Effect of hematocrit on cerebral blood flow measured by pseudo-continuous arterial spin labeling MRI: A comparative study with 15O-water positron emission tomography
In cerebral blood flow (CBF) quantification with pseudo-continuous arterial spin labeling (pCASL) MRI, arterial blood T1 (T1a) is usually fixed to a typical value (e.g., 1650 ms). However, individual T1a depends strongly on hematocrit (Hct) level. To investigate the utility of Hct-based T1a as an al...
Saved in:
Published in | Magnetic resonance imaging Vol. 84; pp. 58 - 68 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In cerebral blood flow (CBF) quantification with pseudo-continuous arterial spin labeling (pCASL) MRI, arterial blood T1 (T1a) is usually fixed to a typical value (e.g., 1650 ms). However, individual T1a depends strongly on hematocrit (Hct) level. To investigate the utility of Hct-based T1a as an alternative to the fixed T1a method, we performed a comparative study with 15O-water positron emission tomography (PET).
For patients with unilateral occlusion or stenosis of major arteries, hemispheric CBF on the healthy side was measured using pCASL and 15O-water PET. The pCASL CBFs were calculated with both (a) fixed T1a (1650 ms) and (b) individual T1a estimated from blood-sampled Hct (Hct-based T1a). Correlation coefficients of Hct–CBF were calculated and compared between pCASL and PET.
In pCASL, CBF with fixed T1a showed a strong negative correlation with Hct (r = −0.568), which was reduced with individual Hct-based T1a (r = −0.341 to −0.190), consistent with the Hct–CBF relation measured with PET (r = −0.349).
We demonstrated that Hct-based T1a resulted in smaller inter-individual variations in pCASL CBF and an inverse Hct–CBF relationship more similar to that of PET. Care must be taken in the interpretation of pCASL CBF imaging in relation to Hct level even in subjects without anemia. Further comparative studies are needed to investigate whether advanced techniques improve pCASL CBF quantification at the individual level.
•Arterial blood T1 (T1a) is typically fixed in CBF quantification with pseudo-continuous arterial spin labeling (pCASL).•Fixed T1a is an error source in pCASL CBF due to hematocrit (Hct) dependency.•Hct-based T1a, an alternative to the fixed T1a, was investigated in a comparative study with 15O-water PET.•Hct-based T1a results in smaller variations in pCASL CBF and an inverse Hct–CBF relationship more similar to that of PET.•Further studies are needed to investigate whether advanced techniques improve pCASL CBF at the individual level. |
---|---|
AbstractList | In cerebral blood flow (CBF) quantification with pseudo-continuous arterial spin labeling (pCASL) MRI, arterial blood T1 (T1a) is usually fixed to a typical value (e.g., 1650 ms). However, individual T1a depends strongly on hematocrit (Hct) level. To investigate the utility of Hct-based T1a as an alternative to the fixed T1a method, we performed a comparative study with 15O-water positron emission tomography (PET).
For patients with unilateral occlusion or stenosis of major arteries, hemispheric CBF on the healthy side was measured using pCASL and 15O-water PET. The pCASL CBFs were calculated with both (a) fixed T1a (1650 ms) and (b) individual T1a estimated from blood-sampled Hct (Hct-based T1a). Correlation coefficients of Hct–CBF were calculated and compared between pCASL and PET.
In pCASL, CBF with fixed T1a showed a strong negative correlation with Hct (r = −0.568), which was reduced with individual Hct-based T1a (r = −0.341 to −0.190), consistent with the Hct–CBF relation measured with PET (r = −0.349).
We demonstrated that Hct-based T1a resulted in smaller inter-individual variations in pCASL CBF and an inverse Hct–CBF relationship more similar to that of PET. Care must be taken in the interpretation of pCASL CBF imaging in relation to Hct level even in subjects without anemia. Further comparative studies are needed to investigate whether advanced techniques improve pCASL CBF quantification at the individual level.
•Arterial blood T1 (T1a) is typically fixed in CBF quantification with pseudo-continuous arterial spin labeling (pCASL).•Fixed T1a is an error source in pCASL CBF due to hematocrit (Hct) dependency.•Hct-based T1a, an alternative to the fixed T1a, was investigated in a comparative study with 15O-water PET.•Hct-based T1a results in smaller variations in pCASL CBF and an inverse Hct–CBF relationship more similar to that of PET.•Further studies are needed to investigate whether advanced techniques improve pCASL CBF at the individual level. In cerebral blood flow (CBF) quantification with pseudo-continuous arterial spin labeling (pCASL) MRI, arterial blood T1 (T1a) is usually fixed to a typical value (e.g., 1650 ms). However, individual T1a depends strongly on hematocrit (Hct) level. To investigate the utility of Hct-based T1a as an alternative to the fixed T1a method, we performed a comparative study with 15O-water positron emission tomography (PET).INTRODUCTIONIn cerebral blood flow (CBF) quantification with pseudo-continuous arterial spin labeling (pCASL) MRI, arterial blood T1 (T1a) is usually fixed to a typical value (e.g., 1650 ms). However, individual T1a depends strongly on hematocrit (Hct) level. To investigate the utility of Hct-based T1a as an alternative to the fixed T1a method, we performed a comparative study with 15O-water positron emission tomography (PET).For patients with unilateral occlusion or stenosis of major arteries, hemispheric CBF on the healthy side was measured using pCASL and 15O-water PET. The pCASL CBFs were calculated with both (a) fixed T1a (1650 ms) and (b) individual T1a estimated from blood-sampled Hct (Hct-based T1a). Correlation coefficients of Hct-CBF were calculated and compared between pCASL and PET.METHODSFor patients with unilateral occlusion or stenosis of major arteries, hemispheric CBF on the healthy side was measured using pCASL and 15O-water PET. The pCASL CBFs were calculated with both (a) fixed T1a (1650 ms) and (b) individual T1a estimated from blood-sampled Hct (Hct-based T1a). Correlation coefficients of Hct-CBF were calculated and compared between pCASL and PET.In pCASL, CBF with fixed T1a showed a strong negative correlation with Hct (r = -0.568), which was reduced with individual Hct-based T1a (r = -0.341 to -0.190), consistent with the Hct-CBF relation measured with PET (r = -0.349).RESULTSIn pCASL, CBF with fixed T1a showed a strong negative correlation with Hct (r = -0.568), which was reduced with individual Hct-based T1a (r = -0.341 to -0.190), consistent with the Hct-CBF relation measured with PET (r = -0.349).We demonstrated that Hct-based T1a resulted in smaller inter-individual variations in pCASL CBF and an inverse Hct-CBF relationship more similar to that of PET. Care must be taken in the interpretation of pCASL CBF imaging in relation to Hct level even in subjects without anemia. Further comparative studies are needed to investigate whether advanced techniques improve pCASL CBF quantification at the individual level.DISCUSSION AND CONCLUSIONWe demonstrated that Hct-based T1a resulted in smaller inter-individual variations in pCASL CBF and an inverse Hct-CBF relationship more similar to that of PET. Care must be taken in the interpretation of pCASL CBF imaging in relation to Hct level even in subjects without anemia. Further comparative studies are needed to investigate whether advanced techniques improve pCASL CBF quantification at the individual level. |
Author | Shinohara, Yuki Ibaraki, Masanobu Nakamura, Kazuhiro Kinoshita, Toshibumi Matsubara, Keisuke |
Author_xml | – sequence: 1 givenname: Masanobu surname: Ibaraki fullname: Ibaraki, Masanobu email: iba@akita-noken.jp – sequence: 2 givenname: Kazuhiro surname: Nakamura fullname: Nakamura, Kazuhiro email: knam@akita-noken.jp – sequence: 3 givenname: Keisuke surname: Matsubara fullname: Matsubara, Keisuke email: matsubara@akita-noken.jp – sequence: 4 givenname: Yuki surname: Shinohara fullname: Shinohara, Yuki email: shino-y@akita-noken.jp – sequence: 5 givenname: Toshibumi surname: Kinoshita fullname: Kinoshita, Toshibumi email: kino@akita-noken.jp |
BookMark | eNqFkcFu1DAQhi1UJLaFB-DmI5cEO47jDZyqqoVKRZUQSNysiTPpenHiYDtd5YF4T7wspx7KyR5pPo__-c7J2eQnJOQtZyVnvHm_L8dgy4pVvGRtyXj1gmz4VolCbtv6jGyYEqxQlfzxipzHuGeMyUrIDfl9PQxoEvUD3eEIyZtgczVRgwG7AI52zvueDs4f6IgQl4A97VY6R1x6Xxg_JTstfokUQsJgMxFnO1EHHTo7PdAvX28_0Etq_DhDgGQfkca09Cs92LSjXN4XB8ggnX20KeTJONoYbb4kP_qHAPNufU1eDuAivvl3XpDvN9ffrj4Xd_efbq8u7wojpEiFFKpGJrYd1J0UqHqFLQPBgDVmgE4aIUyuG2x52yqlmk6CwrreQl4h8kpckHend-fgfy0Yk85_MegcTJgj6kqqppFNw46t6tRqgo8x4KCNTTle3kcA6zRn-ihG73UWo49iNGs1-zuEPyHnYEcI67PMxxODOf2jxaCjsTgZ7G3I-nTv7bN0-4Q2WY014H7i-h_2D-R2vwQ |
CitedBy_id | crossref_primary_10_1161_JAHA_124_035387 crossref_primary_10_1371_journal_pone_0317303 crossref_primary_10_1093_noajnl_vdae212 crossref_primary_10_1002_jmri_28967 |
Cites_doi | 10.1148/radiol.2523082018 10.3174/ajnr.A6411 10.1007/s00259-003-1406-8 10.1002/jmri.24565 10.1002/jmri.23581 10.1177/0271678X15605856 10.1038/jcbfm.2015.39 10.1177/0271678X17743240 10.1002/jmri.23505 10.1016/S1053-8119(03)00156-3 10.1002/nbm.3040 10.1002/mrm.25197 10.2967/jnumed.107.044008 10.1002/mrm.22723 10.1016/j.neuroimage.2014.02.011 10.1002/mrm.20178 10.1016/j.neurad.2018.03.002 10.1016/j.nicl.2014.03.006 10.1038/jcbfm.2013.17 10.1016/j.mri.2017.12.011 10.1148/radiol.2016150789 10.1016/S0140-6736(85)92145-2 10.3174/ajnr.A4793 10.1007/s12149-009-0235-7 10.1038/jcbfm.1981.45 10.1038/jcbfm.2010.13 10.1007/s00330-019-06096-w 10.1002/jmri.24873 10.1097/00004647-200008000-00010 10.1002/mrm.28314 10.1002/ana.410160504 10.1038/jcbfm.1992.105 10.1002/mrm.26266 10.1007/s00234-015-1571-z 10.1093/brain/108.1.81 10.1007/s12149-009-0280-2 10.1177/0271678X18781667 10.1002/nbm.3201 10.1007/BF03027383 10.1007/s12149-013-0690-z 10.1002/ana.410090507 10.1002/hbm.23732 10.1002/mrm.10211 10.1097/00004647-200008000-00009 10.1038/jcbfm.1985.9 10.1371/journal.pone.0156005 10.1002/mrm.26325 10.1016/S0140-6736(84)90361-1 10.1002/mrm.20580 10.1016/S0140-6736(77)90179-9 10.1177/0271678X16636393 10.1002/mrm.26842 10.1002/nbm.4182 10.1002/hbm.23846 10.1002/mrm.22245 10.1177/0271678X17713434 10.1007/BF02985625 10.1038/jcbfm.2014.17 |
ContentType | Journal Article |
Copyright | 2021 The Authors Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 The Authors – notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION 7X8 |
DOI | 10.1016/j.mri.2021.09.012 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1873-5894 |
EndPage | 68 |
ExternalDocumentID | 10_1016_j_mri_2021_09_012 S0730725X21001636 |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 3O- 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABDPE ABFNM ABGSF ABJNI ABMAC ABMZM ABNEU ABOCM ABUDA ABWVN ABXDB ACDAQ ACFVG ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEI HMK HMO HVGLF HZ~ IHE J1W KOM M29 M41 MO0 N9A O-L O9- OAUVE OGIMB OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSQ SSU SSZ T5K WUQ XPP Z5R ZGI ZMT ~G- ~S- 6I. AACTN AAFTH AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG G8K LCYCR RIG AAYXX AGRNS CITATION 7X8 |
ID | FETCH-LOGICAL-c353t-5374e038ba4b53e7d7e90a30a06cfab5c33c0a36e91997776b5a7e448a016e123 |
IEDL.DBID | .~1 |
ISSN | 0730-725X 1873-5894 |
IngestDate | Fri Jul 11 00:47:41 EDT 2025 Tue Jul 01 01:55:26 EDT 2025 Thu Apr 24 23:11:18 EDT 2025 Fri Feb 23 02:47:15 EST 2024 Tue Aug 26 18:33:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pseudo-continuous arterial spin labeling Cerebral blood flow Arterial blood T1 Positron emission tomography Hematocrit |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-5374e038ba4b53e7d7e90a30a06cfab5c33c0a36e91997776b5a7e448a016e123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0730725X21001636 |
PQID | 2576656602 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2576656602 crossref_citationtrail_10_1016_j_mri_2021_09_012 crossref_primary_10_1016_j_mri_2021_09_012 elsevier_sciencedirect_doi_10_1016_j_mri_2021_09_012 elsevier_clinicalkey_doi_10_1016_j_mri_2021_09_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationTitle | Magnetic resonance imaging |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Kusunoki, Kimura, Nakamura, Isaka, Yoneda, Abe (bb0065) 1981; 1 Xu, Li, Liu, Hua, Strouse, Pekar (bb0090) 2018; 39 Amukotuwa, Yu, Zaharchuk (bb0280) 2016; 43 Brown, Wade, Marshall (bb0055) 1985; 108 Wong (bb0225) 2014; 40 Ibaraki, Shinohara, Nakamura, Miura, Kinoshita, Kinoshita (bb0080) 2010; 30 Fahlstrom, Lewen, Enblad, Larsson, Wikstrom (bb0290) 2020; 41 Powers, Grubb, Raichle (bb0005) 1984; 16 Hales, Kirkham, Clark (bb0100) 2016; 36 Ibaraki, Nakamura, Toyoshima, Takahashi, Matsubara, Pfeuffer (bb0190) 2017; 37 Herscovitch, Raichle (bb0200) 1985; 5 Liu, Jawad, Laney, Hartung, Furth, Detre (bb0120) 2019; 46 Ito, Kanno, Takahashi, Ibaraki, Miura (bb0205) 2003; 19 Wang, Alsop, Li, Listerud, Gonzalez-At, Schnall (bb0195) 2002; 48 Ito, Inoue, Goto, Kinomura, Taki, Okada (bb0310) 2006; 20 Okazawa, Kudo (bb0015) 2009; 23 Tsujikawa, Kimura, Matsuda, Fujiwara, Isozaki, Kikuta (bb0235) 2016; 11 Brown, Marshall (bb0050) 1985; 1 Detre, Rao, Wang, Chen, Wang (bb0020) 2012; 35 Chen, Zhang, Yuan, Zhao, van Osch (bb0265) 2017; 77 Chen, Zhao, Zhang, Guo, Teeuwisse, Zhang (bb0270) 2018; 79 Iida, Law, Pakkenberg, Krarup-Hansen, Eberl, Holm (bb0300) 2000; 20 Takeuchi, Matsuda, Yoshioka, Yonekura (bb0210) 2004; 31 Haller, Zaharchuk, Thomas, Lovblad, Barkhof, Golay (bb0035) 2016; 281 Ito, Kanno, Fukuda (bb0160) 2005; 19 Juttukonda, Jordan, Gindville, Davis, Watchmaker, Pruthi (bb0140) 2017 Vaclavu, van der Land, Heijtel, van Osch, Cnossen, Majoie (bb0125) 2016; 37 Bush, Chai, Choi, Vaclavu, Holland, Nederveen (bb0145) 2018; 47 Lu, Clingman, Golay, van Zijl (bb0095) 2004; 52 van Osch, Teeuwisse, Chen, Suzuki, Helle, Schmid (bb0115) 2018; 38 Ibaraki, Nakamura, Toyoshima, Takahashi, Matsubara, Umetsu (bb0165) 2019; 39 Brass, Pavlakis, DeVivo, Piomelli, Mohr (bb0260) 1988; 19 Qin, Strouse, van Zijl (bb0220) 2011; 65 Feinberg, Ramanna, Guenther (bb0185) 2009 Aslan, Xu, Wang, Uh, Yezhuvath, van Osch (bb0255) 2010; 63 Henriksen, Paulson, Smith (bb0060) 1981; 9 Heijtel, Mutsaerts, Bakker, Schober, Stevens, Petersen (bb0135) 2014; 92 Smith, Melbourne, Owen, Cardoso, Sudre, Tillin (bb0155) 2019; 29 Ibaraki, Ohmura, Matsubara, Kinoshita (bb0215) 2015; 35 Ibaraki, Sato, Mizuta, Kitamura, Miura, Sugawara (bb0295) 2009; 23 Dolui, Vidorreta, Wang, Nasrallah, Alavi, Wolk (bb0045) 2017; 38 Qin, Huang, Hua, Desmond, Stevens, van Zijl (bb0250) 2014; 27 Bladt, van Osch, Clement, Achten, Sijbers, den Dekker (bb0275) 2020; 84 Gevers, Nederveen, Fijnvandraat, van den Berg, van Ooij, Heijtel (bb0150) 2012; 35 Law, Iida, Holm, Nour, Rostrup, Svarer (bb0305) 2000; 20 Vidorreta, Balteau, Wang, De Vita, Pastor, Thomas (bb0040) 2014; 27 Bladt, den Dekker, Clement, Achten, Sijbers (bb0240) 2020; 33 Henriksen, Kruuse, Olesen, Jensen, Larsson, Birk (bb0085) 2013; 33 Alsop, Detre, Golay, Gunther, Hendrikse, Hernandez-Garcia (bb0025) 2015; 73 Grade, Hernandez Tamames, Pizzini, Achten, Golay, Smits (bb0030) 2015; 57 Hales, Kawadler, Aylett, Kirkham, Clark (bb0245) 2014; 34 Thomas, du Boulay, Marshall, Pearson, Ross Russell, Symon (bb0070) 1977; 2 Jezzard, Chappell, Okell (bb0230) 2018; 38 Zaharchuk, Bammer, Straka, Shankaranarayan, Alsop, Fischbein (bb0285) 2009; 252 Matsubara, Ibaraki, Nakamura, Yamaguchi, Umetsu, Kinoshita (bb0175) 2013; 27 De Vis, Hendrikse, Groenendaal, de Vries, Kersbergen, Benders (bb0130) 2014; 4 Gibbs, Wise, Leenders, Jones (bb0010) 1984; 1 Fan, Jahanian, Holdsworth, Zaharchuk (bb0110) 2016; 36 Gunther, Oshio, Feinberg (bb0180) 2005; 54 Vorstrup, Lass, Waldemar, Brandi, Schmidt, Johnsen (bb0075) 1992; 12 Li, Liu, Lu, Strouse, van Zijl, Qin (bb0105) 2017; 77 Ibaraki, Miura, Shimosegawa, Sugawara, Mizuta, Ishikawa (bb0170) 2008; 49 Hales (10.1016/j.mri.2021.09.012_bb0245) 2014; 34 Bladt (10.1016/j.mri.2021.09.012_bb0275) 2020; 84 Ibaraki (10.1016/j.mri.2021.09.012_bb0295) 2009; 23 Henriksen (10.1016/j.mri.2021.09.012_bb0060) 1981; 9 Okazawa (10.1016/j.mri.2021.09.012_bb0015) 2009; 23 Gunther (10.1016/j.mri.2021.09.012_bb0180) 2005; 54 van Osch (10.1016/j.mri.2021.09.012_bb0115) 2018; 38 Liu (10.1016/j.mri.2021.09.012_bb0120) 2019; 46 De Vis (10.1016/j.mri.2021.09.012_bb0130) 2014; 4 Bladt (10.1016/j.mri.2021.09.012_bb0240) 2020; 33 Ibaraki (10.1016/j.mri.2021.09.012_bb0165) 2019; 39 Brown (10.1016/j.mri.2021.09.012_bb0050) 1985; 1 Alsop (10.1016/j.mri.2021.09.012_bb0025) 2015; 73 Matsubara (10.1016/j.mri.2021.09.012_bb0175) 2013; 27 Ibaraki (10.1016/j.mri.2021.09.012_bb0080) 2010; 30 Xu (10.1016/j.mri.2021.09.012_bb0090) 2018; 39 Vaclavu (10.1016/j.mri.2021.09.012_bb0125) 2016; 37 Bush (10.1016/j.mri.2021.09.012_bb0145) 2018; 47 Amukotuwa (10.1016/j.mri.2021.09.012_bb0280) 2016; 43 Ibaraki (10.1016/j.mri.2021.09.012_bb0190) 2017; 37 Iida (10.1016/j.mri.2021.09.012_bb0300) 2000; 20 Wong (10.1016/j.mri.2021.09.012_bb0225) 2014; 40 Jezzard (10.1016/j.mri.2021.09.012_bb0230) 2018; 38 Chen (10.1016/j.mri.2021.09.012_bb0270) 2018; 79 Ito (10.1016/j.mri.2021.09.012_bb0160) 2005; 19 Dolui (10.1016/j.mri.2021.09.012_bb0045) 2017; 38 Feinberg (10.1016/j.mri.2021.09.012_bb0185) 2009 Ibaraki (10.1016/j.mri.2021.09.012_bb0215) 2015; 35 Zaharchuk (10.1016/j.mri.2021.09.012_bb0285) 2009; 252 Aslan (10.1016/j.mri.2021.09.012_bb0255) 2010; 63 Powers (10.1016/j.mri.2021.09.012_bb0005) 1984; 16 Smith (10.1016/j.mri.2021.09.012_bb0155) 2019; 29 Vorstrup (10.1016/j.mri.2021.09.012_bb0075) 1992; 12 Haller (10.1016/j.mri.2021.09.012_bb0035) 2016; 281 Chen (10.1016/j.mri.2021.09.012_bb0265) 2017; 77 Qin (10.1016/j.mri.2021.09.012_bb0250) 2014; 27 Tsujikawa (10.1016/j.mri.2021.09.012_bb0235) 2016; 11 Henriksen (10.1016/j.mri.2021.09.012_bb0085) 2013; 33 Fan (10.1016/j.mri.2021.09.012_bb0110) 2016; 36 Kusunoki (10.1016/j.mri.2021.09.012_bb0065) 1981; 1 Heijtel (10.1016/j.mri.2021.09.012_bb0135) 2014; 92 Gevers (10.1016/j.mri.2021.09.012_bb0150) 2012; 35 Ibaraki (10.1016/j.mri.2021.09.012_bb0170) 2008; 49 Grade (10.1016/j.mri.2021.09.012_bb0030) 2015; 57 Li (10.1016/j.mri.2021.09.012_bb0105) 2017; 77 Herscovitch (10.1016/j.mri.2021.09.012_bb0200) 1985; 5 Ito (10.1016/j.mri.2021.09.012_bb0310) 2006; 20 Gibbs (10.1016/j.mri.2021.09.012_bb0010) 1984; 1 Takeuchi (10.1016/j.mri.2021.09.012_bb0210) 2004; 31 Detre (10.1016/j.mri.2021.09.012_bb0020) 2012; 35 Brass (10.1016/j.mri.2021.09.012_bb0260) 1988; 19 Fahlstrom (10.1016/j.mri.2021.09.012_bb0290) 2020; 41 Hales (10.1016/j.mri.2021.09.012_bb0100) 2016; 36 Qin (10.1016/j.mri.2021.09.012_bb0220) 2011; 65 Lu (10.1016/j.mri.2021.09.012_bb0095) 2004; 52 Brown (10.1016/j.mri.2021.09.012_bb0055) 1985; 108 Vidorreta (10.1016/j.mri.2021.09.012_bb0040) 2014; 27 Juttukonda (10.1016/j.mri.2021.09.012_bb0140) 2017 Ito (10.1016/j.mri.2021.09.012_bb0205) 2003; 19 Wang (10.1016/j.mri.2021.09.012_bb0195) 2002; 48 Law (10.1016/j.mri.2021.09.012_bb0305) 2000; 20 Thomas (10.1016/j.mri.2021.09.012_bb0070) 1977; 2 |
References_xml | – volume: 4 start-page: 517 year: 2014 end-page: 525 ident: bb0130 article-title: Impact of neonate haematocrit variability on the longitudinal relaxation time of blood: implications for arterial spin labelling MRI publication-title: NeuroImage Clin – volume: 1 start-page: 604 year: 1985 end-page: 609 ident: bb0050 article-title: Regulation of cerebral blood flow in response to changes in blood viscosity publication-title: Lancet – volume: 43 start-page: 11 year: 2016 end-page: 27 ident: bb0280 article-title: 3D Pseudocontinuous arterial spin labeling in routine clinical practice: a review of clinically significant artifacts publication-title: J Magn Reson Imaging – volume: 39 start-page: 344 year: 2018 end-page: 353 ident: bb0090 article-title: Accounting for the role of hematocrit in between-subject variations of MRI-derived baseline cerebral hemodynamic parameters and functional BOLD responses publication-title: Hum Brain Mapp – volume: 19 start-page: 65 year: 2005 end-page: 74 ident: bb0160 article-title: Human cerebral circulation: positron emission tomography studies publication-title: Ann Nucl Med – volume: 108 start-page: 81 year: 1985 end-page: 93 ident: bb0055 article-title: Fundamental importance of arterial oxygen content in the regulation of cerebral blood flow in man publication-title: Brain – volume: 16 start-page: 546 year: 1984 end-page: 552 ident: bb0005 article-title: Physiological responses to focal cerebral ischemia in humans publication-title: Ann Neurol – volume: 49 start-page: 50 year: 2008 end-page: 59 ident: bb0170 article-title: Quantification of cerebral blood flow and oxygen metabolism with 3-dimensional PET and 15O: validation by comparison with 2-dimensional PET publication-title: J Nucl Med – volume: 48 start-page: 242 year: 2002 end-page: 254 ident: bb0195 article-title: Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 tesla publication-title: Magn Reson Med – volume: 31 start-page: 578 year: 2004 end-page: 589 ident: bb0210 article-title: Cerebral blood flow SPET in transient global amnesia with automated ROI analysis by 3DSRT publication-title: Eur J Nucl Med Mol Imaging – volume: 34 start-page: 776 year: 2014 end-page: 784 ident: bb0245 article-title: Arterial spin labeling characterization of cerebral perfusion during normal maturation from late childhood into adulthood: normal ‘reference range’ values and their use in clinical studies publication-title: J Cereb Blood Flow Metab – volume: 77 start-page: 2296 year: 2017 end-page: 2302 ident: bb0105 article-title: Fast measurement of blood T1 in the human carotid artery at 3T: accuracy, precision, and reproducibility publication-title: Magn Reson Med – volume: 2 start-page: 161 year: 1977 end-page: 163 ident: bb0070 article-title: Cerebral blood-flow in polycythaemia publication-title: Lancet – volume: 19 start-page: 1466 year: 1988 end-page: 1469 ident: bb0260 article-title: Transcranial Doppler measurements of the middle cerebral artery publication-title: Effect Hematocrit Stroke – volume: 41 start-page: 430 year: 2020 end-page: 436 ident: bb0290 article-title: High intravascular signal arterial transit time artifacts have negligible effects on cerebral blood flow and cerebrovascular reserve capacity measurement using single Postlabel delay arterial spin-labeling in patients with Moyamoya disease publication-title: AJNR Am J Neuroradiol – volume: 46 start-page: 29 year: 2019 end-page: 35 ident: bb0120 article-title: Effect of blood T1 estimation strategy on arterial spin labeled cerebral blood flow quantification in children and young adults with kidney disease publication-title: J Neuroradiol – volume: 37 start-page: PS04 year: 2017 end-page: PS076 ident: bb0190 article-title: Effect of background suppression and motion correction on pseudo-continuous arterial spin labeling CBF measurement (Abstract) publication-title: J Cereb Blood Flow Metab – volume: 57 start-page: 1181 year: 2015 end-page: 1202 ident: bb0030 article-title: A neuroradiologist’s guide to arterial spin labeling MRI in clinical practice publication-title: Neuroradiology – volume: 1 start-page: 413 year: 1981 end-page: 417 ident: bb0065 article-title: Effects of hematocrit variations on cerebral blood flow and oxygen transport in ischemic cerebrovascular disease publication-title: J Cereb Blood Flow Metab – volume: 47 start-page: 137 year: 2018 end-page: 146 ident: bb0145 article-title: Pseudo continuous arterial spin labeling quantification in anemic subjects with hyperemic cerebral blood flow publication-title: Magn Reson Imaging – volume: 20 start-page: 1237 year: 2000 end-page: 1251 ident: bb0300 article-title: Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: I. theory, error analysis, and stereologic comparison publication-title: J Cereb Blood Flow Metab – volume: 30 start-page: 1296 year: 2010 end-page: 1305 ident: bb0080 article-title: Interindividual variations of cerebral blood flow, oxygen delivery, and metabolism in relation to hemoglobin concentration measured by positron emission tomography in humans publication-title: J Cereb Blood Flow Metab – volume: 77 start-page: 1841 year: 2017 end-page: 1852 ident: bb0265 article-title: Measuring the labeling efficiency of pseudocontinuous arterial spin labeling publication-title: Magn Reson Med – volume: 52 start-page: 679 year: 2004 end-page: 682 ident: bb0095 article-title: Determining the longitudinal relaxation time (T1) of blood at 3.0 tesla publication-title: Magn Reson Med – volume: 20 start-page: 131 year: 2006 end-page: 138 ident: bb0310 article-title: Database of normal human cerebral blood flow measured by SPECT: I. comparison between I-123-IMP, Tc-99m-HMPAO, and Tc-99m-ECD as referred with O-15 labeled water PET and voxel-based morphometry publication-title: Ann Nucl Med – volume: 38 start-page: 1461 year: 2018 end-page: 1480 ident: bb0115 article-title: Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow publication-title: J Cereb Blood Flow Metab – volume: 27 start-page: 116 year: 2014 end-page: 128 ident: bb0250 article-title: Three-dimensional whole-brain perfusion quantification using pseudo-continuous arterial spin labeling MRI at multiple post-labeling delays: accounting for both arterial transit time and impulse response function publication-title: NMR Biomed – volume: 19 start-page: 1163 year: 2003 end-page: 1169 ident: bb0205 article-title: Regional distribution of human cerebral vascular mean transit time measured by positron emission tomography publication-title: Neuroimage – volume: 252 start-page: 797 year: 2009 end-page: 807 ident: bb0285 article-title: Arterial spin-label imaging in patients with normal bolus perfusion-weighted MR imaging findings: pilot identification of the borderzone sign publication-title: Radiology – volume: 40 start-page: 1 year: 2014 end-page: 10 ident: bb0225 article-title: An introduction to ASL labeling techniques publication-title: J Magn Reson Imaging – volume: 63 start-page: 765 year: 2010 end-page: 771 ident: bb0255 article-title: Estimation of labeling efficiency in pseudocontinuous arterial spin labeling publication-title: Magn Reson Med – volume: 12 start-page: 745 year: 1992 end-page: 749 ident: bb0075 article-title: Increased cerebral blood flow in anemic patients on long-term hemodialytic treatment publication-title: J Cereb Blood Flow Metab – volume: 39 start-page: 173 year: 2019 end-page: 181 ident: bb0165 article-title: Spatial coefficient of variation in pseudo-continuous arterial spin labeling cerebral blood flow images as a hemodynamic measure for cerebrovascular steno-occlusive disease: a comparative (15)O positron emission tomography study publication-title: J Cereb Blood Flow Metab – volume: 1 start-page: 310 year: 1984 end-page: 314 ident: bb0010 article-title: Evaluation of cerebral perfusion reserve in patients with carotid-artery occlusion publication-title: Lancet – start-page: 30(2) year: 2017 ident: bb0140 article-title: Cerebral hemodynamics and pseudo-continuous arterial spin labeling considerations in adults with sickle cell anemia publication-title: NMR Biomed – volume: 35 start-page: 779 year: 2012 end-page: 787 ident: bb0150 article-title: Arterial spin labeling measurement of cerebral perfusion in children with sickle cell disease publication-title: J Magn Reson Imaging – volume: 79 start-page: 1922 year: 2018 end-page: 1930 ident: bb0270 article-title: Simultaneous measurement of brain perfusion and labeling efficiency in a single pseudo-continuous arterial spin labeling scan publication-title: Magn Reson Med – volume: 73 start-page: 102 year: 2015 end-page: 116 ident: bb0025 article-title: Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia publication-title: Magn Reson Med – volume: 35 start-page: 1026 year: 2012 end-page: 1037 ident: bb0020 article-title: Applications of arterial spin labeled MRI in the brain publication-title: J Magn Reson Imaging – volume: 36 start-page: 370 year: 2016 end-page: 374 ident: bb0100 article-title: A general model to calculate the spin-lattice (T1) relaxation time of blood, accounting for haematocrit, oxygen saturation and magnetic field strength publication-title: J Cereb Blood Flow Metab – volume: 27 start-page: 1387 year: 2014 end-page: 1396 ident: bb0040 article-title: Evaluation of segmented 3D acquisition schemes for whole-brain high-resolution arterial spin labeling at 3 T publication-title: NMR Biomed – volume: 33 start-page: 787 year: 2013 end-page: 792 ident: bb0085 article-title: Sources of variability of resting cerebral blood flow in healthy subjects: a study using (1)(3)(3)Xe SPECT measurements publication-title: J Cereb Blood Flow Metab – volume: 84 start-page: 2523 year: 2020 end-page: 2536 ident: bb0275 article-title: Supporting measurements or more averages? How to quantify cerebral blood flow most reliably in 5 minutes by arterial spin labeling publication-title: Magn Reson Med – volume: 27 start-page: 335 year: 2013 end-page: 345 ident: bb0175 article-title: Impact of subject head motion on quantitative brain (15)O PET and its correction by image-based registration algorithm publication-title: Ann Nucl Med – volume: 281 start-page: 337 year: 2016 end-page: 356 ident: bb0035 article-title: Arterial spin labeling perfusion of the brain: emerging clinical applications publication-title: Radiology – volume: 36 start-page: 842 year: 2016 end-page: 861 ident: bb0110 article-title: Comparison of cerebral blood flow measurement with [15O]-water positron emission tomography and arterial spin labeling magnetic resonance imaging: a systematic review publication-title: J Cereb Blood Flow Metab – volume: 23 start-page: 217 year: 2009 end-page: 227 ident: bb0015 article-title: Clinical impact of hemodynamic parameter measurement for cerebrovascular disease using positron emission tomography and (15)O-labeled tracers publication-title: Ann Nucl Med – start-page: 623 year: 2009 ident: bb0185 article-title: Evaluation of new ASL 3D GRASE sequences using parallel imaging, segmented and interleaved k-space at 3T with 12-and 32-channel coils publication-title: Proc ISMRM 21th Annual Meeting (Honolulu, Hawaii, USA) – volume: 38 start-page: 603 year: 2018 end-page: 626 ident: bb0230 article-title: Arterial spin labeling for the measurement of cerebral perfusion and angiography publication-title: J Cereb Blood Flow Metab – volume: 29 start-page: 5549 year: 2019 end-page: 5558 ident: bb0155 article-title: Cortical cerebral blood flow in ageing: effects of haematocrit, sex, ethnicity and diabetes publication-title: Eur Radiol – volume: 9 start-page: 454 year: 1981 end-page: 457 ident: bb0060 article-title: Cerebral blood flow following normovolemic hemodilution in patients with high hematocrit publication-title: Ann Neurol – volume: 54 start-page: 491 year: 2005 end-page: 498 ident: bb0180 article-title: Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements publication-title: Magn Reson Med – volume: 92 start-page: 182 year: 2014 end-page: 192 ident: bb0135 article-title: Accuracy and precision of pseudo-continuous arterial spin labeling perfusion during baseline and hypercapnia: a head-to-head comparison with (1)(5)O H(2)O positron emission tomography publication-title: Neuroimage – volume: 11 year: 2016 ident: bb0235 article-title: Arterial transit time mapping obtained by pulsed continuous 3D ASL imaging with multiple post-label delay acquisitions: comparative study with PET-CBF in patients with chronic occlusive cerebrovascular disease publication-title: PLoS One – volume: 5 start-page: 65 year: 1985 end-page: 69 ident: bb0200 article-title: What is the correct value for the brain--blood partition coefficient for water? publication-title: J Cereb Blood Flow Metab – volume: 37 start-page: 1727 year: 2016 end-page: 1732 ident: bb0125 article-title: In vivo T1 of blood measurements in children with sickle cell disease improve cerebral blood flow quantification from arterial spin-labeling MRI publication-title: AJNR Am J Neuroradiol – volume: 20 start-page: 1252 year: 2000 end-page: 1263 ident: bb0305 article-title: Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: II. Normal values and gray matter blood flow response to visual activation publication-title: J Cereb Blood Flow Metab – volume: 35 start-page: 1280 year: 2015 end-page: 1288 ident: bb0215 article-title: Reliability of CT perfusion-derived CBF in relation to hemodynamic compromise in patients with cerebrovascular steno-occlusive disease: a comparative study with 15O PET publication-title: J Cereb Blood Flow Metab – volume: 38 start-page: 5260 year: 2017 end-page: 5273 ident: bb0045 article-title: Comparison of Pasl, Pcasl, and background-suppressed 3d Pcasl in mild cognitive impairment publication-title: Hum Brain Mapp – volume: 23 start-page: 627 year: 2009 end-page: 638 ident: bb0295 article-title: Evaluation of dynamic row-action maximum likelihood algorithm reconstruction for quantitative 15O brain PET publication-title: Ann Nucl Med – volume: 65 start-page: 1297 year: 2011 end-page: 1304 ident: bb0220 article-title: Fast measurement of blood T1 in the human jugular vein at 3 tesla publication-title: Magn Reson Med – volume: 33 year: 2020 ident: bb0240 article-title: The costs and benefits of estimating T1 of tissue alongside cerebral blood flow and arterial transit time in pseudo-continuous arterial spin labeling publication-title: NMR Biomed – volume: 252 start-page: 797 issue: 3 year: 2009 ident: 10.1016/j.mri.2021.09.012_bb0285 article-title: Arterial spin-label imaging in patients with normal bolus perfusion-weighted MR imaging findings: pilot identification of the borderzone sign publication-title: Radiology doi: 10.1148/radiol.2523082018 – volume: 41 start-page: 430 issue: 3 year: 2020 ident: 10.1016/j.mri.2021.09.012_bb0290 article-title: High intravascular signal arterial transit time artifacts have negligible effects on cerebral blood flow and cerebrovascular reserve capacity measurement using single Postlabel delay arterial spin-labeling in patients with Moyamoya disease publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A6411 – volume: 31 start-page: 578 issue: 4 year: 2004 ident: 10.1016/j.mri.2021.09.012_bb0210 article-title: Cerebral blood flow SPET in transient global amnesia with automated ROI analysis by 3DSRT publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-003-1406-8 – volume: 40 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.mri.2021.09.012_bb0225 article-title: An introduction to ASL labeling techniques publication-title: J Magn Reson Imaging doi: 10.1002/jmri.24565 – volume: 35 start-page: 1026 issue: 5 year: 2012 ident: 10.1016/j.mri.2021.09.012_bb0020 article-title: Applications of arterial spin labeled MRI in the brain publication-title: J Magn Reson Imaging doi: 10.1002/jmri.23581 – volume: 36 start-page: 370 issue: 2 year: 2016 ident: 10.1016/j.mri.2021.09.012_bb0100 article-title: A general model to calculate the spin-lattice (T1) relaxation time of blood, accounting for haematocrit, oxygen saturation and magnetic field strength publication-title: J Cereb Blood Flow Metab doi: 10.1177/0271678X15605856 – volume: 19 start-page: 1466 issue: 12 year: 1988 ident: 10.1016/j.mri.2021.09.012_bb0260 article-title: Transcranial Doppler measurements of the middle cerebral artery publication-title: Effect Hematocrit Stroke – volume: 35 start-page: 1280 issue: 8 year: 2015 ident: 10.1016/j.mri.2021.09.012_bb0215 article-title: Reliability of CT perfusion-derived CBF in relation to hemodynamic compromise in patients with cerebrovascular steno-occlusive disease: a comparative study with 15O PET publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.2015.39 – volume: 38 start-page: 603 issue: 4 year: 2018 ident: 10.1016/j.mri.2021.09.012_bb0230 article-title: Arterial spin labeling for the measurement of cerebral perfusion and angiography publication-title: J Cereb Blood Flow Metab doi: 10.1177/0271678X17743240 – volume: 35 start-page: 779 issue: 4 year: 2012 ident: 10.1016/j.mri.2021.09.012_bb0150 article-title: Arterial spin labeling measurement of cerebral perfusion in children with sickle cell disease publication-title: J Magn Reson Imaging doi: 10.1002/jmri.23505 – volume: 19 start-page: 1163 issue: 3 year: 2003 ident: 10.1016/j.mri.2021.09.012_bb0205 article-title: Regional distribution of human cerebral vascular mean transit time measured by positron emission tomography publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00156-3 – volume: 37 start-page: PS04 issue: 1_suppl year: 2017 ident: 10.1016/j.mri.2021.09.012_bb0190 article-title: Effect of background suppression and motion correction on pseudo-continuous arterial spin labeling CBF measurement (Abstract) publication-title: J Cereb Blood Flow Metab – volume: 27 start-page: 116 issue: 2 year: 2014 ident: 10.1016/j.mri.2021.09.012_bb0250 article-title: Three-dimensional whole-brain perfusion quantification using pseudo-continuous arterial spin labeling MRI at multiple post-labeling delays: accounting for both arterial transit time and impulse response function publication-title: NMR Biomed doi: 10.1002/nbm.3040 – volume: 73 start-page: 102 issue: 1 year: 2015 ident: 10.1016/j.mri.2021.09.012_bb0025 article-title: Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia publication-title: Magn Reson Med doi: 10.1002/mrm.25197 – volume: 49 start-page: 50 issue: 1 year: 2008 ident: 10.1016/j.mri.2021.09.012_bb0170 article-title: Quantification of cerebral blood flow and oxygen metabolism with 3-dimensional PET and 15O: validation by comparison with 2-dimensional PET publication-title: J Nucl Med doi: 10.2967/jnumed.107.044008 – volume: 65 start-page: 1297 issue: 5 year: 2011 ident: 10.1016/j.mri.2021.09.012_bb0220 article-title: Fast measurement of blood T1 in the human jugular vein at 3 tesla publication-title: Magn Reson Med doi: 10.1002/mrm.22723 – volume: 92 start-page: 182 year: 2014 ident: 10.1016/j.mri.2021.09.012_bb0135 article-title: Accuracy and precision of pseudo-continuous arterial spin labeling perfusion during baseline and hypercapnia: a head-to-head comparison with (1)(5)O H(2)O positron emission tomography publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.02.011 – volume: 52 start-page: 679 issue: 3 year: 2004 ident: 10.1016/j.mri.2021.09.012_bb0095 article-title: Determining the longitudinal relaxation time (T1) of blood at 3.0 tesla publication-title: Magn Reson Med doi: 10.1002/mrm.20178 – volume: 46 start-page: 29 issue: 1 year: 2019 ident: 10.1016/j.mri.2021.09.012_bb0120 article-title: Effect of blood T1 estimation strategy on arterial spin labeled cerebral blood flow quantification in children and young adults with kidney disease publication-title: J Neuroradiol doi: 10.1016/j.neurad.2018.03.002 – volume: 4 start-page: 517 year: 2014 ident: 10.1016/j.mri.2021.09.012_bb0130 article-title: Impact of neonate haematocrit variability on the longitudinal relaxation time of blood: implications for arterial spin labelling MRI publication-title: NeuroImage Clin doi: 10.1016/j.nicl.2014.03.006 – volume: 33 start-page: 787 issue: 5 year: 2013 ident: 10.1016/j.mri.2021.09.012_bb0085 article-title: Sources of variability of resting cerebral blood flow in healthy subjects: a study using (1)(3)(3)Xe SPECT measurements publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.2013.17 – volume: 47 start-page: 137 year: 2018 ident: 10.1016/j.mri.2021.09.012_bb0145 article-title: Pseudo continuous arterial spin labeling quantification in anemic subjects with hyperemic cerebral blood flow publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2017.12.011 – volume: 281 start-page: 337 issue: 2 year: 2016 ident: 10.1016/j.mri.2021.09.012_bb0035 article-title: Arterial spin labeling perfusion of the brain: emerging clinical applications publication-title: Radiology doi: 10.1148/radiol.2016150789 – volume: 1 start-page: 604 issue: 8429 year: 1985 ident: 10.1016/j.mri.2021.09.012_bb0050 article-title: Regulation of cerebral blood flow in response to changes in blood viscosity publication-title: Lancet doi: 10.1016/S0140-6736(85)92145-2 – volume: 37 start-page: 1727 issue: 9 year: 2016 ident: 10.1016/j.mri.2021.09.012_bb0125 article-title: In vivo T1 of blood measurements in children with sickle cell disease improve cerebral blood flow quantification from arterial spin-labeling MRI publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A4793 – volume: 23 start-page: 217 issue: 3 year: 2009 ident: 10.1016/j.mri.2021.09.012_bb0015 article-title: Clinical impact of hemodynamic parameter measurement for cerebrovascular disease using positron emission tomography and (15)O-labeled tracers publication-title: Ann Nucl Med doi: 10.1007/s12149-009-0235-7 – volume: 1 start-page: 413 issue: 4 year: 1981 ident: 10.1016/j.mri.2021.09.012_bb0065 article-title: Effects of hematocrit variations on cerebral blood flow and oxygen transport in ischemic cerebrovascular disease publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.1981.45 – volume: 30 start-page: 1296 issue: 7 year: 2010 ident: 10.1016/j.mri.2021.09.012_bb0080 article-title: Interindividual variations of cerebral blood flow, oxygen delivery, and metabolism in relation to hemoglobin concentration measured by positron emission tomography in humans publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.2010.13 – volume: 29 start-page: 5549 issue: 10 year: 2019 ident: 10.1016/j.mri.2021.09.012_bb0155 article-title: Cortical cerebral blood flow in ageing: effects of haematocrit, sex, ethnicity and diabetes publication-title: Eur Radiol doi: 10.1007/s00330-019-06096-w – volume: 43 start-page: 11 issue: 1 year: 2016 ident: 10.1016/j.mri.2021.09.012_bb0280 article-title: 3D Pseudocontinuous arterial spin labeling in routine clinical practice: a review of clinically significant artifacts publication-title: J Magn Reson Imaging doi: 10.1002/jmri.24873 – volume: 20 start-page: 1252 issue: 8 year: 2000 ident: 10.1016/j.mri.2021.09.012_bb0305 article-title: Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: II. Normal values and gray matter blood flow response to visual activation publication-title: J Cereb Blood Flow Metab doi: 10.1097/00004647-200008000-00010 – volume: 84 start-page: 2523 issue: 5 year: 2020 ident: 10.1016/j.mri.2021.09.012_bb0275 article-title: Supporting measurements or more averages? How to quantify cerebral blood flow most reliably in 5 minutes by arterial spin labeling publication-title: Magn Reson Med doi: 10.1002/mrm.28314 – volume: 16 start-page: 546 issue: 5 year: 1984 ident: 10.1016/j.mri.2021.09.012_bb0005 article-title: Physiological responses to focal cerebral ischemia in humans publication-title: Ann Neurol doi: 10.1002/ana.410160504 – volume: 12 start-page: 745 issue: 5 year: 1992 ident: 10.1016/j.mri.2021.09.012_bb0075 article-title: Increased cerebral blood flow in anemic patients on long-term hemodialytic treatment publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.1992.105 – start-page: 623 year: 2009 ident: 10.1016/j.mri.2021.09.012_bb0185 article-title: Evaluation of new ASL 3D GRASE sequences using parallel imaging, segmented and interleaved k-space at 3T with 12-and 32-channel coils publication-title: Proc ISMRM 21th Annual Meeting (Honolulu, Hawaii, USA) – volume: 77 start-page: 1841 issue: 5 year: 2017 ident: 10.1016/j.mri.2021.09.012_bb0265 article-title: Measuring the labeling efficiency of pseudocontinuous arterial spin labeling publication-title: Magn Reson Med doi: 10.1002/mrm.26266 – volume: 57 start-page: 1181 issue: 12 year: 2015 ident: 10.1016/j.mri.2021.09.012_bb0030 article-title: A neuroradiologist’s guide to arterial spin labeling MRI in clinical practice publication-title: Neuroradiology doi: 10.1007/s00234-015-1571-z – volume: 108 start-page: 81 issue: Pt 1 year: 1985 ident: 10.1016/j.mri.2021.09.012_bb0055 article-title: Fundamental importance of arterial oxygen content in the regulation of cerebral blood flow in man publication-title: Brain doi: 10.1093/brain/108.1.81 – volume: 23 start-page: 627 issue: 7 year: 2009 ident: 10.1016/j.mri.2021.09.012_bb0295 article-title: Evaluation of dynamic row-action maximum likelihood algorithm reconstruction for quantitative 15O brain PET publication-title: Ann Nucl Med doi: 10.1007/s12149-009-0280-2 – start-page: 30(2) year: 2017 ident: 10.1016/j.mri.2021.09.012_bb0140 article-title: Cerebral hemodynamics and pseudo-continuous arterial spin labeling considerations in adults with sickle cell anemia publication-title: NMR Biomed – volume: 39 start-page: 173 issue: 1 year: 2019 ident: 10.1016/j.mri.2021.09.012_bb0165 article-title: Spatial coefficient of variation in pseudo-continuous arterial spin labeling cerebral blood flow images as a hemodynamic measure for cerebrovascular steno-occlusive disease: a comparative (15)O positron emission tomography study publication-title: J Cereb Blood Flow Metab doi: 10.1177/0271678X18781667 – volume: 27 start-page: 1387 issue: 11 year: 2014 ident: 10.1016/j.mri.2021.09.012_bb0040 article-title: Evaluation of segmented 3D acquisition schemes for whole-brain high-resolution arterial spin labeling at 3 T publication-title: NMR Biomed doi: 10.1002/nbm.3201 – volume: 19 start-page: 65 issue: 2 year: 2005 ident: 10.1016/j.mri.2021.09.012_bb0160 article-title: Human cerebral circulation: positron emission tomography studies publication-title: Ann Nucl Med doi: 10.1007/BF03027383 – volume: 27 start-page: 335 issue: 4 year: 2013 ident: 10.1016/j.mri.2021.09.012_bb0175 article-title: Impact of subject head motion on quantitative brain (15)O PET and its correction by image-based registration algorithm publication-title: Ann Nucl Med doi: 10.1007/s12149-013-0690-z – volume: 9 start-page: 454 issue: 5 year: 1981 ident: 10.1016/j.mri.2021.09.012_bb0060 article-title: Cerebral blood flow following normovolemic hemodilution in patients with high hematocrit publication-title: Ann Neurol doi: 10.1002/ana.410090507 – volume: 38 start-page: 5260 issue: 10 year: 2017 ident: 10.1016/j.mri.2021.09.012_bb0045 article-title: Comparison of Pasl, Pcasl, and background-suppressed 3d Pcasl in mild cognitive impairment publication-title: Hum Brain Mapp doi: 10.1002/hbm.23732 – volume: 48 start-page: 242 issue: 2 year: 2002 ident: 10.1016/j.mri.2021.09.012_bb0195 article-title: Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 tesla publication-title: Magn Reson Med doi: 10.1002/mrm.10211 – volume: 20 start-page: 1237 issue: 8 year: 2000 ident: 10.1016/j.mri.2021.09.012_bb0300 article-title: Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: I. theory, error analysis, and stereologic comparison publication-title: J Cereb Blood Flow Metab doi: 10.1097/00004647-200008000-00009 – volume: 5 start-page: 65 issue: 1 year: 1985 ident: 10.1016/j.mri.2021.09.012_bb0200 article-title: What is the correct value for the brain--blood partition coefficient for water? publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.1985.9 – volume: 11 issue: 6 year: 2016 ident: 10.1016/j.mri.2021.09.012_bb0235 article-title: Arterial transit time mapping obtained by pulsed continuous 3D ASL imaging with multiple post-label delay acquisitions: comparative study with PET-CBF in patients with chronic occlusive cerebrovascular disease publication-title: PLoS One doi: 10.1371/journal.pone.0156005 – volume: 77 start-page: 2296 issue: 6 year: 2017 ident: 10.1016/j.mri.2021.09.012_bb0105 article-title: Fast measurement of blood T1 in the human carotid artery at 3T: accuracy, precision, and reproducibility publication-title: Magn Reson Med doi: 10.1002/mrm.26325 – volume: 1 start-page: 310 issue: 8372 year: 1984 ident: 10.1016/j.mri.2021.09.012_bb0010 article-title: Evaluation of cerebral perfusion reserve in patients with carotid-artery occlusion publication-title: Lancet doi: 10.1016/S0140-6736(84)90361-1 – volume: 54 start-page: 491 issue: 2 year: 2005 ident: 10.1016/j.mri.2021.09.012_bb0180 article-title: Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements publication-title: Magn Reson Med doi: 10.1002/mrm.20580 – volume: 2 start-page: 161 issue: 8030 year: 1977 ident: 10.1016/j.mri.2021.09.012_bb0070 article-title: Cerebral blood-flow in polycythaemia publication-title: Lancet doi: 10.1016/S0140-6736(77)90179-9 – volume: 36 start-page: 842 issue: 5 year: 2016 ident: 10.1016/j.mri.2021.09.012_bb0110 article-title: Comparison of cerebral blood flow measurement with [15O]-water positron emission tomography and arterial spin labeling magnetic resonance imaging: a systematic review publication-title: J Cereb Blood Flow Metab doi: 10.1177/0271678X16636393 – volume: 79 start-page: 1922 issue: 4 year: 2018 ident: 10.1016/j.mri.2021.09.012_bb0270 article-title: Simultaneous measurement of brain perfusion and labeling efficiency in a single pseudo-continuous arterial spin labeling scan publication-title: Magn Reson Med doi: 10.1002/mrm.26842 – volume: 33 issue: 12 year: 2020 ident: 10.1016/j.mri.2021.09.012_bb0240 article-title: The costs and benefits of estimating T1 of tissue alongside cerebral blood flow and arterial transit time in pseudo-continuous arterial spin labeling publication-title: NMR Biomed doi: 10.1002/nbm.4182 – volume: 39 start-page: 344 issue: 1 year: 2018 ident: 10.1016/j.mri.2021.09.012_bb0090 article-title: Accounting for the role of hematocrit in between-subject variations of MRI-derived baseline cerebral hemodynamic parameters and functional BOLD responses publication-title: Hum Brain Mapp doi: 10.1002/hbm.23846 – volume: 63 start-page: 765 issue: 3 year: 2010 ident: 10.1016/j.mri.2021.09.012_bb0255 article-title: Estimation of labeling efficiency in pseudocontinuous arterial spin labeling publication-title: Magn Reson Med doi: 10.1002/mrm.22245 – volume: 38 start-page: 1461 issue: 9 year: 2018 ident: 10.1016/j.mri.2021.09.012_bb0115 article-title: Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow publication-title: J Cereb Blood Flow Metab doi: 10.1177/0271678X17713434 – volume: 20 start-page: 131 issue: 2 year: 2006 ident: 10.1016/j.mri.2021.09.012_bb0310 article-title: Database of normal human cerebral blood flow measured by SPECT: I. comparison between I-123-IMP, Tc-99m-HMPAO, and Tc-99m-ECD as referred with O-15 labeled water PET and voxel-based morphometry publication-title: Ann Nucl Med doi: 10.1007/BF02985625 – volume: 34 start-page: 776 issue: 5 year: 2014 ident: 10.1016/j.mri.2021.09.012_bb0245 article-title: Arterial spin labeling characterization of cerebral perfusion during normal maturation from late childhood into adulthood: normal ‘reference range’ values and their use in clinical studies publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.2014.17 |
SSID | ssj0005235 |
Score | 2.357828 |
Snippet | In cerebral blood flow (CBF) quantification with pseudo-continuous arterial spin labeling (pCASL) MRI, arterial blood T1 (T1a) is usually fixed to a typical... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 58 |
SubjectTerms | Arterial blood T1 Cerebral blood flow Hematocrit Positron emission tomography Pseudo-continuous arterial spin labeling |
Title | Effect of hematocrit on cerebral blood flow measured by pseudo-continuous arterial spin labeling MRI: A comparative study with 15O-water positron emission tomography |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X21001636 https://dx.doi.org/10.1016/j.mri.2021.09.012 https://www.proquest.com/docview/2576656602 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6iIL6IV7xzBJ-EurbpZfVtiGMqTvACvoUky6CytaPbGL74b_yfnpO23kAFH1Ny0pJzei7Jly-MHWEOolQoI0d5TYUFisFfyoSRg-rW2FBEUUVoi27UeQguH8PHOXZWn4UhWGXl-0ufbr119aRRzWZjlKaNOzLO2Mdii2iEcEw6wR7EZOUnL59hHuUlm9jZod71zqbFeA2LFEtE37NUp57_U2z65qVt6GmvsOUqZ4RW-VmrbM5ka2zxutoVX2evJQUx5H2wFKw5egJsZaBNQfvCA7DwdOgP8hkMy0XBHqhnGI3NtJc7BFdPs2k-HYNFeKJJwniUZoAWYo-rw_XtxSm0QH9QhYPlpQVaxgUvvHFmmLMWYCFgBb6ZbpGjdTiY5MOKFHuDPbTP7886TnX9gqN5yCeorjgwLm8qGaiQm7gXm8SV3JVupPtShZpzje3IJARWieMIdR4bLPckTq7BiLjJ5rM8M1sMmpHkPg906PUwnUh4or2m9HyMz5jA8UhtM7eeeKErbnK6ImMgahDak0BdCdKVcBOButpmx-8io5KY47fOfq1NUZ84RR8pMGz8JhS8C30xyb_EDmtzETjXtP8iM4MqFFTbUfrs-jv_G3qXLVGrRNPssflJMTX7mBNN1IE1-gO20Lq46nTfAPjgDKw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEB62WWh7KX3S7XMKPRVMbMuy497C0iXpblJod2FvQlIUcEns4CQs_UH9n52R5e0DuoUeZWtsoxnPQ_r0CeAt5SDGSJ1HJhkZKlAc_VJO5hGp21LDMEUVoy3m-eQi-3gpLw_guN8Lw7DK4Ps7n-69dbgyDKM53FTV8AsbZ5FSscU0QvTMW3DI7FRyAIfj6elk_gvSoztnk_pHLNAvbnqY17qtqEpME892mqR_C09_OGoffU7uw72QNuK4-7IHcODqh3B7FhbGH8H3joUYmyV6FtaGnAG1arSu5aXhFXqEOi5XzRWuu3nBBZpvuNm6_aKJGLFe1ftmv0UP8iSrxO2mqpGMxO9Yx9nn6Xsco_3JFo6emhZ5JhcT-Sm6orS1RY8Ca-nNfJAcT8XhrlkHXuzHcHHy4fx4EoUTGCIrpNiRxorMxWJkdGakcMWicGWsRazj3C61kVYIS-3clYxXKYqc1F44qvg0Da6joPgEBnVTu6eAo1yLVGRWJgvKKEpR2mSkk5RCNOVwIjdHEPcDr2ygJ-dTMlaqx6F9VaQrxbpScalIV0fw7lpk03Fz3NQ57bWp-k2n5CYVRY6bhLJrod-s8l9ib3pzUTTWvASja0cqVFzecQYdp8_-79Gv4c7kfHamzqbz0-dwl-904JoXMNi1e_eSUqSdeRV-gR8fGA9d |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+hematocrit+on+cerebral+blood+flow+measured+by+pseudo-continuous+arterial+spin+labeling+MRI%3A+A+comparative+study+with+15O-water+positron+emission+tomography&rft.jtitle=Magnetic+resonance+imaging&rft.au=Ibaraki%2C+Masanobu&rft.au=Nakamura%2C+Kazuhiro&rft.au=Matsubara%2C+Keisuke&rft.au=Shinohara%2C+Yuki&rft.date=2021-12-01&rft.issn=1873-5894&rft.eissn=1873-5894&rft.volume=84&rft.spage=58&rft_id=info:doi/10.1016%2Fj.mri.2021.09.012&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon |