DeepEBV: a deep learning model to predict Epstein–Barr virus (EBV) integration sites
Abstract Motivation Epstein–Barr virus (EBV) is one of the most prevalent DNA oncogenic viruses. The integration of EBV into the host genome has been reported to play an important role in cancer development. The preference of EBV integration showed strong dependence on the local genomic environment,...
Saved in:
Published in | Bioinformatics (Oxford, England) Vol. 37; no. 20; pp. 3405 - 3411 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
25.10.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Motivation
Epstein–Barr virus (EBV) is one of the most prevalent DNA oncogenic viruses. The integration of EBV into the host genome has been reported to play an important role in cancer development. The preference of EBV integration showed strong dependence on the local genomic environment, which enables the prediction of EBV integration sites.
Results
An attention-based deep learning model, DeepEBV, was developed to predict EBV integration sites by learning local genomic features automatically. First, DeepEBV was trained and tested using the data from the dsVIS database. The results showed that DeepEBV with EBV integration sequences plus Repeat peaks and 2-fold data augmentation performed the best on the training dataset. Furthermore, the performance of the model was validated in an independent dataset. In addition, the motifs of DNA-binding proteins could influence the selection preference of viral insertional mutagenesis. Furthermore, the results showed that DeepEBV can predict EBV integration hotspot genes accurately. In summary, DeepEBV is a robust, accurate and explainable deep learning model, providing novel insights into EBV integration preferences and mechanisms.
Availabilityand implementation
DeepEBV is available as open-source software and can be downloaded from https://github.com/JiuxingLiang/DeepEBV.git.
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
AbstractList | Abstract
Motivation
Epstein–Barr virus (EBV) is one of the most prevalent DNA oncogenic viruses. The integration of EBV into the host genome has been reported to play an important role in cancer development. The preference of EBV integration showed strong dependence on the local genomic environment, which enables the prediction of EBV integration sites.
Results
An attention-based deep learning model, DeepEBV, was developed to predict EBV integration sites by learning local genomic features automatically. First, DeepEBV was trained and tested using the data from the dsVIS database. The results showed that DeepEBV with EBV integration sequences plus Repeat peaks and 2-fold data augmentation performed the best on the training dataset. Furthermore, the performance of the model was validated in an independent dataset. In addition, the motifs of DNA-binding proteins could influence the selection preference of viral insertional mutagenesis. Furthermore, the results showed that DeepEBV can predict EBV integration hotspot genes accurately. In summary, DeepEBV is a robust, accurate and explainable deep learning model, providing novel insights into EBV integration preferences and mechanisms.
Availabilityand implementation
DeepEBV is available as open-source software and can be downloaded from https://github.com/JiuxingLiang/DeepEBV.git.
Supplementary information
Supplementary data are available at Bioinformatics online. Epstein-Barr virus (EBV) is one of the most prevalent DNA oncogenic viruses. The integration of EBV into the host genome has been reported to play an important role in cancer development. The preference of EBV integration showed strong dependence on the local genomic environment, which enables the prediction of EBV integration sites.MOTIVATIONEpstein-Barr virus (EBV) is one of the most prevalent DNA oncogenic viruses. The integration of EBV into the host genome has been reported to play an important role in cancer development. The preference of EBV integration showed strong dependence on the local genomic environment, which enables the prediction of EBV integration sites.An attention-based deep learning model, DeepEBV, was developed to predict EBV integration sites by learning local genomic features automatically. First, DeepEBV was trained and tested using the data from the dsVIS database. The results showed that DeepEBV with EBV integration sequences plus Repeat peaks and 2-fold data augmentation performed the best on the training dataset. Furthermore, the performance of the model was validated in an independent dataset. In addition, the motifs of DNA-binding proteins could influence the selection preference of viral insertional mutagenesis. Furthermore, the results showed that DeepEBV can predict EBV integration hotspot genes accurately. In summary, DeepEBV is a robust, accurate and explainable deep learning model, providing novel insights into EBV integration preferences and mechanisms.RESULTSAn attention-based deep learning model, DeepEBV, was developed to predict EBV integration sites by learning local genomic features automatically. First, DeepEBV was trained and tested using the data from the dsVIS database. The results showed that DeepEBV with EBV integration sequences plus Repeat peaks and 2-fold data augmentation performed the best on the training dataset. Furthermore, the performance of the model was validated in an independent dataset. In addition, the motifs of DNA-binding proteins could influence the selection preference of viral insertional mutagenesis. Furthermore, the results showed that DeepEBV can predict EBV integration hotspot genes accurately. In summary, DeepEBV is a robust, accurate and explainable deep learning model, providing novel insights into EBV integration preferences and mechanisms.DeepEBV is available as open-source software and can be downloaded from https://github.com/JiuxingLiang/DeepEBV.git.AVAILABILITYAND IMPLEMENTATIONDeepEBV is available as open-source software and can be downloaded from https://github.com/JiuxingLiang/DeepEBV.git.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online. Epstein-Barr virus (EBV) is one of the most prevalent DNA oncogenic viruses. The integration of EBV into the host genome has been reported to play an important role in cancer development. The preference of EBV integration showed strong dependence on the local genomic environment, which enables the prediction of EBV integration sites. An attention-based deep learning model, DeepEBV, was developed to predict EBV integration sites by learning local genomic features automatically. First, DeepEBV was trained and tested using the data from the dsVIS database. The results showed that DeepEBV with EBV integration sequences plus Repeat peaks and 2-fold data augmentation performed the best on the training dataset. Furthermore, the performance of the model was validated in an independent dataset. In addition, the motifs of DNA-binding proteins could influence the selection preference of viral insertional mutagenesis. Furthermore, the results showed that DeepEBV can predict EBV integration hotspot genes accurately. In summary, DeepEBV is a robust, accurate and explainable deep learning model, providing novel insights into EBV integration preferences and mechanisms. DeepEBV is available as open-source software and can be downloaded from https://github.com/JiuxingLiang/DeepEBV.git. Supplementary data are available at Bioinformatics online. |
Author | Wu, Canbiao Tan, Songwei Xie, Hongxian Lang, Bin Ye, Jiahao Li, Mengyuan Huang, Zhaoyue Liang, Jiuxing Tian, Rui Xu, Wei Zhu, Jingjing Guo, Xiaofang Cui, Zifeng Jin, Zhuang Hu, Zheng You, Zeshan Fan, Weiwen Yu, Yao Xie, Weiling Qiu, Xiaofan |
Author_xml | – sequence: 1 givenname: Jiuxing surname: Liang fullname: Liang, Jiuxing – sequence: 2 givenname: Zifeng surname: Cui fullname: Cui, Zifeng – sequence: 3 givenname: Canbiao surname: Wu fullname: Wu, Canbiao – sequence: 4 givenname: Yao surname: Yu fullname: Yu, Yao email: mengyuan.li96@outlook.com – sequence: 5 givenname: Rui surname: Tian fullname: Tian, Rui – sequence: 6 givenname: Hongxian surname: Xie fullname: Xie, Hongxian – sequence: 7 givenname: Zhuang surname: Jin fullname: Jin, Zhuang – sequence: 8 givenname: Weiwen surname: Fan fullname: Fan, Weiwen – sequence: 9 givenname: Weiling surname: Xie fullname: Xie, Weiling – sequence: 10 givenname: Zhaoyue surname: Huang fullname: Huang, Zhaoyue – sequence: 11 givenname: Wei surname: Xu fullname: Xu, Wei – sequence: 12 givenname: Jingjing surname: Zhu fullname: Zhu, Jingjing – sequence: 13 givenname: Zeshan surname: You fullname: You, Zeshan – sequence: 14 givenname: Xiaofang surname: Guo fullname: Guo, Xiaofang – sequence: 15 givenname: Xiaofan surname: Qiu fullname: Qiu, Xiaofan – sequence: 16 givenname: Jiahao surname: Ye fullname: Ye, Jiahao – sequence: 17 givenname: Bin surname: Lang fullname: Lang, Bin – sequence: 18 givenname: Mengyuan surname: Li fullname: Li, Mengyuan email: mengyuan.li96@outlook.com – sequence: 19 givenname: Songwei surname: Tan fullname: Tan, Songwei email: tansw@hust.edu.cn – sequence: 20 givenname: Zheng orcidid: 0000-0001-9306-9442 surname: Hu fullname: Hu, Zheng email: huzheng1998@163.com |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34009299$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkLtOwzAUQC0E4lH4BeQRhlI7dpwEsVAoDwmJBbpGjn2DjBI72A4SG__AH_IlBFoqwQKT73DO9dXZQevWWUBon5IjSgo2qYwztna-ldGoMKmirFier6FtykQ25jml66uZsC20E8IjISQlqdhEW4wTUiRFsY3m5wDdbDo_xhLrYcQNSG-NfcCt09Dg6HDnQRsV8awLEYx9f32bSu_xs_F9wAeDe4iNjfDgh1OcxcFECLtoo5ZNgL3lO0L3F7O7s6vxze3l9dnpzVixlMXhtiwDDpUCLROics2ErqkmGQFOdSJ4VoNMgQsoMsoLmnKaUUITQlOhBGNshA4WezvvnnoIsWxNUNA00oLrQ5mkSV6QnPNkQPeXaF-1oMvOm1b6l_K7xQCIBaC8C8FDvUIoKT-jlz-jl8vog3jyS1QmfsWIXprmb50udNd3__3yA0WPoXI |
CitedBy_id | crossref_primary_10_1016_j_patter_2022_100674 crossref_primary_10_1007_s12539_022_00521_3 crossref_primary_10_1016_j_gpb_2023_02_005 crossref_primary_10_3389_fmicb_2022_843425 crossref_primary_10_3390_biology12071033 |
Cites_doi | 10.1016/S0002-9440(10)63184-7 10.1016/j.molcel.2010.05.004 10.1038/s41375-018-0324-5 10.1093/nar/gkq603 10.3109/07853890.2012.727018 10.1093/bib/bbaa242 10.1631/FITEE.1700808 10.1016/j.ijrobp.2017.06.1413 10.1038/s42256-019-0048-x 10.1007/978-3-319-57550-6 10.1016/j.virusres.2004.08.021 10.1093/nar/gkz867 10.3390/cancers10060167 10.4049/jimmunol.168.2.680 10.1016/j.virol.2010.10.029 10.1186/s40537-019-0197-0 10.1128/JVI.75.6.2929-2937.2001 10.1364/AO.29.004790 10.3390/v4123420 10.1038/ng.399 10.1038/labinvest.3700152 10.7150/jca.13150 10.1093/bioinformatics/bty842 10.1158/0008-5472.CAN-19-0615 10.7150/thno.29622 10.1016/j.chom.2012.06.008 10.1038/s42256-019-0119-z 10.1128/JVI.02570-14 10.1038/nrc2961 10.4161/rna.7.5.12745 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021 The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021 – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1093/bioinformatics/btab388 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1367-4811 |
EndPage | 3411 |
ExternalDocumentID | 34009299 10_1093_bioinformatics_btab388 10.1093/bioinformatics/btab388 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Ministry of science and technology of China grantid: 2018ZX10301402 – fundername: General Program of Natural Science Foundation of Guang-dong Province of China grantid: 2021A1515012438 – fundername: Guangzhou Science and Technology Programme grantid: 201704020093 – fundername: National Science and Technology Major Project – fundername: National Ten Thousands Plan for Young Top Talents – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2020A1515110170 – fundername: National Natural Science Foundation of China grantid: 81761148025 – fundername: National Postdoctoral Program for Innovative Talent grantid: BX20200398 – fundername: Characteristic Innovation Research Project of University Teachers grantid: 2020SWYY07 – fundername: China Postdoctoral Science Foundation grantid: 2020M672995 |
GroupedDBID | --- -E4 -~X .-4 .2P .DC .GJ .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN ABEFU ABEJV ABEUO ABGNP ABIXL ABNGD ABNKS ABPQP ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUKT ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AI. AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN AQDSO ARIXL ASPBG ATTQO AVWKF AXUDD AYOIW AZFZN AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD ELUNK EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NTWIH NU- NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y R44 RD5 RIG RNI RNS ROL RPM RUSNO RW1 RXO RZF RZO SV3 TEORI TJP TLC TOX TR2 VH1 W8F WOQ X7H YAYTL YKOAZ YXANX ZGI ZKX ~91 ~KM AAYXX CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c353t-4877e4ebceda20c8d36df1d070e41d2647fea5e46e971491541710120156c6333 |
IEDL.DBID | TOX |
ISSN | 1367-4803 1367-4811 |
IngestDate | Fri Jul 11 15:04:47 EDT 2025 Thu Apr 03 06:56:57 EDT 2025 Tue Jul 01 02:33:55 EDT 2025 Thu Apr 24 23:07:52 EDT 2025 Wed Apr 02 07:06:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-4877e4ebceda20c8d36df1d070e41d2647fea5e46e971491541710120156c6333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9306-9442 |
PMID | 34009299 |
PQID | 2528908442 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2528908442 pubmed_primary_34009299 crossref_primary_10_1093_bioinformatics_btab388 crossref_citationtrail_10_1093_bioinformatics_btab388 oup_primary_10_1093_bioinformatics_btab388 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-Oct-25 |
PublicationDateYYYYMMDD | 2021-10-25 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-Oct-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioinformatics (Oxford, England) |
PublicationTitleAlternate | Bioinformatics |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Peng (2023051609053162400_btab388-B22) 2019; 33 (2023051609053162400_btab388-B9) 2020 Cao (2023051609053162400_btab388-B4) 2015; 89 Lu (2023051609053162400_btab388-B17) 2011; 410 Iizasa (2023051609053162400_btab388-B14) 2012; 4 Xiao (2023051609053162400_btab388-B31) 2016; 7 Aghdam (2023051609053162400_btab388-B1) 2017 Wang (2023051609053162400_btab388-B30) 2010; 38 Takakuwa (2023051609053162400_btab388-B26) 2005; 108 Tang (2023051609053162400_btab388-B27) 2019 Hu (2023051609053162400_btab388-B13) 2019; 35 Shorten (2023051609053162400_btab388-B24) 2019; 6 Xu (2023051609053162400_btab388-B32) 2019; 9 Arvey (2023051609053162400_btab388-B2) 2012; 12 Koohi-Moghadam (2023051609053162400_btab388-B15) 2019; 1 Zhang (2023051609053162400_btab388-B33) 2009; 41 Tune (2023051609053162400_btab388-B29) 2002; 168 Chen (2023051609053162400_btab388-B6) 2001; 75 Lahti (2023051609053162400_btab388-B16) 2012; 44 McIvor (2023051609053162400_btab388-B19) 2010; 7 Luo (2023051609053162400_btab388-B18) 2004; 84 Moore (2023051609053162400_btab388-B20) 2010; 10 Guidotti (2023051609053162400_btab388-B10) 2018 Zhang (2023051609053162400_btab388-B34) 2018; 19 Nishikawa (2023051609053162400_btab388-B21) 2018; 10 He (2023051609053162400_btab388-B11) 2017; 99 Takakuwa (2023051609053162400_btab388-B25) 2004; 164 Tian (2023051609053162400_btab388-B28) 2020 Chakravorty (2023051609053162400_btab388-B5) 2019; 79 Heinz (2023051609053162400_btab388-B12) 2010; 38 Chollet (2023051609053162400_btab388-B7) 2015 Brouillette (2023051609053162400_btab388-B3) 2020 Cruz (2023051609053162400_btab388-B8) 2006; 2 Zhang (2023051609053162400_btab388-B35) 1990; 29 Rudin (2023051609053162400_btab388-B23) 2019; 1 |
References_xml | – volume: 2 start-page: 59 year: 2006 ident: 2023051609053162400_btab388-B8 article-title: Applications of machine learning in cancer prediction and prognosis publication-title: Cancer Inf – volume: 164 start-page: 967 year: 2004 ident: 2023051609053162400_btab388-B25 article-title: Integration of Epstein–Barr virus into chromosome 6q15 of Burkitt lymphoma cell line (Raji) induces loss of BACH2 expression publication-title: Am. J. Pathol doi: 10.1016/S0002-9440(10)63184-7 – volume: 38 start-page: 576 year: 2010 ident: 2023051609053162400_btab388-B12 article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.05.004 – volume: 33 start-page: 1451 year: 2019 ident: 2023051609053162400_btab388-B22 article-title: Genomic and transcriptomic landscapes of Epstein–Barr virus in extranodal natural killer T-cell lymphoma publication-title: Leukemia doi: 10.1038/s41375-018-0324-5 – volume: 38 start-page: e164 year: 2010 ident: 2023051609053162400_btab388-B30 article-title: ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq603 – volume: 44 start-page: 847 year: 2012 ident: 2023051609053162400_btab388-B16 article-title: Circadian clock disruptions and the risk of cancer publication-title: Ann. Med doi: 10.3109/07853890.2012.727018 – year: 2020 ident: 2023051609053162400_btab388-B28 article-title: DeepHPV: a deep learning model to predict human papillomavirus integration sites publication-title: Brief Bioinf doi: 10.1093/bib/bbaa242 – volume: 19 start-page: 27 year: 2018 ident: 2023051609053162400_btab388-B34 article-title: Visual interpretability for deep learning: a survey publication-title: Front. Inf. Technol. Electronic Eng doi: 10.1631/FITEE.1700808 – volume: 99 start-page: E340 year: 2017 ident: 2023051609053162400_btab388-B11 article-title: The circadian clock gene BMAL1 and Ki-67 protein affect the prognosis in nasopharyngeal carcinoma publication-title: Int. J. Radiat. Oncol. Biol. Phys doi: 10.1016/j.ijrobp.2017.06.1413 – volume: 1 start-page: 206 year: 2019 ident: 2023051609053162400_btab388-B23 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead publication-title: Nat. Mach. Intell doi: 10.1038/s42256-019-0048-x – year: 2020 ident: 2023051609053162400_btab388-B9 – volume-title: Guide to Convolutional Neural Networks: A Practical Application to Traffic-Sign Detection and Classification year: 2017 ident: 2023051609053162400_btab388-B1 doi: 10.1007/978-3-319-57550-6 – volume: 108 start-page: 133 year: 2005 ident: 2023051609053162400_btab388-B26 article-title: Identification of Epstein–Barr virus integrated sites in lymphoblastoid cell line (IB4) publication-title: Virus Res doi: 10.1016/j.virusres.2004.08.021 – year: 2019 ident: 2023051609053162400_btab388-B27 article-title: VISDB: a manually curated database of viral integration sites in the human genome publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz867 – volume: 10 start-page: 167 year: 2018 ident: 2023051609053162400_btab388-B21 article-title: Clinical importance of Epstein–Barr virus-associated gastric cancer publication-title: Cancers (Basel) doi: 10.3390/cancers10060167 – volume: 168 start-page: 680 year: 2002 ident: 2023051609053162400_btab388-B29 article-title: Sustained expression of the novel EBV-induced zinc finger gene, ZNFEB, is critical for the transition of B lymphocyte activation to oncogenic growth transformation publication-title: J. Immunol doi: 10.4049/jimmunol.168.2.680 – volume: 410 start-page: 64 year: 2011 ident: 2023051609053162400_btab388-B17 article-title: Epstein–Barr Virus nuclear antigen 1 (EBNA1) confers resistance to apoptosis in EBV-positive B-lymphoma cells through up-regulation of survivin publication-title: Virology doi: 10.1016/j.virol.2010.10.029 – volume: 6 start-page: 60 year: 2019 ident: 2023051609053162400_btab388-B24 article-title: A survey on image data augmentation for deep learning publication-title: J. Big Data doi: 10.1186/s40537-019-0197-0 – volume-title: Deep Learning is a Black Box, But Health Care Won’t Mind year: 2020 ident: 2023051609053162400_btab388-B3 – volume: 75 start-page: 2929 year: 2001 ident: 2023051609053162400_btab388-B6 article-title: Linkage between STAT regulation and Epstein–Barr virus gene expression in tumors publication-title: J. Virol doi: 10.1128/JVI.75.6.2929-2937.2001 – volume: 29 start-page: 4790 year: 1990 ident: 2023051609053162400_btab388-B35 article-title: Parallel distributed processing model with local space-invariant interconnections and its optical architecture publication-title: Appl. Opt doi: 10.1364/AO.29.004790 – volume: 4 start-page: 3420 year: 2012 ident: 2023051609053162400_btab388-B14 article-title: Epstein–Barr Virus (EBV)-associated gastric carcinoma publication-title: Viruses doi: 10.3390/v4123420 – volume: 41 start-page: 849 year: 2009 ident: 2023051609053162400_btab388-B33 article-title: The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans publication-title: Nat. Genet doi: 10.1038/ng.399 – volume: 84 start-page: 1193 year: 2004 ident: 2023051609053162400_btab388-B18 article-title: Epstein–Barr virus is integrated between REL and BCL-11A in American Burkitt lymphoma cell line (NAB-2) publication-title: Lab. Invest doi: 10.1038/labinvest.3700152 – volume: 7 start-page: 214 year: 2016 ident: 2023051609053162400_btab388-B31 article-title: Genome-wide analysis of Epstein–Barr Virus (EBV) integration and strain in C666-1 and Raji cells publication-title: J. Cancer doi: 10.7150/jca.13150 – year: 2018 ident: 2023051609053162400_btab388-B10 – volume: 35 start-page: 1660 year: 2019 ident: 2023051609053162400_btab388-B13 article-title: DeepHINT: understanding HIV-1 integration via deep learning with attention publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty842 – volume: 79 start-page: 6010 year: 2019 ident: 2023051609053162400_btab388-B5 article-title: Integrated pan-cancer map of EBV-associated neoplasms reveals functional host-virus interactions publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-19-0615 – year: 2015 ident: 2023051609053162400_btab388-B7 – volume: 9 start-page: 1115 year: 2019 ident: 2023051609053162400_btab388-B32 article-title: Genome-wide profiling of Epstein–Barr virus integration by targeted sequencing in Epstein–Barr virus associated malignancies publication-title: Theranostics doi: 10.7150/thno.29622 – volume: 12 start-page: 233 year: 2012 ident: 2023051609053162400_btab388-B2 article-title: An atlas of the Epstein–Barr virus transcriptome and epigenome reveals host-virus regulatory interactions publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.06.008 – volume: 1 start-page: 561 year: 2019 ident: 2023051609053162400_btab388-B15 article-title: Predicting disease-associated mutation of metal-binding sites in proteins using a deep learning approach publication-title: Nat. Mach. Intell doi: 10.1038/s42256-019-0119-z – volume: 89 start-page: 713 year: 2015 ident: 2023051609053162400_btab388-B4 article-title: High-throughput RNA sequencing-based virome analysis of 50 lymphoma cell lines from the Cancer Cell Line Encyclopedia project publication-title: J. Virol doi: 10.1128/JVI.02570-14 – volume: 10 start-page: 878 year: 2010 ident: 2023051609053162400_btab388-B20 article-title: Why do viruses cause cancer? Highlights of the first century of human tumour virology publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2961 – volume: 7 start-page: 551 year: 2010 ident: 2023051609053162400_btab388-B19 article-title: New insights into repeat instability: role of RNADNA hybrids publication-title: RNA Biol doi: 10.4161/rna.7.5.12745 |
SSID | ssj0005056 |
Score | 2.4134345 |
Snippet | Abstract
Motivation
Epstein–Barr virus (EBV) is one of the most prevalent DNA oncogenic viruses. The integration of EBV into the host genome has been reported... Epstein-Barr virus (EBV) is one of the most prevalent DNA oncogenic viruses. The integration of EBV into the host genome has been reported to play an important... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3405 |
Title | DeepEBV: a deep learning model to predict Epstein–Barr virus (EBV) integration sites |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34009299 https://www.proquest.com/docview/2528908442 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsNAFB1KQXAjvq0vRnChQmiSmbzcWW0pgrppS3chM3NHCpKEJBXc-Q_-oV_iTB6VKqLusshMyL0znJucuecgdAqRzSTn3BAeA4OCdAxVxwlDKmxwLV9hvtD_O-7u3eGY3k6daQtZTS_MVwo_IF02S2oRUS1c3GVFxIiv23sVEmu1_NHD9PNQh1n6tWodMoP6Jml6gn-cZgmOllrcvlWaJeIM1tFaXSriqyq3G6gF8SZaqcwjX7bQ5AYg7fcmlzjCQl3i2gDiEZfuNrhIcJppGqbA_TTXppbvr2-9KMvw8yyb5_hMjT3HjVyESg_WRHK-jcaD_uh6aNQuCQYnDinUa3oeUGAcRGSb3BfEFdISaisDtYSqdzwJkQPUhcBTn0OqZLI8Leqle6i5SwjZQe04iWEPYRlJMKnwCABQIqzAE9wiWsM-YJxKs4OcJlghryXEtZPFU1hR2SRcDnJYB7mDuotxaSWi8euIC5WLP9980qQsVJtDMx5RDMk8D21H86g-pXYH7Va5XMxJqNabCoL9_zzqAK3a-lCLAi_bOUTtIpvDkapKCnZcLsQPgBvlvg |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepEBV%3A+a+deep+learning+model+to+predict+Epstein%E2%80%93Barr+virus+%28EBV%29+integration+sites&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Liang%2C+Jiuxing&rft.au=Cui%2C+Zifeng&rft.au=Wu%2C+Canbiao&rft.au=Yu%2C+Yao&rft.date=2021-10-25&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=37&rft.issue=20&rft.spage=3405&rft.epage=3411&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtab388&rft.externalDocID=10.1093%2Fbioinformatics%2Fbtab388 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |