DeepEBV: a deep learning model to predict Epstein–Barr virus (EBV) integration sites

Abstract Motivation Epstein–Barr virus (EBV) is one of the most prevalent DNA oncogenic viruses. The integration of EBV into the host genome has been reported to play an important role in cancer development. The preference of EBV integration showed strong dependence on the local genomic environment,...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 37; no. 20; pp. 3405 - 3411
Main Authors Liang, Jiuxing, Cui, Zifeng, Wu, Canbiao, Yu, Yao, Tian, Rui, Xie, Hongxian, Jin, Zhuang, Fan, Weiwen, Xie, Weiling, Huang, Zhaoyue, Xu, Wei, Zhu, Jingjing, You, Zeshan, Guo, Xiaofang, Qiu, Xiaofan, Ye, Jiahao, Lang, Bin, Li, Mengyuan, Tan, Songwei, Hu, Zheng
Format Journal Article
LanguageEnglish
Published England Oxford University Press 25.10.2021
Online AccessGet full text

Cover

Loading…
Abstract Abstract Motivation Epstein–Barr virus (EBV) is one of the most prevalent DNA oncogenic viruses. The integration of EBV into the host genome has been reported to play an important role in cancer development. The preference of EBV integration showed strong dependence on the local genomic environment, which enables the prediction of EBV integration sites. Results An attention-based deep learning model, DeepEBV, was developed to predict EBV integration sites by learning local genomic features automatically. First, DeepEBV was trained and tested using the data from the dsVIS database. The results showed that DeepEBV with EBV integration sequences plus Repeat peaks and 2-fold data augmentation performed the best on the training dataset. Furthermore, the performance of the model was validated in an independent dataset. In addition, the motifs of DNA-binding proteins could influence the selection preference of viral insertional mutagenesis. Furthermore, the results showed that DeepEBV can predict EBV integration hotspot genes accurately. In summary, DeepEBV is a robust, accurate and explainable deep learning model, providing novel insights into EBV integration preferences and mechanisms. Availabilityand implementation DeepEBV is available as open-source software and can be downloaded from https://github.com/JiuxingLiang/DeepEBV.git. Supplementary information Supplementary data are available at Bioinformatics online.
AbstractList Abstract Motivation Epstein–Barr virus (EBV) is one of the most prevalent DNA oncogenic viruses. The integration of EBV into the host genome has been reported to play an important role in cancer development. The preference of EBV integration showed strong dependence on the local genomic environment, which enables the prediction of EBV integration sites. Results An attention-based deep learning model, DeepEBV, was developed to predict EBV integration sites by learning local genomic features automatically. First, DeepEBV was trained and tested using the data from the dsVIS database. The results showed that DeepEBV with EBV integration sequences plus Repeat peaks and 2-fold data augmentation performed the best on the training dataset. Furthermore, the performance of the model was validated in an independent dataset. In addition, the motifs of DNA-binding proteins could influence the selection preference of viral insertional mutagenesis. Furthermore, the results showed that DeepEBV can predict EBV integration hotspot genes accurately. In summary, DeepEBV is a robust, accurate and explainable deep learning model, providing novel insights into EBV integration preferences and mechanisms. Availabilityand implementation DeepEBV is available as open-source software and can be downloaded from https://github.com/JiuxingLiang/DeepEBV.git. Supplementary information Supplementary data are available at Bioinformatics online.
Epstein-Barr virus (EBV) is one of the most prevalent DNA oncogenic viruses. The integration of EBV into the host genome has been reported to play an important role in cancer development. The preference of EBV integration showed strong dependence on the local genomic environment, which enables the prediction of EBV integration sites.MOTIVATIONEpstein-Barr virus (EBV) is one of the most prevalent DNA oncogenic viruses. The integration of EBV into the host genome has been reported to play an important role in cancer development. The preference of EBV integration showed strong dependence on the local genomic environment, which enables the prediction of EBV integration sites.An attention-based deep learning model, DeepEBV, was developed to predict EBV integration sites by learning local genomic features automatically. First, DeepEBV was trained and tested using the data from the dsVIS database. The results showed that DeepEBV with EBV integration sequences plus Repeat peaks and 2-fold data augmentation performed the best on the training dataset. Furthermore, the performance of the model was validated in an independent dataset. In addition, the motifs of DNA-binding proteins could influence the selection preference of viral insertional mutagenesis. Furthermore, the results showed that DeepEBV can predict EBV integration hotspot genes accurately. In summary, DeepEBV is a robust, accurate and explainable deep learning model, providing novel insights into EBV integration preferences and mechanisms.RESULTSAn attention-based deep learning model, DeepEBV, was developed to predict EBV integration sites by learning local genomic features automatically. First, DeepEBV was trained and tested using the data from the dsVIS database. The results showed that DeepEBV with EBV integration sequences plus Repeat peaks and 2-fold data augmentation performed the best on the training dataset. Furthermore, the performance of the model was validated in an independent dataset. In addition, the motifs of DNA-binding proteins could influence the selection preference of viral insertional mutagenesis. Furthermore, the results showed that DeepEBV can predict EBV integration hotspot genes accurately. In summary, DeepEBV is a robust, accurate and explainable deep learning model, providing novel insights into EBV integration preferences and mechanisms.DeepEBV is available as open-source software and can be downloaded from https://github.com/JiuxingLiang/DeepEBV.git.AVAILABILITYAND IMPLEMENTATIONDeepEBV is available as open-source software and can be downloaded from https://github.com/JiuxingLiang/DeepEBV.git.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Epstein-Barr virus (EBV) is one of the most prevalent DNA oncogenic viruses. The integration of EBV into the host genome has been reported to play an important role in cancer development. The preference of EBV integration showed strong dependence on the local genomic environment, which enables the prediction of EBV integration sites. An attention-based deep learning model, DeepEBV, was developed to predict EBV integration sites by learning local genomic features automatically. First, DeepEBV was trained and tested using the data from the dsVIS database. The results showed that DeepEBV with EBV integration sequences plus Repeat peaks and 2-fold data augmentation performed the best on the training dataset. Furthermore, the performance of the model was validated in an independent dataset. In addition, the motifs of DNA-binding proteins could influence the selection preference of viral insertional mutagenesis. Furthermore, the results showed that DeepEBV can predict EBV integration hotspot genes accurately. In summary, DeepEBV is a robust, accurate and explainable deep learning model, providing novel insights into EBV integration preferences and mechanisms. DeepEBV is available as open-source software and can be downloaded from https://github.com/JiuxingLiang/DeepEBV.git. Supplementary data are available at Bioinformatics online.
Author Wu, Canbiao
Tan, Songwei
Xie, Hongxian
Lang, Bin
Ye, Jiahao
Li, Mengyuan
Huang, Zhaoyue
Liang, Jiuxing
Tian, Rui
Xu, Wei
Zhu, Jingjing
Guo, Xiaofang
Cui, Zifeng
Jin, Zhuang
Hu, Zheng
You, Zeshan
Fan, Weiwen
Yu, Yao
Xie, Weiling
Qiu, Xiaofan
Author_xml – sequence: 1
  givenname: Jiuxing
  surname: Liang
  fullname: Liang, Jiuxing
– sequence: 2
  givenname: Zifeng
  surname: Cui
  fullname: Cui, Zifeng
– sequence: 3
  givenname: Canbiao
  surname: Wu
  fullname: Wu, Canbiao
– sequence: 4
  givenname: Yao
  surname: Yu
  fullname: Yu, Yao
  email: mengyuan.li96@outlook.com
– sequence: 5
  givenname: Rui
  surname: Tian
  fullname: Tian, Rui
– sequence: 6
  givenname: Hongxian
  surname: Xie
  fullname: Xie, Hongxian
– sequence: 7
  givenname: Zhuang
  surname: Jin
  fullname: Jin, Zhuang
– sequence: 8
  givenname: Weiwen
  surname: Fan
  fullname: Fan, Weiwen
– sequence: 9
  givenname: Weiling
  surname: Xie
  fullname: Xie, Weiling
– sequence: 10
  givenname: Zhaoyue
  surname: Huang
  fullname: Huang, Zhaoyue
– sequence: 11
  givenname: Wei
  surname: Xu
  fullname: Xu, Wei
– sequence: 12
  givenname: Jingjing
  surname: Zhu
  fullname: Zhu, Jingjing
– sequence: 13
  givenname: Zeshan
  surname: You
  fullname: You, Zeshan
– sequence: 14
  givenname: Xiaofang
  surname: Guo
  fullname: Guo, Xiaofang
– sequence: 15
  givenname: Xiaofan
  surname: Qiu
  fullname: Qiu, Xiaofan
– sequence: 16
  givenname: Jiahao
  surname: Ye
  fullname: Ye, Jiahao
– sequence: 17
  givenname: Bin
  surname: Lang
  fullname: Lang, Bin
– sequence: 18
  givenname: Mengyuan
  surname: Li
  fullname: Li, Mengyuan
  email: mengyuan.li96@outlook.com
– sequence: 19
  givenname: Songwei
  surname: Tan
  fullname: Tan, Songwei
  email: tansw@hust.edu.cn
– sequence: 20
  givenname: Zheng
  orcidid: 0000-0001-9306-9442
  surname: Hu
  fullname: Hu, Zheng
  email: huzheng1998@163.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34009299$$D View this record in MEDLINE/PubMed
BookMark eNqNkLtOwzAUQC0E4lH4BeQRhlI7dpwEsVAoDwmJBbpGjn2DjBI72A4SG__AH_IlBFoqwQKT73DO9dXZQevWWUBon5IjSgo2qYwztna-ldGoMKmirFier6FtykQ25jml66uZsC20E8IjISQlqdhEW4wTUiRFsY3m5wDdbDo_xhLrYcQNSG-NfcCt09Dg6HDnQRsV8awLEYx9f32bSu_xs_F9wAeDe4iNjfDgh1OcxcFECLtoo5ZNgL3lO0L3F7O7s6vxze3l9dnpzVixlMXhtiwDDpUCLROics2ErqkmGQFOdSJ4VoNMgQsoMsoLmnKaUUITQlOhBGNshA4WezvvnnoIsWxNUNA00oLrQ5mkSV6QnPNkQPeXaF-1oMvOm1b6l_K7xQCIBaC8C8FDvUIoKT-jlz-jl8vog3jyS1QmfsWIXprmb50udNd3__3yA0WPoXI
CitedBy_id crossref_primary_10_1016_j_patter_2022_100674
crossref_primary_10_1007_s12539_022_00521_3
crossref_primary_10_1016_j_gpb_2023_02_005
crossref_primary_10_3389_fmicb_2022_843425
crossref_primary_10_3390_biology12071033
Cites_doi 10.1016/S0002-9440(10)63184-7
10.1016/j.molcel.2010.05.004
10.1038/s41375-018-0324-5
10.1093/nar/gkq603
10.3109/07853890.2012.727018
10.1093/bib/bbaa242
10.1631/FITEE.1700808
10.1016/j.ijrobp.2017.06.1413
10.1038/s42256-019-0048-x
10.1007/978-3-319-57550-6
10.1016/j.virusres.2004.08.021
10.1093/nar/gkz867
10.3390/cancers10060167
10.4049/jimmunol.168.2.680
10.1016/j.virol.2010.10.029
10.1186/s40537-019-0197-0
10.1128/JVI.75.6.2929-2937.2001
10.1364/AO.29.004790
10.3390/v4123420
10.1038/ng.399
10.1038/labinvest.3700152
10.7150/jca.13150
10.1093/bioinformatics/bty842
10.1158/0008-5472.CAN-19-0615
10.7150/thno.29622
10.1016/j.chom.2012.06.008
10.1038/s42256-019-0119-z
10.1128/JVI.02570-14
10.1038/nrc2961
10.4161/rna.7.5.12745
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021
The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021
– notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1093/bioinformatics/btab388
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
EndPage 3411
ExternalDocumentID 34009299
10_1093_bioinformatics_btab388
10.1093/bioinformatics/btab388
Genre Journal Article
GrantInformation_xml – fundername: Ministry of science and technology of China
  grantid: 2018ZX10301402
– fundername: General Program of Natural Science Foundation of Guang-dong Province of China
  grantid: 2021A1515012438
– fundername: Guangzhou Science and Technology Programme
  grantid: 201704020093
– fundername: National Science and Technology Major Project
– fundername: National Ten Thousands Plan for Young Top Talents
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2020A1515110170
– fundername: National Natural Science Foundation of China
  grantid: 81761148025
– fundername: National Postdoctoral Program for Innovative Talent
  grantid: BX20200398
– fundername: Characteristic Innovation Research Project of University Teachers
  grantid: 2020SWYY07
– fundername: China Postdoctoral Science Foundation
  grantid: 2020M672995
GroupedDBID ---
-E4
-~X
.-4
.2P
.DC
.GJ
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
RNI
RNS
ROL
RPM
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJP
TLC
TOX
TR2
VH1
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZGI
ZKX
~91
~KM
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c353t-4877e4ebceda20c8d36df1d070e41d2647fea5e46e971491541710120156c6333
IEDL.DBID TOX
ISSN 1367-4803
1367-4811
IngestDate Fri Jul 11 15:04:47 EDT 2025
Thu Apr 03 06:56:57 EDT 2025
Tue Jul 01 02:33:55 EDT 2025
Thu Apr 24 23:07:52 EDT 2025
Wed Apr 02 07:06:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-4877e4ebceda20c8d36df1d070e41d2647fea5e46e971491541710120156c6333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9306-9442
PMID 34009299
PQID 2528908442
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2528908442
pubmed_primary_34009299
crossref_primary_10_1093_bioinformatics_btab388
crossref_citationtrail_10_1093_bioinformatics_btab388
oup_primary_10_1093_bioinformatics_btab388
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-Oct-25
PublicationDateYYYYMMDD 2021-10-25
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct-25
  day: 25
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Peng (2023051609053162400_btab388-B22) 2019; 33
(2023051609053162400_btab388-B9) 2020
Cao (2023051609053162400_btab388-B4) 2015; 89
Lu (2023051609053162400_btab388-B17) 2011; 410
Iizasa (2023051609053162400_btab388-B14) 2012; 4
Xiao (2023051609053162400_btab388-B31) 2016; 7
Aghdam (2023051609053162400_btab388-B1) 2017
Wang (2023051609053162400_btab388-B30) 2010; 38
Takakuwa (2023051609053162400_btab388-B26) 2005; 108
Tang (2023051609053162400_btab388-B27) 2019
Hu (2023051609053162400_btab388-B13) 2019; 35
Shorten (2023051609053162400_btab388-B24) 2019; 6
Xu (2023051609053162400_btab388-B32) 2019; 9
Arvey (2023051609053162400_btab388-B2) 2012; 12
Koohi-Moghadam (2023051609053162400_btab388-B15) 2019; 1
Zhang (2023051609053162400_btab388-B33) 2009; 41
Tune (2023051609053162400_btab388-B29) 2002; 168
Chen (2023051609053162400_btab388-B6) 2001; 75
Lahti (2023051609053162400_btab388-B16) 2012; 44
McIvor (2023051609053162400_btab388-B19) 2010; 7
Luo (2023051609053162400_btab388-B18) 2004; 84
Moore (2023051609053162400_btab388-B20) 2010; 10
Guidotti (2023051609053162400_btab388-B10) 2018
Zhang (2023051609053162400_btab388-B34) 2018; 19
Nishikawa (2023051609053162400_btab388-B21) 2018; 10
He (2023051609053162400_btab388-B11) 2017; 99
Takakuwa (2023051609053162400_btab388-B25) 2004; 164
Tian (2023051609053162400_btab388-B28) 2020
Chakravorty (2023051609053162400_btab388-B5) 2019; 79
Heinz (2023051609053162400_btab388-B12) 2010; 38
Chollet (2023051609053162400_btab388-B7) 2015
Brouillette (2023051609053162400_btab388-B3) 2020
Cruz (2023051609053162400_btab388-B8) 2006; 2
Zhang (2023051609053162400_btab388-B35) 1990; 29
Rudin (2023051609053162400_btab388-B23) 2019; 1
References_xml – volume: 2
  start-page: 59
  year: 2006
  ident: 2023051609053162400_btab388-B8
  article-title: Applications of machine learning in cancer prediction and prognosis
  publication-title: Cancer Inf
– volume: 164
  start-page: 967
  year: 2004
  ident: 2023051609053162400_btab388-B25
  article-title: Integration of Epstein–Barr virus into chromosome 6q15 of Burkitt lymphoma cell line (Raji) induces loss of BACH2 expression
  publication-title: Am. J. Pathol
  doi: 10.1016/S0002-9440(10)63184-7
– volume: 38
  start-page: 576
  year: 2010
  ident: 2023051609053162400_btab388-B12
  article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.05.004
– volume: 33
  start-page: 1451
  year: 2019
  ident: 2023051609053162400_btab388-B22
  article-title: Genomic and transcriptomic landscapes of Epstein–Barr virus in extranodal natural killer T-cell lymphoma
  publication-title: Leukemia
  doi: 10.1038/s41375-018-0324-5
– volume: 38
  start-page: e164
  year: 2010
  ident: 2023051609053162400_btab388-B30
  article-title: ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq603
– volume: 44
  start-page: 847
  year: 2012
  ident: 2023051609053162400_btab388-B16
  article-title: Circadian clock disruptions and the risk of cancer
  publication-title: Ann. Med
  doi: 10.3109/07853890.2012.727018
– year: 2020
  ident: 2023051609053162400_btab388-B28
  article-title: DeepHPV: a deep learning model to predict human papillomavirus integration sites
  publication-title: Brief Bioinf
  doi: 10.1093/bib/bbaa242
– volume: 19
  start-page: 27
  year: 2018
  ident: 2023051609053162400_btab388-B34
  article-title: Visual interpretability for deep learning: a survey
  publication-title: Front. Inf. Technol. Electronic Eng
  doi: 10.1631/FITEE.1700808
– volume: 99
  start-page: E340
  year: 2017
  ident: 2023051609053162400_btab388-B11
  article-title: The circadian clock gene BMAL1 and Ki-67 protein affect the prognosis in nasopharyngeal carcinoma
  publication-title: Int. J. Radiat. Oncol. Biol. Phys
  doi: 10.1016/j.ijrobp.2017.06.1413
– volume: 1
  start-page: 206
  year: 2019
  ident: 2023051609053162400_btab388-B23
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nat. Mach. Intell
  doi: 10.1038/s42256-019-0048-x
– year: 2020
  ident: 2023051609053162400_btab388-B9
– volume-title: Guide to Convolutional Neural Networks: A Practical Application to Traffic-Sign Detection and Classification
  year: 2017
  ident: 2023051609053162400_btab388-B1
  doi: 10.1007/978-3-319-57550-6
– volume: 108
  start-page: 133
  year: 2005
  ident: 2023051609053162400_btab388-B26
  article-title: Identification of Epstein–Barr virus integrated sites in lymphoblastoid cell line (IB4)
  publication-title: Virus Res
  doi: 10.1016/j.virusres.2004.08.021
– year: 2019
  ident: 2023051609053162400_btab388-B27
  article-title: VISDB: a manually curated database of viral integration sites in the human genome
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz867
– volume: 10
  start-page: 167
  year: 2018
  ident: 2023051609053162400_btab388-B21
  article-title: Clinical importance of Epstein–Barr virus-associated gastric cancer
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers10060167
– volume: 168
  start-page: 680
  year: 2002
  ident: 2023051609053162400_btab388-B29
  article-title: Sustained expression of the novel EBV-induced zinc finger gene, ZNFEB, is critical for the transition of B lymphocyte activation to oncogenic growth transformation
  publication-title: J. Immunol
  doi: 10.4049/jimmunol.168.2.680
– volume: 410
  start-page: 64
  year: 2011
  ident: 2023051609053162400_btab388-B17
  article-title: Epstein–Barr Virus nuclear antigen 1 (EBNA1) confers resistance to apoptosis in EBV-positive B-lymphoma cells through up-regulation of survivin
  publication-title: Virology
  doi: 10.1016/j.virol.2010.10.029
– volume: 6
  start-page: 60
  year: 2019
  ident: 2023051609053162400_btab388-B24
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– volume-title: Deep Learning is a Black Box, But Health Care Won’t Mind
  year: 2020
  ident: 2023051609053162400_btab388-B3
– volume: 75
  start-page: 2929
  year: 2001
  ident: 2023051609053162400_btab388-B6
  article-title: Linkage between STAT regulation and Epstein–Barr virus gene expression in tumors
  publication-title: J. Virol
  doi: 10.1128/JVI.75.6.2929-2937.2001
– volume: 29
  start-page: 4790
  year: 1990
  ident: 2023051609053162400_btab388-B35
  article-title: Parallel distributed processing model with local space-invariant interconnections and its optical architecture
  publication-title: Appl. Opt
  doi: 10.1364/AO.29.004790
– volume: 4
  start-page: 3420
  year: 2012
  ident: 2023051609053162400_btab388-B14
  article-title: Epstein–Barr Virus (EBV)-associated gastric carcinoma
  publication-title: Viruses
  doi: 10.3390/v4123420
– volume: 41
  start-page: 849
  year: 2009
  ident: 2023051609053162400_btab388-B33
  article-title: The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans
  publication-title: Nat. Genet
  doi: 10.1038/ng.399
– volume: 84
  start-page: 1193
  year: 2004
  ident: 2023051609053162400_btab388-B18
  article-title: Epstein–Barr virus is integrated between REL and BCL-11A in American Burkitt lymphoma cell line (NAB-2)
  publication-title: Lab. Invest
  doi: 10.1038/labinvest.3700152
– volume: 7
  start-page: 214
  year: 2016
  ident: 2023051609053162400_btab388-B31
  article-title: Genome-wide analysis of Epstein–Barr Virus (EBV) integration and strain in C666-1 and Raji cells
  publication-title: J. Cancer
  doi: 10.7150/jca.13150
– year: 2018
  ident: 2023051609053162400_btab388-B10
– volume: 35
  start-page: 1660
  year: 2019
  ident: 2023051609053162400_btab388-B13
  article-title: DeepHINT: understanding HIV-1 integration via deep learning with attention
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty842
– volume: 79
  start-page: 6010
  year: 2019
  ident: 2023051609053162400_btab388-B5
  article-title: Integrated pan-cancer map of EBV-associated neoplasms reveals functional host-virus interactions
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-19-0615
– year: 2015
  ident: 2023051609053162400_btab388-B7
– volume: 9
  start-page: 1115
  year: 2019
  ident: 2023051609053162400_btab388-B32
  article-title: Genome-wide profiling of Epstein–Barr virus integration by targeted sequencing in Epstein–Barr virus associated malignancies
  publication-title: Theranostics
  doi: 10.7150/thno.29622
– volume: 12
  start-page: 233
  year: 2012
  ident: 2023051609053162400_btab388-B2
  article-title: An atlas of the Epstein–Barr virus transcriptome and epigenome reveals host-virus regulatory interactions
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2012.06.008
– volume: 1
  start-page: 561
  year: 2019
  ident: 2023051609053162400_btab388-B15
  article-title: Predicting disease-associated mutation of metal-binding sites in proteins using a deep learning approach
  publication-title: Nat. Mach. Intell
  doi: 10.1038/s42256-019-0119-z
– volume: 89
  start-page: 713
  year: 2015
  ident: 2023051609053162400_btab388-B4
  article-title: High-throughput RNA sequencing-based virome analysis of 50 lymphoma cell lines from the Cancer Cell Line Encyclopedia project
  publication-title: J. Virol
  doi: 10.1128/JVI.02570-14
– volume: 10
  start-page: 878
  year: 2010
  ident: 2023051609053162400_btab388-B20
  article-title: Why do viruses cause cancer? Highlights of the first century of human tumour virology
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2961
– volume: 7
  start-page: 551
  year: 2010
  ident: 2023051609053162400_btab388-B19
  article-title: New insights into repeat instability: role of RNADNA hybrids
  publication-title: RNA Biol
  doi: 10.4161/rna.7.5.12745
SSID ssj0005056
Score 2.4134345
Snippet Abstract Motivation Epstein–Barr virus (EBV) is one of the most prevalent DNA oncogenic viruses. The integration of EBV into the host genome has been reported...
Epstein-Barr virus (EBV) is one of the most prevalent DNA oncogenic viruses. The integration of EBV into the host genome has been reported to play an important...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3405
Title DeepEBV: a deep learning model to predict Epstein–Barr virus (EBV) integration sites
URI https://www.ncbi.nlm.nih.gov/pubmed/34009299
https://www.proquest.com/docview/2528908442
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsNAFB1KQXAjvq0vRnChQmiSmbzcWW0pgrppS3chM3NHCpKEJBXc-Q_-oV_iTB6VKqLusshMyL0znJucuecgdAqRzSTn3BAeA4OCdAxVxwlDKmxwLV9hvtD_O-7u3eGY3k6daQtZTS_MVwo_IF02S2oRUS1c3GVFxIiv23sVEmu1_NHD9PNQh1n6tWodMoP6Jml6gn-cZgmOllrcvlWaJeIM1tFaXSriqyq3G6gF8SZaqcwjX7bQ5AYg7fcmlzjCQl3i2gDiEZfuNrhIcJppGqbA_TTXppbvr2-9KMvw8yyb5_hMjT3HjVyESg_WRHK-jcaD_uh6aNQuCQYnDinUa3oeUGAcRGSb3BfEFdISaisDtYSqdzwJkQPUhcBTn0OqZLI8Leqle6i5SwjZQe04iWEPYRlJMKnwCABQIqzAE9wiWsM-YJxKs4OcJlghryXEtZPFU1hR2SRcDnJYB7mDuotxaSWi8euIC5WLP9980qQsVJtDMx5RDMk8D21H86g-pXYH7Va5XMxJqNabCoL9_zzqAK3a-lCLAi_bOUTtIpvDkapKCnZcLsQPgBvlvg
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepEBV%3A+a+deep+learning+model+to+predict+Epstein%E2%80%93Barr+virus+%28EBV%29+integration+sites&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Liang%2C+Jiuxing&rft.au=Cui%2C+Zifeng&rft.au=Wu%2C+Canbiao&rft.au=Yu%2C+Yao&rft.date=2021-10-25&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=37&rft.issue=20&rft.spage=3405&rft.epage=3411&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtab388&rft.externalDocID=10.1093%2Fbioinformatics%2Fbtab388
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon