Effect of hematocrit on cerebral blood flow measured by pseudo-continuous arterial spin labeling MRI: A comparative study with 15O-water positron emission tomography

In cerebral blood flow (CBF) quantification with pseudo-continuous arterial spin labeling (pCASL) MRI, arterial blood T1 (T1a) is usually fixed to a typical value (e.g., 1650 ms). However, individual T1a depends strongly on hematocrit (Hct) level. To investigate the utility of Hct-based T1a as an al...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance imaging Vol. 84; pp. 58 - 68
Main Authors Ibaraki, Masanobu, Nakamura, Kazuhiro, Matsubara, Keisuke, Shinohara, Yuki, Kinoshita, Toshibumi
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In cerebral blood flow (CBF) quantification with pseudo-continuous arterial spin labeling (pCASL) MRI, arterial blood T1 (T1a) is usually fixed to a typical value (e.g., 1650 ms). However, individual T1a depends strongly on hematocrit (Hct) level. To investigate the utility of Hct-based T1a as an alternative to the fixed T1a method, we performed a comparative study with 15O-water positron emission tomography (PET). For patients with unilateral occlusion or stenosis of major arteries, hemispheric CBF on the healthy side was measured using pCASL and 15O-water PET. The pCASL CBFs were calculated with both (a) fixed T1a (1650 ms) and (b) individual T1a estimated from blood-sampled Hct (Hct-based T1a). Correlation coefficients of Hct–CBF were calculated and compared between pCASL and PET. In pCASL, CBF with fixed T1a showed a strong negative correlation with Hct (r = −0.568), which was reduced with individual Hct-based T1a (r = −0.341 to −0.190), consistent with the Hct–CBF relation measured with PET (r = −0.349). We demonstrated that Hct-based T1a resulted in smaller inter-individual variations in pCASL CBF and an inverse Hct–CBF relationship more similar to that of PET. Care must be taken in the interpretation of pCASL CBF imaging in relation to Hct level even in subjects without anemia. Further comparative studies are needed to investigate whether advanced techniques improve pCASL CBF quantification at the individual level. •Arterial blood T1 (T1a) is typically fixed in CBF quantification with pseudo-continuous arterial spin labeling (pCASL).•Fixed T1a is an error source in pCASL CBF due to hematocrit (Hct) dependency.•Hct-based T1a, an alternative to the fixed T1a, was investigated in a comparative study with 15O-water PET.•Hct-based T1a results in smaller variations in pCASL CBF and an inverse Hct–CBF relationship more similar to that of PET.•Further studies are needed to investigate whether advanced techniques improve pCASL CBF at the individual level.
AbstractList In cerebral blood flow (CBF) quantification with pseudo-continuous arterial spin labeling (pCASL) MRI, arterial blood T1 (T1a) is usually fixed to a typical value (e.g., 1650 ms). However, individual T1a depends strongly on hematocrit (Hct) level. To investigate the utility of Hct-based T1a as an alternative to the fixed T1a method, we performed a comparative study with 15O-water positron emission tomography (PET). For patients with unilateral occlusion or stenosis of major arteries, hemispheric CBF on the healthy side was measured using pCASL and 15O-water PET. The pCASL CBFs were calculated with both (a) fixed T1a (1650 ms) and (b) individual T1a estimated from blood-sampled Hct (Hct-based T1a). Correlation coefficients of Hct–CBF were calculated and compared between pCASL and PET. In pCASL, CBF with fixed T1a showed a strong negative correlation with Hct (r = −0.568), which was reduced with individual Hct-based T1a (r = −0.341 to −0.190), consistent with the Hct–CBF relation measured with PET (r = −0.349). We demonstrated that Hct-based T1a resulted in smaller inter-individual variations in pCASL CBF and an inverse Hct–CBF relationship more similar to that of PET. Care must be taken in the interpretation of pCASL CBF imaging in relation to Hct level even in subjects without anemia. Further comparative studies are needed to investigate whether advanced techniques improve pCASL CBF quantification at the individual level. •Arterial blood T1 (T1a) is typically fixed in CBF quantification with pseudo-continuous arterial spin labeling (pCASL).•Fixed T1a is an error source in pCASL CBF due to hematocrit (Hct) dependency.•Hct-based T1a, an alternative to the fixed T1a, was investigated in a comparative study with 15O-water PET.•Hct-based T1a results in smaller variations in pCASL CBF and an inverse Hct–CBF relationship more similar to that of PET.•Further studies are needed to investigate whether advanced techniques improve pCASL CBF at the individual level.
In cerebral blood flow (CBF) quantification with pseudo-continuous arterial spin labeling (pCASL) MRI, arterial blood T1 (T1a) is usually fixed to a typical value (e.g., 1650 ms). However, individual T1a depends strongly on hematocrit (Hct) level. To investigate the utility of Hct-based T1a as an alternative to the fixed T1a method, we performed a comparative study with 15O-water positron emission tomography (PET).INTRODUCTIONIn cerebral blood flow (CBF) quantification with pseudo-continuous arterial spin labeling (pCASL) MRI, arterial blood T1 (T1a) is usually fixed to a typical value (e.g., 1650 ms). However, individual T1a depends strongly on hematocrit (Hct) level. To investigate the utility of Hct-based T1a as an alternative to the fixed T1a method, we performed a comparative study with 15O-water positron emission tomography (PET).For patients with unilateral occlusion or stenosis of major arteries, hemispheric CBF on the healthy side was measured using pCASL and 15O-water PET. The pCASL CBFs were calculated with both (a) fixed T1a (1650 ms) and (b) individual T1a estimated from blood-sampled Hct (Hct-based T1a). Correlation coefficients of Hct-CBF were calculated and compared between pCASL and PET.METHODSFor patients with unilateral occlusion or stenosis of major arteries, hemispheric CBF on the healthy side was measured using pCASL and 15O-water PET. The pCASL CBFs were calculated with both (a) fixed T1a (1650 ms) and (b) individual T1a estimated from blood-sampled Hct (Hct-based T1a). Correlation coefficients of Hct-CBF were calculated and compared between pCASL and PET.In pCASL, CBF with fixed T1a showed a strong negative correlation with Hct (r = -0.568), which was reduced with individual Hct-based T1a (r = -0.341 to -0.190), consistent with the Hct-CBF relation measured with PET (r = -0.349).RESULTSIn pCASL, CBF with fixed T1a showed a strong negative correlation with Hct (r = -0.568), which was reduced with individual Hct-based T1a (r = -0.341 to -0.190), consistent with the Hct-CBF relation measured with PET (r = -0.349).We demonstrated that Hct-based T1a resulted in smaller inter-individual variations in pCASL CBF and an inverse Hct-CBF relationship more similar to that of PET. Care must be taken in the interpretation of pCASL CBF imaging in relation to Hct level even in subjects without anemia. Further comparative studies are needed to investigate whether advanced techniques improve pCASL CBF quantification at the individual level.DISCUSSION AND CONCLUSIONWe demonstrated that Hct-based T1a resulted in smaller inter-individual variations in pCASL CBF and an inverse Hct-CBF relationship more similar to that of PET. Care must be taken in the interpretation of pCASL CBF imaging in relation to Hct level even in subjects without anemia. Further comparative studies are needed to investigate whether advanced techniques improve pCASL CBF quantification at the individual level.
Author Shinohara, Yuki
Ibaraki, Masanobu
Nakamura, Kazuhiro
Kinoshita, Toshibumi
Matsubara, Keisuke
Author_xml – sequence: 1
  givenname: Masanobu
  surname: Ibaraki
  fullname: Ibaraki, Masanobu
  email: iba@akita-noken.jp
– sequence: 2
  givenname: Kazuhiro
  surname: Nakamura
  fullname: Nakamura, Kazuhiro
  email: knam@akita-noken.jp
– sequence: 3
  givenname: Keisuke
  surname: Matsubara
  fullname: Matsubara, Keisuke
  email: matsubara@akita-noken.jp
– sequence: 4
  givenname: Yuki
  surname: Shinohara
  fullname: Shinohara, Yuki
  email: shino-y@akita-noken.jp
– sequence: 5
  givenname: Toshibumi
  surname: Kinoshita
  fullname: Kinoshita, Toshibumi
  email: kino@akita-noken.jp
BookMark eNqFkcFu1DAQhi1UJLaFB-DmI5cEO47jDZyqqoVKRZUQSNysiTPpenHiYDtd5YF4T7wspx7KyR5pPo__-c7J2eQnJOQtZyVnvHm_L8dgy4pVvGRtyXj1gmz4VolCbtv6jGyYEqxQlfzxipzHuGeMyUrIDfl9PQxoEvUD3eEIyZtgczVRgwG7AI52zvueDs4f6IgQl4A97VY6R1x6Xxg_JTstfokUQsJgMxFnO1EHHTo7PdAvX28_0Etq_DhDgGQfkca09Cs92LSjXN4XB8ggnX20KeTJONoYbb4kP_qHAPNufU1eDuAivvl3XpDvN9ffrj4Xd_efbq8u7wojpEiFFKpGJrYd1J0UqHqFLQPBgDVmgE4aIUyuG2x52yqlmk6CwrreQl4h8kpckHend-fgfy0Yk85_MegcTJgj6kqqppFNw46t6tRqgo8x4KCNTTle3kcA6zRn-ihG73UWo49iNGs1-zuEPyHnYEcI67PMxxODOf2jxaCjsTgZ7G3I-nTv7bN0-4Q2WY014H7i-h_2D-R2vwQ
CitedBy_id crossref_primary_10_1161_JAHA_124_035387
crossref_primary_10_1371_journal_pone_0317303
crossref_primary_10_1093_noajnl_vdae212
crossref_primary_10_1002_jmri_28967
Cites_doi 10.1148/radiol.2523082018
10.3174/ajnr.A6411
10.1007/s00259-003-1406-8
10.1002/jmri.24565
10.1002/jmri.23581
10.1177/0271678X15605856
10.1038/jcbfm.2015.39
10.1177/0271678X17743240
10.1002/jmri.23505
10.1016/S1053-8119(03)00156-3
10.1002/nbm.3040
10.1002/mrm.25197
10.2967/jnumed.107.044008
10.1002/mrm.22723
10.1016/j.neuroimage.2014.02.011
10.1002/mrm.20178
10.1016/j.neurad.2018.03.002
10.1016/j.nicl.2014.03.006
10.1038/jcbfm.2013.17
10.1016/j.mri.2017.12.011
10.1148/radiol.2016150789
10.1016/S0140-6736(85)92145-2
10.3174/ajnr.A4793
10.1007/s12149-009-0235-7
10.1038/jcbfm.1981.45
10.1038/jcbfm.2010.13
10.1007/s00330-019-06096-w
10.1002/jmri.24873
10.1097/00004647-200008000-00010
10.1002/mrm.28314
10.1002/ana.410160504
10.1038/jcbfm.1992.105
10.1002/mrm.26266
10.1007/s00234-015-1571-z
10.1093/brain/108.1.81
10.1007/s12149-009-0280-2
10.1177/0271678X18781667
10.1002/nbm.3201
10.1007/BF03027383
10.1007/s12149-013-0690-z
10.1002/ana.410090507
10.1002/hbm.23732
10.1002/mrm.10211
10.1097/00004647-200008000-00009
10.1038/jcbfm.1985.9
10.1371/journal.pone.0156005
10.1002/mrm.26325
10.1016/S0140-6736(84)90361-1
10.1002/mrm.20580
10.1016/S0140-6736(77)90179-9
10.1177/0271678X16636393
10.1002/mrm.26842
10.1002/nbm.4182
10.1002/hbm.23846
10.1002/mrm.22245
10.1177/0271678X17713434
10.1007/BF02985625
10.1038/jcbfm.2014.17
ContentType Journal Article
Copyright 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
DOI 10.1016/j.mri.2021.09.012
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5894
EndPage 68
ExternalDocumentID 10_1016_j_mri_2021_09_012
S0730725X21001636
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABNEU
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSQ
SSU
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
~G-
~S-
6I.
AACTN
AAFTH
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
G8K
LCYCR
RIG
AAYXX
AGRNS
CITATION
7X8
ID FETCH-LOGICAL-c353t-5374e038ba4b53e7d7e90a30a06cfab5c33c0a36e91997776b5a7e448a016e123
IEDL.DBID .~1
ISSN 0730-725X
1873-5894
IngestDate Fri Jul 11 00:47:41 EDT 2025
Tue Jul 01 01:55:26 EDT 2025
Thu Apr 24 23:11:18 EDT 2025
Fri Feb 23 02:47:15 EST 2024
Tue Aug 26 18:33:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Pseudo-continuous arterial spin labeling
Cerebral blood flow
Arterial blood T1
Positron emission tomography
Hematocrit
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-5374e038ba4b53e7d7e90a30a06cfab5c33c0a36e91997776b5a7e448a016e123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0730725X21001636
PQID 2576656602
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2576656602
crossref_citationtrail_10_1016_j_mri_2021_09_012
crossref_primary_10_1016_j_mri_2021_09_012
elsevier_sciencedirect_doi_10_1016_j_mri_2021_09_012
elsevier_clinicalkey_doi_10_1016_j_mri_2021_09_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Magnetic resonance imaging
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kusunoki, Kimura, Nakamura, Isaka, Yoneda, Abe (bb0065) 1981; 1
Xu, Li, Liu, Hua, Strouse, Pekar (bb0090) 2018; 39
Amukotuwa, Yu, Zaharchuk (bb0280) 2016; 43
Brown, Wade, Marshall (bb0055) 1985; 108
Wong (bb0225) 2014; 40
Ibaraki, Shinohara, Nakamura, Miura, Kinoshita, Kinoshita (bb0080) 2010; 30
Fahlstrom, Lewen, Enblad, Larsson, Wikstrom (bb0290) 2020; 41
Powers, Grubb, Raichle (bb0005) 1984; 16
Hales, Kirkham, Clark (bb0100) 2016; 36
Ibaraki, Nakamura, Toyoshima, Takahashi, Matsubara, Pfeuffer (bb0190) 2017; 37
Herscovitch, Raichle (bb0200) 1985; 5
Liu, Jawad, Laney, Hartung, Furth, Detre (bb0120) 2019; 46
Ito, Kanno, Takahashi, Ibaraki, Miura (bb0205) 2003; 19
Wang, Alsop, Li, Listerud, Gonzalez-At, Schnall (bb0195) 2002; 48
Ito, Inoue, Goto, Kinomura, Taki, Okada (bb0310) 2006; 20
Okazawa, Kudo (bb0015) 2009; 23
Tsujikawa, Kimura, Matsuda, Fujiwara, Isozaki, Kikuta (bb0235) 2016; 11
Brown, Marshall (bb0050) 1985; 1
Detre, Rao, Wang, Chen, Wang (bb0020) 2012; 35
Chen, Zhang, Yuan, Zhao, van Osch (bb0265) 2017; 77
Chen, Zhao, Zhang, Guo, Teeuwisse, Zhang (bb0270) 2018; 79
Iida, Law, Pakkenberg, Krarup-Hansen, Eberl, Holm (bb0300) 2000; 20
Takeuchi, Matsuda, Yoshioka, Yonekura (bb0210) 2004; 31
Haller, Zaharchuk, Thomas, Lovblad, Barkhof, Golay (bb0035) 2016; 281
Ito, Kanno, Fukuda (bb0160) 2005; 19
Juttukonda, Jordan, Gindville, Davis, Watchmaker, Pruthi (bb0140) 2017
Vaclavu, van der Land, Heijtel, van Osch, Cnossen, Majoie (bb0125) 2016; 37
Bush, Chai, Choi, Vaclavu, Holland, Nederveen (bb0145) 2018; 47
Lu, Clingman, Golay, van Zijl (bb0095) 2004; 52
van Osch, Teeuwisse, Chen, Suzuki, Helle, Schmid (bb0115) 2018; 38
Ibaraki, Nakamura, Toyoshima, Takahashi, Matsubara, Umetsu (bb0165) 2019; 39
Brass, Pavlakis, DeVivo, Piomelli, Mohr (bb0260) 1988; 19
Qin, Strouse, van Zijl (bb0220) 2011; 65
Feinberg, Ramanna, Guenther (bb0185) 2009
Aslan, Xu, Wang, Uh, Yezhuvath, van Osch (bb0255) 2010; 63
Henriksen, Paulson, Smith (bb0060) 1981; 9
Heijtel, Mutsaerts, Bakker, Schober, Stevens, Petersen (bb0135) 2014; 92
Smith, Melbourne, Owen, Cardoso, Sudre, Tillin (bb0155) 2019; 29
Ibaraki, Ohmura, Matsubara, Kinoshita (bb0215) 2015; 35
Ibaraki, Sato, Mizuta, Kitamura, Miura, Sugawara (bb0295) 2009; 23
Dolui, Vidorreta, Wang, Nasrallah, Alavi, Wolk (bb0045) 2017; 38
Qin, Huang, Hua, Desmond, Stevens, van Zijl (bb0250) 2014; 27
Bladt, van Osch, Clement, Achten, Sijbers, den Dekker (bb0275) 2020; 84
Gevers, Nederveen, Fijnvandraat, van den Berg, van Ooij, Heijtel (bb0150) 2012; 35
Law, Iida, Holm, Nour, Rostrup, Svarer (bb0305) 2000; 20
Vidorreta, Balteau, Wang, De Vita, Pastor, Thomas (bb0040) 2014; 27
Bladt, den Dekker, Clement, Achten, Sijbers (bb0240) 2020; 33
Henriksen, Kruuse, Olesen, Jensen, Larsson, Birk (bb0085) 2013; 33
Alsop, Detre, Golay, Gunther, Hendrikse, Hernandez-Garcia (bb0025) 2015; 73
Grade, Hernandez Tamames, Pizzini, Achten, Golay, Smits (bb0030) 2015; 57
Hales, Kawadler, Aylett, Kirkham, Clark (bb0245) 2014; 34
Thomas, du Boulay, Marshall, Pearson, Ross Russell, Symon (bb0070) 1977; 2
Jezzard, Chappell, Okell (bb0230) 2018; 38
Zaharchuk, Bammer, Straka, Shankaranarayan, Alsop, Fischbein (bb0285) 2009; 252
Matsubara, Ibaraki, Nakamura, Yamaguchi, Umetsu, Kinoshita (bb0175) 2013; 27
De Vis, Hendrikse, Groenendaal, de Vries, Kersbergen, Benders (bb0130) 2014; 4
Gibbs, Wise, Leenders, Jones (bb0010) 1984; 1
Fan, Jahanian, Holdsworth, Zaharchuk (bb0110) 2016; 36
Gunther, Oshio, Feinberg (bb0180) 2005; 54
Vorstrup, Lass, Waldemar, Brandi, Schmidt, Johnsen (bb0075) 1992; 12
Li, Liu, Lu, Strouse, van Zijl, Qin (bb0105) 2017; 77
Ibaraki, Miura, Shimosegawa, Sugawara, Mizuta, Ishikawa (bb0170) 2008; 49
Hales (10.1016/j.mri.2021.09.012_bb0245) 2014; 34
Bladt (10.1016/j.mri.2021.09.012_bb0275) 2020; 84
Ibaraki (10.1016/j.mri.2021.09.012_bb0295) 2009; 23
Henriksen (10.1016/j.mri.2021.09.012_bb0060) 1981; 9
Okazawa (10.1016/j.mri.2021.09.012_bb0015) 2009; 23
Gunther (10.1016/j.mri.2021.09.012_bb0180) 2005; 54
van Osch (10.1016/j.mri.2021.09.012_bb0115) 2018; 38
Liu (10.1016/j.mri.2021.09.012_bb0120) 2019; 46
De Vis (10.1016/j.mri.2021.09.012_bb0130) 2014; 4
Bladt (10.1016/j.mri.2021.09.012_bb0240) 2020; 33
Ibaraki (10.1016/j.mri.2021.09.012_bb0165) 2019; 39
Brown (10.1016/j.mri.2021.09.012_bb0050) 1985; 1
Alsop (10.1016/j.mri.2021.09.012_bb0025) 2015; 73
Matsubara (10.1016/j.mri.2021.09.012_bb0175) 2013; 27
Ibaraki (10.1016/j.mri.2021.09.012_bb0080) 2010; 30
Xu (10.1016/j.mri.2021.09.012_bb0090) 2018; 39
Vaclavu (10.1016/j.mri.2021.09.012_bb0125) 2016; 37
Bush (10.1016/j.mri.2021.09.012_bb0145) 2018; 47
Amukotuwa (10.1016/j.mri.2021.09.012_bb0280) 2016; 43
Ibaraki (10.1016/j.mri.2021.09.012_bb0190) 2017; 37
Iida (10.1016/j.mri.2021.09.012_bb0300) 2000; 20
Wong (10.1016/j.mri.2021.09.012_bb0225) 2014; 40
Jezzard (10.1016/j.mri.2021.09.012_bb0230) 2018; 38
Chen (10.1016/j.mri.2021.09.012_bb0270) 2018; 79
Ito (10.1016/j.mri.2021.09.012_bb0160) 2005; 19
Dolui (10.1016/j.mri.2021.09.012_bb0045) 2017; 38
Feinberg (10.1016/j.mri.2021.09.012_bb0185) 2009
Ibaraki (10.1016/j.mri.2021.09.012_bb0215) 2015; 35
Zaharchuk (10.1016/j.mri.2021.09.012_bb0285) 2009; 252
Aslan (10.1016/j.mri.2021.09.012_bb0255) 2010; 63
Powers (10.1016/j.mri.2021.09.012_bb0005) 1984; 16
Smith (10.1016/j.mri.2021.09.012_bb0155) 2019; 29
Vorstrup (10.1016/j.mri.2021.09.012_bb0075) 1992; 12
Haller (10.1016/j.mri.2021.09.012_bb0035) 2016; 281
Chen (10.1016/j.mri.2021.09.012_bb0265) 2017; 77
Qin (10.1016/j.mri.2021.09.012_bb0250) 2014; 27
Tsujikawa (10.1016/j.mri.2021.09.012_bb0235) 2016; 11
Henriksen (10.1016/j.mri.2021.09.012_bb0085) 2013; 33
Fan (10.1016/j.mri.2021.09.012_bb0110) 2016; 36
Kusunoki (10.1016/j.mri.2021.09.012_bb0065) 1981; 1
Heijtel (10.1016/j.mri.2021.09.012_bb0135) 2014; 92
Gevers (10.1016/j.mri.2021.09.012_bb0150) 2012; 35
Ibaraki (10.1016/j.mri.2021.09.012_bb0170) 2008; 49
Grade (10.1016/j.mri.2021.09.012_bb0030) 2015; 57
Li (10.1016/j.mri.2021.09.012_bb0105) 2017; 77
Herscovitch (10.1016/j.mri.2021.09.012_bb0200) 1985; 5
Ito (10.1016/j.mri.2021.09.012_bb0310) 2006; 20
Gibbs (10.1016/j.mri.2021.09.012_bb0010) 1984; 1
Takeuchi (10.1016/j.mri.2021.09.012_bb0210) 2004; 31
Detre (10.1016/j.mri.2021.09.012_bb0020) 2012; 35
Brass (10.1016/j.mri.2021.09.012_bb0260) 1988; 19
Fahlstrom (10.1016/j.mri.2021.09.012_bb0290) 2020; 41
Hales (10.1016/j.mri.2021.09.012_bb0100) 2016; 36
Qin (10.1016/j.mri.2021.09.012_bb0220) 2011; 65
Lu (10.1016/j.mri.2021.09.012_bb0095) 2004; 52
Brown (10.1016/j.mri.2021.09.012_bb0055) 1985; 108
Vidorreta (10.1016/j.mri.2021.09.012_bb0040) 2014; 27
Juttukonda (10.1016/j.mri.2021.09.012_bb0140) 2017
Ito (10.1016/j.mri.2021.09.012_bb0205) 2003; 19
Wang (10.1016/j.mri.2021.09.012_bb0195) 2002; 48
Law (10.1016/j.mri.2021.09.012_bb0305) 2000; 20
Thomas (10.1016/j.mri.2021.09.012_bb0070) 1977; 2
References_xml – volume: 4
  start-page: 517
  year: 2014
  end-page: 525
  ident: bb0130
  article-title: Impact of neonate haematocrit variability on the longitudinal relaxation time of blood: implications for arterial spin labelling MRI
  publication-title: NeuroImage Clin
– volume: 1
  start-page: 604
  year: 1985
  end-page: 609
  ident: bb0050
  article-title: Regulation of cerebral blood flow in response to changes in blood viscosity
  publication-title: Lancet
– volume: 43
  start-page: 11
  year: 2016
  end-page: 27
  ident: bb0280
  article-title: 3D Pseudocontinuous arterial spin labeling in routine clinical practice: a review of clinically significant artifacts
  publication-title: J Magn Reson Imaging
– volume: 39
  start-page: 344
  year: 2018
  end-page: 353
  ident: bb0090
  article-title: Accounting for the role of hematocrit in between-subject variations of MRI-derived baseline cerebral hemodynamic parameters and functional BOLD responses
  publication-title: Hum Brain Mapp
– volume: 19
  start-page: 65
  year: 2005
  end-page: 74
  ident: bb0160
  article-title: Human cerebral circulation: positron emission tomography studies
  publication-title: Ann Nucl Med
– volume: 108
  start-page: 81
  year: 1985
  end-page: 93
  ident: bb0055
  article-title: Fundamental importance of arterial oxygen content in the regulation of cerebral blood flow in man
  publication-title: Brain
– volume: 16
  start-page: 546
  year: 1984
  end-page: 552
  ident: bb0005
  article-title: Physiological responses to focal cerebral ischemia in humans
  publication-title: Ann Neurol
– volume: 49
  start-page: 50
  year: 2008
  end-page: 59
  ident: bb0170
  article-title: Quantification of cerebral blood flow and oxygen metabolism with 3-dimensional PET and 15O: validation by comparison with 2-dimensional PET
  publication-title: J Nucl Med
– volume: 48
  start-page: 242
  year: 2002
  end-page: 254
  ident: bb0195
  article-title: Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 tesla
  publication-title: Magn Reson Med
– volume: 31
  start-page: 578
  year: 2004
  end-page: 589
  ident: bb0210
  article-title: Cerebral blood flow SPET in transient global amnesia with automated ROI analysis by 3DSRT
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 34
  start-page: 776
  year: 2014
  end-page: 784
  ident: bb0245
  article-title: Arterial spin labeling characterization of cerebral perfusion during normal maturation from late childhood into adulthood: normal ‘reference range’ values and their use in clinical studies
  publication-title: J Cereb Blood Flow Metab
– volume: 77
  start-page: 2296
  year: 2017
  end-page: 2302
  ident: bb0105
  article-title: Fast measurement of blood T1 in the human carotid artery at 3T: accuracy, precision, and reproducibility
  publication-title: Magn Reson Med
– volume: 2
  start-page: 161
  year: 1977
  end-page: 163
  ident: bb0070
  article-title: Cerebral blood-flow in polycythaemia
  publication-title: Lancet
– volume: 19
  start-page: 1466
  year: 1988
  end-page: 1469
  ident: bb0260
  article-title: Transcranial Doppler measurements of the middle cerebral artery
  publication-title: Effect Hematocrit Stroke
– volume: 41
  start-page: 430
  year: 2020
  end-page: 436
  ident: bb0290
  article-title: High intravascular signal arterial transit time artifacts have negligible effects on cerebral blood flow and cerebrovascular reserve capacity measurement using single Postlabel delay arterial spin-labeling in patients with Moyamoya disease
  publication-title: AJNR Am J Neuroradiol
– volume: 46
  start-page: 29
  year: 2019
  end-page: 35
  ident: bb0120
  article-title: Effect of blood T1 estimation strategy on arterial spin labeled cerebral blood flow quantification in children and young adults with kidney disease
  publication-title: J Neuroradiol
– volume: 37
  start-page: PS04
  year: 2017
  end-page: PS076
  ident: bb0190
  article-title: Effect of background suppression and motion correction on pseudo-continuous arterial spin labeling CBF measurement (Abstract)
  publication-title: J Cereb Blood Flow Metab
– volume: 57
  start-page: 1181
  year: 2015
  end-page: 1202
  ident: bb0030
  article-title: A neuroradiologist’s guide to arterial spin labeling MRI in clinical practice
  publication-title: Neuroradiology
– volume: 1
  start-page: 413
  year: 1981
  end-page: 417
  ident: bb0065
  article-title: Effects of hematocrit variations on cerebral blood flow and oxygen transport in ischemic cerebrovascular disease
  publication-title: J Cereb Blood Flow Metab
– volume: 47
  start-page: 137
  year: 2018
  end-page: 146
  ident: bb0145
  article-title: Pseudo continuous arterial spin labeling quantification in anemic subjects with hyperemic cerebral blood flow
  publication-title: Magn Reson Imaging
– volume: 20
  start-page: 1237
  year: 2000
  end-page: 1251
  ident: bb0300
  article-title: Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: I. theory, error analysis, and stereologic comparison
  publication-title: J Cereb Blood Flow Metab
– volume: 30
  start-page: 1296
  year: 2010
  end-page: 1305
  ident: bb0080
  article-title: Interindividual variations of cerebral blood flow, oxygen delivery, and metabolism in relation to hemoglobin concentration measured by positron emission tomography in humans
  publication-title: J Cereb Blood Flow Metab
– volume: 77
  start-page: 1841
  year: 2017
  end-page: 1852
  ident: bb0265
  article-title: Measuring the labeling efficiency of pseudocontinuous arterial spin labeling
  publication-title: Magn Reson Med
– volume: 52
  start-page: 679
  year: 2004
  end-page: 682
  ident: bb0095
  article-title: Determining the longitudinal relaxation time (T1) of blood at 3.0 tesla
  publication-title: Magn Reson Med
– volume: 20
  start-page: 131
  year: 2006
  end-page: 138
  ident: bb0310
  article-title: Database of normal human cerebral blood flow measured by SPECT: I. comparison between I-123-IMP, Tc-99m-HMPAO, and Tc-99m-ECD as referred with O-15 labeled water PET and voxel-based morphometry
  publication-title: Ann Nucl Med
– volume: 38
  start-page: 1461
  year: 2018
  end-page: 1480
  ident: bb0115
  article-title: Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow
  publication-title: J Cereb Blood Flow Metab
– volume: 27
  start-page: 116
  year: 2014
  end-page: 128
  ident: bb0250
  article-title: Three-dimensional whole-brain perfusion quantification using pseudo-continuous arterial spin labeling MRI at multiple post-labeling delays: accounting for both arterial transit time and impulse response function
  publication-title: NMR Biomed
– volume: 19
  start-page: 1163
  year: 2003
  end-page: 1169
  ident: bb0205
  article-title: Regional distribution of human cerebral vascular mean transit time measured by positron emission tomography
  publication-title: Neuroimage
– volume: 252
  start-page: 797
  year: 2009
  end-page: 807
  ident: bb0285
  article-title: Arterial spin-label imaging in patients with normal bolus perfusion-weighted MR imaging findings: pilot identification of the borderzone sign
  publication-title: Radiology
– volume: 40
  start-page: 1
  year: 2014
  end-page: 10
  ident: bb0225
  article-title: An introduction to ASL labeling techniques
  publication-title: J Magn Reson Imaging
– volume: 63
  start-page: 765
  year: 2010
  end-page: 771
  ident: bb0255
  article-title: Estimation of labeling efficiency in pseudocontinuous arterial spin labeling
  publication-title: Magn Reson Med
– volume: 12
  start-page: 745
  year: 1992
  end-page: 749
  ident: bb0075
  article-title: Increased cerebral blood flow in anemic patients on long-term hemodialytic treatment
  publication-title: J Cereb Blood Flow Metab
– volume: 39
  start-page: 173
  year: 2019
  end-page: 181
  ident: bb0165
  article-title: Spatial coefficient of variation in pseudo-continuous arterial spin labeling cerebral blood flow images as a hemodynamic measure for cerebrovascular steno-occlusive disease: a comparative (15)O positron emission tomography study
  publication-title: J Cereb Blood Flow Metab
– volume: 1
  start-page: 310
  year: 1984
  end-page: 314
  ident: bb0010
  article-title: Evaluation of cerebral perfusion reserve in patients with carotid-artery occlusion
  publication-title: Lancet
– start-page: 30(2)
  year: 2017
  ident: bb0140
  article-title: Cerebral hemodynamics and pseudo-continuous arterial spin labeling considerations in adults with sickle cell anemia
  publication-title: NMR Biomed
– volume: 35
  start-page: 779
  year: 2012
  end-page: 787
  ident: bb0150
  article-title: Arterial spin labeling measurement of cerebral perfusion in children with sickle cell disease
  publication-title: J Magn Reson Imaging
– volume: 79
  start-page: 1922
  year: 2018
  end-page: 1930
  ident: bb0270
  article-title: Simultaneous measurement of brain perfusion and labeling efficiency in a single pseudo-continuous arterial spin labeling scan
  publication-title: Magn Reson Med
– volume: 73
  start-page: 102
  year: 2015
  end-page: 116
  ident: bb0025
  article-title: Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia
  publication-title: Magn Reson Med
– volume: 35
  start-page: 1026
  year: 2012
  end-page: 1037
  ident: bb0020
  article-title: Applications of arterial spin labeled MRI in the brain
  publication-title: J Magn Reson Imaging
– volume: 36
  start-page: 370
  year: 2016
  end-page: 374
  ident: bb0100
  article-title: A general model to calculate the spin-lattice (T1) relaxation time of blood, accounting for haematocrit, oxygen saturation and magnetic field strength
  publication-title: J Cereb Blood Flow Metab
– volume: 27
  start-page: 1387
  year: 2014
  end-page: 1396
  ident: bb0040
  article-title: Evaluation of segmented 3D acquisition schemes for whole-brain high-resolution arterial spin labeling at 3 T
  publication-title: NMR Biomed
– volume: 33
  start-page: 787
  year: 2013
  end-page: 792
  ident: bb0085
  article-title: Sources of variability of resting cerebral blood flow in healthy subjects: a study using (1)(3)(3)Xe SPECT measurements
  publication-title: J Cereb Blood Flow Metab
– volume: 84
  start-page: 2523
  year: 2020
  end-page: 2536
  ident: bb0275
  article-title: Supporting measurements or more averages? How to quantify cerebral blood flow most reliably in 5 minutes by arterial spin labeling
  publication-title: Magn Reson Med
– volume: 27
  start-page: 335
  year: 2013
  end-page: 345
  ident: bb0175
  article-title: Impact of subject head motion on quantitative brain (15)O PET and its correction by image-based registration algorithm
  publication-title: Ann Nucl Med
– volume: 281
  start-page: 337
  year: 2016
  end-page: 356
  ident: bb0035
  article-title: Arterial spin labeling perfusion of the brain: emerging clinical applications
  publication-title: Radiology
– volume: 36
  start-page: 842
  year: 2016
  end-page: 861
  ident: bb0110
  article-title: Comparison of cerebral blood flow measurement with [15O]-water positron emission tomography and arterial spin labeling magnetic resonance imaging: a systematic review
  publication-title: J Cereb Blood Flow Metab
– volume: 23
  start-page: 217
  year: 2009
  end-page: 227
  ident: bb0015
  article-title: Clinical impact of hemodynamic parameter measurement for cerebrovascular disease using positron emission tomography and (15)O-labeled tracers
  publication-title: Ann Nucl Med
– start-page: 623
  year: 2009
  ident: bb0185
  article-title: Evaluation of new ASL 3D GRASE sequences using parallel imaging, segmented and interleaved k-space at 3T with 12-and 32-channel coils
  publication-title: Proc ISMRM 21th Annual Meeting (Honolulu, Hawaii, USA)
– volume: 38
  start-page: 603
  year: 2018
  end-page: 626
  ident: bb0230
  article-title: Arterial spin labeling for the measurement of cerebral perfusion and angiography
  publication-title: J Cereb Blood Flow Metab
– volume: 29
  start-page: 5549
  year: 2019
  end-page: 5558
  ident: bb0155
  article-title: Cortical cerebral blood flow in ageing: effects of haematocrit, sex, ethnicity and diabetes
  publication-title: Eur Radiol
– volume: 9
  start-page: 454
  year: 1981
  end-page: 457
  ident: bb0060
  article-title: Cerebral blood flow following normovolemic hemodilution in patients with high hematocrit
  publication-title: Ann Neurol
– volume: 54
  start-page: 491
  year: 2005
  end-page: 498
  ident: bb0180
  article-title: Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements
  publication-title: Magn Reson Med
– volume: 92
  start-page: 182
  year: 2014
  end-page: 192
  ident: bb0135
  article-title: Accuracy and precision of pseudo-continuous arterial spin labeling perfusion during baseline and hypercapnia: a head-to-head comparison with (1)(5)O H(2)O positron emission tomography
  publication-title: Neuroimage
– volume: 11
  year: 2016
  ident: bb0235
  article-title: Arterial transit time mapping obtained by pulsed continuous 3D ASL imaging with multiple post-label delay acquisitions: comparative study with PET-CBF in patients with chronic occlusive cerebrovascular disease
  publication-title: PLoS One
– volume: 5
  start-page: 65
  year: 1985
  end-page: 69
  ident: bb0200
  article-title: What is the correct value for the brain--blood partition coefficient for water?
  publication-title: J Cereb Blood Flow Metab
– volume: 37
  start-page: 1727
  year: 2016
  end-page: 1732
  ident: bb0125
  article-title: In vivo T1 of blood measurements in children with sickle cell disease improve cerebral blood flow quantification from arterial spin-labeling MRI
  publication-title: AJNR Am J Neuroradiol
– volume: 20
  start-page: 1252
  year: 2000
  end-page: 1263
  ident: bb0305
  article-title: Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: II. Normal values and gray matter blood flow response to visual activation
  publication-title: J Cereb Blood Flow Metab
– volume: 35
  start-page: 1280
  year: 2015
  end-page: 1288
  ident: bb0215
  article-title: Reliability of CT perfusion-derived CBF in relation to hemodynamic compromise in patients with cerebrovascular steno-occlusive disease: a comparative study with 15O PET
  publication-title: J Cereb Blood Flow Metab
– volume: 38
  start-page: 5260
  year: 2017
  end-page: 5273
  ident: bb0045
  article-title: Comparison of Pasl, Pcasl, and background-suppressed 3d Pcasl in mild cognitive impairment
  publication-title: Hum Brain Mapp
– volume: 23
  start-page: 627
  year: 2009
  end-page: 638
  ident: bb0295
  article-title: Evaluation of dynamic row-action maximum likelihood algorithm reconstruction for quantitative 15O brain PET
  publication-title: Ann Nucl Med
– volume: 65
  start-page: 1297
  year: 2011
  end-page: 1304
  ident: bb0220
  article-title: Fast measurement of blood T1 in the human jugular vein at 3 tesla
  publication-title: Magn Reson Med
– volume: 33
  year: 2020
  ident: bb0240
  article-title: The costs and benefits of estimating T1 of tissue alongside cerebral blood flow and arterial transit time in pseudo-continuous arterial spin labeling
  publication-title: NMR Biomed
– volume: 252
  start-page: 797
  issue: 3
  year: 2009
  ident: 10.1016/j.mri.2021.09.012_bb0285
  article-title: Arterial spin-label imaging in patients with normal bolus perfusion-weighted MR imaging findings: pilot identification of the borderzone sign
  publication-title: Radiology
  doi: 10.1148/radiol.2523082018
– volume: 41
  start-page: 430
  issue: 3
  year: 2020
  ident: 10.1016/j.mri.2021.09.012_bb0290
  article-title: High intravascular signal arterial transit time artifacts have negligible effects on cerebral blood flow and cerebrovascular reserve capacity measurement using single Postlabel delay arterial spin-labeling in patients with Moyamoya disease
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A6411
– volume: 31
  start-page: 578
  issue: 4
  year: 2004
  ident: 10.1016/j.mri.2021.09.012_bb0210
  article-title: Cerebral blood flow SPET in transient global amnesia with automated ROI analysis by 3DSRT
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-003-1406-8
– volume: 40
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.mri.2021.09.012_bb0225
  article-title: An introduction to ASL labeling techniques
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24565
– volume: 35
  start-page: 1026
  issue: 5
  year: 2012
  ident: 10.1016/j.mri.2021.09.012_bb0020
  article-title: Applications of arterial spin labeled MRI in the brain
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.23581
– volume: 36
  start-page: 370
  issue: 2
  year: 2016
  ident: 10.1016/j.mri.2021.09.012_bb0100
  article-title: A general model to calculate the spin-lattice (T1) relaxation time of blood, accounting for haematocrit, oxygen saturation and magnetic field strength
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1177/0271678X15605856
– volume: 19
  start-page: 1466
  issue: 12
  year: 1988
  ident: 10.1016/j.mri.2021.09.012_bb0260
  article-title: Transcranial Doppler measurements of the middle cerebral artery
  publication-title: Effect Hematocrit Stroke
– volume: 35
  start-page: 1280
  issue: 8
  year: 2015
  ident: 10.1016/j.mri.2021.09.012_bb0215
  article-title: Reliability of CT perfusion-derived CBF in relation to hemodynamic compromise in patients with cerebrovascular steno-occlusive disease: a comparative study with 15O PET
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.2015.39
– volume: 38
  start-page: 603
  issue: 4
  year: 2018
  ident: 10.1016/j.mri.2021.09.012_bb0230
  article-title: Arterial spin labeling for the measurement of cerebral perfusion and angiography
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1177/0271678X17743240
– volume: 35
  start-page: 779
  issue: 4
  year: 2012
  ident: 10.1016/j.mri.2021.09.012_bb0150
  article-title: Arterial spin labeling measurement of cerebral perfusion in children with sickle cell disease
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.23505
– volume: 19
  start-page: 1163
  issue: 3
  year: 2003
  ident: 10.1016/j.mri.2021.09.012_bb0205
  article-title: Regional distribution of human cerebral vascular mean transit time measured by positron emission tomography
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00156-3
– volume: 37
  start-page: PS04
  issue: 1_suppl
  year: 2017
  ident: 10.1016/j.mri.2021.09.012_bb0190
  article-title: Effect of background suppression and motion correction on pseudo-continuous arterial spin labeling CBF measurement (Abstract)
  publication-title: J Cereb Blood Flow Metab
– volume: 27
  start-page: 116
  issue: 2
  year: 2014
  ident: 10.1016/j.mri.2021.09.012_bb0250
  article-title: Three-dimensional whole-brain perfusion quantification using pseudo-continuous arterial spin labeling MRI at multiple post-labeling delays: accounting for both arterial transit time and impulse response function
  publication-title: NMR Biomed
  doi: 10.1002/nbm.3040
– volume: 73
  start-page: 102
  issue: 1
  year: 2015
  ident: 10.1016/j.mri.2021.09.012_bb0025
  article-title: Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25197
– volume: 49
  start-page: 50
  issue: 1
  year: 2008
  ident: 10.1016/j.mri.2021.09.012_bb0170
  article-title: Quantification of cerebral blood flow and oxygen metabolism with 3-dimensional PET and 15O: validation by comparison with 2-dimensional PET
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.107.044008
– volume: 65
  start-page: 1297
  issue: 5
  year: 2011
  ident: 10.1016/j.mri.2021.09.012_bb0220
  article-title: Fast measurement of blood T1 in the human jugular vein at 3 tesla
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22723
– volume: 92
  start-page: 182
  year: 2014
  ident: 10.1016/j.mri.2021.09.012_bb0135
  article-title: Accuracy and precision of pseudo-continuous arterial spin labeling perfusion during baseline and hypercapnia: a head-to-head comparison with (1)(5)O H(2)O positron emission tomography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.02.011
– volume: 52
  start-page: 679
  issue: 3
  year: 2004
  ident: 10.1016/j.mri.2021.09.012_bb0095
  article-title: Determining the longitudinal relaxation time (T1) of blood at 3.0 tesla
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20178
– volume: 46
  start-page: 29
  issue: 1
  year: 2019
  ident: 10.1016/j.mri.2021.09.012_bb0120
  article-title: Effect of blood T1 estimation strategy on arterial spin labeled cerebral blood flow quantification in children and young adults with kidney disease
  publication-title: J Neuroradiol
  doi: 10.1016/j.neurad.2018.03.002
– volume: 4
  start-page: 517
  year: 2014
  ident: 10.1016/j.mri.2021.09.012_bb0130
  article-title: Impact of neonate haematocrit variability on the longitudinal relaxation time of blood: implications for arterial spin labelling MRI
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2014.03.006
– volume: 33
  start-page: 787
  issue: 5
  year: 2013
  ident: 10.1016/j.mri.2021.09.012_bb0085
  article-title: Sources of variability of resting cerebral blood flow in healthy subjects: a study using (1)(3)(3)Xe SPECT measurements
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.2013.17
– volume: 47
  start-page: 137
  year: 2018
  ident: 10.1016/j.mri.2021.09.012_bb0145
  article-title: Pseudo continuous arterial spin labeling quantification in anemic subjects with hyperemic cerebral blood flow
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2017.12.011
– volume: 281
  start-page: 337
  issue: 2
  year: 2016
  ident: 10.1016/j.mri.2021.09.012_bb0035
  article-title: Arterial spin labeling perfusion of the brain: emerging clinical applications
  publication-title: Radiology
  doi: 10.1148/radiol.2016150789
– volume: 1
  start-page: 604
  issue: 8429
  year: 1985
  ident: 10.1016/j.mri.2021.09.012_bb0050
  article-title: Regulation of cerebral blood flow in response to changes in blood viscosity
  publication-title: Lancet
  doi: 10.1016/S0140-6736(85)92145-2
– volume: 37
  start-page: 1727
  issue: 9
  year: 2016
  ident: 10.1016/j.mri.2021.09.012_bb0125
  article-title: In vivo T1 of blood measurements in children with sickle cell disease improve cerebral blood flow quantification from arterial spin-labeling MRI
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A4793
– volume: 23
  start-page: 217
  issue: 3
  year: 2009
  ident: 10.1016/j.mri.2021.09.012_bb0015
  article-title: Clinical impact of hemodynamic parameter measurement for cerebrovascular disease using positron emission tomography and (15)O-labeled tracers
  publication-title: Ann Nucl Med
  doi: 10.1007/s12149-009-0235-7
– volume: 1
  start-page: 413
  issue: 4
  year: 1981
  ident: 10.1016/j.mri.2021.09.012_bb0065
  article-title: Effects of hematocrit variations on cerebral blood flow and oxygen transport in ischemic cerebrovascular disease
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.1981.45
– volume: 30
  start-page: 1296
  issue: 7
  year: 2010
  ident: 10.1016/j.mri.2021.09.012_bb0080
  article-title: Interindividual variations of cerebral blood flow, oxygen delivery, and metabolism in relation to hemoglobin concentration measured by positron emission tomography in humans
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.2010.13
– volume: 29
  start-page: 5549
  issue: 10
  year: 2019
  ident: 10.1016/j.mri.2021.09.012_bb0155
  article-title: Cortical cerebral blood flow in ageing: effects of haematocrit, sex, ethnicity and diabetes
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06096-w
– volume: 43
  start-page: 11
  issue: 1
  year: 2016
  ident: 10.1016/j.mri.2021.09.012_bb0280
  article-title: 3D Pseudocontinuous arterial spin labeling in routine clinical practice: a review of clinically significant artifacts
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24873
– volume: 20
  start-page: 1252
  issue: 8
  year: 2000
  ident: 10.1016/j.mri.2021.09.012_bb0305
  article-title: Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: II. Normal values and gray matter blood flow response to visual activation
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1097/00004647-200008000-00010
– volume: 84
  start-page: 2523
  issue: 5
  year: 2020
  ident: 10.1016/j.mri.2021.09.012_bb0275
  article-title: Supporting measurements or more averages? How to quantify cerebral blood flow most reliably in 5 minutes by arterial spin labeling
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28314
– volume: 16
  start-page: 546
  issue: 5
  year: 1984
  ident: 10.1016/j.mri.2021.09.012_bb0005
  article-title: Physiological responses to focal cerebral ischemia in humans
  publication-title: Ann Neurol
  doi: 10.1002/ana.410160504
– volume: 12
  start-page: 745
  issue: 5
  year: 1992
  ident: 10.1016/j.mri.2021.09.012_bb0075
  article-title: Increased cerebral blood flow in anemic patients on long-term hemodialytic treatment
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.1992.105
– start-page: 623
  year: 2009
  ident: 10.1016/j.mri.2021.09.012_bb0185
  article-title: Evaluation of new ASL 3D GRASE sequences using parallel imaging, segmented and interleaved k-space at 3T with 12-and 32-channel coils
  publication-title: Proc ISMRM 21th Annual Meeting (Honolulu, Hawaii, USA)
– volume: 77
  start-page: 1841
  issue: 5
  year: 2017
  ident: 10.1016/j.mri.2021.09.012_bb0265
  article-title: Measuring the labeling efficiency of pseudocontinuous arterial spin labeling
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26266
– volume: 57
  start-page: 1181
  issue: 12
  year: 2015
  ident: 10.1016/j.mri.2021.09.012_bb0030
  article-title: A neuroradiologist’s guide to arterial spin labeling MRI in clinical practice
  publication-title: Neuroradiology
  doi: 10.1007/s00234-015-1571-z
– volume: 108
  start-page: 81
  issue: Pt 1
  year: 1985
  ident: 10.1016/j.mri.2021.09.012_bb0055
  article-title: Fundamental importance of arterial oxygen content in the regulation of cerebral blood flow in man
  publication-title: Brain
  doi: 10.1093/brain/108.1.81
– volume: 23
  start-page: 627
  issue: 7
  year: 2009
  ident: 10.1016/j.mri.2021.09.012_bb0295
  article-title: Evaluation of dynamic row-action maximum likelihood algorithm reconstruction for quantitative 15O brain PET
  publication-title: Ann Nucl Med
  doi: 10.1007/s12149-009-0280-2
– start-page: 30(2)
  year: 2017
  ident: 10.1016/j.mri.2021.09.012_bb0140
  article-title: Cerebral hemodynamics and pseudo-continuous arterial spin labeling considerations in adults with sickle cell anemia
  publication-title: NMR Biomed
– volume: 39
  start-page: 173
  issue: 1
  year: 2019
  ident: 10.1016/j.mri.2021.09.012_bb0165
  article-title: Spatial coefficient of variation in pseudo-continuous arterial spin labeling cerebral blood flow images as a hemodynamic measure for cerebrovascular steno-occlusive disease: a comparative (15)O positron emission tomography study
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1177/0271678X18781667
– volume: 27
  start-page: 1387
  issue: 11
  year: 2014
  ident: 10.1016/j.mri.2021.09.012_bb0040
  article-title: Evaluation of segmented 3D acquisition schemes for whole-brain high-resolution arterial spin labeling at 3 T
  publication-title: NMR Biomed
  doi: 10.1002/nbm.3201
– volume: 19
  start-page: 65
  issue: 2
  year: 2005
  ident: 10.1016/j.mri.2021.09.012_bb0160
  article-title: Human cerebral circulation: positron emission tomography studies
  publication-title: Ann Nucl Med
  doi: 10.1007/BF03027383
– volume: 27
  start-page: 335
  issue: 4
  year: 2013
  ident: 10.1016/j.mri.2021.09.012_bb0175
  article-title: Impact of subject head motion on quantitative brain (15)O PET and its correction by image-based registration algorithm
  publication-title: Ann Nucl Med
  doi: 10.1007/s12149-013-0690-z
– volume: 9
  start-page: 454
  issue: 5
  year: 1981
  ident: 10.1016/j.mri.2021.09.012_bb0060
  article-title: Cerebral blood flow following normovolemic hemodilution in patients with high hematocrit
  publication-title: Ann Neurol
  doi: 10.1002/ana.410090507
– volume: 38
  start-page: 5260
  issue: 10
  year: 2017
  ident: 10.1016/j.mri.2021.09.012_bb0045
  article-title: Comparison of Pasl, Pcasl, and background-suppressed 3d Pcasl in mild cognitive impairment
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23732
– volume: 48
  start-page: 242
  issue: 2
  year: 2002
  ident: 10.1016/j.mri.2021.09.012_bb0195
  article-title: Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 tesla
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10211
– volume: 20
  start-page: 1237
  issue: 8
  year: 2000
  ident: 10.1016/j.mri.2021.09.012_bb0300
  article-title: Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: I. theory, error analysis, and stereologic comparison
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1097/00004647-200008000-00009
– volume: 5
  start-page: 65
  issue: 1
  year: 1985
  ident: 10.1016/j.mri.2021.09.012_bb0200
  article-title: What is the correct value for the brain--blood partition coefficient for water?
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.1985.9
– volume: 11
  issue: 6
  year: 2016
  ident: 10.1016/j.mri.2021.09.012_bb0235
  article-title: Arterial transit time mapping obtained by pulsed continuous 3D ASL imaging with multiple post-label delay acquisitions: comparative study with PET-CBF in patients with chronic occlusive cerebrovascular disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0156005
– volume: 77
  start-page: 2296
  issue: 6
  year: 2017
  ident: 10.1016/j.mri.2021.09.012_bb0105
  article-title: Fast measurement of blood T1 in the human carotid artery at 3T: accuracy, precision, and reproducibility
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26325
– volume: 1
  start-page: 310
  issue: 8372
  year: 1984
  ident: 10.1016/j.mri.2021.09.012_bb0010
  article-title: Evaluation of cerebral perfusion reserve in patients with carotid-artery occlusion
  publication-title: Lancet
  doi: 10.1016/S0140-6736(84)90361-1
– volume: 54
  start-page: 491
  issue: 2
  year: 2005
  ident: 10.1016/j.mri.2021.09.012_bb0180
  article-title: Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20580
– volume: 2
  start-page: 161
  issue: 8030
  year: 1977
  ident: 10.1016/j.mri.2021.09.012_bb0070
  article-title: Cerebral blood-flow in polycythaemia
  publication-title: Lancet
  doi: 10.1016/S0140-6736(77)90179-9
– volume: 36
  start-page: 842
  issue: 5
  year: 2016
  ident: 10.1016/j.mri.2021.09.012_bb0110
  article-title: Comparison of cerebral blood flow measurement with [15O]-water positron emission tomography and arterial spin labeling magnetic resonance imaging: a systematic review
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1177/0271678X16636393
– volume: 79
  start-page: 1922
  issue: 4
  year: 2018
  ident: 10.1016/j.mri.2021.09.012_bb0270
  article-title: Simultaneous measurement of brain perfusion and labeling efficiency in a single pseudo-continuous arterial spin labeling scan
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26842
– volume: 33
  issue: 12
  year: 2020
  ident: 10.1016/j.mri.2021.09.012_bb0240
  article-title: The costs and benefits of estimating T1 of tissue alongside cerebral blood flow and arterial transit time in pseudo-continuous arterial spin labeling
  publication-title: NMR Biomed
  doi: 10.1002/nbm.4182
– volume: 39
  start-page: 344
  issue: 1
  year: 2018
  ident: 10.1016/j.mri.2021.09.012_bb0090
  article-title: Accounting for the role of hematocrit in between-subject variations of MRI-derived baseline cerebral hemodynamic parameters and functional BOLD responses
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23846
– volume: 63
  start-page: 765
  issue: 3
  year: 2010
  ident: 10.1016/j.mri.2021.09.012_bb0255
  article-title: Estimation of labeling efficiency in pseudocontinuous arterial spin labeling
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22245
– volume: 38
  start-page: 1461
  issue: 9
  year: 2018
  ident: 10.1016/j.mri.2021.09.012_bb0115
  article-title: Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1177/0271678X17713434
– volume: 20
  start-page: 131
  issue: 2
  year: 2006
  ident: 10.1016/j.mri.2021.09.012_bb0310
  article-title: Database of normal human cerebral blood flow measured by SPECT: I. comparison between I-123-IMP, Tc-99m-HMPAO, and Tc-99m-ECD as referred with O-15 labeled water PET and voxel-based morphometry
  publication-title: Ann Nucl Med
  doi: 10.1007/BF02985625
– volume: 34
  start-page: 776
  issue: 5
  year: 2014
  ident: 10.1016/j.mri.2021.09.012_bb0245
  article-title: Arterial spin labeling characterization of cerebral perfusion during normal maturation from late childhood into adulthood: normal ‘reference range’ values and their use in clinical studies
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.2014.17
SSID ssj0005235
Score 2.357828
Snippet In cerebral blood flow (CBF) quantification with pseudo-continuous arterial spin labeling (pCASL) MRI, arterial blood T1 (T1a) is usually fixed to a typical...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 58
SubjectTerms Arterial blood T1
Cerebral blood flow
Hematocrit
Positron emission tomography
Pseudo-continuous arterial spin labeling
Title Effect of hematocrit on cerebral blood flow measured by pseudo-continuous arterial spin labeling MRI: A comparative study with 15O-water positron emission tomography
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X21001636
https://dx.doi.org/10.1016/j.mri.2021.09.012
https://www.proquest.com/docview/2576656602
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6iIL6IV7xzBJ-EurbpZfVtiGMqTvACvoUky6CytaPbGL74b_yfnpO23kAFH1Ny0pJzei7Jly-MHWEOolQoI0d5TYUFisFfyoSRg-rW2FBEUUVoi27UeQguH8PHOXZWn4UhWGXl-0ufbr119aRRzWZjlKaNOzLO2Mdii2iEcEw6wR7EZOUnL59hHuUlm9jZod71zqbFeA2LFEtE37NUp57_U2z65qVt6GmvsOUqZ4RW-VmrbM5ka2zxutoVX2evJQUx5H2wFKw5egJsZaBNQfvCA7DwdOgP8hkMy0XBHqhnGI3NtJc7BFdPs2k-HYNFeKJJwniUZoAWYo-rw_XtxSm0QH9QhYPlpQVaxgUvvHFmmLMWYCFgBb6ZbpGjdTiY5MOKFHuDPbTP7886TnX9gqN5yCeorjgwLm8qGaiQm7gXm8SV3JVupPtShZpzje3IJARWieMIdR4bLPckTq7BiLjJ5rM8M1sMmpHkPg906PUwnUh4or2m9HyMz5jA8UhtM7eeeKErbnK6ImMgahDak0BdCdKVcBOButpmx-8io5KY47fOfq1NUZ84RR8pMGz8JhS8C30xyb_EDmtzETjXtP8iM4MqFFTbUfrs-jv_G3qXLVGrRNPssflJMTX7mBNN1IE1-gO20Lq46nTfAPjgDKw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEB62WWh7KX3S7XMKPRVMbMuy497C0iXpblJod2FvQlIUcEns4CQs_UH9n52R5e0DuoUeZWtsoxnPQ_r0CeAt5SDGSJ1HJhkZKlAc_VJO5hGp21LDMEUVoy3m-eQi-3gpLw_guN8Lw7DK4Ps7n-69dbgyDKM53FTV8AsbZ5FSscU0QvTMW3DI7FRyAIfj6elk_gvSoztnk_pHLNAvbnqY17qtqEpME892mqR_C09_OGoffU7uw72QNuK4-7IHcODqh3B7FhbGH8H3joUYmyV6FtaGnAG1arSu5aXhFXqEOi5XzRWuu3nBBZpvuNm6_aKJGLFe1ftmv0UP8iSrxO2mqpGMxO9Yx9nn6Xsco_3JFo6emhZ5JhcT-Sm6orS1RY8Ca-nNfJAcT8XhrlkHXuzHcHHy4fx4EoUTGCIrpNiRxorMxWJkdGakcMWicGWsRazj3C61kVYIS-3clYxXKYqc1F44qvg0Da6joPgEBnVTu6eAo1yLVGRWJgvKKEpR2mSkk5RCNOVwIjdHEPcDr2ygJ-dTMlaqx6F9VaQrxbpScalIV0fw7lpk03Fz3NQ57bWp-k2n5CYVRY6bhLJrod-s8l9ib3pzUTTWvASja0cqVFzecQYdp8_-79Gv4c7kfHamzqbz0-dwl-904JoXMNi1e_eSUqSdeRV-gR8fGA9d
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+hematocrit+on+cerebral+blood+flow+measured+by+pseudo-continuous+arterial+spin+labeling+MRI%3A+A+comparative+study+with+15O-water+positron+emission+tomography&rft.jtitle=Magnetic+resonance+imaging&rft.au=Ibaraki%2C+Masanobu&rft.au=Nakamura%2C+Kazuhiro&rft.au=Matsubara%2C+Keisuke&rft.au=Shinohara%2C+Yuki&rft.date=2021-12-01&rft.issn=1873-5894&rft.eissn=1873-5894&rft.volume=84&rft.spage=58&rft_id=info:doi/10.1016%2Fj.mri.2021.09.012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon