Estimating the biodegradation of PHB/PBAT films – An experimental design approach
•The most important factor was the temperature.•Higher temperatures (45 ≥ 37 ⁰C) improved biodegradation in soil.•The addition of nitrogen had no impact on the biodegradation.•A MHC of 60% produced similar results to the range recommended by the standards.•The CCRD was used to modulate the biodegrad...
Saved in:
Published in | Polymer degradation and stability Vol. 233; pp. 1 - 8 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The most important factor was the temperature.•Higher temperatures (45 ≥ 37 ⁰C) improved biodegradation in soil.•The addition of nitrogen had no impact on the biodegradation.•A MHC of 60% produced similar results to the range recommended by the standards.•The CCRD was used to modulate the biodegradation of bioplastics using fewer trials.
The massive use of plastics in various applications, particularly packaging, generates enormous amounts of plastic waste that can be found almost everywhere, including in soil. This represents a serious environmental pollution issue since the biodegradability in soils can take several years, depending on the microbial composition, the physical and chemical characteristics of plastics, and other relevant environmental factors such as the soil temperature, the soil moisture holding capacity (MHC), and the carbon:nitrogen (C/N) ratio. In this work, we evaluated the importance of these soil physical-chemical parameters on the biodegradation of a plastic film composed of PHB/PBAT. A design-of-experiments methodology, namely the Central Composite Rotational Design (CCRD) was used to determine the effects of these parameters in the biodegradation of the films in soil. The carbon dioxide evolution was followed for 6 months following the guidelines of the ASTM D5988 (2018). The results showed that the most important factor was the temperature. Higher temperatures (≥ 37 °C) accelerated biodegradation while the adding of nitrogen (aqueous solution of ammonium chloride) had no impact on this process, probably because the C/N ratio pre-existing in the soil was suitable to guarantee microbial activity. Although a MHC between 80% and 100% is recommended by international standards, 60% MHC produced similar results. According to the methodology, the best combination possible includes a temperature of 37 °C and a MHC ranging from 60 to 100%. |
---|---|
AbstractList | Available online 8 January 2025
The massive use of plastics in various applications, particularly packaging, generates enormous amounts of plastic waste that can be found almost everywhere, including in soil. This represents a serious environmental pollution issue since the biodegradability in soils can take several years, depending on the microbial composition, the physical and chemical characteristics of plastics, and other relevant environmental factors such as the soil temperature, the soil moisture holding capacity (MHC), and the carbon:nitrogen (C/N) ratio. In this work, we evaluated the importance of these soil physical-chemical parameters on the biodegradation of a plastic film composed of PHB/PBAT. A design-of-experiments methodology, namely the Central Composite Rotational Design (CCRD) was used to determine the effects of these parameters in the biodegradation of the films in soil. The carbon dioxide evolution was followed for 6 months following the guidelines of the ASTM D5988 (2018). The results showed that the most important factor was the temperature. Higher temperatures ( 37 °C) accelerated biodegradation while the adding of nitrogen (aqueous solution of ammonium chloride) had no impact on this process, probably because the C/N ratio pre-existing in the soil was suitable to guarantee microbial activity. Although a MHC between 80% and 100% is recommended by international standards, 60% MHC produced similar results. According to the methodology, the best combination possible includes a temperature of 37 °C and a MHC ranging from 60 to 100%.
This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/ 04469/2020 unit, and by LABBELS – Associate Laboratory in Biotech nology, Bioengineering and Microelectromechanical Systems, LA/P/ 0029/2020. Furthermore, this study was also supported by BioTecNorte operation (NORTE-01–0145- FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. The fellowship is supported by a Doctoral advanced training (call NORTE-69–2015–15) funded by the European Social Fund under the scope of Norte2020 - Programa Oper acional Regional do Norte. Finally, by the doctoral grant PD/BD/ 146195/2019 and the grant COVID/BD/153308/2023. •The most important factor was the temperature.•Higher temperatures (45 ≥ 37 ⁰C) improved biodegradation in soil.•The addition of nitrogen had no impact on the biodegradation.•A MHC of 60% produced similar results to the range recommended by the standards.•The CCRD was used to modulate the biodegradation of bioplastics using fewer trials. The massive use of plastics in various applications, particularly packaging, generates enormous amounts of plastic waste that can be found almost everywhere, including in soil. This represents a serious environmental pollution issue since the biodegradability in soils can take several years, depending on the microbial composition, the physical and chemical characteristics of plastics, and other relevant environmental factors such as the soil temperature, the soil moisture holding capacity (MHC), and the carbon:nitrogen (C/N) ratio. In this work, we evaluated the importance of these soil physical-chemical parameters on the biodegradation of a plastic film composed of PHB/PBAT. A design-of-experiments methodology, namely the Central Composite Rotational Design (CCRD) was used to determine the effects of these parameters in the biodegradation of the films in soil. The carbon dioxide evolution was followed for 6 months following the guidelines of the ASTM D5988 (2018). The results showed that the most important factor was the temperature. Higher temperatures (≥ 37 °C) accelerated biodegradation while the adding of nitrogen (aqueous solution of ammonium chloride) had no impact on this process, probably because the C/N ratio pre-existing in the soil was suitable to guarantee microbial activity. Although a MHC between 80% and 100% is recommended by international standards, 60% MHC produced similar results. According to the methodology, the best combination possible includes a temperature of 37 °C and a MHC ranging from 60 to 100%. |
ArticleNumber | 111182 |
Author | Salvador, Andreia F. Vicente, António A. Madalena, Daniel A. Fernandes, Miguel |
Author_xml | – sequence: 1 givenname: Miguel surname: Fernandes fullname: Fernandes, Miguel email: d13825@ceb.uminho.pt organization: Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal – sequence: 2 givenname: Andreia F. surname: Salvador fullname: Salvador, Andreia F. organization: Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal – sequence: 3 givenname: Daniel A. surname: Madalena fullname: Madalena, Daniel A. organization: Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal – sequence: 4 givenname: António A. surname: Vicente fullname: Vicente, António A. organization: Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal |
BookMark | eNqNUE1rAjEQDcVC1fY_5NLjrskm2V0PPahYLQgVas8hm51oxP0gWaTe-h_6D_tLGtmeeurAMDDz5r2ZN0KDuqkBoUdKYkpoOjnGbXO6VCXsnSp9p4o4IYmIaYg8uUFDmmcsSlhCB2hIKKcRm1Jyh0beH0kILugQvS19ZyvV2XqPuwPgwjY9X2g1NW4M3q7nk-18tsPGniqPvz-_8KzG8NGCsxXUnTrhErzd11i1rWuUPtyjW6NOHh5-6xi9Py93i3W0eV29LGabSDPBuogLzQpORWIKJgrKMy5KzXgqKDDCSGpy4CCSMmdmmk0pN1zkxNAizXRIwtkYPfW82jXeOzCyDScpd5GUyKtD8ij_OCSvDsneobCP-32nlWqlg7MNGC_DLJFTLtKrxKqHQPjjbMFJry3UGkrrQHeybOw_xX4Ap-aE4g |
Cites_doi | 10.1016/S0014-3057(99)00219-0 10.1016/j.chemosphere.2024.142696 10.1016/j.polymdegradstab.2019.109017 10.1080/00380768.1999.10414346 10.1016/j.polymdegradstab.2024.110691 10.1016/j.ijbiomac.2019.12.181 10.1515/ipp-2020-350506 10.3390/ma11050820 10.1016/j.polymdegradstab.2007.10.011 10.1016/j.chemosphere.2008.01.037 10.1016/j.ijbiomac.2019.01.003 10.1016/j.polymdegradstab.2019.109031 10.1016/j.gloenvcha.2018.05.002 10.1021/acs.est.0c03371 10.1016/j.ijbiomac.2022.01.019 10.1007/s12010-005-0003-7 10.1242/jeb.118851 10.3390/gels7010012 10.1016/j.jclepro.2019.118392 10.1016/j.polymdegradstab.2017.01.004 10.3390/ijms21217857 10.1016/S0142-9418(03)00042-4 10.1201/b17848 10.1016/j.resconrec.2022.106508 10.1016/j.chemosphere.2018.05.024 10.1007/s10924-006-0033-4 10.1080/00380768.2001.10408366 10.1016/j.chemosphere.2020.128708 10.1021/acs.est.0c04850 10.1186/s12302-017-0113-1 10.1016/j.polymdegradstab.2009.11.048 10.1098/rstb.2008.0311 10.3390/molecules25173946 10.1016/j.soilbio.2021.108211 10.1016/j.polymertesting.2020.107009 10.1093/icb/icr097 10.1016/j.polymdegradstab.2010.07.018 |
ContentType | Journal Article |
Copyright | 2025 The Author(s) |
Copyright_xml | – notice: 2025 The Author(s) |
DBID | 6I. AAFTH RCLKO AAYXX CITATION |
DOI | 10.1016/j.polymdegradstab.2025.111182 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access RCAAP open access repository CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
DissertationSchool | Universidade do Minho |
EISSN | 1873-2321 |
EndPage | 8 |
ExternalDocumentID | 10_1016_j_polymdegradstab_2025_111182 1822_94564 S0141391025000138 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXKI AAXUO ABFNM ABJNI ABMAC ABWVN ABXDB ABXRA ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ADBBV ADECG ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEZYN AFJKZ AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SMS SPC SPCBC SSK SSM SSZ T5K WH7 WUQ XPP ~G- AATTM AAYWO ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP BNPGV EFKBS RCLKO AAYXX CITATION SSH |
ID | FETCH-LOGICAL-c353t-45c3b4152fb35b14745dc34651e30306f8e4e52d83f97914f4580f1b67cb67043 |
IEDL.DBID | .~1 |
ISSN | 0141-3910 |
IngestDate | Tue Jul 01 05:24:16 EDT 2025 Fri Aug 01 16:37:05 EDT 2025 Sat Mar 08 15:47:37 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Central composite rotational design Polybutylene adipate terephthalate Polyhydroxybutyrate Soil biodegradation Prediction model |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-45c3b4152fb35b14745dc34651e30306f8e4e52d83f97914f4580f1b67cb67043 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0141391025000138 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1016_j_polymdegradstab_2025_111182 rcaap_revistas_1822_94564 elsevier_sciencedirect_doi_10_1016_j_polymdegradstab_2025_111182 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2025 2025-03 2025-03-00 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
PublicationDecade | 2020 |
PublicationTitle | Polymer degradation and stability |
PublicationYear | 2025 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Navarre, Mogollón, Tukker, Barbarossa (bib0027) 2022; 185 Tarrahi, Fathi, Seydibeyoğlu, Doustkhah, Khataee (bib0045) 2020; 146 ASTM D1293-18. (2018). Standard Test Methods For pH of Water. ASTM International. Schulte, Healy, Fangue (bib0039) 2011; 51 Briassoulis, Mistriotis (bib0005) 2018; 207 Silva, Martins, Fasolin, Vicente (bib0043) 2021; 7 Chivrac, Kadlecová, Pollet, Avérous (bib0009) 2006; 14 Han, Teng, Wang, Ren, Wang, Luo, Christie (bib0015) 2021; 55 Chinaglia, Esposito, Tosin, Pecchiari, Degli Innocenti (bib0008) 2024; 222 Hopewell, Dvorak, Kosior (bib0016) 2009; 364 Pischedda, Tosin, Degli-Innocenti (bib0030) 2019; 170 Fernandes, Salvador, Vicente (bib0012) 2024; 362 Qi, Jones, Liu, Liu, Li, Yan (bib0033) 2021; 93 Kijchavengkul, Auras, Rubino, Ngouajio, Fernandez (bib0021) 2008; 71 Teixeira, Covas, Suarez, Angulo, Hilliou (bib0046) 2020; 35 Beber, de Barros, Banea, Brede, de Carvalho, Hoffmann, Wellen (bib0004) 2018; 11 Rodrigues, M., & Iemma, A. (2014). Experimental Design and Process Optimization CRC Press, 2014. Kijchavengkul, Auras, Rubino, Selke, Ngouajio, Fernandez (bib0022) 2010; 95 Camani, Souza, Barbosa, Zanini, Mulinari, Rosa (bib0007) 2021; 269 Roosen, Mys, Kusenberg, Billen, Dumoulin, Dewulf, De Meester (bib0035) 2020; 54 Hoshino, Sawada, Yokota, Tsuji, Fukuda, Kimura (bib0017) 2001; 47 Dauvergne (bib0010) 2018; 51 ASTM D425-17. (2017). Test Method for Centrifuge Moisture Equivalent of Soils. ASTM International. Lim, Gan, Tan (bib0024) 2005; 126 Kim, Lee, Yoon, Chin (bib0023) 2000; 36 Schulte (bib0038) 2015; 218 Briassoulis, Mistriotis, Mortier, Tosin (bib0006) 2020; 242 SM 2540 G (1998). Total, Fixed, and Volatile Solids in Solid and Semisolid Samples. Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF. (20th ed.). Iovino, Zullo, Rao, Cassar, Gianfreda (bib0018) 2008; 93 Nishide, Toyota, Kimura (bib0028) 1999; 45 Šerá, Serbruyns, De Wilde, Koutný (bib0041) 2020; 171 Silva, Prieto, Andrade, Lagarón, Pastrana, Coimbra, Cerqueira (bib0042) 2022; 202 Kijchavengkul, Auras, Rubino, Alvarado, Camacho Montero, Rosales (bib0020) 2010; 95 Fu, Wu, Bian, Zeng, Weng (bib0014) 2020; 25 . EC. (2006). Thematic strategy for soil protection. In: Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions. Plastics - the Facts 2021. Retrieved from ASTM D5988. (2018). Standard Test Method For Determining Aerobic Biodegradation in Soil of Plastic Materials. ASTM International. Zhou, Gui, Banfield, Wen, Zang, Dippold, Jones (bib0047) 2021; 156 Sabapathy, Devaraj, Parthipan, Kathirvel (bib0037) 2019; 126 Matthies, Beulke (bib0025) 2017; 29 Joyyi, Ahmad Thirmizir, Salim, Han, Murugan, Kasuya, Sudesh (bib0019) 2017; 137 Rosa, Lotto, Lopes, Guedes (bib0036) 2004; 23 Šerá, Kadlečková, Fayyazbakhsh, Kučabová, Koutný (bib0040) 2020; 21 Plastics, E. (2021). An Analysis of European Plastics Production, Demand and Waste Data, Plastics Europe-Association of Plastics Manufacturers. Plastics - the Facts 2021. Retrieved from Pischedda (10.1016/j.polymdegradstab.2025.111182_bib0030) 2019; 170 Iovino (10.1016/j.polymdegradstab.2025.111182_bib0018) 2008; 93 10.1016/j.polymdegradstab.2025.111182_bib0044 Rosa (10.1016/j.polymdegradstab.2025.111182_bib0036) 2004; 23 10.1016/j.polymdegradstab.2025.111182_bib0003 Kim (10.1016/j.polymdegradstab.2025.111182_bib0023) 2000; 36 10.1016/j.polymdegradstab.2025.111182_bib0001 10.1016/j.polymdegradstab.2025.111182_bib0002 Šerá (10.1016/j.polymdegradstab.2025.111182_bib0041) 2020; 171 Kijchavengkul (10.1016/j.polymdegradstab.2025.111182_bib0020) 2010; 95 Navarre (10.1016/j.polymdegradstab.2025.111182_bib0027) 2022; 185 Hoshino (10.1016/j.polymdegradstab.2025.111182_bib0017) 2001; 47 Sabapathy (10.1016/j.polymdegradstab.2025.111182_bib0037) 2019; 126 Camani (10.1016/j.polymdegradstab.2025.111182_bib0007) 2021; 269 Schulte (10.1016/j.polymdegradstab.2025.111182_bib0039) 2011; 51 Lim (10.1016/j.polymdegradstab.2025.111182_bib0024) 2005; 126 Schulte (10.1016/j.polymdegradstab.2025.111182_bib0038) 2015; 218 Kijchavengkul (10.1016/j.polymdegradstab.2025.111182_bib0021) 2008; 71 Kijchavengkul (10.1016/j.polymdegradstab.2025.111182_bib0022) 2010; 95 Fu (10.1016/j.polymdegradstab.2025.111182_bib0014) 2020; 25 Nishide (10.1016/j.polymdegradstab.2025.111182_bib0028) 1999; 45 Briassoulis (10.1016/j.polymdegradstab.2025.111182_bib0006) 2020; 242 Dauvergne (10.1016/j.polymdegradstab.2025.111182_bib0010) 2018; 51 Chinaglia (10.1016/j.polymdegradstab.2025.111182_bib0008) 2024; 222 Matthies (10.1016/j.polymdegradstab.2025.111182_bib0025) 2017; 29 10.1016/j.polymdegradstab.2025.111182_bib0011 Hopewell (10.1016/j.polymdegradstab.2025.111182_bib0016) 2009; 364 10.1016/j.polymdegradstab.2025.111182_bib0031 Briassoulis (10.1016/j.polymdegradstab.2025.111182_bib0005) 2018; 207 Qi (10.1016/j.polymdegradstab.2025.111182_bib0033) 2021; 93 Šerá (10.1016/j.polymdegradstab.2025.111182_bib0040) 2020; 21 Roosen (10.1016/j.polymdegradstab.2025.111182_bib0035) 2020; 54 10.1016/j.polymdegradstab.2025.111182_bib0034 Joyyi (10.1016/j.polymdegradstab.2025.111182_bib0019) 2017; 137 Han (10.1016/j.polymdegradstab.2025.111182_bib0015) 2021; 55 Fernandes (10.1016/j.polymdegradstab.2025.111182_bib0012) 2024; 362 Chivrac (10.1016/j.polymdegradstab.2025.111182_bib0009) 2006; 14 Tarrahi (10.1016/j.polymdegradstab.2025.111182_bib0045) 2020; 146 Teixeira (10.1016/j.polymdegradstab.2025.111182_bib0046) 2020; 35 Beber (10.1016/j.polymdegradstab.2025.111182_bib0004) 2018; 11 Zhou (10.1016/j.polymdegradstab.2025.111182_bib0047) 2021; 156 Silva (10.1016/j.polymdegradstab.2025.111182_bib0042) 2022; 202 Silva (10.1016/j.polymdegradstab.2025.111182_bib0043) 2021; 7 |
References_xml | – reference: EC. (2006). Thematic strategy for soil protection. In: Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions. Plastics - the Facts 2021. Retrieved from – reference: SM 2540 G (1998). Total, Fixed, and Volatile Solids in Solid and Semisolid Samples. Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF. (20th ed.). – volume: 45 start-page: 963 year: 1999 end-page: 972 ident: bib0028 article-title: Effects of soil temperature and anaerobiosis on degradation of biodegradable plastics in soil and their degrading microorganisms publication-title: Soil Sci. Plant Nutr. – volume: 93 year: 2021 ident: bib0033 article-title: Field test on the biodegradation of poly(butylene adipate-co-terephthalate) based mulch films in soil publication-title: Polym. Test. – volume: 35 start-page: 440 year: 2020 end-page: 447 ident: bib0046 article-title: Film Blowing of PHB-Based Systems for Home Compostable Food Packaging publication-title: Int. Polym. Proc. – reference: Rodrigues, M., & Iemma, A. (2014). Experimental Design and Process Optimization CRC Press, 2014. – volume: 185 year: 2022 ident: bib0027 article-title: Recycled plastic packaging from the Dutch food sector pollutes Asian oceans publication-title: Resour. Conserv. Recycl. – volume: 23 start-page: 3 year: 2004 end-page: 8 ident: bib0036 article-title: The use of roughness for evaluating the biodegradation of poly-β-(hydroxybutyrate) and poly-β-(hydroxybutyrate-co-β-valerate) publication-title: Polym. Test – volume: 95 start-page: 99 year: 2010 end-page: 107 ident: bib0020 article-title: Atmospheric and soil degradation of aliphatic-aromatic polyester films publication-title: Polym. Degrad. Stab. – reference: ASTM D1293-18. (2018). Standard Test Methods For pH of Water. ASTM International. – volume: 95 start-page: 2641 year: 2010 end-page: 2647 ident: bib0022 article-title: Biodegradation and hydrolysis rate of aliphatic aromatic polyester publication-title: Polym. Degrad. Stab. – volume: 269 year: 2021 ident: bib0007 article-title: Comprehensive insight into surfactant modified-PBAT physico-chemical and biodegradability properties publication-title: Chemosphere – volume: 146 start-page: 596 year: 2020 end-page: 619 ident: bib0045 article-title: Polyhydroxyalkanoates (PHA): from production to nanoarchitecture publication-title: Int. J. Biol. Macromol. – volume: 156 year: 2021 ident: bib0047 article-title: The microplastisphere: biodegradable microplastics addition alters soil microbial community structure and function publication-title: Soil Biol. Biochem. – volume: 222 year: 2024 ident: bib0008 article-title: Biodegradation of plastics in soil: the effect of water content publication-title: Polym. Degrad. Stab. – volume: 207 start-page: 18 year: 2018 end-page: 26 ident: bib0005 article-title: Key parameters in testing biodegradation of bio-based materials in soil publication-title: Chemosphere – volume: 364 start-page: 2115 year: 2009 end-page: 2126 ident: bib0016 article-title: Plastics recycling: challenges and opportunities publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 21 start-page: 1 year: 2020 end-page: 17 ident: bib0040 article-title: Occurrence and analysis of thermophilic poly(Butylene adipate-co-terephthalate)-degrading microorganisms in temperate zone soils publication-title: Int. J. Mol. Sci. – volume: 14 start-page: 393 year: 2006 end-page: 401 ident: bib0009 article-title: Aromatic copolyester-based nano-biocomposites: elaboration, structural characterization and properties publication-title: J. Polym. Environ. – volume: 25 year: 2020 ident: bib0014 article-title: Biodegradation Behavior of Poly(Butylene Adipate-Co-Terephthalate) (PBAT), Poly(Lactic Acid) (PLA), and Their Blend in Freshwater with Sediment publication-title: Molecules – volume: 242 year: 2020 ident: bib0006 article-title: A horizontal test method for biodegradation in soil of bio-based and conventional plastics and lubricants publication-title: J. Clean. Prod. – reference: ASTM D425-17. (2017). Test Method for Centrifuge Moisture Equivalent of Soils. ASTM International. – volume: 170 year: 2019 ident: bib0030 article-title: Biodegradation of plastics in soil: the effect of temperature publication-title: Polym. Degrad. Stab. – volume: 47 start-page: 35 year: 2001 end-page: 43 ident: bib0017 article-title: Influence of weather conditions and soil properties on degradation of biodegradable plastics in soil publication-title: Soil Sci. Plant Nutr. – volume: 7 start-page: 1 year: 2021 end-page: 18 ident: bib0043 article-title: Modulation and characterization of wax-based olive oil organogels in view of their application in the food industry publication-title: Gels – volume: 11 year: 2018 ident: bib0004 article-title: Effect of Babassu natural filler on PBAT/PHB biodegradable blends: an investigation of thermal, mechanical, and morphological behavior publication-title: Materials – volume: 36 start-page: 1677 year: 2000 end-page: 1685 ident: bib0023 article-title: Biodegradation of poly(3-hydroxybutyrate), Sky-Green (R) and Mater-Bi (R) by fungi isolated from soils publication-title: Eur. Polym. J. – reference: Plastics, E. (2021). An Analysis of European Plastics Production, Demand and Waste Data, Plastics Europe-Association of Plastics Manufacturers. Plastics - the Facts 2021. Retrieved from – volume: 126 start-page: 977 year: 2019 end-page: 986 ident: bib0037 article-title: Polyhydroxyalkanoate production from statistically optimized media using rice mill effluent as sustainable substrate with an analysis on the biopolymer's degradation potential publication-title: Int. J. Biol. Macromol. – volume: 29 start-page: 15 year: 2017 ident: bib0025 article-title: Considerations of temperature in the context of the persistence classification in the EU publication-title: Environ. Sci. Europe – volume: 202 start-page: 453 year: 2022 end-page: 467 ident: bib0042 article-title: Hydroxypropyl methylcellulose-based micro- and nanostructures for encapsulation of melanoidins: effect of electrohydrodynamic processing variables on morphological and physicochemical properties publication-title: Int. J. Biol. Macromol. – volume: 171 year: 2020 ident: bib0041 article-title: Accelerated biodegradation testing of slowly degradable polyesters in soil publication-title: Polym. Degrad. Stab. – volume: 71 start-page: 1607 year: 2008 end-page: 1616 ident: bib0021 article-title: Assessment of aliphatic-aromatic copolyester biodegradable mulch films. Part II: laboratory simulated conditions publication-title: Chemosphere – reference: . – volume: 93 start-page: 147 year: 2008 end-page: 157 ident: bib0018 article-title: Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions publication-title: Polym. Degrad. Stab. – volume: 55 start-page: 4648 year: 2021 end-page: 4657 ident: bib0015 article-title: Soil type driven change in microbial community affects poly(butylene adipate- co-terephthalate) degradation potential publication-title: Environ. Sci. Technol. – reference: ASTM D5988. (2018). Standard Test Method For Determining Aerobic Biodegradation in Soil of Plastic Materials. ASTM International. – volume: 218 start-page: 1856 year: 2015 end-page: 1866 ident: bib0038 article-title: The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment publication-title: J. Exp. Biol. – volume: 51 start-page: 22 year: 2018 end-page: 31 ident: bib0010 article-title: Why is the global governance of plastic failing the oceans? publication-title: Glob. Environ. Chang. – volume: 137 start-page: 100 year: 2017 end-page: 108 ident: bib0019 article-title: Composite properties and biodegradation of biologically recovered P(3HB-co-3HHx) reinforced with short kenaf fibers publication-title: Polym. Degrad. Stab. – volume: 54 start-page: 13282 year: 2020 end-page: 13293 ident: bib0035 article-title: Detailed analysis of the composition of selected plastic packaging waste products and its implications for mechanical and thermochemical recycling publication-title: Environ. Sci. Technol. – volume: 126 start-page: 23 year: 2005 end-page: 33 ident: bib0024 article-title: Degradation of medium-chain-length polyhydroxyalkanoates in tropical forest and mangrove soils publication-title: Appl. Biochem. Biotechnol. – volume: 51 start-page: 691 year: 2011 end-page: 702 ident: bib0039 article-title: Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure publication-title: Integr. Comp. Biol. – volume: 362 year: 2024 ident: bib0012 article-title: Biodegradation of PHB/PBAT films and isolation of novel PBAT biodegraders from soil microbiomes publication-title: Chemosphere – volume: 36 start-page: 1677 year: 2000 ident: 10.1016/j.polymdegradstab.2025.111182_bib0023 article-title: Biodegradation of poly(3-hydroxybutyrate), Sky-Green (R) and Mater-Bi (R) by fungi isolated from soils publication-title: Eur. Polym. J. doi: 10.1016/S0014-3057(99)00219-0 – volume: 362 year: 2024 ident: 10.1016/j.polymdegradstab.2025.111182_bib0012 article-title: Biodegradation of PHB/PBAT films and isolation of novel PBAT biodegraders from soil microbiomes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2024.142696 – volume: 170 year: 2019 ident: 10.1016/j.polymdegradstab.2025.111182_bib0030 article-title: Biodegradation of plastics in soil: the effect of temperature publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2019.109017 – volume: 45 start-page: 963 issue: 4 year: 1999 ident: 10.1016/j.polymdegradstab.2025.111182_bib0028 article-title: Effects of soil temperature and anaerobiosis on degradation of biodegradable plastics in soil and their degrading microorganisms publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.1999.10414346 – volume: 222 year: 2024 ident: 10.1016/j.polymdegradstab.2025.111182_bib0008 article-title: Biodegradation of plastics in soil: the effect of water content publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2024.110691 – volume: 146 start-page: 596 year: 2020 ident: 10.1016/j.polymdegradstab.2025.111182_bib0045 article-title: Polyhydroxyalkanoates (PHA): from production to nanoarchitecture publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.12.181 – ident: 10.1016/j.polymdegradstab.2025.111182_bib0001 – volume: 35 start-page: 440 issue: 5 year: 2020 ident: 10.1016/j.polymdegradstab.2025.111182_bib0046 article-title: Film Blowing of PHB-Based Systems for Home Compostable Food Packaging publication-title: Int. Polym. Proc. doi: 10.1515/ipp-2020-350506 – volume: 11 issue: 5 year: 2018 ident: 10.1016/j.polymdegradstab.2025.111182_bib0004 article-title: Effect of Babassu natural filler on PBAT/PHB biodegradable blends: an investigation of thermal, mechanical, and morphological behavior publication-title: Materials doi: 10.3390/ma11050820 – volume: 93 start-page: 147 issue: 1 year: 2008 ident: 10.1016/j.polymdegradstab.2025.111182_bib0018 article-title: Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2007.10.011 – ident: 10.1016/j.polymdegradstab.2025.111182_bib0003 – volume: 71 start-page: 1607 issue: 9 year: 2008 ident: 10.1016/j.polymdegradstab.2025.111182_bib0021 article-title: Assessment of aliphatic-aromatic copolyester biodegradable mulch films. Part II: laboratory simulated conditions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.01.037 – ident: 10.1016/j.polymdegradstab.2025.111182_bib0044 – volume: 126 start-page: 977 year: 2019 ident: 10.1016/j.polymdegradstab.2025.111182_bib0037 article-title: Polyhydroxyalkanoate production from statistically optimized media using rice mill effluent as sustainable substrate with an analysis on the biopolymer's degradation potential publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.01.003 – volume: 171 year: 2020 ident: 10.1016/j.polymdegradstab.2025.111182_bib0041 article-title: Accelerated biodegradation testing of slowly degradable polyesters in soil publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2019.109031 – volume: 51 start-page: 22 year: 2018 ident: 10.1016/j.polymdegradstab.2025.111182_bib0010 article-title: Why is the global governance of plastic failing the oceans? publication-title: Glob. Environ. Chang. doi: 10.1016/j.gloenvcha.2018.05.002 – volume: 54 start-page: 13282 issue: 20 year: 2020 ident: 10.1016/j.polymdegradstab.2025.111182_bib0035 article-title: Detailed analysis of the composition of selected plastic packaging waste products and its implications for mechanical and thermochemical recycling publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c03371 – volume: 202 start-page: 453 year: 2022 ident: 10.1016/j.polymdegradstab.2025.111182_bib0042 article-title: Hydroxypropyl methylcellulose-based micro- and nanostructures for encapsulation of melanoidins: effect of electrohydrodynamic processing variables on morphological and physicochemical properties publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2022.01.019 – volume: 126 start-page: 23 issue: 1 year: 2005 ident: 10.1016/j.polymdegradstab.2025.111182_bib0024 article-title: Degradation of medium-chain-length polyhydroxyalkanoates in tropical forest and mangrove soils publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-005-0003-7 – volume: 218 start-page: 1856 issue: 12 year: 2015 ident: 10.1016/j.polymdegradstab.2025.111182_bib0038 article-title: The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment publication-title: J. Exp. Biol. doi: 10.1242/jeb.118851 – volume: 7 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.polymdegradstab.2025.111182_bib0043 article-title: Modulation and characterization of wax-based olive oil organogels in view of their application in the food industry publication-title: Gels doi: 10.3390/gels7010012 – ident: 10.1016/j.polymdegradstab.2025.111182_bib0011 – volume: 242 year: 2020 ident: 10.1016/j.polymdegradstab.2025.111182_bib0006 article-title: A horizontal test method for biodegradation in soil of bio-based and conventional plastics and lubricants publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118392 – volume: 137 start-page: 100 year: 2017 ident: 10.1016/j.polymdegradstab.2025.111182_bib0019 article-title: Composite properties and biodegradation of biologically recovered P(3HB-co-3HHx) reinforced with short kenaf fibers publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2017.01.004 – volume: 21 start-page: 1 issue: 21 year: 2020 ident: 10.1016/j.polymdegradstab.2025.111182_bib0040 article-title: Occurrence and analysis of thermophilic poly(Butylene adipate-co-terephthalate)-degrading microorganisms in temperate zone soils publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21217857 – volume: 23 start-page: 3 issue: 1 year: 2004 ident: 10.1016/j.polymdegradstab.2025.111182_bib0036 article-title: The use of roughness for evaluating the biodegradation of poly-β-(hydroxybutyrate) and poly-β-(hydroxybutyrate-co-β-valerate) publication-title: Polym. Test doi: 10.1016/S0142-9418(03)00042-4 – ident: 10.1016/j.polymdegradstab.2025.111182_bib0034 doi: 10.1201/b17848 – volume: 185 year: 2022 ident: 10.1016/j.polymdegradstab.2025.111182_bib0027 article-title: Recycled plastic packaging from the Dutch food sector pollutes Asian oceans publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2022.106508 – volume: 207 start-page: 18 year: 2018 ident: 10.1016/j.polymdegradstab.2025.111182_bib0005 article-title: Key parameters in testing biodegradation of bio-based materials in soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.05.024 – volume: 14 start-page: 393 issue: 4 year: 2006 ident: 10.1016/j.polymdegradstab.2025.111182_bib0009 article-title: Aromatic copolyester-based nano-biocomposites: elaboration, structural characterization and properties publication-title: J. Polym. Environ. doi: 10.1007/s10924-006-0033-4 – volume: 47 start-page: 35 issue: 1 year: 2001 ident: 10.1016/j.polymdegradstab.2025.111182_bib0017 article-title: Influence of weather conditions and soil properties on degradation of biodegradable plastics in soil publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.2001.10408366 – volume: 269 year: 2021 ident: 10.1016/j.polymdegradstab.2025.111182_bib0007 article-title: Comprehensive insight into surfactant modified-PBAT physico-chemical and biodegradability properties publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.128708 – ident: 10.1016/j.polymdegradstab.2025.111182_bib0002 – volume: 55 start-page: 4648 issue: 8 year: 2021 ident: 10.1016/j.polymdegradstab.2025.111182_bib0015 article-title: Soil type driven change in microbial community affects poly(butylene adipate- co-terephthalate) degradation potential publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c04850 – volume: 29 start-page: 15 issue: 1 year: 2017 ident: 10.1016/j.polymdegradstab.2025.111182_bib0025 article-title: Considerations of temperature in the context of the persistence classification in the EU publication-title: Environ. Sci. Europe doi: 10.1186/s12302-017-0113-1 – volume: 95 start-page: 99 issue: 2 year: 2010 ident: 10.1016/j.polymdegradstab.2025.111182_bib0020 article-title: Atmospheric and soil degradation of aliphatic-aromatic polyester films publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2009.11.048 – volume: 364 start-page: 2115 issue: 1526 year: 2009 ident: 10.1016/j.polymdegradstab.2025.111182_bib0016 article-title: Plastics recycling: challenges and opportunities publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2008.0311 – volume: 25 issue: 17 year: 2020 ident: 10.1016/j.polymdegradstab.2025.111182_bib0014 article-title: Biodegradation Behavior of Poly(Butylene Adipate-Co-Terephthalate) (PBAT), Poly(Lactic Acid) (PLA), and Their Blend in Freshwater with Sediment publication-title: Molecules doi: 10.3390/molecules25173946 – volume: 156 year: 2021 ident: 10.1016/j.polymdegradstab.2025.111182_bib0047 article-title: The microplastisphere: biodegradable microplastics addition alters soil microbial community structure and function publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2021.108211 – volume: 93 year: 2021 ident: 10.1016/j.polymdegradstab.2025.111182_bib0033 article-title: Field test on the biodegradation of poly(butylene adipate-co-terephthalate) based mulch films in soil publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2020.107009 – volume: 51 start-page: 691 issue: 5 year: 2011 ident: 10.1016/j.polymdegradstab.2025.111182_bib0039 article-title: Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure publication-title: Integr. Comp. Biol. doi: 10.1093/icb/icr097 – ident: 10.1016/j.polymdegradstab.2025.111182_bib0031 – volume: 95 start-page: 2641 issue: 12 year: 2010 ident: 10.1016/j.polymdegradstab.2025.111182_bib0022 article-title: Biodegradation and hydrolysis rate of aliphatic aromatic polyester publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2010.07.018 |
SSID | ssj0000451 |
Score | 2.4516103 |
Snippet | •The most important factor was the temperature.•Higher temperatures (45 ≥ 37 ⁰C) improved biodegradation in soil.•The addition of nitrogen had no impact on the... Available online 8 January 2025 The massive use of plastics in various applications, particularly packaging, generates enormous amounts of plastic waste that... |
SourceID | crossref rcaap elsevier |
SourceType | Index Database Publisher |
StartPage | 1 |
SubjectTerms | Central composite rotational design Polybutylene adipate terephthalate Polyhydroxybutyrate Prediction model Soil biodegradation |
Title | Estimating the biodegradation of PHB/PBAT films – An experimental design approach |
URI | https://dx.doi.org/10.1016/j.polymdegradstab.2025.111182 http://hdl.handle.net/1822/94564 |
Volume | 233 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5EwcdBfGJ9sQc9xibZ3WRzMy0tUUEKtuBtySZZqbRpsfXgRfwP_kN_iTt5YBUEwUMO2YRhmdnMg3zzDcAZ91JNHe1acWInFou5ZwWxJywTGhUWzdTWBUD21osG7Pqe3y9Bu-6FQVhl5ftLn15462qlWWmzOR0OmwhLMumLg0G8-N-GHezMx1N-8foF80D-lBLG6Fj49iqcf2G8ppPRyzhFVoZ0hh0KrhFWOBHh_hanVp6SOJ4uxKDuFmxWySMJy_1tw1KW78Bau57ZtgMbC_SCu3DXMd8vZqT5AzF5HlHDSbmLwhpkokkvajV7rbBP9HA0npGPt3cS5mSR9Z-kBcSD1NzjezDodvrtyKqGKFgJ5XRuMZ5QhVFaK8qVw3zG04TiBPSMYr2gRcYy7qaC6sAPHKYZF7Z2lOcn5rIZ3YflfJJnB0ACO4hFkmIdmzGhY-V6wtep7cSKUi5oA7xaZXJacmXIGkT2KH_oWqKuZanrBlzWCpbfjC-NX_-riEZhGIngaPNwJs2iKwNkyzn8v_gjWMe7Enx2DMvzp-fsxGQjc3VaHLdTWAmvbqLbT9Lc3uw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB6qBR8H8Yn1uQc9xibZ3XRzEKy1Up8IVvC2ZpOsVDQttiJexP_gT_Ef-UvcyQOrIAjiIZddGIZvhnmQb2cANrgXaepo1wpCO7RYwD3LDzxhmdSosGmmtk4Jsqde64IdXvLLErwVb2GQVpnH_iymp9E6P6nmaFZ7nU4VaUmmfHEwiaf_23Jm5VH89Gj6tv72wZ4x8qbr7jfbjZaVrxawQsrpwGI8pApzl1aUK4fVGI9CinvBY4pVtBYxi7kbCar9mu8wzbiwtaO8Wmg-m1EjdwTKzIQLXJuw9fzJK8GBLRlv0rFQvTHY_CSV9bq3T3cRjoGI-vgkwjXap1FLuD8lxvJ9GAS9oaS3Pw1TebVK6hkgM1CKk1kYbxRL4mZhcmie4RycN03AwBI4uSamsCSq0820SM1PupqctXarZ7v1NtGd27s-eX95JfWEDK8ZIFHKKSHFsPN5uPgXaBdgNOkm8SIQ3_YDEUbYOMdM6EC5nqjpyHYCRSkXtAJeAZnsZcM5ZMFau5HfsJaItcywrsBOAbD84m3SJJLfiqikhpHIxjaXfWkOXenjeJ6lv4tfh_FW--RYHh-cHi3DBN5kzLcVGB3cP8SrphQaqLXU9Qhc_bevfwCuLxgl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+biodegradation+of+PHB%2FPBAT+films+-+An+experimental+design+approach&rft.jtitle=Polymer+degradation+and+stability&rft.au=Fernandes%2C+Miguel+%C3%A2ngelo+Cavaleiro&rft.au=Salvador%2C+Andreia+Filipa+Ferreira&rft.au=Madalena%2C+Daniel+Alexandre+Silva&rft.au=Vicente%2C+A.+A.&rft.date=2025-03-01&rft.pub=Elsevier&rft.eissn=1873-2321&rft.volume=233&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1016%2Fj.polymdegradstab.2025.111182&rft.externalDBID=n%2Fa&rft.externalDocID=1822_94564 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-3910&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-3910&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-3910&client=summon |