How does distraction affect cyclists’ severe crashes? A hybrid CatBoost-SHAP and random parameters binary logit approach

•Analyzed four years (2019–2022) of U.S. CRSS data on distracted cyclist crashes.•A hybrid machine learning and advanced statistical modeling approach was employed.•Identified risk factors increasing severe injury probability for distracted cyclists.•Findings support targeted safety measures to miti...

Full description

Saved in:
Bibliographic Details
Published inAccident analysis and prevention Vol. 211; p. 107896
Main Authors Agheli, Ali, Aghabayk, Kayvan
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Analyzed four years (2019–2022) of U.S. CRSS data on distracted cyclist crashes.•A hybrid machine learning and advanced statistical modeling approach was employed.•Identified risk factors increasing severe injury probability for distracted cyclists.•Findings support targeted safety measures to mitigate distracted cyclist crash risks. Cyclists are among the most vulnerable road users, increasingly subject to various sources of distraction, including the use of mobile phones and engagement in other tasks while navigating urban environments. Understanding and mitigating the impact of these distractions on cyclist safety is crucial. Despite the importance of this issue, the effect of distraction on injury severity in cycling crashes has not been extensively studied. This research analyzes four years of U.S. crash data (2019–2022) from the Crash Report Sampling System (CRSS) database, employing a hybrid framework that integrates CatBoost-based SHAP algorithm and the random parameters binary logit model with heterogeneity in means and variances (RPBL-HMV). The proposed approach confirms the significant role of cyclist distraction in crash injury severity. Subsequently, the analysis identifies several factors influencing the likelihood of severe injuries in distracted cyclist crashes. Crashes involving the front of motor vehicles, occurring in rural areas, on two-way roads, at higher speed limits, and during weekends were associated with a higher probability of severe injuries. Conversely, crashes at T-intersections, involving the side or rear of motor vehicles, where cyclists wore helmets, or during rush hour were linked to a reduced likelihood of severe injuries. Notably, interaction effects reveal nuanced patterns. For instance, while crossing roadway actions and rush hour periods individually decrease the likelihood of severe crashes, their combination increases the probability of such outcomes. The findings suggest targeted safety measures and policy interventions aimed at enhancing cyclist safety and promoting safer cycling environments by mitigating distraction-related risks.
AbstractList Cyclists are among the most vulnerable road users, increasingly subject to various sources of distraction, including the use of mobile phones and engagement in other tasks while navigating urban environments. Understanding and mitigating the impact of these distractions on cyclist safety is crucial. Despite the importance of this issue, the effect of distraction on injury severity in cycling crashes has not been extensively studied. This research analyzes four years of U.S. crash data (2019-2022) from the Crash Report Sampling System (CRSS) database, employing a hybrid framework that integrates CatBoost-based SHAP algorithm and the random parameters binary logit model with heterogeneity in means and variances (RPBL-HMV). The proposed approach confirms the significant role of cyclist distraction in crash injury severity. Subsequently, the analysis identifies several factors influencing the likelihood of severe injuries in distracted cyclist crashes. Crashes involving the front of motor vehicles, occurring in rural areas, on two-way roads, at higher speed limits, and during weekends were associated with a higher probability of severe injuries. Conversely, crashes at T-intersections, involving the side or rear of motor vehicles, where cyclists wore helmets, or during rush hour were linked to a reduced likelihood of severe injuries. Notably, interaction effects reveal nuanced patterns. For instance, while crossing roadway actions and rush hour periods individually decrease the likelihood of severe crashes, their combination increases the probability of such outcomes. The findings suggest targeted safety measures and policy interventions aimed at enhancing cyclist safety and promoting safer cycling environments by mitigating distraction-related risks.Cyclists are among the most vulnerable road users, increasingly subject to various sources of distraction, including the use of mobile phones and engagement in other tasks while navigating urban environments. Understanding and mitigating the impact of these distractions on cyclist safety is crucial. Despite the importance of this issue, the effect of distraction on injury severity in cycling crashes has not been extensively studied. This research analyzes four years of U.S. crash data (2019-2022) from the Crash Report Sampling System (CRSS) database, employing a hybrid framework that integrates CatBoost-based SHAP algorithm and the random parameters binary logit model with heterogeneity in means and variances (RPBL-HMV). The proposed approach confirms the significant role of cyclist distraction in crash injury severity. Subsequently, the analysis identifies several factors influencing the likelihood of severe injuries in distracted cyclist crashes. Crashes involving the front of motor vehicles, occurring in rural areas, on two-way roads, at higher speed limits, and during weekends were associated with a higher probability of severe injuries. Conversely, crashes at T-intersections, involving the side or rear of motor vehicles, where cyclists wore helmets, or during rush hour were linked to a reduced likelihood of severe injuries. Notably, interaction effects reveal nuanced patterns. For instance, while crossing roadway actions and rush hour periods individually decrease the likelihood of severe crashes, their combination increases the probability of such outcomes. The findings suggest targeted safety measures and policy interventions aimed at enhancing cyclist safety and promoting safer cycling environments by mitigating distraction-related risks.
Cyclists are among the most vulnerable road users, increasingly subject to various sources of distraction, including the use of mobile phones and engagement in other tasks while navigating urban environments. Understanding and mitigating the impact of these distractions on cyclist safety is crucial. Despite the importance of this issue, the effect of distraction on injury severity in cycling crashes has not been extensively studied. This research analyzes four years of U.S. crash data (2019-2022) from the Crash Report Sampling System (CRSS) database, employing a hybrid framework that integrates CatBoost-based SHAP algorithm and the random parameters binary logit model with heterogeneity in means and variances (RPBL-HMV). The proposed approach confirms the significant role of cyclist distraction in crash injury severity. Subsequently, the analysis identifies several factors influencing the likelihood of severe injuries in distracted cyclist crashes. Crashes involving the front of motor vehicles, occurring in rural areas, on two-way roads, at higher speed limits, and during weekends were associated with a higher probability of severe injuries. Conversely, crashes at T-intersections, involving the side or rear of motor vehicles, where cyclists wore helmets, or during rush hour were linked to a reduced likelihood of severe injuries. Notably, interaction effects reveal nuanced patterns. For instance, while crossing roadway actions and rush hour periods individually decrease the likelihood of severe crashes, their combination increases the probability of such outcomes. The findings suggest targeted safety measures and policy interventions aimed at enhancing cyclist safety and promoting safer cycling environments by mitigating distraction-related risks.
•Analyzed four years (2019–2022) of U.S. CRSS data on distracted cyclist crashes.•A hybrid machine learning and advanced statistical modeling approach was employed.•Identified risk factors increasing severe injury probability for distracted cyclists.•Findings support targeted safety measures to mitigate distracted cyclist crash risks. Cyclists are among the most vulnerable road users, increasingly subject to various sources of distraction, including the use of mobile phones and engagement in other tasks while navigating urban environments. Understanding and mitigating the impact of these distractions on cyclist safety is crucial. Despite the importance of this issue, the effect of distraction on injury severity in cycling crashes has not been extensively studied. This research analyzes four years of U.S. crash data (2019–2022) from the Crash Report Sampling System (CRSS) database, employing a hybrid framework that integrates CatBoost-based SHAP algorithm and the random parameters binary logit model with heterogeneity in means and variances (RPBL-HMV). The proposed approach confirms the significant role of cyclist distraction in crash injury severity. Subsequently, the analysis identifies several factors influencing the likelihood of severe injuries in distracted cyclist crashes. Crashes involving the front of motor vehicles, occurring in rural areas, on two-way roads, at higher speed limits, and during weekends were associated with a higher probability of severe injuries. Conversely, crashes at T-intersections, involving the side or rear of motor vehicles, where cyclists wore helmets, or during rush hour were linked to a reduced likelihood of severe injuries. Notably, interaction effects reveal nuanced patterns. For instance, while crossing roadway actions and rush hour periods individually decrease the likelihood of severe crashes, their combination increases the probability of such outcomes. The findings suggest targeted safety measures and policy interventions aimed at enhancing cyclist safety and promoting safer cycling environments by mitigating distraction-related risks.
ArticleNumber 107896
Author Aghabayk, Kayvan
Agheli, Ali
Author_xml – sequence: 1
  givenname: Ali
  orcidid: 0009-0003-8749-5455
  surname: Agheli
  fullname: Agheli, Ali
  email: ali.agheli@ut.ac.ir
– sequence: 2
  givenname: Kayvan
  orcidid: 0000-0001-5752-9704
  surname: Aghabayk
  fullname: Aghabayk, Kayvan
  email: kayvan.aghabayk@ut.ac.ir
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39673830$$D View this record in MEDLINE/PubMed
BookMark eNp9kcGO0zAQhi20iO0uPAAX5COXFDuOM6k4oFIBRVoJJOBsTewJdZXEwU4XlROvwevxJLjq7oXDXmY01v-N7f-_YhdjGImx51IspZD1q_0ScVqWoqzyDM2qfsQWsoFVUQoNF2whhJBFpUFfsquU9nmEBvQTdqlWNahGiQX7tQ0_uQuUuPNpjmhnH0aOXUd25vZo-3ya_v7-wxPdUiRuI6YdpTd8zXfHNnrHNzi_DSHNxZft-jPH0fGYSxj4hBEHmikm3voR45H34bufOU5TDGh3T9njDvtEz-76Nfv2_t3Xzba4-fTh42Z9U1il1Vxo7ADaVpOS3crByupSNUSIsnUIQKhFDZR_WqKiiqS14DIIqiJtQUp1zV6e9-ZrfxwozWbwyVLf40jhkIySVQ1Ql6Cz9MWd9NAO5MwU_ZAfbu79ygI4C2wMKUXqjPUznjzL3vneSGFOyZi9ycmYUzLmnEwm5X_k_fKHmNdnhrI9t56iSdbTaMn5mPMxLvgH6H_01ae9
CitedBy_id crossref_primary_10_1080_23249935_2025_2477261
Cites_doi 10.1080/17457300.2023.2300479
10.1097/JTN.0000000000000188
10.1016/j.jsr.2013.04.002
10.1016/j.aap.2024.107676
10.1016/j.aap.2015.01.004
10.1016/j.aap.2024.107602
10.1080/19439962.2023.2189339
10.1016/j.aap.2023.107339
10.1016/j.ssci.2021.105511
10.1080/00140130903381180
10.1002/sim.8063
10.1016/j.aap.2023.107444
10.1016/j.jsr.2021.02.009
10.3390/su14010215
10.1080/15389588.2021.1895129
10.1016/j.aap.2023.107378
10.1016/j.aap.2024.107603
10.1016/j.aap.2022.106763
10.1016/j.trf.2024.06.026
10.1016/j.aap.2024.107503
10.1038/s41598-024-73134-z
10.1016/j.ssci.2022.105682
10.1016/j.aap.2019.03.003
10.1016/j.aap.2023.107015
10.1016/j.jsr.2011.08.007
10.1016/j.aap.2018.10.022
10.1016/j.aap.2013.04.007
10.1016/j.aap.2022.106937
10.1080/19439962.2019.1591559
10.1080/15389580701718389
10.1016/j.aap.2023.107231
10.1201/9780429244018
10.1016/j.aap.2007.11.010
10.1016/j.aap.2023.107275
10.1016/j.aap.2023.107126
10.1016/j.ssci.2018.08.030
10.1016/j.trf.2013.12.003
10.1016/j.trf.2021.10.010
10.1016/j.aap.2024.107696
10.1016/j.aap.2023.107235
10.1016/j.aap.2015.03.036
10.15288/jsad.2012.73.250
10.1016/j.trf.2011.07.001
10.1002/1099-1255(200009/10)15:5<447::AID-JAE570>3.0.CO;2-1
10.1016/j.aap.2013.02.003
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.aap.2024.107896
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Social Welfare & Social Work
Public Health
EISSN 1879-2057
ExternalDocumentID 39673830
10_1016_j_aap_2024_107896
S000145752400441X
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
--K
--M
-~X
..I
.~1
0R~
1B1
1RT
1~.
23M
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABBQC
ABDMP
ABFNM
ABIVO
ABJNI
ABMAC
ABMMH
ABMZM
ABNUV
ABWVN
ABXDB
ACDAQ
ACGFS
ACHQT
ACNCT
ACNNM
ACRLP
ACRPL
ADBBV
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AHRSL
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEH
HMK
HMO
HMY
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M29
M3W
M3Y
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSG
SSH
SSO
SSS
SST
SSZ
T5K
VH1
WUQ
XPP
ZCG
ZGI
~G-
AATTM
AAYWO
AAYXX
ACIEU
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ID FETCH-LOGICAL-c353t-5af77bb5e31f9d79c5238eeaa1bda77ea5067e0012a3e4e1cc7d353734e5c7113
IEDL.DBID .~1
ISSN 0001-4575
1879-2057
IngestDate Tue Aug 05 10:20:30 EDT 2025
Mon Jul 21 05:56:17 EDT 2025
Tue Jul 01 02:53:42 EDT 2025
Thu Apr 24 22:53:46 EDT 2025
Sat Feb 01 16:07:39 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Interpretable ML
Unobserved heterogeneity
Machine learning
Crash severity
Bicycle-motor vehicle crash
Distracted cyclist
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-5af77bb5e31f9d79c5238eeaa1bda77ea5067e0012a3e4e1cc7d353734e5c7113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0003-8749-5455
0000-0001-5752-9704
PMID 39673830
PQID 3146776275
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3146776275
pubmed_primary_39673830
crossref_citationtrail_10_1016_j_aap_2024_107896
crossref_primary_10_1016_j_aap_2024_107896
elsevier_sciencedirect_doi_10_1016_j_aap_2024_107896
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Accident analysis and prevention
PublicationTitleAlternate Accid Anal Prev
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Alnawmasi, Ali, Yasmin (b0020) 2024; 194
Chen, Zhang, Tarefder, Ma, Wei, Guan (b0045) 2015; 80
Zhu, Yue, Zhang, Sun (b0325) 2024; 202
de Jong, Eijkemans, van Calster, Timmerman, Moons, Steyerberg, van Smeden (b0060) 2019; 38
Von Sawitzky, Grauschopf, Riener (b0285) 2020
Azmeri Khan, Yasmin, Mazharul Haque (b0025) 2023; 40
Zhang, Li, Ren (b0320) 2023; 189
Useche, Alonso, Montoro, Esteban (b0280) 2018; 6
De Angelis, Fraboni, Puchades, Prati, Pietrantoni (b0055) 2020; 12
De Waard, Lewis-Evans, Jelijs, Tucha, Brookhuis (b0075) 2014; 22
Washington, Karlaftis, Mannering, Anastasopoulos (b0305) 2020
Behnood, Mannering (b0030) 2017; 16
Ali, Haque, Zheng, Bliemer (b0010) 2021; 31
Hossain, Sun, Das, Jafari, Codjoe (b0115) 2024; 1–35
Mannering, Bhat, Shankar, Abdel-Aty (b0175) 2020; 25
NHTSA. (2023). 2021 Data - Bicyclists and Other Cyclists. https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813484.pdf.
De Waard, Westerhuis, Lewis-Evans (b0080) 2015; 76
Macioszek, E., & Granà, A. (2021). The Analysis of the Factors Influencing the Severity of Bicyclist Injury in Bicyclist-Vehicle Crashes. Sustainability 2022, Vol. 14, Page 215, 14(1), 215. 10.3390/SU14010215.
Islam, M., Hosseini, P., Kakhani, A., Jalayer, M., & Patel, D. (2024). Unveiling the risks of speeding behavior by investigating the dynamics of driver injury severity through advanced analytics. Scientific Reports 2024 14:1, 14(1), 1–21. 10.1038/s41598-024-73134-z.
Islam, Mannering (b0145) 2020; 27
Sun, Wang, Gu, Abdel-Aty, Xing, Wang, Lu, Chen (b0260) 2023; 192
Lundberg, S. M., & Lee, S. I. (2017). A Unified Approach to Interpreting Model Predictions. Advances in Neural Information Processing Systems, 2017-December, 4766–4775. https://arxiv.org/abs/1705.07874v2.
Mwakalonge, J., White, J., and, S. S.-I. J. of T., & 2014, undefined. (2014). Distracted biking: a review of the current state-of-knowledge. CiteseerJL Mwakalonge, J White, S SiuhiInternational Journal of Traffic and Transportation Engineering, 2014•Citeseer, 2014(2), 42–51. 10.5923/j.ijtte.20140302.02.
Wang, Jiao, Wang, Luo, Lu (b0295) 2024; 16
Islam, Patel, Hasan, Jalayer (b0150) 2023
Castillo-Manzano, Castro-Nuño, López-Valpuesta, Vassallo (b0040) 2019; 111
McFadden, Train (b0180) 2000; 15
Goswamy, Abdel-Aty, Islam (b0105) 2023; 181
D’Addario, Donmez (b0050) 2019; 127
Ali, Hussain, Haque (b0015) 2024; 194
Dorogush, A. V., Ershov, V., & Yandex, A. G. (2018). CatBoost: gradient boosting with categorical features support. https://arxiv.org/abs/1810.11363v1.
Haleem, Gan (b0110) 2013; 46
Møller, Luise Berghoefer, Vollrath (b0185) 2024; 104
NHTSA. (2024, April). Crash Report Sampling System Analytical User’s Manual, 2016-2022. https://crashstats.nhtsa.dot.gov.
Hossain, Sun, Das, Jafari, Rahman (b0120) 2024; 199
Ye, Lord (b0315) 2014; 1
Finlay, Ram, Maggs, Caldwell (b0095) 2012; 73
Salehian, Aghabayk, Seyfi, Shiwakoti (b0220) 2023; 192
Jiang, Yang, Feng, Sze, Yu, Huang, Chen (b0155) 2021; 83
Tamakloe, Zhang, Kim (b0270) 2024; 205
Sadeghi, Aghabayk, Quddus (b0215) 2024; 206
Se, Champahom, Jomnonkwao, Karoonsoontawong, Ratanavaraha (b0240) 2021; 32
De Waard, Schepers, Ormel, Brookhuis (b0065) 2010; 53
Ouyang, Han, Liu, Zhao (b0205) 2023
Sun, Xing, Wang, Gu, Lu, Chen (b0255) 2022; 150
Samerei, Aghabayk (b0230) 2024; 202
Hosseinpour, Madsen, Olesen, Lahrmann (b0125) 2021; 77
Waseem, Ahmed, Saeed (b0300) 2019; 123
Terzano (b0275) 2013; 57
De Waard, Edlinger, Brookhuis (b0070) 2011; 14
Ali, Haque (b0005) 2023; 185
Lord, Qin, Geedipally (b0160) 2021; 1–488
Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). Catboost: Unbiased boosting with categorical features. Advances in Neural Information Processing Systems, 2018-December, 6638–6648.
Brijs, Mauriello, Montella, Galante, Brijs, Ross (b0035) 2022; 174
Wolfe, Arabian, Breeze, Salzler (b0310) 2016; 23
Eluru, Bhat, Hensher (b0090) 2008; 40
Seraneeprakarn, Huang, Shankar, Mannering, Venkataraman, Milton (b0245) 2017; 15
Wang, Neitzel, Zheng, Wang, Xue, Jiang (b0290) 2021; 22
Ichikawa, Nakahara (b0130) 2008; 9
Salmon, Naughton, Hulme, McLean (b0225) 2022; 145
Stavrinos, Jones, Garner, Griffin, Franklin, Ball, Welburn, Ball, Sisiopiku, Fine (b0250) 2013; 61
Scarano, Riccardi, Mauriello, D’agostino, Pasquino, Montella (b0235) 2023; 192
Islam (b0135) 2024; 196
Sun, Wang, Qi, Wang, Gu, Wang, Lu, Chen (b0265) 2024
Goldenbeld, Houtenbos, Ehlers, De Waard (b0100) 2012; 43
10.1016/j.aap.2024.107896_b0210
Brijs (10.1016/j.aap.2024.107896_b0035) 2022; 174
Zhu (10.1016/j.aap.2024.107896_b0325) 2024; 202
Ichikawa (10.1016/j.aap.2024.107896_b0130) 2008; 9
Se (10.1016/j.aap.2024.107896_b0240) 2021; 32
Sun (10.1016/j.aap.2024.107896_b0265) 2024
Sadeghi (10.1016/j.aap.2024.107896_b0215) 2024; 206
De Waard (10.1016/j.aap.2024.107896_b0065) 2010; 53
Seraneeprakarn (10.1016/j.aap.2024.107896_b0245) 2017; 15
Von Sawitzky (10.1016/j.aap.2024.107896_b0285) 2020
Salehian (10.1016/j.aap.2024.107896_b0220) 2023; 192
10.1016/j.aap.2024.107896_b0170
Goswamy (10.1016/j.aap.2024.107896_b0105) 2023; 181
Scarano (10.1016/j.aap.2024.107896_b0235) 2023; 192
Wang (10.1016/j.aap.2024.107896_b0295) 2024; 16
Ouyang (10.1016/j.aap.2024.107896_b0205) 2023
Wang (10.1016/j.aap.2024.107896_b0290) 2021; 22
Alnawmasi (10.1016/j.aap.2024.107896_b0020) 2024; 194
Wolfe (10.1016/j.aap.2024.107896_b0310) 2016; 23
Hossain (10.1016/j.aap.2024.107896_b0115) 2024; 1–35
Møller (10.1016/j.aap.2024.107896_b0185) 2024; 104
Jiang (10.1016/j.aap.2024.107896_b0155) 2021; 83
Finlay (10.1016/j.aap.2024.107896_b0095) 2012; 73
Lord (10.1016/j.aap.2024.107896_b0160) 2021; 1–488
De Angelis (10.1016/j.aap.2024.107896_b0055) 2020; 12
McFadden (10.1016/j.aap.2024.107896_b0180) 2000; 15
Samerei (10.1016/j.aap.2024.107896_b0230) 2024; 202
Eluru (10.1016/j.aap.2024.107896_b0090) 2008; 40
Ye (10.1016/j.aap.2024.107896_b0315) 2014; 1
Islam (10.1016/j.aap.2024.107896_b0135) 2024; 196
Stavrinos (10.1016/j.aap.2024.107896_b0250) 2013; 61
10.1016/j.aap.2024.107896_b0140
Ali (10.1016/j.aap.2024.107896_b0015) 2024; 194
Azmeri Khan (10.1016/j.aap.2024.107896_b0025) 2023; 40
Ali (10.1016/j.aap.2024.107896_b0010) 2021; 31
Hosseinpour (10.1016/j.aap.2024.107896_b0125) 2021; 77
Ali (10.1016/j.aap.2024.107896_b0005) 2023; 185
Islam (10.1016/j.aap.2024.107896_b0150) 2023
Chen (10.1016/j.aap.2024.107896_b0045) 2015; 80
Mannering (10.1016/j.aap.2024.107896_b0175) 2020; 25
Zhang (10.1016/j.aap.2024.107896_b0320) 2023; 189
Behnood (10.1016/j.aap.2024.107896_b0030) 2017; 16
Castillo-Manzano (10.1016/j.aap.2024.107896_b0040) 2019; 111
Goldenbeld (10.1016/j.aap.2024.107896_b0100) 2012; 43
Hossain (10.1016/j.aap.2024.107896_b0120) 2024; 199
10.1016/j.aap.2024.107896_b0190
de Jong (10.1016/j.aap.2024.107896_b0060) 2019; 38
Haleem (10.1016/j.aap.2024.107896_b0110) 2013; 46
10.1016/j.aap.2024.107896_b0195
10.1016/j.aap.2024.107896_b0200
10.1016/j.aap.2024.107896_b0165
Sun (10.1016/j.aap.2024.107896_b0255) 2022; 150
Terzano (10.1016/j.aap.2024.107896_b0275) 2013; 57
Washington (10.1016/j.aap.2024.107896_b0305) 2020
Sun (10.1016/j.aap.2024.107896_b0260) 2023; 192
Waseem (10.1016/j.aap.2024.107896_b0300) 2019; 123
De Waard (10.1016/j.aap.2024.107896_b0075) 2014; 22
De Waard (10.1016/j.aap.2024.107896_b0080) 2015; 76
Tamakloe (10.1016/j.aap.2024.107896_b0270) 2024; 205
Useche (10.1016/j.aap.2024.107896_b0280) 2018; 6
Islam (10.1016/j.aap.2024.107896_b0145) 2020; 27
D’Addario (10.1016/j.aap.2024.107896_b0050) 2019; 127
De Waard (10.1016/j.aap.2024.107896_b0070) 2011; 14
Salmon (10.1016/j.aap.2024.107896_b0225) 2022; 145
10.1016/j.aap.2024.107896_b0085
References_xml – volume: 80
  start-page: 76
  year: 2015
  end-page: 88
  ident: b0045
  article-title: A multinomial logit model-Bayesian network hybrid approach for driver injury severity analyses in rear-end crashes
  publication-title: Accid. Anal. Prev.
– volume: 189
  year: 2023
  ident: b0320
  article-title: Analyzing the injury severity in single-bicycle crashes: An application of the ordered forest with some practical guidance
  publication-title: Accid. Anal. Prev.
– volume: 46
  start-page: 67
  year: 2013
  end-page: 76
  ident: b0110
  article-title: Effect of driver’s age and side of impact on crash severity along urban freeways: A mixed logit approach
  publication-title: J. Saf. Res.
– volume: 22
  start-page: 564
  year: 2021
  end-page: 569
  ident: b0290
  article-title: Road safety situation of electric bike riders: A cross-sectional study in courier and take-out food delivery population
  publication-title: Traffic Inj. Prev.
– volume: 194
  year: 2024
  ident: b0020
  article-title: Exploring temporal instability effects on bicyclist injury severities determinants for intersection and non-intersection-related crashes
  publication-title: Accid. Anal. Prev.
– reference: Lundberg, S. M., & Lee, S. I. (2017). A Unified Approach to Interpreting Model Predictions. Advances in Neural Information Processing Systems, 2017-December, 4766–4775. https://arxiv.org/abs/1705.07874v2.
– volume: 77
  start-page: 114
  year: 2021
  end-page: 124
  ident: b0125
  article-title: An in-depth analysis of self-reported cycling injuries in single and multiparty bicycle crashes in Denmark
  publication-title: J. Saf. Res.
– volume: 196
  year: 2024
  ident: b0135
  article-title: Unraveling the differences in distracted driving injury severities in passenger car, sport utility vehicle, pickup truck, and minivan crashes
  publication-title: Accid. Anal. Prev.
– volume: 145
  year: 2022
  ident: b0225
  article-title: Bicycle crash contributory factors: A systematic review
  publication-title: Saf. Sci.
– volume: 1
  start-page: 72
  year: 2014
  end-page: 85
  ident: b0315
  article-title: Comparing three commonly used crash severity models on sample size requirements: Multinomial logit, ordered probit and mixed logit models
  publication-title: Anal. Methods Accid. Res
– volume: 206
  year: 2024
  ident: b0215
  article-title: A hybrid Machine learning and statistical modeling approach for analyzing the crash severity of mobility scooter users considering temporal instability
  publication-title: Accid. Anal. Prev.
– volume: 61
  start-page: 63
  year: 2013
  end-page: 70
  ident: b0250
  article-title: Impact of distracted driving on safety and traffic flow
  publication-title: Accid. Anal. Prev.
– volume: 31
  year: 2021
  ident: b0010
  article-title: Stop or go decisions at the onset of yellow light in a connected environment: a hybrid approach of decision tree and panel mixed logit model
  publication-title: Anal. Methods Accid. Res.
– year: 2023
  ident: b0205
  article-title: Factors affecting pedestrian injury severity in pedestrian-vehicle crashes: Insights from a data mining and mixed logit model approach
  publication-title: Journal of Transportation Safety & Security
– volume: 23
  start-page: 65
  year: 2016
  end-page: 70
  ident: b0310
  article-title: Distracted biking: An observational study
  publication-title: J. Trauma Nurs.
– volume: 53
  start-page: 30
  year: 2010
  end-page: 42
  ident: b0065
  article-title: Mobile phone use while cycling: incidence and effects on behaviour and safety
  publication-title: Ergonomics
– year: 2020
  ident: b0285
  article-title: No Need to Slow Down! A Head-up Display Based Warning System for Cyclists for Safe Passage of Parked Vehicles
  publication-title: Adjunct Proceedings - 12th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications
– volume: 57
  start-page: 87
  year: 2013
  end-page: 90
  ident: b0275
  article-title: Bicycling safety and distracted behavior in The Hague, the Netherlands
  publication-title: Accid. Anal. Prev.
– reference: NHTSA. (2023). 2021 Data - Bicyclists and Other Cyclists. https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813484.pdf.
– volume: 123
  start-page: 12
  year: 2019
  end-page: 19
  ident: b0300
  article-title: Factors affecting motorcyclists’ injury severities: An empirical assessment using random parameters logit model with heterogeneity in means and variances
  publication-title: Accid. Anal. Prev.
– volume: 16
  start-page: 35
  year: 2017
  end-page: 47
  ident: b0030
  article-title: Determinants of bicyclist injury severities in bicycle-vehicle crashes: a random parameters approach with heterogeneity in means and variances
  publication-title: Anal. Methods Accid. Res
– volume: 192
  year: 2023
  ident: b0220
  article-title: Comparative analysis of pedestrian crash severity at United Kingdom rural road intersections and Non-Intersections using latent class clustering and ordered probit model
  publication-title: Accid. Anal. Prev.
– volume: 194
  year: 2024
  ident: b0015
  article-title: Advances, challenges, and future research needs in machine learning-based crash prediction models: a systematic review
  publication-title: Accid. Anal. Prev.
– volume: 1–488
  year: 2021
  ident: b0160
  article-title: Highway Safety Analytics and Modeling
  publication-title: Highway Safety Analytics and Modeling
– reference: Macioszek, E., & Granà, A. (2021). The Analysis of the Factors Influencing the Severity of Bicyclist Injury in Bicyclist-Vehicle Crashes. Sustainability 2022, Vol. 14, Page 215, 14(1), 215. 10.3390/SU14010215.
– volume: 1–35
  year: 2024
  ident: b0115
  article-title: Investigating older driver crashes on high-speed roadway segments: a hybrid approach with extreme gradient boosting and random parameter model
  publication-title: Transportmetrica a: Transport Science
– year: 2023
  ident: b0150
  article-title: An exploratory analysis of two-vehicle crashes for distracted driving with a mixed approach: machine learning algorithm with unobserved heterogeneity
  publication-title: J. Transport. Safety Security
– volume: 22
  start-page: 196
  year: 2014
  end-page: 206
  ident: b0075
  article-title: The effects of operating a touch screen smartphone and other common activities performed while bicycling on cycling behaviour
  publication-title: Transport. Res. F: Traffic Psychol. Behav.
– volume: 38
  start-page: 1601
  year: 2019
  end-page: 1619
  ident: b0060
  article-title: Sample size considerations and predictive performance of multinomial logistic prediction models
  publication-title: Stat. Med.
– volume: 40
  year: 2023
  ident: b0025
  article-title: Effects of design consistency measures and roadside hazard types on run-off-road crash severity: application of random parameters hierarchical ordered probit model
  publication-title: Anal. Methods Accid. Res
– year: 2020
  ident: b0305
  publication-title: Statistical and Econometric Methods for Transportation Data Analysis.
– volume: 174
  year: 2022
  ident: b0035
  article-title: Studying the effects of an advanced driver-assistance system to improve safety of cyclists overtaking
  publication-title: Accid. Anal. Prev.
– volume: 205
  year: 2024
  ident: b0270
  article-title: Temporal instability of the determinants of fatal/severe elderly pedestrian injury outcomes in intersections and non-intersections before, during, and after the COVID-19 pandemic
  publication-title: Accid. Anal. Prev.
– volume: 202
  year: 2024
  ident: b0230
  article-title: Analyzing the transition from two-vehicle collisions to chain reaction crashes: A hybrid approach using random parameters logit model, interpretable machine learning, and clustering
  publication-title: Accid. Anal. Prev.
– volume: 6
  year: 2018
  ident: b0280
  article-title: Distraction of cyclists: how does it influence their risky behaviors and traffic crashes?
  publication-title: PeerJ
– volume: 192
  year: 2023
  ident: b0260
  article-title: A hybrid approach of random forest and random parameters logit model of injury severity modeling of vulnerable road users involved crashes
  publication-title: Accid. Anal. Prev.
– reference: NHTSA. (2024, April). Crash Report Sampling System Analytical User’s Manual, 2016-2022. https://crashstats.nhtsa.dot.gov.
– volume: 15
  start-page: 41
  year: 2017
  end-page: 55
  ident: b0245
  article-title: Occupant injury severities in hybrid-vehicle involved crashes: A random parameters approach with heterogeneity in means and variances
  publication-title: Anal. Methods Accid. Res
– reference: Islam, M., Hosseini, P., Kakhani, A., Jalayer, M., & Patel, D. (2024). Unveiling the risks of speeding behavior by investigating the dynamics of driver injury severity through advanced analytics. Scientific Reports 2024 14:1, 14(1), 1–21. 10.1038/s41598-024-73134-z.
– volume: 27
  year: 2020
  ident: b0145
  article-title: A temporal analysis of driver-injury severities in crashes involving aggressive and non-aggressive driving
  publication-title: Anal. Methods Accid. Res
– volume: 12
  start-page: 178
  year: 2020
  end-page: 193
  ident: b0055
  article-title: Use of smartphone and crash risk among cyclists
  publication-title: J. Transport. Safety Security
– volume: 25
  year: 2020
  ident: b0175
  article-title: Big data, traditional data and the tradeoffs between prediction and causality in highway-safety analysis
  publication-title: Anal. Methods Accid. Res
– volume: 83
  start-page: 291
  year: 2021
  end-page: 303
  ident: b0155
  article-title: Effects of using mobile phones while cycling: a study from the perspectives of manipulation and visual strategies
  publication-title: Transport. Res. F: Traffic Psychol. Behav.
– volume: 111
  start-page: 287
  year: 2019
  end-page: 297
  ident: b0040
  article-title: The complex relationship between increases to speed limits and traffic fatalities: evidence from a meta-analysis
  publication-title: Saf. Sci.
– volume: 199
  year: 2024
  ident: b0120
  article-title: Investigating pedestrian-vehicle crashes on interstate highways: Applying random parameter binary logit model with heterogeneity in means
  publication-title: Accid. Anal. Prev.
– volume: 16
  start-page: 97
  year: 2024
  end-page: 129
  ident: b0295
  article-title: Contributing factors on the level of delay caused by crashes: a hybrid method of latent class analysis and XGBoost based SHAP algorithm
  publication-title: Journal of Transportation Safety & Security
– volume: 76
  start-page: 42
  year: 2015
  end-page: 48
  ident: b0080
  article-title: More screen operation than calling: the results of observing cyclists’ behaviour while using mobile phones
  publication-title: Accid. Anal. Prev.
– reference: Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). Catboost: Unbiased boosting with categorical features. Advances in Neural Information Processing Systems, 2018-December, 6638–6648.
– volume: 40
  start-page: 1033
  year: 2008
  end-page: 1054
  ident: b0090
  article-title: A mixed generalized ordered response model for examining pedestrian and bicyclist injury severity level in traffic crashes
  publication-title: Accid. Anal. Prev.
– volume: 14
  start-page: 626
  year: 2011
  end-page: 637
  ident: b0070
  article-title: Effects of listening to music, and of using a handheld and handsfree telephone on cycling behaviour
  publication-title: Transport. Res. F: Traffic Psychol. Behav.
– volume: 15
  start-page: 447
  year: 2000
  end-page: 470
  ident: b0180
  article-title: Mixed MNL models for discrete response
  publication-title: J. Appl. Economet.
– volume: 185
  year: 2023
  ident: b0005
  article-title: Modelling braking behaviour of distracted young drivers in car-following interactions: a grouped random parameters duration model with heterogeneity-in-means
  publication-title: Accid. Anal. Prev.
– year: 2024
  ident: b0265
  article-title: Understanding key contributing factors on the severity of traffic violations by elderly drivers: a hybrid approach of latent class analysis and XGBoost based SHAP
  publication-title: Int. J. Inj. Contr. Saf. Promot.
– volume: 181
  year: 2023
  ident: b0105
  article-title: Factors affecting injury severity at pedestrian crossing locations with Rectangular RAPID Flashing Beacons (RRFB) using XGBoost and random parameters discrete outcome models
  publication-title: Accid. Anal. Prev.
– volume: 150
  year: 2022
  ident: b0255
  article-title: Exploring injury severity of vulnerable road user involved crashes across seasons: A hybrid method integrating random parameter logit model and Bayesian network
  publication-title: Saf. Sci.
– volume: 202
  year: 2024
  ident: b0325
  article-title: Modeling distracted driving behavior considering cognitive processes
  publication-title: Accid. Anal. Prev.
– reference: Dorogush, A. V., Ershov, V., & Yandex, A. G. (2018). CatBoost: gradient boosting with categorical features support. https://arxiv.org/abs/1810.11363v1.
– volume: 73
  start-page: 250
  year: 2012
  end-page: 259
  ident: b0095
  article-title: Leisure activities, the social weekend, and alcohol use: Evidence from a daily study of first-year college students
  publication-title: J. Stud. Alcohol Drugs
– volume: 9
  start-page: 42
  year: 2008
  end-page: 47
  ident: b0130
  article-title: Japanese high school students’ usage of mobile phones while cycling
  publication-title: Traffic Inj. Prev.
– volume: 127
  start-page: 177
  year: 2019
  end-page: 185
  ident: b0050
  article-title: The effect of cognitive distraction on perception-response time to unexpected abrupt and gradually onset roadway hazards
  publication-title: Accid. Anal. Prev.
– volume: 43
  start-page: 1
  year: 2012
  end-page: 8
  ident: b0100
  article-title: The use and risk of portable electronic devices while cycling among different age groups
  publication-title: J. Saf. Res.
– reference: Mwakalonge, J., White, J., and, S. S.-I. J. of T., & 2014, undefined. (2014). Distracted biking: a review of the current state-of-knowledge. CiteseerJL Mwakalonge, J White, S SiuhiInternational Journal of Traffic and Transportation Engineering, 2014•Citeseer, 2014(2), 42–51. 10.5923/j.ijtte.20140302.02.
– volume: 192
  year: 2023
  ident: b0235
  article-title: Injury severity prediction of cyclist crashes using random forests and random parameters logit models
  publication-title: Accid. Anal. Prev.
– volume: 104
  start-page: 522
  year: 2024
  end-page: 531
  ident: b0185
  article-title: How does hands-free cognitive distraction influence cycling behaviour and perceived safety?
  publication-title: Transport. Res. F: Traffic Psychol. Behav.
– volume: 32
  year: 2021
  ident: b0240
  article-title: Temporal stability of factors influencing driver-injury severities in single-vehicle crashes: A correlated random parameters with heterogeneity in means and variances approach
  publication-title: Anal. Methods Accid. Res
– volume: 40
  year: 2023
  ident: 10.1016/j.aap.2024.107896_b0025
  article-title: Effects of design consistency measures and roadside hazard types on run-off-road crash severity: application of random parameters hierarchical ordered probit model
  publication-title: Anal. Methods Accid. Res
– year: 2024
  ident: 10.1016/j.aap.2024.107896_b0265
  article-title: Understanding key contributing factors on the severity of traffic violations by elderly drivers: a hybrid approach of latent class analysis and XGBoost based SHAP
  publication-title: Int. J. Inj. Contr. Saf. Promot.
  doi: 10.1080/17457300.2023.2300479
– volume: 23
  start-page: 65
  issue: 2
  year: 2016
  ident: 10.1016/j.aap.2024.107896_b0310
  article-title: Distracted biking: An observational study
  publication-title: J. Trauma Nurs.
  doi: 10.1097/JTN.0000000000000188
– volume: 46
  start-page: 67
  year: 2013
  ident: 10.1016/j.aap.2024.107896_b0110
  article-title: Effect of driver’s age and side of impact on crash severity along urban freeways: A mixed logit approach
  publication-title: J. Saf. Res.
  doi: 10.1016/j.jsr.2013.04.002
– volume: 205
  year: 2024
  ident: 10.1016/j.aap.2024.107896_b0270
  article-title: Temporal instability of the determinants of fatal/severe elderly pedestrian injury outcomes in intersections and non-intersections before, during, and after the COVID-19 pandemic
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2024.107676
– volume: 76
  start-page: 42
  year: 2015
  ident: 10.1016/j.aap.2024.107896_b0080
  article-title: More screen operation than calling: the results of observing cyclists’ behaviour while using mobile phones
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2015.01.004
– volume: 32
  year: 2021
  ident: 10.1016/j.aap.2024.107896_b0240
  article-title: Temporal stability of factors influencing driver-injury severities in single-vehicle crashes: A correlated random parameters with heterogeneity in means and variances approach
  publication-title: Anal. Methods Accid. Res
– volume: 202
  year: 2024
  ident: 10.1016/j.aap.2024.107896_b0325
  article-title: Modeling distracted driving behavior considering cognitive processes
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2024.107602
– volume: 16
  start-page: 97
  issue: 2
  year: 2024
  ident: 10.1016/j.aap.2024.107896_b0295
  article-title: Contributing factors on the level of delay caused by crashes: a hybrid method of latent class analysis and XGBoost based SHAP algorithm
  publication-title: Journal of Transportation Safety & Security
  doi: 10.1080/19439962.2023.2189339
– volume: 194
  year: 2024
  ident: 10.1016/j.aap.2024.107896_b0020
  article-title: Exploring temporal instability effects on bicyclist injury severities determinants for intersection and non-intersection-related crashes
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2023.107339
– volume: 145
  year: 2022
  ident: 10.1016/j.aap.2024.107896_b0225
  article-title: Bicycle crash contributory factors: A systematic review
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2021.105511
– volume: 53
  start-page: 30
  issue: 1
  year: 2010
  ident: 10.1016/j.aap.2024.107896_b0065
  article-title: Mobile phone use while cycling: incidence and effects on behaviour and safety
  publication-title: Ergonomics
  doi: 10.1080/00140130903381180
– volume: 38
  start-page: 1601
  issue: 9
  year: 2019
  ident: 10.1016/j.aap.2024.107896_b0060
  article-title: Sample size considerations and predictive performance of multinomial logistic prediction models
  publication-title: Stat. Med.
  doi: 10.1002/sim.8063
– volume: 1–488
  year: 2021
  ident: 10.1016/j.aap.2024.107896_b0160
  article-title: Highway Safety Analytics and Modeling
  publication-title: Highway Safety Analytics and Modeling
– volume: 196
  year: 2024
  ident: 10.1016/j.aap.2024.107896_b0135
  article-title: Unraveling the differences in distracted driving injury severities in passenger car, sport utility vehicle, pickup truck, and minivan crashes
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2023.107444
– volume: 77
  start-page: 114
  year: 2021
  ident: 10.1016/j.aap.2024.107896_b0125
  article-title: An in-depth analysis of self-reported cycling injuries in single and multiparty bicycle crashes in Denmark
  publication-title: J. Saf. Res.
  doi: 10.1016/j.jsr.2021.02.009
– ident: 10.1016/j.aap.2024.107896_b0170
  doi: 10.3390/su14010215
– volume: 22
  start-page: 564
  issue: 7
  year: 2021
  ident: 10.1016/j.aap.2024.107896_b0290
  article-title: Road safety situation of electric bike riders: A cross-sectional study in courier and take-out food delivery population
  publication-title: Traffic Inj. Prev.
  doi: 10.1080/15389588.2021.1895129
– year: 2020
  ident: 10.1016/j.aap.2024.107896_b0285
  article-title: No Need to Slow Down! A Head-up Display Based Warning System for Cyclists for Safe Passage of Parked Vehicles
– volume: 194
  year: 2024
  ident: 10.1016/j.aap.2024.107896_b0015
  article-title: Advances, challenges, and future research needs in machine learning-based crash prediction models: a systematic review
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2023.107378
– volume: 202
  year: 2024
  ident: 10.1016/j.aap.2024.107896_b0230
  article-title: Analyzing the transition from two-vehicle collisions to chain reaction crashes: A hybrid approach using random parameters logit model, interpretable machine learning, and clustering
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2024.107603
– volume: 174
  year: 2022
  ident: 10.1016/j.aap.2024.107896_b0035
  article-title: Studying the effects of an advanced driver-assistance system to improve safety of cyclists overtaking
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2022.106763
– volume: 104
  start-page: 522
  year: 2024
  ident: 10.1016/j.aap.2024.107896_b0185
  article-title: How does hands-free cognitive distraction influence cycling behaviour and perceived safety?
  publication-title: Transport. Res. F: Traffic Psychol. Behav.
  doi: 10.1016/j.trf.2024.06.026
– volume: 199
  year: 2024
  ident: 10.1016/j.aap.2024.107896_b0120
  article-title: Investigating pedestrian-vehicle crashes on interstate highways: Applying random parameter binary logit model with heterogeneity in means
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2024.107503
– volume: 31
  year: 2021
  ident: 10.1016/j.aap.2024.107896_b0010
  article-title: Stop or go decisions at the onset of yellow light in a connected environment: a hybrid approach of decision tree and panel mixed logit model
  publication-title: Anal. Methods Accid. Res.
– ident: 10.1016/j.aap.2024.107896_b0140
  doi: 10.1038/s41598-024-73134-z
– year: 2023
  ident: 10.1016/j.aap.2024.107896_b0150
  article-title: An exploratory analysis of two-vehicle crashes for distracted driving with a mixed approach: machine learning algorithm with unobserved heterogeneity
  publication-title: J. Transport. Safety Security
– volume: 6
  issue: 9
  year: 2018
  ident: 10.1016/j.aap.2024.107896_b0280
  article-title: Distraction of cyclists: how does it influence their risky behaviors and traffic crashes?
  publication-title: PeerJ
– volume: 15
  start-page: 41
  year: 2017
  ident: 10.1016/j.aap.2024.107896_b0245
  article-title: Occupant injury severities in hybrid-vehicle involved crashes: A random parameters approach with heterogeneity in means and variances
  publication-title: Anal. Methods Accid. Res
– volume: 150
  year: 2022
  ident: 10.1016/j.aap.2024.107896_b0255
  article-title: Exploring injury severity of vulnerable road user involved crashes across seasons: A hybrid method integrating random parameter logit model and Bayesian network
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2022.105682
– volume: 127
  start-page: 177
  year: 2019
  ident: 10.1016/j.aap.2024.107896_b0050
  article-title: The effect of cognitive distraction on perception-response time to unexpected abrupt and gradually onset roadway hazards
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2019.03.003
– ident: 10.1016/j.aap.2024.107896_b0165
– ident: 10.1016/j.aap.2024.107896_b0190
– ident: 10.1016/j.aap.2024.107896_b0085
– volume: 185
  year: 2023
  ident: 10.1016/j.aap.2024.107896_b0005
  article-title: Modelling braking behaviour of distracted young drivers in car-following interactions: a grouped random parameters duration model with heterogeneity-in-means
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2023.107015
– volume: 43
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.aap.2024.107896_b0100
  article-title: The use and risk of portable electronic devices while cycling among different age groups
  publication-title: J. Saf. Res.
  doi: 10.1016/j.jsr.2011.08.007
– year: 2023
  ident: 10.1016/j.aap.2024.107896_b0205
  article-title: Factors affecting pedestrian injury severity in pedestrian-vehicle crashes: Insights from a data mining and mixed logit model approach
  publication-title: Journal of Transportation Safety & Security
– volume: 123
  start-page: 12
  year: 2019
  ident: 10.1016/j.aap.2024.107896_b0300
  article-title: Factors affecting motorcyclists’ injury severities: An empirical assessment using random parameters logit model with heterogeneity in means and variances
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2018.10.022
– volume: 57
  start-page: 87
  year: 2013
  ident: 10.1016/j.aap.2024.107896_b0275
  article-title: Bicycling safety and distracted behavior in The Hague, the Netherlands
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2013.04.007
– volume: 181
  year: 2023
  ident: 10.1016/j.aap.2024.107896_b0105
  article-title: Factors affecting injury severity at pedestrian crossing locations with Rectangular RAPID Flashing Beacons (RRFB) using XGBoost and random parameters discrete outcome models
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2022.106937
– volume: 12
  start-page: 178
  issue: 1
  year: 2020
  ident: 10.1016/j.aap.2024.107896_b0055
  article-title: Use of smartphone and crash risk among cyclists
  publication-title: J. Transport. Safety Security
  doi: 10.1080/19439962.2019.1591559
– volume: 1
  start-page: 72
  year: 2014
  ident: 10.1016/j.aap.2024.107896_b0315
  article-title: Comparing three commonly used crash severity models on sample size requirements: Multinomial logit, ordered probit and mixed logit models
  publication-title: Anal. Methods Accid. Res
– volume: 9
  start-page: 42
  issue: 1
  year: 2008
  ident: 10.1016/j.aap.2024.107896_b0130
  article-title: Japanese high school students’ usage of mobile phones while cycling
  publication-title: Traffic Inj. Prev.
  doi: 10.1080/15389580701718389
– volume: 192
  year: 2023
  ident: 10.1016/j.aap.2024.107896_b0220
  article-title: Comparative analysis of pedestrian crash severity at United Kingdom rural road intersections and Non-Intersections using latent class clustering and ordered probit model
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2023.107231
– year: 2020
  ident: 10.1016/j.aap.2024.107896_b0305
  publication-title: Statistical and Econometric Methods for Transportation Data Analysis.
  doi: 10.1201/9780429244018
– volume: 25
  year: 2020
  ident: 10.1016/j.aap.2024.107896_b0175
  article-title: Big data, traditional data and the tradeoffs between prediction and causality in highway-safety analysis
  publication-title: Anal. Methods Accid. Res
– ident: 10.1016/j.aap.2024.107896_b0200
– volume: 40
  start-page: 1033
  issue: 3
  year: 2008
  ident: 10.1016/j.aap.2024.107896_b0090
  article-title: A mixed generalized ordered response model for examining pedestrian and bicyclist injury severity level in traffic crashes
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2007.11.010
– ident: 10.1016/j.aap.2024.107896_b0195
– volume: 192
  year: 2023
  ident: 10.1016/j.aap.2024.107896_b0235
  article-title: Injury severity prediction of cyclist crashes using random forests and random parameters logit models
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2023.107275
– volume: 189
  year: 2023
  ident: 10.1016/j.aap.2024.107896_b0320
  article-title: Analyzing the injury severity in single-bicycle crashes: An application of the ordered forest with some practical guidance
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2023.107126
– volume: 111
  start-page: 287
  year: 2019
  ident: 10.1016/j.aap.2024.107896_b0040
  article-title: The complex relationship between increases to speed limits and traffic fatalities: evidence from a meta-analysis
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2018.08.030
– volume: 16
  start-page: 35
  year: 2017
  ident: 10.1016/j.aap.2024.107896_b0030
  article-title: Determinants of bicyclist injury severities in bicycle-vehicle crashes: a random parameters approach with heterogeneity in means and variances
  publication-title: Anal. Methods Accid. Res
– volume: 22
  start-page: 196
  year: 2014
  ident: 10.1016/j.aap.2024.107896_b0075
  article-title: The effects of operating a touch screen smartphone and other common activities performed while bicycling on cycling behaviour
  publication-title: Transport. Res. F: Traffic Psychol. Behav.
  doi: 10.1016/j.trf.2013.12.003
– volume: 83
  start-page: 291
  year: 2021
  ident: 10.1016/j.aap.2024.107896_b0155
  article-title: Effects of using mobile phones while cycling: a study from the perspectives of manipulation and visual strategies
  publication-title: Transport. Res. F: Traffic Psychol. Behav.
  doi: 10.1016/j.trf.2021.10.010
– ident: 10.1016/j.aap.2024.107896_b0210
– volume: 206
  year: 2024
  ident: 10.1016/j.aap.2024.107896_b0215
  article-title: A hybrid Machine learning and statistical modeling approach for analyzing the crash severity of mobility scooter users considering temporal instability
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2024.107696
– volume: 192
  year: 2023
  ident: 10.1016/j.aap.2024.107896_b0260
  article-title: A hybrid approach of random forest and random parameters logit model of injury severity modeling of vulnerable road users involved crashes
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2023.107235
– volume: 80
  start-page: 76
  year: 2015
  ident: 10.1016/j.aap.2024.107896_b0045
  article-title: A multinomial logit model-Bayesian network hybrid approach for driver injury severity analyses in rear-end crashes
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2015.03.036
– volume: 73
  start-page: 250
  issue: 2
  year: 2012
  ident: 10.1016/j.aap.2024.107896_b0095
  article-title: Leisure activities, the social weekend, and alcohol use: Evidence from a daily study of first-year college students
  publication-title: J. Stud. Alcohol Drugs
  doi: 10.15288/jsad.2012.73.250
– volume: 14
  start-page: 626
  issue: 6
  year: 2011
  ident: 10.1016/j.aap.2024.107896_b0070
  article-title: Effects of listening to music, and of using a handheld and handsfree telephone on cycling behaviour
  publication-title: Transport. Res. F: Traffic Psychol. Behav.
  doi: 10.1016/j.trf.2011.07.001
– volume: 15
  start-page: 447
  issue: 5
  year: 2000
  ident: 10.1016/j.aap.2024.107896_b0180
  article-title: Mixed MNL models for discrete response
  publication-title: J. Appl. Economet.
  doi: 10.1002/1099-1255(200009/10)15:5<447::AID-JAE570>3.0.CO;2-1
– volume: 1–35
  year: 2024
  ident: 10.1016/j.aap.2024.107896_b0115
  article-title: Investigating older driver crashes on high-speed roadway segments: a hybrid approach with extreme gradient boosting and random parameter model
  publication-title: Transportmetrica a: Transport Science
– volume: 61
  start-page: 63
  year: 2013
  ident: 10.1016/j.aap.2024.107896_b0250
  article-title: Impact of distracted driving on safety and traffic flow
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2013.02.003
– volume: 27
  year: 2020
  ident: 10.1016/j.aap.2024.107896_b0145
  article-title: A temporal analysis of driver-injury severities in crashes involving aggressive and non-aggressive driving
  publication-title: Anal. Methods Accid. Res
SSID ssj0007875
Score 2.5068784
Snippet •Analyzed four years (2019–2022) of U.S. CRSS data on distracted cyclist crashes.•A hybrid machine learning and advanced statistical modeling approach was...
Cyclists are among the most vulnerable road users, increasingly subject to various sources of distraction, including the use of mobile phones and engagement in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107896
SubjectTerms Accidents, Traffic - statistics & numerical data
Adult
Algorithms
Bicycle-motor vehicle crash
Bicycling - injuries
Bicycling - psychology
Boosting Machine Learning Algorithms
Crash severity
Databases, Factual
Distracted cyclist
Distracted Driving - statistics & numerical data
Female
Humans
Interpretable ML
Logistic Models
Machine learning
Male
Middle Aged
Risk Factors
United States - epidemiology
Unobserved heterogeneity
Wounds and Injuries - epidemiology
Title How does distraction affect cyclists’ severe crashes? A hybrid CatBoost-SHAP and random parameters binary logit approach
URI https://dx.doi.org/10.1016/j.aap.2024.107896
https://www.ncbi.nlm.nih.gov/pubmed/39673830
https://www.proquest.com/docview/3146776275
Volume 211
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3datVAEF5KvRFEtP4drWUE8UKITbpJd3Mlx4MlerCIWnruwv5MaOtpUk5SpF6Ir-Hr-STObJKKoL3wKmTZIcvOZGd295tvhHhqdR77xFSRqixtUKQ2kSUvSP-VtVr7KpfIB_rv9neLg_TtIlusidmYC8OwymHt79f0sFoPLdvDbG6fHR9zji9fiamMUZDk1BecwZ4qtvIX337DPMgg-yoGtG3m3uPNZsB4GcOUlTspvSvNvP1_903_ij2DD9q7JW4OwSNM-_HdFmtYb4gb_ckb9AlFG2Kzz7iFQ1xWZoXwDMaGZvX5jvhaNF_AN9iCD5y5Ia8BTIB1gLtwS2ptf37_ATQsJHG3Mu0Rti9hCkcXnN4FM9O9apq2iz4W0_dgag_k73xzCkwjfsrwmhZsSPMFXlg7GHnL74qDvdefZkU0FGCInMxkF2WmUsraDGVS5V7ljnatGtGYxHqjFJqMfB1yxGQkppg4pzwJKpli5lSSyHtivW5qfCAgjm2Wo3UOpU11qo11FLp4patdrBLvJiIep750Azs5F8lYliMM7aQkbZWsrbLX1kQ8vxQ566k5ruqcjvos_7CvklzHVWJPRt2X9N_xZYqpsTlvS8kuRjHH80Tc743ichQy51qqMn74fx99JK7vcJXhgHTbFOvd6hwfU-jT2a1g21vi2vTNvNjn5_zD4fwX0FsFXA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3datVAEF5qvVAQ0fp3tOoI4oUQm3STbnIlx4MlalsEWzx3y_5MaPU0KScpUi_E1_D1fBJnNklF0F54mWWHLDuzO7O733wjxFObF7FPTBWpytIBReYmsuQFaV1Zm-e-KiTyhf7u3lZ5kL6dZ_MVMRtzYRhWOez9_Z4eduuhZWOYzY2ToyPO8eUnMZUxCpKc-vySuJzS8uUyBi--_cZ5kEX2ZQzo3Mzdx6fNAPIyhjkrN1P6VjkT9__dOf0r-AxOaPuGuD5EjzDtB3hTrGC9Jq71V2_QZxStifU-5RY-4qIyS4RnMDY0y8-3xNey-QK-wRZ8IM0NiQ1gAq4D3JlbUGv78_sPoGEhibulaQ-xfQlTODzj_C6Yme5V07Rd9KGcvgdTeyCH55tjYB7xY8bXtGBDni_wztrBSFx-Wxxsv96fldFQgSFyMpNdlJlKKWszlElVeFU4OrbmiMYk1hul0GTk7JBDJiMxxcQ55UlQyRQzp5JE3hGrdVPjPQFxbLMCrXMobZqnubGOYhev8moLq8S7iYjHqdduoCfnKhkLPeLQPmnSlmZt6V5bE_H8XOSk5-a4qHM66lP_YWCafMdFYk9G3WtaePyaYmpsTlst2ccoJnmeiLu9UZyPQhZcTFXG9__vp4_FlXJ_d0fvvNl790Bc3eSSwwH2ti5Wu-UpPqQ4qLOPgp3_AoiVBUc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+does+distraction+affect+cyclists%27+severe+crashes%3F+A+hybrid+CatBoost-SHAP+and+random+parameters+binary+logit+approach&rft.jtitle=Accident+analysis+and+prevention&rft.au=Agheli%2C+Ali&rft.au=Aghabayk%2C+Kayvan&rft.date=2025-03-01&rft.eissn=1879-2057&rft.volume=211&rft.spage=107896&rft_id=info:doi/10.1016%2Fj.aap.2024.107896&rft_id=info%3Apmid%2F39673830&rft.externalDocID=39673830
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4575&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4575&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4575&client=summon