On the Thermodynamics of Thin Films. The Frumkin–Derjaguin Equation
The Frumkin–Derjaguin equation, which is a fundamental relationship in the theory of thin films, relates all surface tensions associated with a wetting film to its disjoining pressure and contact angle. The published ways of proving this relationship have been reviewed and their thermodynamic drawba...
Saved in:
Published in | Colloid journal of the Russian Academy of Sciences Vol. 82; no. 1; pp. 62 - 68 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Frumkin–Derjaguin equation, which is a fundamental relationship in the theory of thin films, relates all surface tensions associated with a wetting film to its disjoining pressure and contact angle. The published ways of proving this relationship have been reviewed and their thermodynamic drawbacks have been analyzed in this work. The relationship has been rigorously derived on the basis of two approaches. The first entails the use of a new thermodynamic potential (
J
potential), which is defined for fluid systems as the grand thermodynamic potential combined with the product of the system volume and some pressure
(here, the pressure in the mother phase of the thin film is used as
). The second approach is based on the Gibbs adsorption equation and entails the use of two dividing surfaces. These approaches yield identical results and suggest that not only temperature, but also all chemical potentials of the film must be fixed when calculating the work of film thinning. The dependence of the contact angle on the disjoining pressure has been considered on the basis of the Young equation. It has been shown that, as the disjoining pressure rises, the thermodynamic surface tension of the film-containing interface increases, while the contact angle decreases. The problems encountered when calculating the contact angles via the disjoining pressure isotherms have been noted. |
---|---|
AbstractList | The Frumkin–Derjaguin equation, which is a fundamental relationship in the theory of thin films, relates all surface tensions associated with a wetting film to its disjoining pressure and contact angle. The published ways of proving this relationship have been reviewed and their thermodynamic drawbacks have been analyzed in this work. The relationship has been rigorously derived on the basis of two approaches. The first entails the use of a new thermodynamic potential (
J
potential), which is defined for fluid systems as the grand thermodynamic potential combined with the product of the system volume and some pressure
(here, the pressure in the mother phase of the thin film is used as
). The second approach is based on the Gibbs adsorption equation and entails the use of two dividing surfaces. These approaches yield identical results and suggest that not only temperature, but also all chemical potentials of the film must be fixed when calculating the work of film thinning. The dependence of the contact angle on the disjoining pressure has been considered on the basis of the Young equation. It has been shown that, as the disjoining pressure rises, the thermodynamic surface tension of the film-containing interface increases, while the contact angle decreases. The problems encountered when calculating the contact angles via the disjoining pressure isotherms have been noted. The Frumkin–Derjaguin equation, which is a fundamental relationship in the theory of thin films, relates all surface tensions associated with a wetting film to its disjoining pressure and contact angle. The published ways of proving this relationship have been reviewed and their thermodynamic drawbacks have been analyzed in this work. The relationship has been rigorously derived on the basis of two approaches. The first entails the use of a new thermodynamic potential (J potential), which is defined for fluid systems as the grand thermodynamic potential combined with the product of the system volume and some pressure (here, the pressure in the mother phase of the thin film is used as ). The second approach is based on the Gibbs adsorption equation and entails the use of two dividing surfaces. These approaches yield identical results and suggest that not only temperature, but also all chemical potentials of the film must be fixed when calculating the work of film thinning. The dependence of the contact angle on the disjoining pressure has been considered on the basis of the Young equation. It has been shown that, as the disjoining pressure rises, the thermodynamic surface tension of the film-containing interface increases, while the contact angle decreases. The problems encountered when calculating the contact angles via the disjoining pressure isotherms have been noted. |
Author | Rusanov, A. I. |
Author_xml | – sequence: 1 givenname: A. I. surname: Rusanov fullname: Rusanov, A. I. email: airusanov@mail.ru organization: Mendeleev Center, St. Petersburg State University |
BookMark | eNp1kM1OAjEUhRuDiYA-gLtJXA_e_sx0ujQIakLCQkzcTUqnhUGmhXZmwY538A19EkswcWFc3Zv7nXNucgaoZ53VCN1iGGFM2f0rhhwLSt8JAAbM-AXq4xyKlELOe3GPOD3xKzQIYQMAOYOijyZzm7RrnSzW2jeuOljZ1CokzsRLbZNpvW3C6ESTqe-aj9p-HT8ftd_IVRfxZN_Jtnb2Gl0auQ365mcO0dt0shg_p7P508v4YZYqmtE2ZYozTUm11LKShmnDmCGgRMWFoKDIUhjCMkFzoIAVVxpyseSCc6gyXrCKDtHdOXfn3b7ToS03rvM2viwJ5RhzkpEiqvBZpbwLwWtT7nzdSH8oMZSntso_bUUPOXtC1NqV9r_J_5u-AQ8KbSQ |
CitedBy_id | crossref_primary_10_1088_1757_899X_1198_1_012011 crossref_primary_10_1007_s13202_024_01793_9 crossref_primary_10_3390_en17061472 crossref_primary_10_1134_S0012501623600092 crossref_primary_10_1134_S1070363222040016 crossref_primary_10_1002_aic_16542 crossref_primary_10_1134_S1061933X20060113 |
Cites_doi | 10.1351/pac199264010111 10.1134/S1061933X10050042 10.1016/0021-9797(78)90142-X 10.1134/S1061933X1905003X 10.1134/S1061933X10030026 10.1134/S1061933X20010135 10.1016/0001-8686(95)00257-Q 10.1070/RCR4879 10.1134/S1061933X10050054 10.1007/978-1-4757-6639-4 10.1016/0039-6028(69)90056-9 10.1515/9783112531709 10.1016/j.colsurfa.2013.11.036 10.1134/S1061933X19060152 10.1134/S1061933X07010061 10.1063/1.4811364 |
ContentType | Journal Article |
Copyright | Pleiades Publishing, Ltd. 2020 2020© Pleiades Publishing, Ltd. 2020 |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2020 – notice: 2020© Pleiades Publishing, Ltd. 2020 |
DBID | AAYXX CITATION |
DOI | 10.1134/S1061933X20010147 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1608-3067 |
EndPage | 68 |
ExternalDocumentID | 10_1134_S1061933X20010147 |
GroupedDBID | -58 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- ML- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P9N PF0 PT4 QOR QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 XU3 YLTOR Z5O Z7V Z7W Z7Y Z85 ZMTXR ~8M ~A9 AACDK AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGRTI AIGIU CITATION H13 |
ID | FETCH-LOGICAL-c353t-4c74e32dbeadaf4ef44f20c9d79930c2b9f2459360301c7ce069b79770d5784d3 |
IEDL.DBID | AGYKE |
ISSN | 1061-933X |
IngestDate | Thu Oct 10 18:25:29 EDT 2024 Sat Sep 14 00:45:37 EDT 2024 Sat Dec 16 12:03:21 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-4c74e32dbeadaf4ef44f20c9d79930c2b9f2459360301c7ce069b79770d5784d3 |
PQID | 2371172528 |
PQPubID | 2043575 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2371172528 crossref_primary_10_1134_S1061933X20010147 springer_journals_10_1134_S1061933X20010147 |
PublicationCentury | 2000 |
PublicationDate | 1-2020 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 1-2020 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: New York |
PublicationTitle | Colloid journal of the Russian Academy of Sciences |
PublicationTitleAbbrev | Colloid J |
PublicationYear | 2020 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | ChuraevN.V.SobolevV.D.Adv. Colloid Interface Sci.19956111:CAS:528:DyaK2MXpsV2nt78%3D10.1016/0001-8686(95)00257-Q BrodskayaE.N.RusanovA.I.KuniF.M.Colloid J.2010726121:CAS:528:DC%2BC3cXhtlSqu7nJ10.1134/S1061933X10050054 RusanovA.I.J. Chem. Phys.20131382461011:STN:280:DC%2BC3sjnvFGgsA%3D%3D10.1063/1.4811364 RusanovA.I.J. Colloid Interface Sci.1978633301:CAS:528:DyaE1cXotVWhtA%3D%3D10.1016/0021-9797(78)90142-X BrodskayaE.N.RusanovA.I.KuniF.M.Colloid J.2010726021:CAS:528:DC%2BC3cXhtlSqu7nM10.1134/S1061933X10050042 Rusanov, A.I., Colloid J., 2020, vol. 82, p. 54. ErikssonJ.C.Surf. Sci.1969142211:CAS:528:DyaF1MXpvF2nug%3D%3D10.1016/0039-6028(69)90056-9 DerjaguinB.V.Zh. Fiz. Khim.194014137 Rusanov, A.I., Fazovye ravnovesiya i poverkhnostnye yavleniya (Phase Equilibria and Surface Phenomena), Leningrad: Khimiya, 1967. DerjaguinB.V.ChuraevN.V.MullerV.M.Surface Forces1987New YorkConsultants Bureau10.1007/978-1-4757-6639-4 RusanovA.I.BrodskayaE.N.Russ. Chem. Rev.2019888371:CAS:528:DC%2BC1MXitlagtbfJ10.1070/RCR4879 ChuraevN.V.SobolevV.D.Kolloidn. Zh.199557888 RusanovA.I.Colloid J.200769391:CAS:528:DC%2BD2sXitFyjsLg%3D10.1134/S1061933X07010061 Rusanov, A.I., Colloid J., 2019, vol. 81, p. 741. RusanovA.I.Colloids Surf. A20144433631:CAS:528:DC%2BC2cXhtlensr0%3D10.1016/j.colsurfa.2013.11.036 BrodskayaE.N.KuniF.M.RusanovA.I.Colloid J.2010723011:CAS:528:DC%2BC3cXotVahtr4%3D10.1134/S1061933X10030026 Derjaguin, B.V. and Churaev, N.V., Smachivayushchie plenki (Wetting Films), Moscow: Nauka, 1984. EsipovaN.E.RusanovA.I.SobolevV.D.ItskovS.V.Colloid J.2019815071:CAS:528:DC%2BC1MXhvVKkt7rO10.1134/S1061933X1905003X DerjaguinB.V.Kolloidn. Zh.195517207 FrumkinA.N.Acta Physicochim. URSS193893131:CAS:528:DyaA1MXltlCmtg%3D%3D FrumkinA.N.Zh. Fiz. Khim.1938123371:CAS:528:DyaA1MXltlCmsQ%3D%3D RusanovA.I.Phasengleichgewichte und Grenzflachenerscheinungen1978BerlinAkademie RusanovA.I.Pure Appl. Chem.1992641111:CAS:528:DyaK38XhtFChsrc%3D10.1351/pac199264010111 DerjaguinB.V.Acta Physicochim. URSS194012181 A.I. Rusanov (8128_CR18) 2014; 443 8128_CR12 8128_CR1 8128_CR19 B.V. Derjaguin (8128_CR5) 1940; 12 E.N. Brodskaya (8128_CR13) 2010; 72 B.V. Derjaguin (8128_CR4) 1940; 14 J.C. Eriksson (8128_CR21) 1969; 14 N.E. Esipova (8128_CR6) 2019; 81 A.I. Rusanov (8128_CR22) 1992; 64 A.I. Rusanov (8128_CR10) 2007; 69 8128_CR8 A.N. Frumkin (8128_CR2) 1938; 12 E.N. Brodskaya (8128_CR15) 2010; 72 A.I. Rusanov (8128_CR20) 1978; 63 A.N. Frumkin (8128_CR3) 1938; 9 B.V. Derjaguin (8128_CR7) 1955; 17 A.I. Rusanov (8128_CR9) 1978 B.V. Derjaguin (8128_CR11) 1987 E.N. Brodskaya (8128_CR14) 2010; 72 A.I. Rusanov (8128_CR17) 2013; 138 N.V. Churaev (8128_CR24) 1995; 61 A.I. Rusanov (8128_CR16) 2019; 88 N.V. Churaev (8128_CR23) 1995; 57 |
References_xml | – volume: 64 start-page: 111 year: 1992 ident: 8128_CR22 publication-title: Pure Appl. Chem. doi: 10.1351/pac199264010111 contributor: fullname: A.I. Rusanov – volume: 12 start-page: 337 year: 1938 ident: 8128_CR2 publication-title: Zh. Fiz. Khim. contributor: fullname: A.N. Frumkin – volume: 72 start-page: 602 year: 2010 ident: 8128_CR14 publication-title: Colloid J. doi: 10.1134/S1061933X10050042 contributor: fullname: E.N. Brodskaya – volume: 63 start-page: 330 year: 1978 ident: 8128_CR20 publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(78)90142-X contributor: fullname: A.I. Rusanov – volume: 81 start-page: 507 year: 2019 ident: 8128_CR6 publication-title: Colloid J. doi: 10.1134/S1061933X1905003X contributor: fullname: N.E. Esipova – ident: 8128_CR8 – ident: 8128_CR12 – volume: 72 start-page: 301 year: 2010 ident: 8128_CR13 publication-title: Colloid J. doi: 10.1134/S1061933X10030026 contributor: fullname: E.N. Brodskaya – ident: 8128_CR19 doi: 10.1134/S1061933X20010135 – volume: 61 start-page: 1 year: 1995 ident: 8128_CR24 publication-title: Adv. Colloid Interface Sci. doi: 10.1016/0001-8686(95)00257-Q contributor: fullname: N.V. Churaev – volume: 9 start-page: 313 year: 1938 ident: 8128_CR3 publication-title: Acta Physicochim. URSS contributor: fullname: A.N. Frumkin – volume: 88 start-page: 837 year: 2019 ident: 8128_CR16 publication-title: Russ. Chem. Rev. doi: 10.1070/RCR4879 contributor: fullname: A.I. Rusanov – volume: 72 start-page: 612 year: 2010 ident: 8128_CR15 publication-title: Colloid J. doi: 10.1134/S1061933X10050054 contributor: fullname: E.N. Brodskaya – volume-title: Surface Forces year: 1987 ident: 8128_CR11 doi: 10.1007/978-1-4757-6639-4 contributor: fullname: B.V. Derjaguin – volume: 14 start-page: 221 year: 1969 ident: 8128_CR21 publication-title: Surf. Sci. doi: 10.1016/0039-6028(69)90056-9 contributor: fullname: J.C. Eriksson – volume: 12 start-page: 181 year: 1940 ident: 8128_CR5 publication-title: Acta Physicochim. URSS contributor: fullname: B.V. Derjaguin – volume-title: Phasengleichgewichte und Grenzflachenerscheinungen year: 1978 ident: 8128_CR9 doi: 10.1515/9783112531709 contributor: fullname: A.I. Rusanov – volume: 14 start-page: 137 year: 1940 ident: 8128_CR4 publication-title: Zh. Fiz. Khim. contributor: fullname: B.V. Derjaguin – volume: 443 start-page: 363 year: 2014 ident: 8128_CR18 publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2013.11.036 contributor: fullname: A.I. Rusanov – ident: 8128_CR1 doi: 10.1134/S1061933X19060152 – volume: 69 start-page: 39 year: 2007 ident: 8128_CR10 publication-title: Colloid J. doi: 10.1134/S1061933X07010061 contributor: fullname: A.I. Rusanov – volume: 138 start-page: 246101 year: 2013 ident: 8128_CR17 publication-title: J. Chem. Phys. doi: 10.1063/1.4811364 contributor: fullname: A.I. Rusanov – volume: 57 start-page: 888 year: 1995 ident: 8128_CR23 publication-title: Kolloidn. Zh. contributor: fullname: N.V. Churaev – volume: 17 start-page: 207 year: 1955 ident: 8128_CR7 publication-title: Kolloidn. Zh. contributor: fullname: B.V. Derjaguin |
SSID | ssj0006408 |
Score | 2.2594795 |
Snippet | The Frumkin–Derjaguin equation, which is a fundamental relationship in the theory of thin films, relates all surface tensions associated with a wetting film to... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 62 |
SubjectTerms | Chemistry Chemistry and Materials Science Contact angle Contact pressure Gibbs adsorption equation Mathematical analysis Polymer Sciences Surface tension Surfaces and Interfaces Thin Films Wetting |
Title | On the Thermodynamics of Thin Films. The Frumkin–Derjaguin Equation |
URI | https://link.springer.com/article/10.1134/S1061933X20010147 https://www.proquest.com/docview/2371172528 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VIgQMPAqIQqkyMIFSHPuSNGNVWhBIMEClMkWNY6NSmkLTLkz8B_4hvwQ7DwoUBuZLHMU-n7_zPT6Awx4JXGYpJ0f3SjPRFpbpOTIw68jq2FM20-VJlu-Vc97Bi67dLQD9vLqIBrU8IpkY6pR2BE9utO-ivO8uTfll3QVY1HWndhEWG2d3l61P--sgSQvgHPVd9UIWy_x1kO-n0Qxi_oiKJodNez0tAIyTHoU6x2RQm06CGn-Z7-D4j__YgLUMexqNVFk2oSCiEiw3c8q3Eqx-6U5YgqUkO5THW9C6jgwFFA2lU-PhKExJ7GNjJA1N-2m0-4_DuKalRns8HQ760fvr26kYP_Tup0rcek7biW9Dp926bZ6bGf-CyZnNJiZyFwWjYaC0rSdRSERJCfdCV4EawmngSYqaEVC7Vdzlgjhe4CpASUJlBzBkO1CMRpHYBYN4VHLCbavuEJRhGNiScUsZN-EhchvLcJSvg_-UttnwE_eEoT83Y2Wo5CvlZzsu9ilzLQXGbFovw3E-8zPxn4Pt_evpfVih2uFO7mAqUJyMp-JAoZJJUM3UsAoLHdr4APtk1RU |
link.rule.ids | 315,783,787,27938,27939,41095,41537,42164,42606,52125,52248 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BESoMCAqIQoEMTKCAY1-SZqxKqwKlDLRSt6hxbFSgKTTtzn_gH_JLsPNB-RyYz3Kks31-L3e-B3A0IIHLLEVydK80E21hmZ4jA7OKrIoDFTNdnlT5dpxWDy_7dj97xx3n1e55SjKJ1KnuCJ7davKi6HefpgKz7iIs6fbqelv3aO0j_DpI0vdvjvqsGp6lMn-d4utlNEeY35KiyV3TXIe1DCQatXRVN2BBRCUo1nNtthKsfmojWILlpIyTx5vQuIkMhegMtfiT0ThM1eZjYywNrc9pNIePo_hUW43mZDZ6GEZvL6_nYnI_uJspc-M57fu9Bb1mo1tvmZlQgsmZzaYmchcFo2GgtsVAopCIkhLuha5CH4TTwJMUtXSf5j_c5YI4XuAq5EdCdWAxZNtQiMaR2AGDeFRywm2r6hCUYRjYknFLRSHhIXIby3Cce8x_Svth-AmPYOj_cG8ZKrlP_exoxD5lrqVQk02rZTjJ_Tw3_znZ7r9GH0Kx1b1u--2LztUerFDNkpMfJxUoTCczsa-gxDQ4SLbOOygZuzE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BK7YDSwFR1hw4gdI69iRpjggaVgESIJVTaBwbsTQtTXrhxD_wh3wJzsbOAXF2YjmZyfhNZvwewHqb-DYzVJKTcKXpaApDdyzp6w1kDWyrmGnztMv32Nq7wIOW2cp1TqOi270oSWZnGhKWpjCu9wKZa5Bg_SxJZFQq3qKZ2Kw9DGU0FFooQXlr9_Kw-RaMLSTZaThLLULdkBc2f5zk89b0jje_lEjTncedgqtizVnDyV1tEPs1_viFzvEfDzUNkzkq1bYyN5qBIRFWYGy7EIOrwMQH3sIKjKR9ozyaheZJqCkIqSlv63e6QSZvH2ldqSWCoJp7c9-Jasmo5vYHnbub8OXpeUf0b9vXAzXcfMiIxufgwm2eb-_puTKDzpnJYh25jYLRwFd-2JYoJKKkhDuBreAO4dR3JMVEKzBJuLjNBbEc31ZQkwQqQmDA5qEUdkOxABpxqOSEm0bDIiiDwDcl44YKe8JB5CZWYaMwitfLCDi8NHFh6H17Y1VYLszm5d9i5FFmGwqmmbRRhc3CCu_Dv062-Ker12D0dMf1jvaPD5dgnCZZefqjZhlKcX8gVhR0if3V3D1fAU404OQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Thermodynamics+of+Thin+Films.+The+Frumkin%E2%80%93Derjaguin+Equation&rft.jtitle=Colloid+journal+of+the+Russian+Academy+of+Sciences&rft.au=Rusanov%2C+A.+I.&rft.date=2020-01-01&rft.issn=1061-933X&rft.eissn=1608-3067&rft.volume=82&rft.issue=1&rft.spage=62&rft.epage=68&rft_id=info:doi/10.1134%2FS1061933X20010147&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S1061933X20010147 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-933X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-933X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-933X&client=summon |