Empirical Mode Decomposition based ensemble deep learning for load demand time series forecasting

[Display omitted] •An ensemble deep learning method has been proposed for load demand forecasting.•The hybrid method composes of Empirical Mode Decomposition and Deep Belief Network.•Empirical Mode Decomposition based methods outperform the single structure models.•Deep learning shows more advantage...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 54; pp. 246 - 255
Main Authors Qiu, Xueheng, Ren, Ye, Suganthan, Ponnuthurai Nagaratnam, Amaratunga, Gehan A.J.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2017
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2017.01.015

Cover

Loading…
Abstract [Display omitted] •An ensemble deep learning method has been proposed for load demand forecasting.•The hybrid method composes of Empirical Mode Decomposition and Deep Belief Network.•Empirical Mode Decomposition based methods outperform the single structure models.•Deep learning shows more advantages when the forecasting horizon increases. Load demand forecasting is a critical process in the planning of electric utilities. An ensemble method composed of Empirical Mode Decomposition (EMD) algorithm and deep learning approach is presented in this work. For this purpose, the load demand series were first decomposed into several intrinsic mode functions (IMFs). Then a Deep Belief Network (DBN) including two restricted Boltzmann machines (RBMs) was used to model each of the extracted IMFs, so that the tendencies of these IMFs can be accurately predicted. Finally, the prediction results of all IMFs can be combined by either unbiased or weighted summation to obtain an aggregated output for load demand. The electricity load demand data sets from Australian Energy Market Operator (AEMO) are used to test the effectiveness of the proposed EMD-based DBN approach. Simulation results demonstrated attractiveness of the proposed method compared with nine forecasting methods.
AbstractList [Display omitted] •An ensemble deep learning method has been proposed for load demand forecasting.•The hybrid method composes of Empirical Mode Decomposition and Deep Belief Network.•Empirical Mode Decomposition based methods outperform the single structure models.•Deep learning shows more advantages when the forecasting horizon increases. Load demand forecasting is a critical process in the planning of electric utilities. An ensemble method composed of Empirical Mode Decomposition (EMD) algorithm and deep learning approach is presented in this work. For this purpose, the load demand series were first decomposed into several intrinsic mode functions (IMFs). Then a Deep Belief Network (DBN) including two restricted Boltzmann machines (RBMs) was used to model each of the extracted IMFs, so that the tendencies of these IMFs can be accurately predicted. Finally, the prediction results of all IMFs can be combined by either unbiased or weighted summation to obtain an aggregated output for load demand. The electricity load demand data sets from Australian Energy Market Operator (AEMO) are used to test the effectiveness of the proposed EMD-based DBN approach. Simulation results demonstrated attractiveness of the proposed method compared with nine forecasting methods.
Author Ren, Ye
Suganthan, Ponnuthurai Nagaratnam
Amaratunga, Gehan A.J.
Qiu, Xueheng
Author_xml – sequence: 1
  givenname: Xueheng
  surname: Qiu
  fullname: Qiu, Xueheng
  email: qiux0004@e.ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore
– sequence: 2
  givenname: Ye
  surname: Ren
  fullname: Ren, Ye
  email: re0003ye@e.ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore
– sequence: 3
  givenname: Ponnuthurai Nagaratnam
  surname: Suganthan
  fullname: Suganthan, Ponnuthurai Nagaratnam
  email: epnsugan@e.ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore
– sequence: 4
  givenname: Gehan A.J.
  surname: Amaratunga
  fullname: Amaratunga, Gehan A.J.
  organization: Centre for Advanced Photonics and Electronics, Electrical Engineering Division, Engineering Department, University of Cambridge, Cambridge CB3 0FA, UK
BookMark eNp9kM9KxDAQxoOs4O7qC3jKC7QmTdom4EXW9Q-seNFzSJOpZGmTkhTBtzdlPXlYGJhhZn7DfN8GrXzwgNAtJSUltLk7ljoFU1aEtiWhOeoLtKairQrZCLrKdd2IgkveXKFNSkeSIVmJNdL7cXLRGT3gt2ABP4IJ4xSSm13wuNMJLAafYOwGwBZgwgPo6J3_wn2IeAja5vaovcWzGwEniA7SMgOj05z3rtFlr4cEN395iz6f9h-7l-Lw_vy6ezgUhtVsLhrSsfxv3VGrNSEdtyBrwWTVM8F5I1teNX0rpLFaWK6hYi1Yy4iVRvBWMLZF1emuiSGlCL2aoht1_FGUqMUkdVSLSWoxSRGao86Q-AcZN-tF-xy1G86j9ycUsqhvB1El48AbsC5rn5UN7hz-C-Dvhf8
CitedBy_id crossref_primary_10_1016_j_rser_2019_109632
crossref_primary_10_1007_s10489_022_04174_z
crossref_primary_10_1016_j_asoc_2020_106579
crossref_primary_10_1155_2024_5587728
crossref_primary_10_1016_j_energy_2020_117514
crossref_primary_10_1177_03019233241235596
crossref_primary_10_1016_j_apenergy_2022_119525
crossref_primary_10_1016_j_scs_2021_103484
crossref_primary_10_1016_j_asoc_2022_109726
crossref_primary_10_1016_j_asoc_2019_02_030
crossref_primary_10_1016_j_chemolab_2019_01_008
crossref_primary_10_1177_0047287520919522
crossref_primary_10_1016_j_catena_2019_02_012
crossref_primary_10_1016_j_engappai_2024_108942
crossref_primary_10_62762_TIS_2024_136898
crossref_primary_10_1016_j_neucom_2018_08_067
crossref_primary_10_3390_en11061554
crossref_primary_10_1007_s00202_023_02138_1
crossref_primary_10_1002_er_5331
crossref_primary_10_1016_j_egyai_2024_100343
crossref_primary_10_1080_02533839_2022_2034052
crossref_primary_10_1016_j_apenergy_2023_120920
crossref_primary_10_1016_j_epsr_2020_106733
crossref_primary_10_1016_j_energy_2017_12_049
crossref_primary_10_1007_s42835_022_01127_x
crossref_primary_10_3390_forecast2020009
crossref_primary_10_1016_j_epsr_2023_109967
crossref_primary_10_1007_s12293_022_00355_y
crossref_primary_10_1007_s11071_021_06742_3
crossref_primary_10_1007_s00202_021_01389_0
crossref_primary_10_3390_electronics12061381
crossref_primary_10_1007_s00202_020_01135_y
crossref_primary_10_1089_big_2020_0159
crossref_primary_10_3390_en11102744
crossref_primary_10_1109_ACCESS_2021_3068652
crossref_primary_10_1142_S0218539319500293
crossref_primary_10_3390_a13110274
crossref_primary_10_3390_en17020307
crossref_primary_10_1007_s40031_020_00477_2
crossref_primary_10_1155_2021_6694538
crossref_primary_10_1021_acs_est_1c02479
crossref_primary_10_1016_j_apenergy_2021_118266
crossref_primary_10_1007_s00202_025_03034_6
crossref_primary_10_1016_j_engappai_2020_104000
crossref_primary_10_1007_s00500_020_05176_0
crossref_primary_10_1016_j_eswa_2024_125259
crossref_primary_10_3390_en16114294
crossref_primary_10_1109_ACCESS_2020_3034113
crossref_primary_10_1016_j_compeleceng_2025_110174
crossref_primary_10_1016_j_energy_2022_126012
crossref_primary_10_15446_innovar_v32n85_100979
crossref_primary_10_1016_j_engappai_2021_104645
crossref_primary_10_1016_j_watres_2019_115454
crossref_primary_10_1155_2019_9067367
crossref_primary_10_1016_j_tws_2021_108076
crossref_primary_10_3390_electronics9030420
crossref_primary_10_1016_j_bspc_2020_102076
crossref_primary_10_1016_j_promfg_2020_03_056
crossref_primary_10_1109_ACCESS_2018_2877153
crossref_primary_10_1007_s13762_022_04525_w
crossref_primary_10_1016_j_asoc_2022_109632
crossref_primary_10_1016_j_engappai_2023_106352
crossref_primary_10_3390_en13092390
crossref_primary_10_1109_ACCESS_2020_3010702
crossref_primary_10_1109_ACCESS_2022_3227512
crossref_primary_10_1016_j_asoc_2021_108345
crossref_primary_10_1016_j_isatra_2019_07_004
crossref_primary_10_3390_math10162999
crossref_primary_10_1016_j_engappai_2019_03_012
crossref_primary_10_1016_j_asoc_2018_12_028
crossref_primary_10_3390_en14175510
crossref_primary_10_1016_j_asoc_2018_04_049
crossref_primary_10_1016_j_apenergy_2018_12_042
crossref_primary_10_3389_fenrg_2023_1296800
crossref_primary_10_3390_s20051334
crossref_primary_10_1515_kbo_2017_0154
crossref_primary_10_1016_j_heliyon_2022_e08803
crossref_primary_10_1016_j_apenergy_2018_09_190
crossref_primary_10_1016_j_cjche_2024_09_028
crossref_primary_10_1016_j_measurement_2023_113450
crossref_primary_10_1007_s00500_020_04855_2
crossref_primary_10_1109_TCYB_2018_2863020
crossref_primary_10_1016_j_neucom_2018_08_021
crossref_primary_10_1109_ACCESS_2022_3195053
crossref_primary_10_1109_ACCESS_2019_2935121
crossref_primary_10_1016_j_eneco_2023_106793
crossref_primary_10_1002_er_6745
crossref_primary_10_1016_j_energy_2018_06_012
crossref_primary_10_1109_ACCESS_2019_2920436
crossref_primary_10_3390_w13182457
crossref_primary_10_1109_JSEN_2019_2923982
crossref_primary_10_3390_en12193603
crossref_primary_10_1007_s13131_022_1994_4
crossref_primary_10_1016_j_enconman_2018_03_098
crossref_primary_10_1007_s00202_021_01420_4
crossref_primary_10_1016_j_energy_2024_134168
crossref_primary_10_1088_1742_6596_1518_1_012082
crossref_primary_10_1016_j_eneco_2018_10_001
crossref_primary_10_3390_math10224387
crossref_primary_10_1007_s11831_024_10155_x
crossref_primary_10_1016_j_apenergy_2019_114243
crossref_primary_10_3390_en17174377
crossref_primary_10_1016_j_asoc_2019_02_006
crossref_primary_10_1016_j_energy_2017_11_142
crossref_primary_10_1016_j_eswa_2023_121642
crossref_primary_10_1155_2018_4276176
crossref_primary_10_1016_j_neucom_2018_05_068
crossref_primary_10_3390_en11051138
crossref_primary_10_1016_j_apenergy_2019_114368
crossref_primary_10_1016_j_energy_2019_116045
crossref_primary_10_3390_pr10061137
crossref_primary_10_1016_j_asoc_2019_105963
crossref_primary_10_1016_j_chaos_2021_111453
crossref_primary_10_1016_j_jclepro_2020_121027
crossref_primary_10_1007_s10479_021_04429_x
crossref_primary_10_1137_21M1417867
crossref_primary_10_1016_j_chaos_2022_112982
crossref_primary_10_3390_systems11020055
crossref_primary_10_1007_s40684_023_00537_0
crossref_primary_10_1007_s42835_020_00358_0
crossref_primary_10_1016_j_asoc_2020_106919
crossref_primary_10_1109_ACCESS_2020_2989510
crossref_primary_10_1175_JTECH_D_18_0141_1
crossref_primary_10_1007_s00521_023_08222_8
crossref_primary_10_1016_j_apenergy_2024_123531
crossref_primary_10_3390_en11123433
crossref_primary_10_1016_j_ins_2022_01_010
crossref_primary_10_1016_j_asoc_2019_105736
crossref_primary_10_1016_j_asoc_2018_09_005
crossref_primary_10_1016_j_asoc_2019_105975
crossref_primary_10_1016_j_asoc_2021_107730
crossref_primary_10_3390_app112311263
crossref_primary_10_1016_j_apenergy_2018_04_001
crossref_primary_10_1016_j_engappai_2023_107649
crossref_primary_10_3390_su10093282
crossref_primary_10_1016_j_asoc_2020_106900
crossref_primary_10_3390_math8020214
crossref_primary_10_3390_en17102251
crossref_primary_10_1080_03610926_2018_1554132
crossref_primary_10_1109_ACCESS_2020_2966641
crossref_primary_10_1007_s00521_021_06773_2
crossref_primary_10_1109_TNNLS_2019_2956195
crossref_primary_10_1016_j_rser_2021_110992
crossref_primary_10_3390_en12061140
crossref_primary_10_1016_j_renene_2021_03_020
crossref_primary_10_2139_ssrn_4117249
crossref_primary_10_1016_j_apr_2021_101153
crossref_primary_10_22144_ctujoisd_2024_324
crossref_primary_10_1016_j_enconman_2017_10_008
crossref_primary_10_1016_j_asoc_2018_09_018
crossref_primary_10_1007_s11063_021_10651_2
crossref_primary_10_1016_j_epsr_2019_106106
crossref_primary_10_1109_TII_2021_3057943
crossref_primary_10_1007_s10614_021_10172_z
crossref_primary_10_1016_j_energy_2019_03_080
crossref_primary_10_3390_s23135819
crossref_primary_10_1016_j_apenergy_2020_116415
crossref_primary_10_3390_en16031404
crossref_primary_10_1016_j_apenergy_2020_114915
crossref_primary_10_1155_2019_1279565
crossref_primary_10_1007_s10489_021_02864_8
crossref_primary_10_3390_en10040490
crossref_primary_10_48175_IJARSCT_V4_I3_020
crossref_primary_10_7498_aps_69_20200625
crossref_primary_10_3390_forecast4020031
crossref_primary_10_1007_s10462_022_10283_5
crossref_primary_10_1049_gtd2_12265
crossref_primary_10_3390_en14144378
crossref_primary_10_1007_s42786_018_00006_2
crossref_primary_10_1016_j_asoc_2018_05_007
crossref_primary_10_3390_electronics12132811
crossref_primary_10_1155_jama_7706431
crossref_primary_10_1007_s00521_021_06212_2
crossref_primary_10_1109_ACCESS_2019_2901842
crossref_primary_10_1016_j_geoen_2025_213771
crossref_primary_10_1109_ACCESS_2021_3073708
crossref_primary_10_3390_sym13101942
crossref_primary_10_1016_j_eswa_2024_123208
crossref_primary_10_1016_j_energy_2023_127430
crossref_primary_10_3390_app12104942
crossref_primary_10_1109_ACCESS_2021_3063123
crossref_primary_10_1007_s11356_022_21277_9
crossref_primary_10_1007_s12652_019_01432_w
crossref_primary_10_1016_j_displa_2021_102020
crossref_primary_10_3390_atmos12050607
crossref_primary_10_2139_ssrn_4849885
crossref_primary_10_1051_e3sconf_202123102001
crossref_primary_10_1007_s11771_021_4773_z
crossref_primary_10_1016_j_energy_2022_123483
crossref_primary_10_1109_TPWRS_2019_2946701
crossref_primary_10_1016_j_asoc_2020_106294
crossref_primary_10_1016_j_engappai_2022_105151
crossref_primary_10_1016_j_physa_2019_123360
crossref_primary_10_1016_j_earscirev_2019_103076
crossref_primary_10_1108_GS_08_2020_0101
crossref_primary_10_1016_j_egyr_2021_01_030
crossref_primary_10_1016_j_scs_2020_102052
crossref_primary_10_1016_j_epsr_2022_108065
crossref_primary_10_1051_e3sconf_202021013036
crossref_primary_10_1109_TITS_2020_2979390
crossref_primary_10_1016_j_procs_2018_10_528
crossref_primary_10_4018_IRMJ_291692
crossref_primary_10_1016_j_mtcomm_2024_108595
crossref_primary_10_1016_j_procs_2018_10_526
crossref_primary_10_1016_j_ijhydene_2021_01_126
crossref_primary_10_1007_s00500_021_05608_5
crossref_primary_10_1155_2020_1209547
crossref_primary_10_1016_j_asoc_2018_01_017
crossref_primary_10_1016_j_envpol_2020_114635
crossref_primary_10_1016_j_eswa_2020_114527
crossref_primary_10_1080_15325008_2021_1937401
crossref_primary_10_1016_j_engappai_2024_108434
crossref_primary_10_1109_ACCESS_2019_2937222
crossref_primary_10_1016_j_ins_2018_07_015
crossref_primary_10_1016_j_knosys_2018_01_015
crossref_primary_10_1016_j_eswa_2022_117784
crossref_primary_10_1016_j_physa_2018_11_016
crossref_primary_10_1177_0958305X19842061
crossref_primary_10_1002_for_2831
crossref_primary_10_1016_j_neunet_2023_06_042
crossref_primary_10_1007_s10586_024_04684_0
crossref_primary_10_1016_j_jenvman_2021_113951
crossref_primary_10_1007_s10489_019_01426_3
crossref_primary_10_1016_j_istruc_2021_05_097
crossref_primary_10_1177_13548166211025160
crossref_primary_10_1016_j_istruc_2021_05_096
crossref_primary_10_1002_er_4855
crossref_primary_10_1016_j_ijepes_2021_107595
crossref_primary_10_2147_IDR_S299704
crossref_primary_10_3390_en13040886
crossref_primary_10_1002_for_2717
crossref_primary_10_1109_ACCESS_2020_3038853
crossref_primary_10_1016_j_energy_2023_129142
crossref_primary_10_1109_ACCESS_2021_3086039
crossref_primary_10_1007_s10489_021_02229_1
crossref_primary_10_1016_j_energy_2023_129387
crossref_primary_10_3390_atmos12070924
crossref_primary_10_1109_ACCESS_2022_3187839
crossref_primary_10_1016_j_dsp_2020_102741
crossref_primary_10_1109_TETC_2022_3143154
crossref_primary_10_1016_j_energy_2023_129938
crossref_primary_10_1080_15435075_2021_1875474
crossref_primary_10_1109_ACCESS_2019_2908385
crossref_primary_10_1109_JIOT_2018_2878477
crossref_primary_10_1016_j_scs_2019_101642
crossref_primary_10_1016_j_asoc_2022_109259
crossref_primary_10_15406_ijfcm_2024_08_00369
crossref_primary_10_1016_j_apenergy_2022_119963
crossref_primary_10_1002_hbm_70032
crossref_primary_10_1007_s11227_022_04646_6
crossref_primary_10_1016_j_asoc_2017_05_031
crossref_primary_10_1016_j_epsr_2022_108150
crossref_primary_10_1016_j_rineng_2024_102773
crossref_primary_10_3103_S0146411624700986
crossref_primary_10_1111_exsy_13467
crossref_primary_10_1016_j_energy_2022_126561
crossref_primary_10_1049_tje2_12132
crossref_primary_10_1007_s12145_024_01514_0
crossref_primary_10_1038_s41598_024_80018_9
crossref_primary_10_1186_s13677_023_00527_2
crossref_primary_10_1016_j_compeleceng_2021_107663
crossref_primary_10_1038_s41598_022_17754_3
crossref_primary_10_1016_j_asoc_2020_107066
crossref_primary_10_3390_s23031490
crossref_primary_10_1016_j_swevo_2018_03_009
crossref_primary_10_1016_j_asoc_2020_106515
crossref_primary_10_1038_s41598_021_00948_6
crossref_primary_10_1016_j_engappai_2023_105970
crossref_primary_10_1155_2021_6620368
crossref_primary_10_1016_j_chaos_2020_110366
crossref_primary_10_1016_j_neucom_2020_01_031
crossref_primary_10_30516_bilgesci_531801
crossref_primary_10_1016_j_tws_2022_109489
crossref_primary_10_1109_ACCESS_2020_2984588
crossref_primary_10_1007_s00521_020_05658_0
crossref_primary_10_1109_ACCESS_2024_3370679
crossref_primary_10_1109_JESTIE_2022_3218257
crossref_primary_10_1360_SSPMA_2024_0337
crossref_primary_10_1016_j_rser_2020_110052
crossref_primary_10_1007_s10489_021_02442_y
crossref_primary_10_1016_j_asoc_2021_107450
crossref_primary_10_3233_JIFS_201279
crossref_primary_10_1007_s00521_020_05113_0
crossref_primary_10_1177_1550147719877616
crossref_primary_10_3389_fenrg_2021_799039
crossref_primary_10_1016_j_asoc_2020_107059
crossref_primary_10_1016_j_dss_2018_08_010
crossref_primary_10_3390_math10142446
crossref_primary_10_1109_TII_2021_3065718
crossref_primary_10_1016_j_asoc_2018_03_042
crossref_primary_10_1177_0142331219860279
crossref_primary_10_1007_s11518_018_5390_8
crossref_primary_10_1038_s41598_024_67626_1
crossref_primary_10_3390_data9010013
crossref_primary_10_4018_IJSIR_2019010101
crossref_primary_10_1049_tje2_12151
crossref_primary_10_1016_j_asoc_2023_110670
crossref_primary_10_1007_s10853_024_10178_6
crossref_primary_10_1109_ACCESS_2019_2902510
crossref_primary_10_1016_j_procs_2019_11_252
crossref_primary_10_1016_j_asoc_2021_107223
Cites_doi 10.1016/S0169-2070(99)00045-X
10.1016/j.knosys.2015.02.017
10.1002/er.3048
10.1016/j.asoc.2014.09.007
10.1109/TNN.2007.891656
10.1016/j.enconman.2008.08.031
10.1561/2200000006
10.1016/j.energy.2012.11.015
10.1016/j.energy.2011.07.015
10.1016/j.energy.2014.07.065
10.1023/A:1010933404324
10.1162/089976602760128018
10.1016/j.patcog.2014.04.001
10.1016/j.asoc.2016.01.027
10.1016/j.enconman.2007.06.015
10.1162/neco.1992.4.1.1
10.1126/science.1127647
10.3390/en81112361
10.1016/j.neucom.2006.04.005
10.1016/j.ijforecast.2003.09.015
10.1016/j.renene.2012.06.012
10.1016/j.epsr.2014.09.002
10.1109/59.99410
10.1007/BF00994018
10.1162/neco.2006.18.7.1527
10.1016/j.patcog.2014.07.028
10.1162/NECO_a_00052
10.1109/TCYB.2014.2366468
10.1016/j.neunet.2014.09.003
10.1016/j.enpol.2009.06.046
10.1109/34.709601
10.1016/j.energy.2011.10.034
10.1016/j.patcog.2014.08.017
10.1109/TSTE.2014.2365580
10.1145/1961189.1961199
10.1007/BF00058655
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2017.01.015
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 255
ExternalDocumentID 10_1016_j_asoc_2017_01_015
S1568494617300273
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c353t-60b38725b1daa00b4de958392f3844697426f789cda8d4ae237edd30d9c847833
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:49:58 EDT 2025
Thu Apr 24 23:03:08 EDT 2025
Fri Feb 23 02:24:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Empirical Mode Decomposition
Load demand forecasting
Neural networks
Time series forecasting
Support vector regression
Ensemble method
Random forests
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-60b38725b1daa00b4de958392f3844697426f789cda8d4ae237edd30d9c847833
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_asoc_2017_01_015
crossref_citationtrail_10_1016_j_asoc_2017_01_015
elsevier_sciencedirect_doi_10_1016_j_asoc_2017_01_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Papalexopoulos, Hesterberg (bib0040) 1990; 5
Ho (bib0200) 1995
Box, Jenkins (bib0035) 1976
Ho (bib0205) 1998; 20
Ye, Liu (bib0285) 2011
Martínez-Álvarez, Troncoso, Asencio-Cortés, Riquelme (bib0175) 2015; 8
Hinton, Salakhutdinov (bib0235) 2006; 313
Busseti, Osband, Wong (bib0085) 2012
Ciresan, Meier, Schmidhuber (bib0090) 2012
AEMO, Australian Energy Market Operator 2013, 2013.
Palm (bib0275) 2012
Rilling, Flandrin, Gonçalves (bib0255) 2003
Holt (bib0030) 2004; 20
Liu, Chen, Tian, Li (bib0290) 2012; 48
Hong (bib0070) 2009; 50
Ciresan, Meier, Gambardella, Schmidhuber (bib0095) 2010; 22
Bengio (bib0225) 2009; 2
Fernández-Delgado, Cernadas, Barro, Amorim (bib0125) 2014; 15
Zhang, Suganthan (bib0220) 2015; 45
Demšar (bib0280) 2006; 7
Ren, Suganthan, Srikanth (bib0170) 2015; 6
Koprinska, Rana, Agelidis (bib0015) 2015; 82
Hinton (bib0245) 2002; 14
Breiman, Freidman, Olshen, Stone (bib0120) 1984
Gharehbaghi, Ask, Babic (bib0010) 2015; 48
Hu, Bao, Xiong (bib0140) 2016; 42
.
Sousa, Jorge, Neves (bib0020) 2014; 38
Ren, Qiu, Suganthan (bib0145) 2014
Ko, Lee (bib0185) 2013; 49
Romero, Toppo (bib0295) 2007; 18
Schmidhuber (bib0100) 2015; 61
Breiman (bib0115) 2001; 45
Che, Wang, Wang (bib0310) 2012; 37
Benaouda, Murtagh, Starck, Renaud (bib0160) 2006; 70
Breiman (bib0210) 1996; 24
Zhang, Suganthan (bib0190) 2016; 000
Hong (bib0305) 2011; 36
Yamashita, Tanaka, Yoshida, Yamauchi, Fujiyoshi (bib0240) 2014
Ren, Suganthan, Srikanth (bib0150) 2015; PP
Haykin (bib0180) 1999
Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (bib0165) 1998
Hernández, Baladrón, Aguiar, Carro, Sánchez-Esguevillas, Lloret (bib0060) 2014; 75
Wang, Zhu, Zhang, Sun (bib0300) 2009; 37
Kuremoto, Kimura, Kobayashi, Obayashi (bib0080) 2012
Ghayekhloo, Menhaj (bib0065) 2015; 119
Hinton, Osindero, Teh (bib0075) 2006; 18
Chang, Lin (bib0270) 2011; 2
Raza, Prasad, Li (bib0005) 2015; 48
Darbellay, Slama (bib0045) 2000; 16
Geman, Bienenstock, Doursat (bib0110) 1992; 4
Song, Lee (bib0230) 2013; 8226
Dietterich (bib0105) 2000
Zhang, Zhu, Shen (bib0260) 2010
Qiu, Zhang, Ren, Suganthan, Amaratunga (bib0135) 2014
Hinton (bib0250) 2012
Cortes, Vapnik (bib0055) 1995; 20
Wei (bib0130) 2014; 25
Bargur, Mandel, ha-Tekhniyon le-mehkar u-fituah (Haifa Israel), ha-energyah veha tashtit (bib0025) 1981
Zhang, Suganthan (bib0215) 2014; 47
Koprinska, Rana, Troncoso, Martínez-Álvarez (bib0315) 2013
Cormen, Leiserson, Rivest, Stein (bib0155) 2000
Ying, Pan (bib0050) 2008; 49
Ren, Suganthan, Srikanth, Amaratunga (bib0195) 2016; 000
Cormen (10.1016/j.asoc.2017.01.015_bib0155) 2000
Hinton (10.1016/j.asoc.2017.01.015_bib0075) 2006; 18
Dietterich (10.1016/j.asoc.2017.01.015_bib0105) 2000
Geman (10.1016/j.asoc.2017.01.015_bib0110) 1992; 4
Zhang (10.1016/j.asoc.2017.01.015_bib0220) 2015; 45
Ho (10.1016/j.asoc.2017.01.015_bib0200) 1995
Hong (10.1016/j.asoc.2017.01.015_bib0305) 2011; 36
Koprinska (10.1016/j.asoc.2017.01.015_bib0015) 2015; 82
Zhang (10.1016/j.asoc.2017.01.015_bib0260) 2010
Benaouda (10.1016/j.asoc.2017.01.015_bib0160) 2006; 70
Koprinska (10.1016/j.asoc.2017.01.015_bib0315) 2013
Schmidhuber (10.1016/j.asoc.2017.01.015_bib0100) 2015; 61
Hinton (10.1016/j.asoc.2017.01.015_bib0245) 2002; 14
Fernández-Delgado (10.1016/j.asoc.2017.01.015_bib0125) 2014; 15
Haykin (10.1016/j.asoc.2017.01.015_bib0180) 1999
Ye (10.1016/j.asoc.2017.01.015_bib0285) 2011
Romero (10.1016/j.asoc.2017.01.015_bib0295) 2007; 18
Huang (10.1016/j.asoc.2017.01.015_bib0165) 1998
Ko (10.1016/j.asoc.2017.01.015_bib0185) 2013; 49
Bengio (10.1016/j.asoc.2017.01.015_bib0225) 2009; 2
Demšar (10.1016/j.asoc.2017.01.015_bib0280) 2006; 7
Holt (10.1016/j.asoc.2017.01.015_bib0030) 2004; 20
Breiman (10.1016/j.asoc.2017.01.015_bib0115) 2001; 45
Zhang (10.1016/j.asoc.2017.01.015_bib0190) 2016; 000
Ying (10.1016/j.asoc.2017.01.015_bib0050) 2008; 49
Hinton (10.1016/j.asoc.2017.01.015_bib0250) 2012
Gharehbaghi (10.1016/j.asoc.2017.01.015_bib0010) 2015; 48
Ren (10.1016/j.asoc.2017.01.015_bib0170) 2015; 6
Yamashita (10.1016/j.asoc.2017.01.015_bib0240) 2014
Qiu (10.1016/j.asoc.2017.01.015_bib0135) 2014
Box (10.1016/j.asoc.2017.01.015_bib0035) 1976
Raza (10.1016/j.asoc.2017.01.015_bib0005) 2015; 48
Cortes (10.1016/j.asoc.2017.01.015_bib0055) 1995; 20
Hernández (10.1016/j.asoc.2017.01.015_bib0060) 2014; 75
Song (10.1016/j.asoc.2017.01.015_bib0230) 2013; 8226
Kuremoto (10.1016/j.asoc.2017.01.015_bib0080) 2012
Ren (10.1016/j.asoc.2017.01.015_bib0195) 2016; 000
Hu (10.1016/j.asoc.2017.01.015_bib0140) 2016; 42
Rilling (10.1016/j.asoc.2017.01.015_bib0255) 2003
Ren (10.1016/j.asoc.2017.01.015_bib0150) 2015; PP
Darbellay (10.1016/j.asoc.2017.01.015_bib0045) 2000; 16
Sousa (10.1016/j.asoc.2017.01.015_bib0020) 2014; 38
Ciresan (10.1016/j.asoc.2017.01.015_bib0090) 2012
Che (10.1016/j.asoc.2017.01.015_bib0310) 2012; 37
Breiman (10.1016/j.asoc.2017.01.015_bib0210) 1996; 24
Breiman (10.1016/j.asoc.2017.01.015_bib0120) 1984
Bargur (10.1016/j.asoc.2017.01.015_bib0025) 1981
Ren (10.1016/j.asoc.2017.01.015_bib0145) 2014
Ho (10.1016/j.asoc.2017.01.015_bib0205) 1998; 20
Busseti (10.1016/j.asoc.2017.01.015_bib0085) 2012
Papalexopoulos (10.1016/j.asoc.2017.01.015_bib0040) 1990; 5
Hinton (10.1016/j.asoc.2017.01.015_bib0235) 2006; 313
Wang (10.1016/j.asoc.2017.01.015_bib0300) 2009; 37
Wei (10.1016/j.asoc.2017.01.015_bib0130) 2014; 25
Zhang (10.1016/j.asoc.2017.01.015_bib0215) 2014; 47
Palm (10.1016/j.asoc.2017.01.015_bib0275) 2012
Chang (10.1016/j.asoc.2017.01.015_bib0270) 2011; 2
Hong (10.1016/j.asoc.2017.01.015_bib0070) 2009; 50
Martínez-Álvarez (10.1016/j.asoc.2017.01.015_bib0175) 2015; 8
Liu (10.1016/j.asoc.2017.01.015_bib0290) 2012; 48
10.1016/j.asoc.2017.01.015_bib0265
Ghayekhloo (10.1016/j.asoc.2017.01.015_bib0065) 2015; 119
Ciresan (10.1016/j.asoc.2017.01.015_bib0095) 2010; 22
References_xml – start-page: 102
  year: 2011
  end-page: 108
  ident: bib0285
  article-title: Combined model based on EMD-SVM for short-term wind power prediction
  publication-title: Proc. Chinese Society for Electrical Engineering (CSEE), vol. 31
– volume: 42
  start-page: 368
  year: 2016
  end-page: 376
  ident: bib0140
  article-title: A hybrid ANFIS model based on empirical mode decomposition for stock time series forecasting
  publication-title: Appl. Soft Comput.
– volume: 15
  start-page: 3133
  year: 2014
  end-page: 3181
  ident: bib0125
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J. Mach. Learn. Res.
– year: 2010
  ident: bib0260
  article-title: A new method for mitigation of end effect in empirical mode decomposition
  publication-title: 2nd International Asia Conference on Informatics in Control, Automation and Robotics
– volume: PP
  start-page: 1
  year: 2015
  ident: bib0150
  article-title: A novel empirical mode decomposition with support vector regression for wind speed forecasting
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 119
  start-page: 138
  year: 2015
  end-page: 148
  ident: bib0065
  article-title: A hybrid short-term load forecasting with a new data preprocessing framework
  publication-title: Electr. Power Syst. Res.
– start-page: 1
  year: 2014
  end-page: 6
  ident: bib0135
  article-title: Ensemble deep learning for regression and time series forecasting
  publication-title: Proc. IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL)
– volume: 48
  start-page: 659
  year: 2015
  end-page: 669
  ident: bib0005
  article-title: EWMA model based shift-detection methods for detecting covariate shifts in non-stationary environments
  publication-title: Pattern Recognit.
– volume: 49
  start-page: 205
  year: 2008
  end-page: 211
  ident: bib0050
  article-title: Using adaptive network based fuzzy inference system to forecast regional electricity loads
  publication-title: Energy Convers. Manag.
– volume: 49
  start-page: 413
  year: 2013
  end-page: 422
  ident: bib0185
  article-title: Short-term load forecasting using SVR (support vector regression)-based radial basis function neural network with dual extended Kalman filter
  publication-title: Energy
– year: 2003
  ident: bib0255
  article-title: On empirical mode decomposition and its algorithms
  publication-title: Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03
– volume: 2
  start-page: 27
  year: 2011
  ident: bib0270
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 18
  start-page: 959
  year: 2007
  end-page: 963
  ident: bib0295
  article-title: Comparing support vector machines and feedforward neural networks with similar hidden-layer weights
  publication-title: IEEE Trans. Neural Netw.
– volume: 48
  start-page: 696
  year: 2015
  end-page: 708
  ident: bib0010
  article-title: A pattern recognition framework for detecting dynamic changes on cyclic time series
  publication-title: Pattern Recognit.
– year: 1984
  ident: bib0120
  article-title: Classification and Regression Trees
  publication-title: The Wadsworth and Brooks-Cole Statistics-Probability Series
– volume: 25
  start-page: 15
  year: 2014
  end-page: 25
  ident: bib0130
  article-title: Comprehensive learning particle swarm optimization based memetic algorithm for model selection in short-term load forecasting using support vector regression
  publication-title: Appl. Soft Comput.
– volume: 70
  start-page: 139
  year: 2006
  end-page: 154
  ident: bib0160
  article-title: Wavelet-based nonlinear multiscale decomposition model for electricity load forecasting
  publication-title: Neurocomputing
– start-page: 1520
  year: 2014
  end-page: 1525
  ident: bib0240
  article-title: To be Bernoulli or to be Gaussian for a restricted Boltzmann machine
  publication-title: 22nd International Conference on Pattern Recognition
– volume: 6
  start-page: 236
  year: 2015
  end-page: 244
  ident: bib0170
  article-title: A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods
  publication-title: IEEE Trans. Sustain. Energy
– year: 1976
  ident: bib0035
  article-title: Time Series Analysis: Forecasting and Control
  publication-title: Holden-Day Series in Time Series Analysis and Digital Processing
– volume: 45
  start-page: 2165
  year: 2015
  end-page: 2176
  ident: bib0220
  article-title: Oblique decision tree ensemble via multisurface proximal support vector machine
  publication-title: IEEE Trans. Cybern.
– start-page: 599
  year: 2012
  end-page: 619
  ident: bib0250
  article-title: A practical guide to training restricted Boltzmann machines
  publication-title: Neural Networks: Tricks of the Trade: Second Edition
– year: 2013
  ident: bib0315
  article-title: Combining pattern sequence similarity with neural networks for forecasting electricity demand time series
  publication-title: International Joint Conference on Neural Networks (IJCNN)
– volume: 8
  start-page: 13162
  year: 2015
  end-page: 13193
  ident: bib0175
  article-title: A survey on data mining techniques applied to electricity-related time series forecasting
  publication-title: Energies
– volume: 37
  start-page: 657
  year: 2012
  end-page: 664
  ident: bib0310
  article-title: An adaptive fuzzy combination model based on self-organizing map and support vector regression for electric load forecasting
  publication-title: Energy
– volume: 20
  start-page: 5
  year: 2004
  end-page: 10
  ident: bib0030
  article-title: Forecasting seasonals and trends by exponentially weighted moving averages
  publication-title: Int. J. Forecast.
– start-page: 1
  year: 2000
  end-page: 15
  ident: bib0105
  article-title: Ensemble methods in machine learning
  publication-title: Multiple Classifier Systems
– volume: 47
  start-page: 3429
  year: 2014
  end-page: 3437
  ident: bib0215
  article-title: Random forests with ensemble of feature spaces
  publication-title: Pattern Recognit.
– volume: 38
  start-page: 350
  year: 2014
  end-page: 362
  ident: bib0020
  article-title: Short-term load forecasting based on support vector regression and load profiling
  publication-title: Int. J. Energy Res.
– volume: 82
  start-page: 29
  year: 2015
  end-page: 40
  ident: bib0015
  article-title: Correlation and instance based feature selection for electricity load forecasting
  publication-title: Knowl.-Based Syst.
– start-page: 1
  year: 2014
  end-page: 6
  ident: bib0145
  article-title: EMD based AdaBoost-BPNN method for wind speed forecasting
  publication-title: Proc. IEEE Symposium on Computational Intelligence and Ensemble Learning (CIEL2014)
– start-page: 3642
  year: 2012
  end-page: 3649
  ident: bib0090
  article-title: Multi-column deep neural networks for image classification
  publication-title: Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR2012)
– volume: 000
  start-page: 1
  year: 2016
  end-page: 16
  ident: bib0195
  article-title: Random vector functional link network for short-term electricity load demand forecasting
  publication-title: Inf. Sci.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0115
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 5
  start-page: 1535
  year: 1990
  end-page: 1547
  ident: bib0040
  article-title: A regression-based approach to short-term system load forecasting
  publication-title: IEEE Trans. Power Syst.
– volume: 36
  start-page: 5568
  year: 2011
  end-page: 5578
  ident: bib0305
  article-title: Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm
  publication-title: Energy
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: bib0225
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
– volume: 8226
  start-page: 466
  year: 2013
  end-page: 473
  ident: bib0230
  article-title: Hierarchical representation using NMF
  publication-title: Neural Inf. Process.
– reference: AEMO, Australian Energy Market Operator 2013, 2013.
– start-page: 17
  year: 2012
  end-page: 22
  ident: bib0080
  article-title: Time series forecasting using restricted Boltzmann machine
  publication-title: Emerging Intelligent Computing Technology and Applications
– volume: 50
  start-page: 105
  year: 2009
  end-page: 117
  ident: bib0070
  article-title: Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model
  publication-title: Energy Convers. Manag.
– volume: 22
  start-page: 3207
  year: 2010
  end-page: 3220
  ident: bib0095
  article-title: Deep, big, simple neural nets for handwritten digit recognition
  publication-title: Neural Comput.
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: bib0075
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bib0210
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– volume: 14
  start-page: 1771
  year: 2002
  end-page: 1800
  ident: bib0245
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Comput.
– year: 2012
  ident: bib0085
  article-title: Deep Learning for Time Series Modeling, Tech. Rep. CS229
– year: 2000
  ident: bib0155
  article-title: Introduction to Algorithms
– year: 2012
  ident: bib0275
  article-title: Prediction as a Candidate for learning Deep Hierarchical Models of Data (Master's thesis)
– year: 1999
  ident: bib0180
  article-title: Neural Networks: A Comprehensive Foundation
– volume: 20
  start-page: 832
  year: 1998
  end-page: 844
  ident: bib0205
  article-title: The random subspace method for constructing decision forests
  publication-title: Pattern Anal. Mach. Intell.
– year: 1981
  ident: bib0025
  article-title: Energy Consumption and Economic Growth in Israel: Trend Analysis (1960–1979)
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: bib0100
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
– volume: 000
  start-page: 1
  year: 2016
  end-page: 10
  ident: bib0190
  article-title: A survey of randomized algorithms for training neural networks
  publication-title: Inf. Sci.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0055
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– start-page: 278
  year: 1995
  end-page: 282
  ident: bib0200
  article-title: Random decision forests
  publication-title: Proc. the Third International Conference on Document Analysis and Recognition
– start-page: 903
  year: 1998
  end-page: 995
  ident: bib0165
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Roy Soc. London A, vol. 454
– volume: 16
  start-page: 71
  year: 2000
  end-page: 83
  ident: bib0045
  article-title: Forecasting the short-term demand for electricity: do neural networks stand a better chance?
  publication-title: Int. J. Forecast.
– reference: .
– volume: 48
  start-page: 545
  year: 2012
  end-page: 556
  ident: bib0290
  article-title: A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks
  publication-title: Renew. Energy
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: bib0235
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 4
  start-page: 1
  year: 1992
  end-page: 58
  ident: bib0110
  article-title: Neural networks and the bias/variance dilemma
  publication-title: Neural Comput.
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: bib0280
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 75
  start-page: 252
  year: 2014
  end-page: 264
  ident: bib0060
  article-title: Artificial neural networks for short-term load forecasting in microgrids environment
  publication-title: Energy
– volume: 37
  start-page: 4901
  year: 2009
  end-page: 4909
  ident: bib0300
  article-title: A trend fixed on firstly and seasonal adjustment model combined with the
  publication-title: Energy Policy
– volume: 16
  start-page: 71
  year: 2000
  ident: 10.1016/j.asoc.2017.01.015_bib0045
  article-title: Forecasting the short-term demand for electricity: do neural networks stand a better chance?
  publication-title: Int. J. Forecast.
  doi: 10.1016/S0169-2070(99)00045-X
– year: 2000
  ident: 10.1016/j.asoc.2017.01.015_bib0155
– volume: 82
  start-page: 29
  year: 2015
  ident: 10.1016/j.asoc.2017.01.015_bib0015
  article-title: Correlation and instance based feature selection for electricity load forecasting
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.02.017
– start-page: 1
  year: 2014
  ident: 10.1016/j.asoc.2017.01.015_bib0145
  article-title: EMD based AdaBoost-BPNN method for wind speed forecasting
– start-page: 1520
  year: 2014
  ident: 10.1016/j.asoc.2017.01.015_bib0240
  article-title: To be Bernoulli or to be Gaussian for a restricted Boltzmann machine
– start-page: 1
  year: 2000
  ident: 10.1016/j.asoc.2017.01.015_bib0105
  article-title: Ensemble methods in machine learning
– volume: 38
  start-page: 350
  issue: 3
  year: 2014
  ident: 10.1016/j.asoc.2017.01.015_bib0020
  article-title: Short-term load forecasting based on support vector regression and load profiling
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.3048
– volume: 25
  start-page: 15
  year: 2014
  ident: 10.1016/j.asoc.2017.01.015_bib0130
  article-title: Comprehensive learning particle swarm optimization based memetic algorithm for model selection in short-term load forecasting using support vector regression
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.09.007
– volume: 000
  start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2017.01.015_bib0195
  article-title: Random vector functional link network for short-term electricity load demand forecasting
  publication-title: Inf. Sci.
– volume: 000
  start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2017.01.015_bib0190
  article-title: A survey of randomized algorithms for training neural networks
  publication-title: Inf. Sci.
– volume: 18
  start-page: 959
  issue: 3
  year: 2007
  ident: 10.1016/j.asoc.2017.01.015_bib0295
  article-title: Comparing support vector machines and feedforward neural networks with similar hidden-layer weights
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2007.891656
– volume: 50
  start-page: 105
  year: 2009
  ident: 10.1016/j.asoc.2017.01.015_bib0070
  article-title: Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2008.08.031
– start-page: 1
  year: 2014
  ident: 10.1016/j.asoc.2017.01.015_bib0135
  article-title: Ensemble deep learning for regression and time series forecasting
– volume: 2
  start-page: 1
  year: 2009
  ident: 10.1016/j.asoc.2017.01.015_bib0225
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000006
– volume: 49
  start-page: 413
  year: 2013
  ident: 10.1016/j.asoc.2017.01.015_bib0185
  article-title: Short-term load forecasting using SVR (support vector regression)-based radial basis function neural network with dual extended Kalman filter
  publication-title: Energy
  doi: 10.1016/j.energy.2012.11.015
– volume: 36
  start-page: 5568
  year: 2011
  ident: 10.1016/j.asoc.2017.01.015_bib0305
  article-title: Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2011.07.015
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.asoc.2017.01.015_bib0280
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– start-page: 3642
  year: 2012
  ident: 10.1016/j.asoc.2017.01.015_bib0090
  article-title: Multi-column deep neural networks for image classification
– volume: 75
  start-page: 252
  year: 2014
  ident: 10.1016/j.asoc.2017.01.015_bib0060
  article-title: Artificial neural networks for short-term load forecasting in microgrids environment
  publication-title: Energy
  doi: 10.1016/j.energy.2014.07.065
– volume: 15
  start-page: 3133
  year: 2014
  ident: 10.1016/j.asoc.2017.01.015_bib0125
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J. Mach. Learn. Res.
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.asoc.2017.01.015_bib0115
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– start-page: 903
  year: 1998
  ident: 10.1016/j.asoc.2017.01.015_bib0165
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
– volume: 14
  start-page: 1771
  issue: 8
  year: 2002
  ident: 10.1016/j.asoc.2017.01.015_bib0245
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Comput.
  doi: 10.1162/089976602760128018
– year: 1984
  ident: 10.1016/j.asoc.2017.01.015_bib0120
  article-title: Classification and Regression Trees
– start-page: 102
  year: 2011
  ident: 10.1016/j.asoc.2017.01.015_bib0285
  article-title: Combined model based on EMD-SVM for short-term wind power prediction
– volume: 47
  start-page: 3429
  year: 2014
  ident: 10.1016/j.asoc.2017.01.015_bib0215
  article-title: Random forests with ensemble of feature spaces
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.04.001
– volume: 42
  start-page: 368
  year: 2016
  ident: 10.1016/j.asoc.2017.01.015_bib0140
  article-title: A hybrid ANFIS model based on empirical mode decomposition for stock time series forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.01.027
– year: 2012
  ident: 10.1016/j.asoc.2017.01.015_bib0085
– volume: 49
  start-page: 205
  year: 2008
  ident: 10.1016/j.asoc.2017.01.015_bib0050
  article-title: Using adaptive network based fuzzy inference system to forecast regional electricity loads
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2007.06.015
– year: 2010
  ident: 10.1016/j.asoc.2017.01.015_bib0260
  article-title: A new method for mitigation of end effect in empirical mode decomposition
– volume: 4
  start-page: 1
  year: 1992
  ident: 10.1016/j.asoc.2017.01.015_bib0110
  article-title: Neural networks and the bias/variance dilemma
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.1.1
– ident: 10.1016/j.asoc.2017.01.015_bib0265
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.asoc.2017.01.015_bib0235
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– start-page: 17
  year: 2012
  ident: 10.1016/j.asoc.2017.01.015_bib0080
  article-title: Time series forecasting using restricted Boltzmann machine
– volume: PP
  start-page: 1
  issue: 99
  year: 2015
  ident: 10.1016/j.asoc.2017.01.015_bib0150
  article-title: A novel empirical mode decomposition with support vector regression for wind speed forecasting
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 8
  start-page: 13162
  issue: 11
  year: 2015
  ident: 10.1016/j.asoc.2017.01.015_bib0175
  article-title: A survey on data mining techniques applied to electricity-related time series forecasting
  publication-title: Energies
  doi: 10.3390/en81112361
– year: 1999
  ident: 10.1016/j.asoc.2017.01.015_bib0180
– volume: 70
  start-page: 139
  year: 2006
  ident: 10.1016/j.asoc.2017.01.015_bib0160
  article-title: Wavelet-based nonlinear multiscale decomposition model for electricity load forecasting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.04.005
– volume: 8226
  start-page: 466
  year: 2013
  ident: 10.1016/j.asoc.2017.01.015_bib0230
  article-title: Hierarchical representation using NMF
  publication-title: Neural Inf. Process.
– volume: 20
  start-page: 5
  year: 2004
  ident: 10.1016/j.asoc.2017.01.015_bib0030
  article-title: Forecasting seasonals and trends by exponentially weighted moving averages
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2003.09.015
– volume: 48
  start-page: 545
  year: 2012
  ident: 10.1016/j.asoc.2017.01.015_bib0290
  article-title: A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.06.012
– year: 1976
  ident: 10.1016/j.asoc.2017.01.015_bib0035
  article-title: Time Series Analysis: Forecasting and Control
– volume: 119
  start-page: 138
  year: 2015
  ident: 10.1016/j.asoc.2017.01.015_bib0065
  article-title: A hybrid short-term load forecasting with a new data preprocessing framework
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2014.09.002
– volume: 5
  start-page: 1535
  year: 1990
  ident: 10.1016/j.asoc.2017.01.015_bib0040
  article-title: A regression-based approach to short-term system load forecasting
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.99410
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.asoc.2017.01.015_bib0055
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.asoc.2017.01.015_bib0075
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 48
  start-page: 659
  issue: 3
  year: 2015
  ident: 10.1016/j.asoc.2017.01.015_bib0005
  article-title: EWMA model based shift-detection methods for detecting covariate shifts in non-stationary environments
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.07.028
– volume: 22
  start-page: 3207
  issue: 12
  year: 2010
  ident: 10.1016/j.asoc.2017.01.015_bib0095
  article-title: Deep, big, simple neural nets for handwritten digit recognition
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00052
– volume: 45
  start-page: 2165
  issue: 10
  year: 2015
  ident: 10.1016/j.asoc.2017.01.015_bib0220
  article-title: Oblique decision tree ensemble via multisurface proximal support vector machine
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2366468
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.asoc.2017.01.015_bib0100
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 37
  start-page: 4901
  year: 2009
  ident: 10.1016/j.asoc.2017.01.015_bib0300
  article-title: A trend fixed on firstly and seasonal adjustment model combined with the ɛ-SVR for short-term forecasting of electricity demand
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.06.046
– volume: 20
  start-page: 832
  issue: 8
  year: 1998
  ident: 10.1016/j.asoc.2017.01.015_bib0205
  article-title: The random subspace method for constructing decision forests
  publication-title: Pattern Anal. Mach. Intell.
  doi: 10.1109/34.709601
– volume: 37
  start-page: 657
  year: 2012
  ident: 10.1016/j.asoc.2017.01.015_bib0310
  article-title: An adaptive fuzzy combination model based on self-organizing map and support vector regression for electric load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2011.10.034
– year: 2013
  ident: 10.1016/j.asoc.2017.01.015_bib0315
  article-title: Combining pattern sequence similarity with neural networks for forecasting electricity demand time series
– year: 1981
  ident: 10.1016/j.asoc.2017.01.015_bib0025
– year: 2003
  ident: 10.1016/j.asoc.2017.01.015_bib0255
  article-title: On empirical mode decomposition and its algorithms
– volume: 48
  start-page: 696
  issue: 3
  year: 2015
  ident: 10.1016/j.asoc.2017.01.015_bib0010
  article-title: A pattern recognition framework for detecting dynamic changes on cyclic time series
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.08.017
– start-page: 599
  year: 2012
  ident: 10.1016/j.asoc.2017.01.015_bib0250
  article-title: A practical guide to training restricted Boltzmann machines
– volume: 6
  start-page: 236
  issue: 1
  year: 2015
  ident: 10.1016/j.asoc.2017.01.015_bib0170
  article-title: A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2014.2365580
– volume: 2
  start-page: 27
  issue: 3
  year: 2011
  ident: 10.1016/j.asoc.2017.01.015_bib0270
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– year: 2012
  ident: 10.1016/j.asoc.2017.01.015_bib0275
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.asoc.2017.01.015_bib0210
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– start-page: 278
  year: 1995
  ident: 10.1016/j.asoc.2017.01.015_bib0200
  article-title: Random decision forests
SSID ssj0016928
Score 2.6165905
Snippet [Display omitted] •An ensemble deep learning method has been proposed for load demand forecasting.•The hybrid method composes of Empirical Mode Decomposition...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 246
SubjectTerms Deep learning
Empirical Mode Decomposition
Ensemble method
Load demand forecasting
Neural networks
Random forests
Support vector regression
Time series forecasting
Title Empirical Mode Decomposition based ensemble deep learning for load demand time series forecasting
URI https://dx.doi.org/10.1016/j.asoc.2017.01.015
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jvvjiXZyXkQffJK5dkiZ9HHNj3oaog72VpEllsktx89Xfbk6bDgXZg1AoTU-gnJ6cC3znfAhdCmoNM4wRnoWMuHgsicx4SISJNOMqZlJBc_LjMBqM2N2Yj2uoW_XCAKzS-_7Spxfe2q-0vDZb-WTSenGVh2QxcyGYFlNZoIOdCYD1XX-tYR5hFBf8qiBMQNo3zpQYL-U0APAuUYzuBGrcv4LTj4DT30M7PlPEnfJj9lHNzg_QbsXCgP2hPESqN8snxaAPDMRm-MYCTNxjsTBEKYNdrWpnemqxsTbHniniDbuEFU8XyrjlmZobDETzGGzSLuGdTdUSUNFHaNTvvXYHxBMnkJRyuiJRoKkUba5Do1QQaGZszCETyqh05Z8rIdpRJmScGiUNU7ZNhTWGBiZOXbCSlB6j-nwxtycI88BGNnU5ntTCnXWmM5nJKFXc-UWtWdZAYaWxJPVTxYHcYppU8LH3BLScgJaTIHQXb6Cr9Z68nKmxUZpXPyL5ZRmJc_ob9p3-c98Z2oanEtR4juqrj0974RKPlW4WltVEW53u88MT3G_vB8NvSfHZ0Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoCFN-KNBzZkNantxBkRDxX6WGilbpYdO6ioLRWU_48vcRBIiAEpk-2Tosv5Hsp39wFcpsxZbjmnoog59fFYUlmImKY2MVzojEuNzcmDYdId88eJmDTgpu6FQVhl8P2VTy-9dVhpB222l9Np-8lXHpJn3IdgVk5lWYMWTqfiTWhdP_S6w6-fCUlWUqzieYoCoXemgnlprwREeKXl9E5kx_0tPn2LOffbsBmSRXJdvc8ONNxiF7ZqIgYS7uUe6Lv5clrO-iDIbUZuHSLFAxyLYKCyxJerbm5mjljnliSQRTwTn7OS2au2fnmuF5Yg1zxBs3TvuOdy_Y7A6H0Y39-Nbro0cCfQnAm2oklkmEw7wsRW6ygy3LpMYDJUMOkrQF9FdJIilVlutbRcuw5LnbUsslnu45Vk7ACai9eFOwQiIpe43Kd50qT-unNTyEImuRbeNRrDiyOIa42pPAwWR36LmaoRZC8KtaxQyyqK_SOO4OpLZlmN1fjztKg_hPphHMr7_T_kjv8pdwHr3dGgr_oPw94JbOBOhXE8hebq7cOd-TxkZc6DnX0C9nDa7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empirical+Mode+Decomposition+based+ensemble+deep+learning+for+load+demand+time+series+forecasting&rft.jtitle=Applied+soft+computing&rft.au=Qiu%2C+Xueheng&rft.au=Ren%2C+Ye&rft.au=Suganthan%2C+Ponnuthurai+Nagaratnam&rft.au=Amaratunga%2C+Gehan+A.J.&rft.date=2017-05-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=54&rft.spage=246&rft.epage=255&rft_id=info:doi/10.1016%2Fj.asoc.2017.01.015&rft.externalDocID=S1568494617300273
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon