Gravitational fields and gravitational waves
The relative velocity between objects with finite velocity affects the reaction between them. This effect is known as general Doppler effect. The Laser Interferometer Gravitational-Wave Observatory (LIGO) discovered gravitational waves and found their speed to be equal to the speed of light c. Gravi...
Saved in:
Published in | Physics essays Vol. 35; no. 2; pp. 208 - 219 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Ingenta
01.06.2022
Physics Essays Publication |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The relative velocity between objects with finite velocity affects the reaction between them. This effect is known as general Doppler effect. The Laser Interferometer Gravitational-Wave Observatory (LIGO) discovered gravitational waves and found their speed to be equal to the speed
of light c. Gravitational waves are generated following a disturbance in the gravitational field; they affect the gravitational force on an object. Just as light waves are subject to the Doppler effect, so are gravitational waves. This article explores the following research questions
concerning gravitational waves: Is there a linear relationship between gravity and velocity? Can the speed of a gravitational wave represent the speed of the gravitational field (the speed of the action of the gravitational field upon the object)? What is the speed of the gravitational field?
What is the spatial distribution of gravitational waves? Do gravitational waves caused by the revolution of the Sun affect planetary precession? Can we modify Newton's gravitational equation through the influence of gravitational waves? |
---|---|
AbstractList | The relative velocity between objects with finite velocity affects the reaction between them. This effect is known as general Doppler effect. The Laser Interferometer Gravitational-Wave Observatory (LIGO) discovered gravitational waves and found their speed to be equal to the speed
of light
c
. Gravitational waves are generated following a disturbance in the gravitational field; they affect the gravitational force on an object. Just as light waves are subject to the Doppler effect, so are gravitational waves. This article explores the following research questions
concerning gravitational waves: Is there a linear relationship between gravity and velocity? Can the speed of a gravitational wave represent the speed of the gravitational field (the speed of the action of the gravitational field upon the object)? What is the speed of the gravitational field?
What is the spatial distribution of gravitational waves? Do gravitational waves caused by the revolution of the Sun affect planetary precession? Can we modify Newton's gravitational equation through the influence of gravitational waves? The relative velocity between objects with finite velocity affects the reaction between them. This effect is known as general Doppler effect. The Laser Interferometer Gravitational-Wave Observatory (LIGO) discovered gravitational waves and found their speed to be equal to the speed of light c. Gravitational waves are generated following a disturbance in the gravitational field; they affect the gravitational force on an object. Just as light waves are subject to the Doppler effect, so are gravitational waves. This article explores the following research questions concerning gravitational waves: Is there a linear relationship between gravity and velocity? Can the speed of a gravitational wave represent the speed of the gravitational field (the speed of the action of the gravitational field upon the object)? What is the speed of the gravitational field? What is the spatial distribution of gravitational waves? Do gravitational waves caused by the revolution of the Sun affect planetary precession? Can we modify Newton's gravitational equation through the influence of gravitational waves? The relative velocity between objects with finite velocity affects the reaction between them. This effect is known as general Doppler effect. The Laser Interferometer Gravitational-Wave Observatory (LIGO) discovered gravitational waves and found their speed to be equal to the speed of light c. Gravitational waves are generated following a disturbance in the gravitational field; they affect the gravitational force on an object. Just as light waves are subject to the Doppler effect, so are gravitational waves. This article explores the following research questions concerning gravitational waves: Is there a linear relationship between gravity and velocity? Can the speed of a gravitational wave represent the speed of the gravitational field (the speed of the action of the gravitational field upon the object)? What is the speed of the gravitational field? What is the spatial distribution of gravitational waves? Do gravitational waves caused by the revolution of the Sun affect planetary precession? Can we modify Newton's gravitational equation through the influence of gravitational waves? The relative velocity between objects with finite velocity affects the reaction between them. This effect is known as general Doppler effect. The Laser Interferometer Gravitational-Wave Observatory (LIGO) discovered gravitational waves and found their speed to be equal to the speed of light c. Gravitational waves are generated following a disturbance in the gravitational field; they affect the gravitational force on an object. Just as light waves are subject to the Doppler effect, so are gravitational waves. This article explores the following research questions concerning gravitational waves: Is there a linear relationship between gravity and velocity? Can the speed of a gravitational wave represent the speed of the gravitational field (the speed of the action of the gravitational field upon the object)? What is the speed of the gravitational field? What is the spatial distribution of gravitational waves? Do gravitational waves caused by the revolution of the Sun affect planetary precession? Can we modify Newton's gravitational equation through the influence of gravitational waves? La vitesse relative entre les objets a vitesse finie affecte la reaction entre eux. Cet effet est connu sous le nom d'effet Doppler general. Le Laser Interferometer Gravitational-Wave Observatory (LIGO) a decouvert des ondes gravitationnelles et a trouve que leur vitesse etait egale a la vitesse de la lumiere c. Les ondes gravitationnelles sont gerorees suite a une perturbation du champ gravitationnel; ils affectent la force gravitationnelle sur un objet. Tout comme les ondes lumineuses sont soumises aa l'effet Doppler, les ondes gravitationnelles le sont aussi. Cet article explore les questions de recherche suivantes concernant les ondes gravitationnelles: Existe-t-il une relation lineaire entre la gravite et la vitesse? La vitesse d'une onde gravitationnelle peut-elle representer la vitesse du champ gravitationnel (la vitesse de l'action du champ gravitationnel sur l'objet)? Quelle est la vitesse du champ gravitationnel? Quelle est la distribution spatiale des ondes gravitationnelles? Les ondes gravitationnelles provoques par la revolution du Soleil affectent-elles la precession planetaire? Peut-on modifier l'equation gravitationnelle de Newton par l'influence des ondes gravitationnelles? Key words: Newtonian Gravity; Doppler Effect; Gravitational Wave; Gravitational Field; LIGO; Gravitational Constant; Precession of the Planets. |
Audience | Academic |
Author | Yuan, Tony |
Author_xml | – sequence: 1 givenname: Tony surname: Yuan fullname: Yuan, Tony |
BookMark | eNp1kEtLAzEUhbNQ8PkHXBVcCU7Nc5pZuBDxUfCxUNeX20wyRKYzkqT18evNtCIUNAnccHO-c8PZI1td31lCjhgdS0rLM6pFWTBR6UKoMR9zqrfI7m9zh-zF-EopV1rSXXJ6E3DpEybfd9iOnLdtHUfY1aNm4-EdlzYekG2HbbSHP3WfvFxfPV_eFnePN9PLi7vCCCVSIbWcSald5bQrWa1oJUrDlKtsWXOcqYmWasaVc-VMVdYwNFbmPjO2LrGqmNgnx2vfBlsLvnN9CmjmPhq4mDDJNOe0zKrxH6q8azv3JmfifO5vACcbQNYk-5EaXMQI06eHTS1fa03oYwzWwVvwcwyfwCgMMcOQKAyJglDAIcecofs15LvGdgnhtV-EnF4Eb-DNrpAVsRSqG5A8SlMBVIoJ1Nbhok2QMEDzBZENfuf_-GWzfAYDoKuV_7C-UA4YUq6Z_wazwp2j |
Cites_doi | 10.1209/0295-5075/110/10002 10.1016/S0378-4754(99)00085-3 10.2307/1968714 10.3847/2041-8213/ac082e 10.1016/S0375-9601(98)00650-1 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 Physics Essays Publication |
Copyright_xml | – notice: COPYRIGHT 2022 Physics Essays Publication |
DBID | AAYXX CITATION ISN |
DOI | 10.4006/0836-1398-35.2.208 |
DatabaseName | CrossRef Gale In Context: Canada |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EndPage | 219 |
ExternalDocumentID | A714182206 10_4006_0836_1398_35_2_208 pe/pe/2022/00000035/00000002/art00018 |
GroupedDBID | 29O ABDBF ABEFU ALMA_UNASSIGNED_HOLDINGS B0M EAD EAP EMK EPL EST ESX I-F IAO IEA IGS ISN ITC PEO PV9 RIG RZL TUS ~8M AAYXX ACUHS CITATION |
ID | FETCH-LOGICAL-c353t-484b448f9f8f61d50936c15f9e6d2ab57845b25ff6b59ec1ace42ab1ced6a9913 |
ISSN | 0836-1398 |
IngestDate | Wed Mar 19 01:26:42 EDT 2025 Sat Mar 08 18:14:47 EST 2025 Wed Mar 05 04:18:50 EST 2025 Tue Jul 01 03:39:10 EDT 2025 Thu Aug 04 14:10:39 EDT 2022 Fri Nov 08 05:58:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c353t-484b448f9f8f61d50936c15f9e6d2ab57845b25ff6b59ec1ace42ab1ced6a9913 |
Notes | 0836-1398(20220626)35:2L.208;1- |
PageCount | 12 |
ParticipantIDs | ingenta_journals_ic_pe_08361398_v35n2_20220803_0437_default_tar_gz_s18 gale_incontextgauss_ISN_A714182206 gale_infotracacademiconefile_A714182206 crossref_primary_10_4006_0836_1398_35_2_208 ingenta_journals_pe_pe_2022_00000035_00000002_art00018 gale_infotracmisc_A714182206 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Physics essays |
PublicationYear | 2022 |
Publisher | Ingenta Physics Essays Publication |
Publisher_xml | – name: Ingenta – name: Physics Essays Publication |
References | J. D. Anderson , G. Schubert , V. Trimble , and M. R. Feldman , Europhys. Lett. 110, 10002 (2015). 10.1209/0295-5075/110/10002 T. van Flandern , Phys. Lett. A 250, 1 (1998). 10.1016/S0375-9601(98)00650-1 J. A. Wheeler , C. Misner , and K. S. Thorne , Gravitation (W. H. Freeman & Co., New York, 1973), p. 404. M. Krizek , Math. Compu. Simul. 50, 237 (1999). 10.1016/S0378-4754(99)00085-3 T. Henderson , "The Doppler effect-Lesson 3, waves," Physics Tutorial, retrieved from physicsclassroom.com (2017). R. Fitzpatrick , "Newtonian gravity," retrieved from http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node35.html B. C. Barish , "The detection of gravitational waves," video from CERN Academic Training Lectures, The detection of gravitational waves - CERN Document Server, Caltech (1996).https://cds.cern.ch/record/304956 LIGO Team, Astrophys. J. Lett. 915, L5 (2021). 10.3847/2041-8213/ac082e A. Einstein , L. Infeld , and B. Hoffmann , Ann. Math. Second Ser. 39, 65 (1938). 10.2307/1968714 F. Rohrlich , From Paradox to Reality: Our Basic Concepts of the Physical World (Cambridge University Press, Cambridge, 1989), p. 28. A. Einstein , Erkl ¨Arung Der Perihel Bewegung Des Merkur Aus Der Allgemeinen Relativi ¨atstheorie (Königlich-Preufiische Akad. Wiss., Berlin, 1915), pp. 831-839. English translation "Explanation of the perihelion motion of mercury from general relativity theory," by R. A. Rydin with comments by A. A. Vankov , pp. 1-34. M. Maggiore , Gravitational Waves, Theory and Experiments Vol. 1 (Oxford University Press, Oxford, 2007). (i0836-1398-35-2-208-B5) 2007; 1 (i0836-1398-35-2-208-B6) 2021; 915 (i0836-1398-35-2-208-B4) 2017 (i0836-1398-35-2-208-B9) 1999; 50 (i0836-1398-35-2-208-B11) 1998; 250 (i0836-1398-35-2-208-B7) 1996 (i0836-1398-35-2-208-B10) 1915 (i0836-1398-35-2-208-B12) 1938; 39 (i0836-1398-35-2-208-B3) 2015; 110 (i0836-1398-35-2-208-B1) 1989 i0836-1398-35-2-208-B2 (i0836-1398-35-2-208-B8) 1973 |
References_xml | – reference: M. Maggiore , Gravitational Waves, Theory and Experiments Vol. 1 (Oxford University Press, Oxford, 2007). – reference: LIGO Team, Astrophys. J. Lett. 915, L5 (2021). 10.3847/2041-8213/ac082e – reference: F. Rohrlich , From Paradox to Reality: Our Basic Concepts of the Physical World (Cambridge University Press, Cambridge, 1989), p. 28. – reference: J. A. Wheeler , C. Misner , and K. S. Thorne , Gravitation (W. H. Freeman & Co., New York, 1973), p. 404. – reference: J. D. Anderson , G. Schubert , V. Trimble , and M. R. Feldman , Europhys. Lett. 110, 10002 (2015). 10.1209/0295-5075/110/10002 – reference: B. C. Barish , "The detection of gravitational waves," video from CERN Academic Training Lectures, The detection of gravitational waves - CERN Document Server, Caltech (1996).https://cds.cern.ch/record/304956 – reference: A. Einstein , Erkl ¨Arung Der Perihel Bewegung Des Merkur Aus Der Allgemeinen Relativi ¨atstheorie (Königlich-Preufiische Akad. Wiss., Berlin, 1915), pp. 831-839. English translation "Explanation of the perihelion motion of mercury from general relativity theory," by R. A. Rydin with comments by A. A. Vankov , pp. 1-34. – reference: R. Fitzpatrick , "Newtonian gravity," retrieved from http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node35.html – reference: A. Einstein , L. Infeld , and B. Hoffmann , Ann. Math. Second Ser. 39, 65 (1938). 10.2307/1968714 – reference: M. Krizek , Math. Compu. Simul. 50, 237 (1999). 10.1016/S0378-4754(99)00085-3 – reference: T. Henderson , "The Doppler effect-Lesson 3, waves," Physics Tutorial, retrieved from physicsclassroom.com (2017). – reference: T. van Flandern , Phys. Lett. A 250, 1 (1998). 10.1016/S0375-9601(98)00650-1 – volume: 110 start-page: 10002 year: 2015 ident: i0836-1398-35-2-208-B3 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/110/10002 – year: 1996 ident: i0836-1398-35-2-208-B7 article-title: The detection of gravitational waves,” publication-title: The detection of gravitational waves - CERN Document Server – volume: 50 start-page: 237 year: 1999 ident: i0836-1398-35-2-208-B9 publication-title: Math. Compu. Simul. doi: 10.1016/S0378-4754(99)00085-3 – ident: i0836-1398-35-2-208-B2 article-title: Newtonian gravity – volume: 39 start-page: 65 year: 1938 ident: i0836-1398-35-2-208-B12 publication-title: Ann. Math. Second Ser. doi: 10.2307/1968714 – volume: 1 volume-title: Gravitational Waves, Theory and Experiments year: 2007 ident: i0836-1398-35-2-208-B5 – start-page: 404 volume-title: Gravitation year: 1973 ident: i0836-1398-35-2-208-B8 – start-page: 28 volume-title: From Paradox to Reality: Our Basic Concepts of the Physical World year: 1989 ident: i0836-1398-35-2-208-B1 – start-page: 831 volume-title: Erkl ¨Arung Der Perihel Bewegung Des Merkur Aus Der Allgemeinen Relativi ¨atstheorie year: 1915 ident: i0836-1398-35-2-208-B10 – year: 2017 ident: i0836-1398-35-2-208-B4 article-title: The Doppler effect—Lesson 3, waves – volume: 915 start-page: L5 year: 2021 ident: i0836-1398-35-2-208-B6 publication-title: Astrophys. J. Lett. doi: 10.3847/2041-8213/ac082e – volume: 250 start-page: 1 year: 1998 ident: i0836-1398-35-2-208-B11 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(98)00650-1 |
RelatedPersons | Hoffmann, Banesh Einstein, Albert |
RelatedPersons_xml | – fullname: Hoffmann, Banesh – fullname: Einstein, Albert |
SSID | ssj0025840 |
Score | 2.2161849 |
Snippet | The relative velocity between objects with finite velocity affects the reaction between them. This effect is known as general Doppler effect. The Laser... |
SourceID | gale crossref ingenta |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 208 |
SubjectTerms | Doppler Effect Einstein, Albert Gravitational Constant Gravitational Field Gravitational Wave Gravity Hoffmann, Banesh Light Ligo Newtonian Gravity Precession Of The Planets |
Title | Gravitational fields and gravitational waves |
URI | https://www.ingentaconnect.com/content/pe/pe/2022/00000035/00000002/art00018 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-kRfBF_MTTKkEEH2pqsl9JHq_qWQX7Ygv1adjd7B6C5Mold9L-9Z1NNrlLq2CFEMJmM5nsLzsfycwsIW8cy3LFsiLW1LmYW3R3CilUbBUqg9JR9DJ8gvO3Y3l0yr-eibPNuqNtdkmjD8zlH_NK_gdVbENcfZbsLZAdiGIDHiO-uEeEcf9PGH9eqnWose3zEH0wWldyeT468VutQ6RgsELbsE9T7_vlTy4Go_rHKixVvAjyIXwMwIEdgpZ6mcF8WcFuYedewHX1QAKQdFtaJfmW4guy67pMxUne_uLpKcdMHPgMtnyjQfq_5tcUyxDuh44Gb-PnkAZ4GsAEUKA-SXuXon2PAmp3evjxcDb4ymgXtZ_H-rt2-U6eyvubnIxsiqBZ-9y0LWvh5AG5H8z8aNph9pDcsdUjcjeM-2PyboRc1CEXIXLRCLmoRe4JOZ19OvlwFId1K2LDBGtinnONXq8rXO7whUeTjEmTCldYWVKlUUZyoalwTmpRWJMqYzm2p8aWUqG9zp6SnWpR2WckksaVTiRSZ4XgmU5yLa1lMitUYTJV0AnZ758czrvyJPD30Z6Q135wwNf9qHxg0Vyt6hq-fD-GaZZydDVpIifkbejkFs1SGRXyNJAhXyps1HNv1BMFkxmdngUMIMyZGn4aOLctZy1jayYqzxl2zxMGvs4WlNap1a8GGrWE-SXUKbItbxBCKrj5K6H1cxN8xu4goYAT0vsu-fNbjc4Lcm8zpfbITrNc2ZdocTb6VXg7rwD8ync8 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gravitational+fields+and+gravitational+waves&rft.jtitle=Physics+essays&rft.au=Yuan%2C+Tony&rft.date=2022-06-01&rft.issn=0836-1398&rft.volume=35&rft.issue=2&rft.spage=208&rft.epage=219&rft_id=info:doi/10.4006%2F0836-1398-35.2.208&rft.externalDBID=n%2Fa&rft.externalDocID=10_4006_0836_1398_35_2_208 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0836-1398&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0836-1398&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0836-1398&client=summon |