Gravitational fields and gravitational waves

The relative velocity between objects with finite velocity affects the reaction between them. This effect is known as general Doppler effect. The Laser Interferometer Gravitational-Wave Observatory (LIGO) discovered gravitational waves and found their speed to be equal to the speed of light c. Gravi...

Full description

Saved in:
Bibliographic Details
Published inPhysics essays Vol. 35; no. 2; pp. 208 - 219
Main Author Yuan, Tony
Format Journal Article
LanguageEnglish
Published Ingenta 01.06.2022
Physics Essays Publication
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The relative velocity between objects with finite velocity affects the reaction between them. This effect is known as general Doppler effect. The Laser Interferometer Gravitational-Wave Observatory (LIGO) discovered gravitational waves and found their speed to be equal to the speed of light c. Gravitational waves are generated following a disturbance in the gravitational field; they affect the gravitational force on an object. Just as light waves are subject to the Doppler effect, so are gravitational waves. This article explores the following research questions concerning gravitational waves: Is there a linear relationship between gravity and velocity? Can the speed of a gravitational wave represent the speed of the gravitational field (the speed of the action of the gravitational field upon the object)? What is the speed of the gravitational field? What is the spatial distribution of gravitational waves? Do gravitational waves caused by the revolution of the Sun affect planetary precession? Can we modify Newton's gravitational equation through the influence of gravitational waves?
AbstractList The relative velocity between objects with finite velocity affects the reaction between them. This effect is known as general Doppler effect. The Laser Interferometer Gravitational-Wave Observatory (LIGO) discovered gravitational waves and found their speed to be equal to the speed of light c . Gravitational waves are generated following a disturbance in the gravitational field; they affect the gravitational force on an object. Just as light waves are subject to the Doppler effect, so are gravitational waves. This article explores the following research questions concerning gravitational waves: Is there a linear relationship between gravity and velocity? Can the speed of a gravitational wave represent the speed of the gravitational field (the speed of the action of the gravitational field upon the object)? What is the speed of the gravitational field? What is the spatial distribution of gravitational waves? Do gravitational waves caused by the revolution of the Sun affect planetary precession? Can we modify Newton's gravitational equation through the influence of gravitational waves?
The relative velocity between objects with finite velocity affects the reaction between them. This effect is known as general Doppler effect. The Laser Interferometer Gravitational-Wave Observatory (LIGO) discovered gravitational waves and found their speed to be equal to the speed of light c. Gravitational waves are generated following a disturbance in the gravitational field; they affect the gravitational force on an object. Just as light waves are subject to the Doppler effect, so are gravitational waves. This article explores the following research questions concerning gravitational waves: Is there a linear relationship between gravity and velocity? Can the speed of a gravitational wave represent the speed of the gravitational field (the speed of the action of the gravitational field upon the object)? What is the speed of the gravitational field? What is the spatial distribution of gravitational waves? Do gravitational waves caused by the revolution of the Sun affect planetary precession? Can we modify Newton's gravitational equation through the influence of gravitational waves?
The relative velocity between objects with finite velocity affects the reaction between them. This effect is known as general Doppler effect. The Laser Interferometer Gravitational-Wave Observatory (LIGO) discovered gravitational waves and found their speed to be equal to the speed of light c. Gravitational waves are generated following a disturbance in the gravitational field; they affect the gravitational force on an object. Just as light waves are subject to the Doppler effect, so are gravitational waves. This article explores the following research questions concerning gravitational waves: Is there a linear relationship between gravity and velocity? Can the speed of a gravitational wave represent the speed of the gravitational field (the speed of the action of the gravitational field upon the object)? What is the speed of the gravitational field? What is the spatial distribution of gravitational waves? Do gravitational waves caused by the revolution of the Sun affect planetary precession? Can we modify Newton's gravitational equation through the influence of gravitational waves?
The relative velocity between objects with finite velocity affects the reaction between them. This effect is known as general Doppler effect. The Laser Interferometer Gravitational-Wave Observatory (LIGO) discovered gravitational waves and found their speed to be equal to the speed of light c. Gravitational waves are generated following a disturbance in the gravitational field; they affect the gravitational force on an object. Just as light waves are subject to the Doppler effect, so are gravitational waves. This article explores the following research questions concerning gravitational waves: Is there a linear relationship between gravity and velocity? Can the speed of a gravitational wave represent the speed of the gravitational field (the speed of the action of the gravitational field upon the object)? What is the speed of the gravitational field? What is the spatial distribution of gravitational waves? Do gravitational waves caused by the revolution of the Sun affect planetary precession? Can we modify Newton's gravitational equation through the influence of gravitational waves? La vitesse relative entre les objets a vitesse finie affecte la reaction entre eux. Cet effet est connu sous le nom d'effet Doppler general. Le Laser Interferometer Gravitational-Wave Observatory (LIGO) a decouvert des ondes gravitationnelles et a trouve que leur vitesse etait egale a la vitesse de la lumiere c. Les ondes gravitationnelles sont gerorees suite a une perturbation du champ gravitationnel; ils affectent la force gravitationnelle sur un objet. Tout comme les ondes lumineuses sont soumises aa l'effet Doppler, les ondes gravitationnelles le sont aussi. Cet article explore les questions de recherche suivantes concernant les ondes gravitationnelles: Existe-t-il une relation lineaire entre la gravite et la vitesse? La vitesse d'une onde gravitationnelle peut-elle representer la vitesse du champ gravitationnel (la vitesse de l'action du champ gravitationnel sur l'objet)? Quelle est la vitesse du champ gravitationnel? Quelle est la distribution spatiale des ondes gravitationnelles? Les ondes gravitationnelles provoques par la revolution du Soleil affectent-elles la precession planetaire? Peut-on modifier l'equation gravitationnelle de Newton par l'influence des ondes gravitationnelles? Key words: Newtonian Gravity; Doppler Effect; Gravitational Wave; Gravitational Field; LIGO; Gravitational Constant; Precession of the Planets.
Audience Academic
Author Yuan, Tony
Author_xml – sequence: 1
  givenname: Tony
  surname: Yuan
  fullname: Yuan, Tony
BookMark eNp1kEtLAzEUhbNQ8PkHXBVcCU7Nc5pZuBDxUfCxUNeX20wyRKYzkqT18evNtCIUNAnccHO-c8PZI1td31lCjhgdS0rLM6pFWTBR6UKoMR9zqrfI7m9zh-zF-EopV1rSXXJ6E3DpEybfd9iOnLdtHUfY1aNm4-EdlzYekG2HbbSHP3WfvFxfPV_eFnePN9PLi7vCCCVSIbWcSald5bQrWa1oJUrDlKtsWXOcqYmWasaVc-VMVdYwNFbmPjO2LrGqmNgnx2vfBlsLvnN9CmjmPhq4mDDJNOe0zKrxH6q8azv3JmfifO5vACcbQNYk-5EaXMQI06eHTS1fa03oYwzWwVvwcwyfwCgMMcOQKAyJglDAIcecofs15LvGdgnhtV-EnF4Eb-DNrpAVsRSqG5A8SlMBVIoJ1Nbhok2QMEDzBZENfuf_-GWzfAYDoKuV_7C-UA4YUq6Z_wazwp2j
Cites_doi 10.1209/0295-5075/110/10002
10.1016/S0378-4754(99)00085-3
10.2307/1968714
10.3847/2041-8213/ac082e
10.1016/S0375-9601(98)00650-1
ContentType Journal Article
Copyright COPYRIGHT 2022 Physics Essays Publication
Copyright_xml – notice: COPYRIGHT 2022 Physics Essays Publication
DBID AAYXX
CITATION
ISN
DOI 10.4006/0836-1398-35.2.208
DatabaseName CrossRef
Gale In Context: Canada
DatabaseTitle CrossRef
DatabaseTitleList CrossRef




DeliveryMethod fulltext_linktorsrc
Discipline Physics
EndPage 219
ExternalDocumentID A714182206
10_4006_0836_1398_35_2_208
pe/pe/2022/00000035/00000002/art00018
GroupedDBID 29O
ABDBF
ABEFU
ALMA_UNASSIGNED_HOLDINGS
B0M
EAD
EAP
EMK
EPL
EST
ESX
I-F
IAO
IEA
IGS
ISN
ITC
PEO
PV9
RIG
RZL
TUS
~8M
AAYXX
ACUHS
CITATION
ID FETCH-LOGICAL-c353t-484b448f9f8f61d50936c15f9e6d2ab57845b25ff6b59ec1ace42ab1ced6a9913
ISSN 0836-1398
IngestDate Wed Mar 19 01:26:42 EDT 2025
Sat Mar 08 18:14:47 EST 2025
Wed Mar 05 04:18:50 EST 2025
Tue Jul 01 03:39:10 EDT 2025
Thu Aug 04 14:10:39 EDT 2022
Fri Nov 08 05:58:54 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c353t-484b448f9f8f61d50936c15f9e6d2ab57845b25ff6b59ec1ace42ab1ced6a9913
Notes 0836-1398(20220626)35:2L.208;1-
PageCount 12
ParticipantIDs ingenta_journals_ic_pe_08361398_v35n2_20220803_0437_default_tar_gz_s18
gale_incontextgauss_ISN_A714182206
gale_infotracacademiconefile_A714182206
crossref_primary_10_4006_0836_1398_35_2_208
ingenta_journals_pe_pe_2022_00000035_00000002_art00018
gale_infotracmisc_A714182206
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Physics essays
PublicationYear 2022
Publisher Ingenta
Physics Essays Publication
Publisher_xml – name: Ingenta
– name: Physics Essays Publication
References J. D. Anderson , G. Schubert , V. Trimble , and M. R. Feldman , Europhys. Lett. 110, 10002 (2015). 10.1209/0295-5075/110/10002
T. van Flandern , Phys. Lett. A 250, 1 (1998). 10.1016/S0375-9601(98)00650-1
J. A. Wheeler , C. Misner , and K. S. Thorne , Gravitation (W. H. Freeman & Co., New York, 1973), p. 404.
M. Krizek , Math. Compu. Simul. 50, 237 (1999). 10.1016/S0378-4754(99)00085-3
T. Henderson , "The Doppler effect-Lesson 3, waves," Physics Tutorial, retrieved from physicsclassroom.com (2017).
R. Fitzpatrick , "Newtonian gravity," retrieved from http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node35.html
B. C. Barish , "The detection of gravitational waves," video from CERN Academic Training Lectures, The detection of gravitational waves - CERN Document Server, Caltech (1996).https://cds.cern.ch/record/304956
LIGO Team, Astrophys. J. Lett. 915, L5 (2021). 10.3847/2041-8213/ac082e
A. Einstein , L. Infeld , and B. Hoffmann , Ann. Math. Second Ser. 39, 65 (1938). 10.2307/1968714
F. Rohrlich , From Paradox to Reality: Our Basic Concepts of the Physical World (Cambridge University Press, Cambridge, 1989), p. 28.
A. Einstein , Erkl ¨Arung Der Perihel Bewegung Des Merkur Aus Der Allgemeinen Relativi ¨atstheorie (Königlich-Preufiische Akad. Wiss., Berlin, 1915), pp. 831-839. English translation "Explanation of the perihelion motion of mercury from general relativity theory," by R. A. Rydin with comments by A. A. Vankov , pp. 1-34.
M. Maggiore , Gravitational Waves, Theory and Experiments Vol. 1 (Oxford University Press, Oxford, 2007).
(i0836-1398-35-2-208-B5) 2007; 1
(i0836-1398-35-2-208-B6) 2021; 915
(i0836-1398-35-2-208-B4) 2017
(i0836-1398-35-2-208-B9) 1999; 50
(i0836-1398-35-2-208-B11) 1998; 250
(i0836-1398-35-2-208-B7) 1996
(i0836-1398-35-2-208-B10) 1915
(i0836-1398-35-2-208-B12) 1938; 39
(i0836-1398-35-2-208-B3) 2015; 110
(i0836-1398-35-2-208-B1) 1989
i0836-1398-35-2-208-B2
(i0836-1398-35-2-208-B8) 1973
References_xml – reference: M. Maggiore , Gravitational Waves, Theory and Experiments Vol. 1 (Oxford University Press, Oxford, 2007).
– reference: LIGO Team, Astrophys. J. Lett. 915, L5 (2021). 10.3847/2041-8213/ac082e
– reference: F. Rohrlich , From Paradox to Reality: Our Basic Concepts of the Physical World (Cambridge University Press, Cambridge, 1989), p. 28.
– reference: J. A. Wheeler , C. Misner , and K. S. Thorne , Gravitation (W. H. Freeman & Co., New York, 1973), p. 404.
– reference: J. D. Anderson , G. Schubert , V. Trimble , and M. R. Feldman , Europhys. Lett. 110, 10002 (2015). 10.1209/0295-5075/110/10002
– reference: B. C. Barish , "The detection of gravitational waves," video from CERN Academic Training Lectures, The detection of gravitational waves - CERN Document Server, Caltech (1996).https://cds.cern.ch/record/304956
– reference: A. Einstein , Erkl ¨Arung Der Perihel Bewegung Des Merkur Aus Der Allgemeinen Relativi ¨atstheorie (Königlich-Preufiische Akad. Wiss., Berlin, 1915), pp. 831-839. English translation "Explanation of the perihelion motion of mercury from general relativity theory," by R. A. Rydin with comments by A. A. Vankov , pp. 1-34.
– reference: R. Fitzpatrick , "Newtonian gravity," retrieved from http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node35.html
– reference: A. Einstein , L. Infeld , and B. Hoffmann , Ann. Math. Second Ser. 39, 65 (1938). 10.2307/1968714
– reference: M. Krizek , Math. Compu. Simul. 50, 237 (1999). 10.1016/S0378-4754(99)00085-3
– reference: T. Henderson , "The Doppler effect-Lesson 3, waves," Physics Tutorial, retrieved from physicsclassroom.com (2017).
– reference: T. van Flandern , Phys. Lett. A 250, 1 (1998). 10.1016/S0375-9601(98)00650-1
– volume: 110
  start-page: 10002
  year: 2015
  ident: i0836-1398-35-2-208-B3
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/110/10002
– year: 1996
  ident: i0836-1398-35-2-208-B7
  article-title: The detection of gravitational waves,”
  publication-title: The detection of gravitational waves - CERN Document Server
– volume: 50
  start-page: 237
  year: 1999
  ident: i0836-1398-35-2-208-B9
  publication-title: Math. Compu. Simul.
  doi: 10.1016/S0378-4754(99)00085-3
– ident: i0836-1398-35-2-208-B2
  article-title: Newtonian gravity
– volume: 39
  start-page: 65
  year: 1938
  ident: i0836-1398-35-2-208-B12
  publication-title: Ann. Math. Second Ser.
  doi: 10.2307/1968714
– volume: 1
  volume-title: Gravitational Waves, Theory and Experiments
  year: 2007
  ident: i0836-1398-35-2-208-B5
– start-page: 404
  volume-title: Gravitation
  year: 1973
  ident: i0836-1398-35-2-208-B8
– start-page: 28
  volume-title: From Paradox to Reality: Our Basic Concepts of the Physical World
  year: 1989
  ident: i0836-1398-35-2-208-B1
– start-page: 831
  volume-title: Erkl ¨Arung Der Perihel Bewegung Des Merkur Aus Der Allgemeinen Relativi ¨atstheorie
  year: 1915
  ident: i0836-1398-35-2-208-B10
– year: 2017
  ident: i0836-1398-35-2-208-B4
  article-title: The Doppler effect—Lesson 3, waves
– volume: 915
  start-page: L5
  year: 2021
  ident: i0836-1398-35-2-208-B6
  publication-title: Astrophys. J. Lett.
  doi: 10.3847/2041-8213/ac082e
– volume: 250
  start-page: 1
  year: 1998
  ident: i0836-1398-35-2-208-B11
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(98)00650-1
RelatedPersons Hoffmann, Banesh
Einstein, Albert
RelatedPersons_xml – fullname: Hoffmann, Banesh
– fullname: Einstein, Albert
SSID ssj0025840
Score 2.2161849
Snippet The relative velocity between objects with finite velocity affects the reaction between them. This effect is known as general Doppler effect. The Laser...
SourceID gale
crossref
ingenta
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 208
SubjectTerms Doppler Effect
Einstein, Albert
Gravitational Constant
Gravitational Field
Gravitational Wave
Gravity
Hoffmann, Banesh
Light
Ligo
Newtonian Gravity
Precession Of The Planets
Title Gravitational fields and gravitational waves
URI https://www.ingentaconnect.com/content/pe/pe/2022/00000035/00000002/art00018
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-kRfBF_MTTKkEEH2pqsl9JHq_qWQX7Ygv1adjd7B6C5Mold9L-9Z1NNrlLq2CFEMJmM5nsLzsfycwsIW8cy3LFsiLW1LmYW3R3CilUbBUqg9JR9DJ8gvO3Y3l0yr-eibPNuqNtdkmjD8zlH_NK_gdVbENcfZbsLZAdiGIDHiO-uEeEcf9PGH9eqnWose3zEH0wWldyeT468VutQ6RgsELbsE9T7_vlTy4Go_rHKixVvAjyIXwMwIEdgpZ6mcF8WcFuYedewHX1QAKQdFtaJfmW4guy67pMxUne_uLpKcdMHPgMtnyjQfq_5tcUyxDuh44Gb-PnkAZ4GsAEUKA-SXuXon2PAmp3evjxcDb4ymgXtZ_H-rt2-U6eyvubnIxsiqBZ-9y0LWvh5AG5H8z8aNph9pDcsdUjcjeM-2PyboRc1CEXIXLRCLmoRe4JOZ19OvlwFId1K2LDBGtinnONXq8rXO7whUeTjEmTCldYWVKlUUZyoalwTmpRWJMqYzm2p8aWUqG9zp6SnWpR2WckksaVTiRSZ4XgmU5yLa1lMitUYTJV0AnZ758czrvyJPD30Z6Q135wwNf9qHxg0Vyt6hq-fD-GaZZydDVpIifkbejkFs1SGRXyNJAhXyps1HNv1BMFkxmdngUMIMyZGn4aOLctZy1jayYqzxl2zxMGvs4WlNap1a8GGrWE-SXUKbItbxBCKrj5K6H1cxN8xu4goYAT0vsu-fNbjc4Lcm8zpfbITrNc2ZdocTb6VXg7rwD8ync8
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gravitational+fields+and+gravitational+waves&rft.jtitle=Physics+essays&rft.au=Yuan%2C+Tony&rft.date=2022-06-01&rft.issn=0836-1398&rft.volume=35&rft.issue=2&rft.spage=208&rft.epage=219&rft_id=info:doi/10.4006%2F0836-1398-35.2.208&rft.externalDBID=n%2Fa&rft.externalDocID=10_4006_0836_1398_35_2_208
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0836-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0836-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0836-1398&client=summon