Troncoso, Asencio-Cortés, Riquelme (bib0175) 2015; 8 Hinton, Salakhutdinov (bib0235) 2006; 313 Busseti, Osband, Wong (bib0085) 2012 Ciresan, Meier, Schmidhuber (bib0090) 2012 AEMO, Australian Energy Market Operator 2013, 2013. Palm (bib0275) 2012 Rilling, Flandrin, Gonçalves (bib0255) 2003 Holt (bib0030) 2004; 20 Liu, Chen, Tian, Li (bib0290) 2012; 48 Hong (bib0070) 2009; 50 Ciresan, Meier, Gambardella, Schmidhuber (bib0095) 2010; 22 Bengio (bib0225) 2009; 2 Fernández-Delgado, Cernadas, Barro, Amorim (bib0125) 2014; 15 Zhang, Suganthan (bib0220) 2015; 45 Demšar (bib0280) 2006; 7 Ren, Suganthan, Srikanth (bib0170) 2015; 6 Koprinska, Rana, Agelidis (bib0015) 2015; 82 Hinton (bib0245) 2002; 14 Breiman, Freidman, Olshen, Stone (bib0120) 1984 Gharehbaghi, Ask, Babic (bib0010) 2015; 48 Hu, Bao, Xiong (bib0140) 2016; 42 . Sousa, Jorge, Neves (bib0020) 2014; 38 Ren, Qiu, Suganthan (bib0145) 2014 Ko, Lee (bib0185) 2013; 49 Romero, Toppo (bib0295) 2007; 18 Schmidhuber (bib0100) 2015; 61 Breiman (bib0115) 2001; 45 Che, Wang, Wang (bib0310) 2012; 37 Benaouda, Murtagh, Starck, Renaud (bib0160) 2006; 70 Breiman (bib0210) 1996; 24 Zhang, Suganthan (bib0190) 2016; 000 Hong (bib0305) 2011; 36 Yamashita, Tanaka, Yoshida, Yamauchi, Fujiyoshi (bib0240) 2014 Ren, Suganthan, Srikanth (bib0150) 2015; PP Haykin (bib0180) 1999 Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (bib0165) 1998 Hernández, Baladrón, Aguiar, Carro, Sánchez-Esguevillas, Lloret (bib0060) 2014; 75 Wang, Zhu, Zhang, Sun (bib0300) 2009; 37 Kuremoto, Kimura, Kobayashi, Obayashi (bib0080) 2012 Ghayekhloo, Menhaj (bib0065) 2015; 119 Hinton, Osindero, Teh (bib0075) 2006; 18 Chang, Lin (bib0270) 2011; 2 Raza, Prasad, Li (bib0005) 2015; 48 Darbellay, Slama (bib0045) 2000; 16 Geman, Bienenstock, Doursat (bib0110) 1992; 4 Song, Lee (bib0230) 2013; 8226 Dietterich (bib0105) 2000 Zhang, Zhu, Shen (bib0260) 2010 Qiu, Zhang, Ren, Suganthan, Amaratunga (bib0135) 2014 Hinton (bib0250) 2012 Cortes, Vapnik (bib0055) 1995; 20 Wei (bib0130) 2014; 25 Bargur, Mandel, ha-Tekhniyon le-mehkar u-fituah (Haifa Israel), ha-energyah veha tashtit (bib0025) 1981 Zhang, Suganthan (bib0215) 2014; 47 Koprinska, Rana, Troncoso, Martínez-Álvarez (bib0315) 2013 Cormen, Leiserson, Rivest, Stein (bib0155) 2000 Ying, Pan (bib0050) 2008; 49 Ren, Suganthan, Srikanth, Amaratunga (bib0195) 2016; 000 Cormen (10.1016/j.asoc.2017.01.015_bib0155) 2000 Hinton (10.1016/j.asoc.2017.01.015_bib0075) 2006; 18 Dietterich (10.1016/j.asoc.2017.01.015_bib0105) 2000 Geman (10.1016/j.asoc.2017.01.015_bib0110) 1992; 4 Zhang (10.1016/j.asoc.2017.01.015_bib0220) 2015; 45 Ho (10.1016/j.asoc.2017.01.015_bib0200) 1995 Hong (10.1016/j.asoc.2017.01.015_bib0305) 2011; 36 Koprinska (10.1016/j.asoc.2017.01.015_bib0015) 2015; 82 Zhang (10.1016/j.asoc.2017.01.015_bib0260) 2010 Benaouda (10.1016/j.asoc.2017.01.015_bib0160) 2006; 70 Koprinska (10.1016/j.asoc.2017.01.015_bib0315) 2013 Schmidhuber (10.1016/j.asoc.2017.01.015_bib0100) 2015; 61 Hinton (10.1016/j.asoc.2017.01.015_bib0245) 2002; 14 Fernández-Delgado (10.1016/j.asoc.2017.01.015_bib0125) 2014; 15 Haykin (10.1016/j.asoc.2017.01.015_bib0180) 1999 Ye (10.1016/j.asoc.2017.01.015_bib0285) 2011 Romero (10.1016/j.asoc.2017.01.015_bib0295) 2007; 18 Huang (10.1016/j.asoc.2017.01.015_bib0165) 1998 Ko (10.1016/j.asoc.2017.01.015_bib0185) 2013; 49 Bengio (10.1016/j.asoc.2017.01.015_bib0225) 2009; 2 Demšar (10.1016/j.asoc.2017.01.015_bib0280) 2006; 7 Holt (10.1016/j.asoc.2017.01.015_bib0030) 2004; 20 Breiman (10.1016/j.asoc.2017.01.015_bib0115) 2001; 45 Zhang (10.1016/j.asoc.2017.01.015_bib0190) 2016; 000 Ying (10.1016/j.asoc.2017.01.015_bib0050) 2008; 49 Hinton (10.1016/j.asoc.2017.01.015_bib0250) 2012 Gharehbaghi (10.1016/j.asoc.2017.01.015_bib0010) 2015; 48 Ren (10.1016/j.asoc.2017.01.015_bib0170) 2015; 6 Yamashita (10.1016/j.asoc.2017.01.015_bib0240) 2014 Qiu (10.1016/j.asoc.2017.01.015_bib0135) 2014 Box (10.1016/j.asoc.2017.01.015_bib0035) 1976 Raza (10.1016/j.asoc.2017.01.015_bib0005) 2015; 48 Cortes (10.1016/j.asoc.2017.01.015_bib0055) 1995; 20 Hernández (10.1016/j.asoc.2017.01.015_bib0060) 2014; 75 Song (10.1016/j.asoc.2017.01.015_bib0230) 2013; 8226 Kuremoto (10.1016/j.asoc.2017.01.015_bib0080) 2012 Ren (10.1016/j.asoc.2017.01.015_bib0195) 2016; 000 Hu (10.1016/j.asoc.2017.01.015_bib0140) 2016; 42 Rilling (10.1016/j.asoc.2017.01.015_bib0255) 2003 Ren (10.1016/j.asoc.2017.01.015_bib0150) 2015; PP Darbellay (10.1016/j.asoc.2017.01.015_bib0045) 2000; 16 Sousa (10.1016/j.asoc.2017.01.015_bib0020) 2014; 38 Ciresan (10.1016/j.asoc.2017.01.015_bib0090) 2012 Che (10.1016/j.asoc.2017.01.015_bib0310) 2012; 37 Breiman (10.1016/j.asoc.2017.01.015_bib0210) 1996; 24 Breiman (10.1016/j.asoc.2017.01.015_bib0120) 1984 Bargur (10.1016/j.asoc.2017.01.015_bib0025) 1981 Ren (10.1016/j.asoc.2017.01.015_bib0145) 2014 Ho (10.1016/j.asoc.2017.01.015_bib0205) 1998; 20 Busseti (10.1016/j.asoc.2017.01.015_bib0085) 2012 Papalexopoulos (10.1016/j.asoc.2017.01.015_bib0040) 1990; 5 Hinton (10.1016/j.asoc.2017.01.015_bib0235) 2006; 313 Wang (10.1016/j.asoc.2017.01.015_bib0300) 2009; 37 Wei (10.1016/j.asoc.2017.01.015_bib0130) 2014; 25 Zhang (10.1016/j.asoc.2017.01.015_bib0215) 2014; 47 Palm (10.1016/j.asoc.2017.01.015_bib0275) 2012 Chang (10.1016/j.asoc.2017.01.015_bib0270) 2011; 2 Hong (10.1016/j.asoc.2017.01.015_bib0070) 2009; 50 Martínez-Álvarez (10.1016/j.asoc.2017.01.015_bib0175) 2015; 8 Liu (10.1016/j.asoc.2017.01.015_bib0290) 2012; 48 10.1016/j.asoc.2017.01.015_bib0265 Ghayekhloo (10.1016/j.asoc.2017.01.015_bib0065) 2015; 119 Ciresan (10.1016/j.asoc.2017.01.015_bib0095) 2010; 22 |
References_xml | – start-page: 102 year: 2011 end-page: 108 ident: bib0285 article-title: Combined model based on EMD-SVM for short-term wind power prediction publication-title: Proc. Chinese Society for Electrical Engineering (CSEE), vol. 31 – volume: 42 start-page: 368 year: 2016 end-page: 376 ident: bib0140 article-title: A hybrid ANFIS model based on empirical mode decomposition for stock time series forecasting publication-title: Appl. Soft Comput. – volume: 15 start-page: 3133 year: 2014 end-page: 3181 ident: bib0125 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: J. Mach. Learn. Res. – year: 2010 ident: bib0260 article-title: A new method for mitigation of end effect in empirical mode decomposition publication-title: 2nd International Asia Conference on Informatics in Control, Automation and Robotics – volume: PP start-page: 1 year: 2015 ident: bib0150 article-title: A novel empirical mode decomposition with support vector regression for wind speed forecasting publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 119 start-page: 138 year: 2015 end-page: 148 ident: bib0065 article-title: A hybrid short-term load forecasting with a new data preprocessing framework publication-title: Electr. Power Syst. Res. – start-page: 1 year: 2014 end-page: 6 ident: bib0135 article-title: Ensemble deep learning for regression and time series forecasting publication-title: Proc. IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL) – volume: 48 start-page: 659 year: 2015 end-page: 669 ident: bib0005 article-title: EWMA model based shift-detection methods for detecting covariate shifts in non-stationary environments publication-title: Pattern Recognit. – volume: 49 start-page: 205 year: 2008 end-page: 211 ident: bib0050 article-title: Using adaptive network based fuzzy inference system to forecast regional electricity loads publication-title: Energy Convers. Manag. – volume: 49 start-page: 413 year: 2013 end-page: 422 ident: bib0185 article-title: Short-term load forecasting using SVR (support vector regression)-based radial basis function neural network with dual extended Kalman filter publication-title: Energy – year: 2003 ident: bib0255 article-title: On empirical mode decomposition and its algorithms publication-title: Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03 – volume: 2 start-page: 27 year: 2011 ident: bib0270 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. – volume: 18 start-page: 959 year: 2007 end-page: 963 ident: bib0295 article-title: Comparing support vector machines and feedforward neural networks with similar hidden-layer weights publication-title: IEEE Trans. Neural Netw. – volume: 48 start-page: 696 year: 2015 end-page: 708 ident: bib0010 article-title: A pattern recognition framework for detecting dynamic changes on cyclic time series publication-title: Pattern Recognit. – year: 1984 ident: bib0120 article-title: Classification and Regression Trees publication-title: The Wadsworth and Brooks-Cole Statistics-Probability Series – volume: 25 start-page: 15 year: 2014 end-page: 25 ident: bib0130 article-title: Comprehensive learning particle swarm optimization based memetic algorithm for model selection in short-term load forecasting using support vector regression publication-title: Appl. Soft Comput. – volume: 70 start-page: 139 year: 2006 end-page: 154 ident: bib0160 article-title: Wavelet-based nonlinear multiscale decomposition model for electricity load forecasting publication-title: Neurocomputing – start-page: 1520 year: 2014 end-page: 1525 ident: bib0240 article-title: To be Bernoulli or to be Gaussian for a restricted Boltzmann machine publication-title: 22nd International Conference on Pattern Recognition – volume: 6 start-page: 236 year: 2015 end-page: 244 ident: bib0170 article-title: A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods publication-title: IEEE Trans. Sustain. Energy – year: 1976 ident: bib0035 article-title: Time Series Analysis: Forecasting and Control publication-title: Holden-Day Series in Time Series Analysis and Digital Processing – volume: 45 start-page: 2165 year: 2015 end-page: 2176 ident: bib0220 article-title: Oblique decision tree ensemble via multisurface proximal support vector machine publication-title: IEEE Trans. Cybern. – start-page: 599 year: 2012 end-page: 619 ident: bib0250 article-title: A practical guide to training restricted Boltzmann machines publication-title: Neural Networks: Tricks of the Trade: Second Edition – year: 2013 ident: bib0315 article-title: Combining pattern sequence similarity with neural networks for forecasting electricity demand time series publication-title: International Joint Conference on Neural Networks (IJCNN) – volume: 8 start-page: 13162 year: 2015 end-page: 13193 ident: bib0175 article-title: A survey on data mining techniques applied to electricity-related time series forecasting publication-title: Energies – volume: 37 start-page: 657 year: 2012 end-page: 664 ident: bib0310 article-title: An adaptive fuzzy combination model based on self-organizing map and support vector regression for electric load forecasting publication-title: Energy – volume: 20 start-page: 5 year: 2004 end-page: 10 ident: bib0030 article-title: Forecasting seasonals and trends by exponentially weighted moving averages publication-title: Int. J. Forecast. – start-page: 1 year: 2000 end-page: 15 ident: bib0105 article-title: Ensemble methods in machine learning publication-title: Multiple Classifier Systems – volume: 47 start-page: 3429 year: 2014 end-page: 3437 ident: bib0215 article-title: Random forests with ensemble of feature spaces publication-title: Pattern Recognit. – volume: 38 start-page: 350 year: 2014 end-page: 362 ident: bib0020 article-title: Short-term load forecasting based on support vector regression and load profiling publication-title: Int. J. Energy Res. – volume: 82 start-page: 29 year: 2015 end-page: 40 ident: bib0015 article-title: Correlation and instance based feature selection for electricity load forecasting publication-title: Knowl.-Based Syst. – start-page: 1 year: 2014 end-page: 6 ident: bib0145 article-title: EMD based AdaBoost-BPNN method for wind speed forecasting publication-title: Proc. IEEE Symposium on Computational Intelligence and Ensemble Learning (CIEL2014) – start-page: 3642 year: 2012 end-page: 3649 ident: bib0090 article-title: Multi-column deep neural networks for image classification publication-title: Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR2012) – volume: 000 start-page: 1 year: 2016 end-page: 16 ident: bib0195 article-title: Random vector functional link network for short-term electricity load demand forecasting publication-title: Inf. Sci. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0115 article-title: Random forests publication-title: Mach. Learn. – volume: 5 start-page: 1535 year: 1990 end-page: 1547 ident: bib0040 article-title: A regression-based approach to short-term system load forecasting publication-title: IEEE Trans. Power Syst. – volume: 36 start-page: 5568 year: 2011 end-page: 5578 ident: bib0305 article-title: Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm publication-title: Energy – volume: 2 start-page: 1 year: 2009 end-page: 127 ident: bib0225 article-title: Learning deep architectures for AI publication-title: Found. Trends Mach. Learn. – volume: 8226 start-page: 466 year: 2013 end-page: 473 ident: bib0230 article-title: Hierarchical representation using NMF publication-title: Neural Inf. Process. – reference: AEMO, Australian Energy Market Operator 2013, 2013. – start-page: 17 year: 2012 end-page: 22 ident: bib0080 article-title: Time series forecasting using restricted Boltzmann machine publication-title: Emerging Intelligent Computing Technology and Applications – volume: 50 start-page: 105 year: 2009 end-page: 117 ident: bib0070 article-title: Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model publication-title: Energy Convers. Manag. – volume: 22 start-page: 3207 year: 2010 end-page: 3220 ident: bib0095 article-title: Deep, big, simple neural nets for handwritten digit recognition publication-title: Neural Comput. – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: bib0075 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: bib0210 article-title: Bagging predictors publication-title: Mach. Learn. – volume: 14 start-page: 1771 year: 2002 end-page: 1800 ident: bib0245 article-title: Training products of experts by minimizing contrastive divergence publication-title: Neural Comput. – year: 2012 ident: bib0085 article-title: Deep Learning for Time Series Modeling, Tech. Rep. CS229 – year: 2000 ident: bib0155 article-title: Introduction to Algorithms – year: 2012 ident: bib0275 article-title: Prediction as a Candidate for learning Deep Hierarchical Models of Data (Master's thesis) – year: 1999 ident: bib0180 article-title: Neural Networks: A Comprehensive Foundation – volume: 20 start-page: 832 year: 1998 end-page: 844 ident: bib0205 article-title: The random subspace method for constructing decision forests publication-title: Pattern Anal. Mach. Intell. – year: 1981 ident: bib0025 article-title: Energy Consumption and Economic Growth in Israel: Trend Analysis (1960–1979) – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: bib0100 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw. – volume: 000 start-page: 1 year: 2016 end-page: 10 ident: bib0190 article-title: A survey of randomized algorithms for training neural networks publication-title: Inf. Sci. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib0055 article-title: Support-vector networks publication-title: Mach. Learn. – start-page: 278 year: 1995 end-page: 282 ident: bib0200 article-title: Random decision forests publication-title: Proc. the Third International Conference on Document Analysis and Recognition – start-page: 903 year: 1998 end-page: 995 ident: bib0165 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Roy Soc. London A, vol. 454 – volume: 16 start-page: 71 year: 2000 end-page: 83 ident: bib0045 article-title: Forecasting the short-term demand for electricity: do neural networks stand a better chance? publication-title: Int. J. Forecast. – reference: . – volume: 48 start-page: 545 year: 2012 end-page: 556 ident: bib0290 article-title: A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks publication-title: Renew. Energy – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: bib0235 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 4 start-page: 1 year: 1992 end-page: 58 ident: bib0110 article-title: Neural networks and the bias/variance dilemma publication-title: Neural Comput. – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: bib0280 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 75 start-page: 252 year: 2014 end-page: 264 ident: bib0060 article-title: Artificial neural networks for short-term load forecasting in microgrids environment publication-title: Energy – volume: 37 start-page: 4901 year: 2009 end-page: 4909 ident: bib0300 article-title: A trend fixed on firstly and seasonal adjustment model combined with the publication-title: Energy Policy – volume: 16 start-page: 71 year: 2000 ident: 10.1016/j.asoc.2017.01.015_bib0045 article-title: Forecasting the short-term demand for electricity: do neural networks stand a better chance? publication-title: Int. J. Forecast. doi: 10.1016/S0169-2070(99)00045-X – year: 2000 ident: 10.1016/j.asoc.2017.01.015_bib0155 – volume: 82 start-page: 29 year: 2015 ident: 10.1016/j.asoc.2017.01.015_bib0015 article-title: Correlation and instance based feature selection for electricity load forecasting publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.02.017 – start-page: 1 year: 2014 ident: 10.1016/j.asoc.2017.01.015_bib0145 article-title: EMD based AdaBoost-BPNN method for wind speed forecasting – start-page: 1520 year: 2014 ident: 10.1016/j.asoc.2017.01.015_bib0240 article-title: To be Bernoulli or to be Gaussian for a restricted Boltzmann machine – start-page: 1 year: 2000 ident: 10.1016/j.asoc.2017.01.015_bib0105 article-title: Ensemble methods in machine learning – volume: 38 start-page: 350 issue: 3 year: 2014 ident: 10.1016/j.asoc.2017.01.015_bib0020 article-title: Short-term load forecasting based on support vector regression and load profiling publication-title: Int. J. Energy Res. doi: 10.1002/er.3048 – volume: 25 start-page: 15 year: 2014 ident: 10.1016/j.asoc.2017.01.015_bib0130 article-title: Comprehensive learning particle swarm optimization based memetic algorithm for model selection in short-term load forecasting using support vector regression publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.09.007 – volume: 000 start-page: 1 year: 2016 ident: 10.1016/j.asoc.2017.01.015_bib0195 article-title: Random vector functional link network for short-term electricity load demand forecasting publication-title: Inf. Sci. – volume: 000 start-page: 1 year: 2016 ident: 10.1016/j.asoc.2017.01.015_bib0190 article-title: A survey of randomized algorithms for training neural networks publication-title: Inf. Sci. – volume: 18 start-page: 959 issue: 3 year: 2007 ident: 10.1016/j.asoc.2017.01.015_bib0295 article-title: Comparing support vector machines and feedforward neural networks with similar hidden-layer weights publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2007.891656 – volume: 50 start-page: 105 year: 2009 ident: 10.1016/j.asoc.2017.01.015_bib0070 article-title: Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2008.08.031 – start-page: 1 year: 2014 ident: 10.1016/j.asoc.2017.01.015_bib0135 article-title: Ensemble deep learning for regression and time series forecasting – volume: 2 start-page: 1 year: 2009 ident: 10.1016/j.asoc.2017.01.015_bib0225 article-title: Learning deep architectures for AI publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000006 – volume: 49 start-page: 413 year: 2013 ident: 10.1016/j.asoc.2017.01.015_bib0185 article-title: Short-term load forecasting using SVR (support vector regression)-based radial basis function neural network with dual extended Kalman filter publication-title: Energy doi: 10.1016/j.energy.2012.11.015 – volume: 36 start-page: 5568 year: 2011 ident: 10.1016/j.asoc.2017.01.015_bib0305 article-title: Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm publication-title: Energy doi: 10.1016/j.energy.2011.07.015 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.asoc.2017.01.015_bib0280 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – start-page: 3642 year: 2012 ident: 10.1016/j.asoc.2017.01.015_bib0090 article-title: Multi-column deep neural networks for image classification – volume: 75 start-page: 252 year: 2014 ident: 10.1016/j.asoc.2017.01.015_bib0060 article-title: Artificial neural networks for short-term load forecasting in microgrids environment publication-title: Energy doi: 10.1016/j.energy.2014.07.065 – volume: 15 start-page: 3133 year: 2014 ident: 10.1016/j.asoc.2017.01.015_bib0125 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: J. Mach. Learn. Res. – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.asoc.2017.01.015_bib0115 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – start-page: 903 year: 1998 ident: 10.1016/j.asoc.2017.01.015_bib0165 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis – volume: 14 start-page: 1771 issue: 8 year: 2002 ident: 10.1016/j.asoc.2017.01.015_bib0245 article-title: Training products of experts by minimizing contrastive divergence publication-title: Neural Comput. doi: 10.1162/089976602760128018 – year: 1984 ident: 10.1016/j.asoc.2017.01.015_bib0120 article-title: Classification and Regression Trees – start-page: 102 year: 2011 ident: 10.1016/j.asoc.2017.01.015_bib0285 article-title: Combined model based on EMD-SVM for short-term wind power prediction – volume: 47 start-page: 3429 year: 2014 ident: 10.1016/j.asoc.2017.01.015_bib0215 article-title: Random forests with ensemble of feature spaces publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.04.001 – volume: 42 start-page: 368 year: 2016 ident: 10.1016/j.asoc.2017.01.015_bib0140 article-title: A hybrid ANFIS model based on empirical mode decomposition for stock time series forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.01.027 – year: 2012 ident: 10.1016/j.asoc.2017.01.015_bib0085 – volume: 49 start-page: 205 year: 2008 ident: 10.1016/j.asoc.2017.01.015_bib0050 article-title: Using adaptive network based fuzzy inference system to forecast regional electricity loads publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2007.06.015 – year: 2010 ident: 10.1016/j.asoc.2017.01.015_bib0260 article-title: A new method for mitigation of end effect in empirical mode decomposition – volume: 4 start-page: 1 year: 1992 ident: 10.1016/j.asoc.2017.01.015_bib0110 article-title: Neural networks and the bias/variance dilemma publication-title: Neural Comput. doi: 10.1162/neco.1992.4.1.1 – ident: 10.1016/j.asoc.2017.01.015_bib0265 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.asoc.2017.01.015_bib0235 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – start-page: 17 year: 2012 ident: 10.1016/j.asoc.2017.01.015_bib0080 article-title: Time series forecasting using restricted Boltzmann machine – volume: PP start-page: 1 issue: 99 year: 2015 ident: 10.1016/j.asoc.2017.01.015_bib0150 article-title: A novel empirical mode decomposition with support vector regression for wind speed forecasting publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 8 start-page: 13162 issue: 11 year: 2015 ident: 10.1016/j.asoc.2017.01.015_bib0175 article-title: A survey on data mining techniques applied to electricity-related time series forecasting publication-title: Energies doi: 10.3390/en81112361 – year: 1999 ident: 10.1016/j.asoc.2017.01.015_bib0180 – volume: 70 start-page: 139 year: 2006 ident: 10.1016/j.asoc.2017.01.015_bib0160 article-title: Wavelet-based nonlinear multiscale decomposition model for electricity load forecasting publication-title: Neurocomputing doi: 10.1016/j.neucom.2006.04.005 – volume: 8226 start-page: 466 year: 2013 ident: 10.1016/j.asoc.2017.01.015_bib0230 article-title: Hierarchical representation using NMF publication-title: Neural Inf. Process. – volume: 20 start-page: 5 year: 2004 ident: 10.1016/j.asoc.2017.01.015_bib0030 article-title: Forecasting seasonals and trends by exponentially weighted moving averages publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2003.09.015 – volume: 48 start-page: 545 year: 2012 ident: 10.1016/j.asoc.2017.01.015_bib0290 article-title: A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks publication-title: Renew. Energy doi: 10.1016/j.renene.2012.06.012 – year: 1976 ident: 10.1016/j.asoc.2017.01.015_bib0035 article-title: Time Series Analysis: Forecasting and Control – volume: 119 start-page: 138 year: 2015 ident: 10.1016/j.asoc.2017.01.015_bib0065 article-title: A hybrid short-term load forecasting with a new data preprocessing framework publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2014.09.002 – volume: 5 start-page: 1535 year: 1990 ident: 10.1016/j.asoc.2017.01.015_bib0040 article-title: A regression-based approach to short-term system load forecasting publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.99410 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.asoc.2017.01.015_bib0055 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 10.1016/j.asoc.2017.01.015_bib0075 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 48 start-page: 659 issue: 3 year: 2015 ident: 10.1016/j.asoc.2017.01.015_bib0005 article-title: EWMA model based shift-detection methods for detecting covariate shifts in non-stationary environments publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.07.028 – volume: 22 start-page: 3207 issue: 12 year: 2010 ident: 10.1016/j.asoc.2017.01.015_bib0095 article-title: Deep, big, simple neural nets for handwritten digit recognition publication-title: Neural Comput. doi: 10.1162/NECO_a_00052 – volume: 45 start-page: 2165 issue: 10 year: 2015 ident: 10.1016/j.asoc.2017.01.015_bib0220 article-title: Oblique decision tree ensemble via multisurface proximal support vector machine publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2366468 – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.asoc.2017.01.015_bib0100 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 37 start-page: 4901 year: 2009 ident: 10.1016/j.asoc.2017.01.015_bib0300 article-title: A trend fixed on firstly and seasonal adjustment model combined with the ɛ-SVR for short-term forecasting of electricity demand publication-title: Energy Policy doi: 10.1016/j.enpol.2009.06.046 – volume: 20 start-page: 832 issue: 8 year: 1998 ident: 10.1016/j.asoc.2017.01.015_bib0205 article-title: The random subspace method for constructing decision forests publication-title: Pattern Anal. Mach. Intell. doi: 10.1109/34.709601 – volume: 37 start-page: 657 year: 2012 ident: 10.1016/j.asoc.2017.01.015_bib0310 article-title: An adaptive fuzzy combination model based on self-organizing map and support vector regression for electric load forecasting publication-title: Energy doi: 10.1016/j.energy.2011.10.034 – year: 2013 ident: 10.1016/j.asoc.2017.01.015_bib0315 article-title: Combining pattern sequence similarity with neural networks for forecasting electricity demand time series – year: 1981 ident: 10.1016/j.asoc.2017.01.015_bib0025 – year: 2003 ident: 10.1016/j.asoc.2017.01.015_bib0255 article-title: On empirical mode decomposition and its algorithms – volume: 48 start-page: 696 issue: 3 year: 2015 ident: 10.1016/j.asoc.2017.01.015_bib0010 article-title: A pattern recognition framework for detecting dynamic changes on cyclic time series publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.08.017 – start-page: 599 year: 2012 ident: 10.1016/j.asoc.2017.01.015_bib0250 article-title: A practical guide to training restricted Boltzmann machines – volume: 6 start-page: 236 issue: 1 year: 2015 ident: 10.1016/j.asoc.2017.01.015_bib0170 article-title: A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2014.2365580 – volume: 2 start-page: 27 issue: 3 year: 2011 ident: 10.1016/j.asoc.2017.01.015_bib0270 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – year: 2012 ident: 10.1016/j.asoc.2017.01.015_bib0275 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.asoc.2017.01.015_bib0210 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1007/BF00058655 – start-page: 278 year: 1995 ident: 10.1016/j.asoc.2017.01.015_bib0200 article-title: Random decision forests |
SSID | ssj0016928 |
Score | 2.6165905 |
Snippet | [Display omitted]
•An ensemble deep learning method has been proposed for load demand forecasting.•The hybrid method composes of Empirical Mode Decomposition... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 246 |
SubjectTerms | Deep learning Empirical Mode Decomposition Ensemble method Load demand forecasting Neural networks Random forests Support vector regression Time series forecasting |
Title | Empirical Mode Decomposition based ensemble deep learning for load demand time series forecasting |
URI | https://dx.doi.org/10.1016/j.asoc.2017.01.015 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jvvjiXZyXkQffJK5dkiZ9HHNj3oaog72VpEllsktx89Xfbk6bDgXZg1AoTU-gnJ6cC3znfAhdCmoNM4wRnoWMuHgsicx4SISJNOMqZlJBc_LjMBqM2N2Yj2uoW_XCAKzS-_7Spxfe2q-0vDZb-WTSenGVh2QxcyGYFlNZoIOdCYD1XX-tYR5hFBf8qiBMQNo3zpQYL-U0APAuUYzuBGrcv4LTj4DT30M7PlPEnfJj9lHNzg_QbsXCgP2hPESqN8snxaAPDMRm-MYCTNxjsTBEKYNdrWpnemqxsTbHniniDbuEFU8XyrjlmZobDETzGGzSLuGdTdUSUNFHaNTvvXYHxBMnkJRyuiJRoKkUba5Do1QQaGZszCETyqh05Z8rIdpRJmScGiUNU7ZNhTWGBiZOXbCSlB6j-nwxtycI88BGNnU5ntTCnXWmM5nJKFXc-UWtWdZAYaWxJPVTxYHcYppU8LH3BLScgJaTIHQXb6Cr9Z68nKmxUZpXPyL5ZRmJc_ob9p3-c98Z2oanEtR4juqrj0974RKPlW4WltVEW53u88MT3G_vB8NvSfHZ0Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoCFN-KNBzZkNantxBkRDxX6WGilbpYdO6ioLRWU_48vcRBIiAEpk-2Tosv5Hsp39wFcpsxZbjmnoog59fFYUlmImKY2MVzojEuNzcmDYdId88eJmDTgpu6FQVhl8P2VTy-9dVhpB222l9Np-8lXHpJn3IdgVk5lWYMWTqfiTWhdP_S6w6-fCUlWUqzieYoCoXemgnlprwREeKXl9E5kx_0tPn2LOffbsBmSRXJdvc8ONNxiF7ZqIgYS7uUe6Lv5clrO-iDIbUZuHSLFAxyLYKCyxJerbm5mjljnliSQRTwTn7OS2au2fnmuF5Yg1zxBs3TvuOdy_Y7A6H0Y39-Nbro0cCfQnAm2oklkmEw7wsRW6ygy3LpMYDJUMOkrQF9FdJIilVlutbRcuw5LnbUsslnu45Vk7ACai9eFOwQiIpe43Kd50qT-unNTyEImuRbeNRrDiyOIa42pPAwWR36LmaoRZC8KtaxQyyqK_SOO4OpLZlmN1fjztKg_hPphHMr7_T_kjv8pdwHr3dGgr_oPw94JbOBOhXE8hebq7cOd-TxkZc6DnX0C9nDa7Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empirical+Mode+Decomposition+based+ensemble+deep+learning+for+load+demand+time+series+forecasting&rft.jtitle=Applied+soft+computing&rft.au=Qiu%2C+Xueheng&rft.au=Ren%2C+Ye&rft.au=Suganthan%2C+Ponnuthurai+Nagaratnam&rft.au=Amaratunga%2C+Gehan+A.J.&rft.date=2017-05-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=54&rft.spage=246&rft.epage=255&rft_id=info:doi/10.1016%2Fj.asoc.2017.01.015&rft.externalDocID=S1568494617300273 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |