Superlattice deformation in quantum dot films on flexible substrates via uniaxial strain

The superlattice in a quantum dot (QD) film on a flexible substrate deformed by uniaxial strain shows a phase transition in unit cell symmetry. With increasing uniaxial strain, the QD superlattice unit cell changes from tetragonal to cubic to tetragonal phase as measured with in situ grazing-inciden...

Full description

Saved in:
Bibliographic Details
Published inNanoscale horizons Vol. 8; no. 3; pp. 383 - 395
Main Authors Heger, Julian E., Chen, Wei, Zhong, Huaying, Xiao, Tianxiao, Harder, Constantin, Apfelbeck, Fabian A. C., Weinzierl, Alexander F., Boldt, Regine, Schraa, Lucas, Euchler, Eric, Sambale, Anna K., Schneider, Konrad, Schwartzkopf, Matthias, Roth, Stephan V., Müller-Buschbaum, P.
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 27.02.2023
Subjects
Online AccessGet full text
ISSN2055-6756
2055-6764
2055-6764
DOI10.1039/D2NH00548D

Cover

Loading…
Abstract The superlattice in a quantum dot (QD) film on a flexible substrate deformed by uniaxial strain shows a phase transition in unit cell symmetry. With increasing uniaxial strain, the QD superlattice unit cell changes from tetragonal to cubic to tetragonal phase as measured with in situ grazing-incidence small-angle X-ray scattering (GISAXS). The respective changes in the optoelectronic coupling are probed with photoluminescence (PL) measurements. The PL emission intensity follows the phase transition due to the resulting changing inter-dot distances. The changes in PL intensity accompany a redshift in the emission spectrum, which agrees with the Förster resonance energy transfer (FRET) theory. The results are essential for a fundamental understanding of the impact of strain on the performance of flexible devices based on QD films, such as wearable electronics and next-generation solar cells on flexible substrates.
AbstractList The superlattice in a quantum dot (QD) film on a flexible substrate deformed by uniaxial strain shows a phase transition in unit cell symmetry. With increasing uniaxial strain, the QD superlattice unit cell changes from tetragonal to cubic to tetragonal phase as measured with in situ grazing-incidence small-angle X-ray scattering (GISAXS). The respective changes in the optoelectronic coupling are probed with photoluminescence (PL) measurements. The PL emission intensity follows the phase transition due to the resulting changing inter-dot distances. The changes in PL intensity accompany a redshift in the emission spectrum, which agrees with the Förster resonance energy transfer (FRET) theory. The results are essential for a fundamental understanding of the impact of strain on the performance of flexible devices based on QD films, such as wearable electronics and next-generation solar cells on flexible substrates.
The superlattice in a quantum dot (QD) film on a flexible substrate deformed by uniaxial strain shows a phase transition in unit cell symmetry. With increasing uniaxial strain, the QD superlattice unit cell changes from tetragonal to cubic to tetragonal phase as measured with in situ grazing-incidence small-angle X-ray scattering (GISAXS). The respective changes in the optoelectronic coupling are probed with photoluminescence (PL) measurements. The PL emission intensity follows the phase transition due to the resulting changing inter-dot distances. The changes in PL intensity accompany a redshift in the emission spectrum, which agrees with the Förster resonance energy transfer (FRET) theory. The results are essential for a fundamental understanding of the impact of strain on the performance of flexible devices based on QD films, such as wearable electronics and next-generation solar cells on flexible substrates.
The superlattice in a quantum dot (QD) film on a flexible substrate deformed by uniaxial strain shows a phase transition in unit cell symmetry. With increasing uniaxial strain, the QD superlattice unit cell changes from tetragonal to cubic to tetragonal phase as measured with in situ grazing-incidence small-angle X-ray scattering (GISAXS). The respective changes in the optoelectronic coupling are probed with photoluminescence (PL) measurements. The PL emission intensity follows the phase transition due to the resulting changing inter-dot distances. The changes in PL intensity accompany a redshift in the emission spectrum, which agrees with the Forster resonance energy transfer (FRET) theory. The results are essential for a fundamental understanding of the impact of strain on the performance of flexible devices based on QD films, such as wearable electronics and next-generation solar cells on flexible substrates.
The superlattice in a quantum dot (QD) film on a flexible substrate deformed by uniaxial strain shows a phase transition in unit cell symmetry. With increasing uniaxial strain, the QD superlattice unit cell changes from tetragonal to cubic to tetragonal phase as measured with in situ grazing-incidence small-angle X-ray scattering (GISAXS). The respective changes in the optoelectronic coupling are probed with photoluminescence (PL) measurements. The PL emission intensity follows the phase transition due to the resulting changing inter-dot distances. The changes in PL intensity accompany a redshift in the emission spectrum, which agrees with the Förster resonance energy transfer (FRET) theory. The results are essential for a fundamental understanding of the impact of strain on the performance of flexible devices based on QD films, such as wearable electronics and next-generation solar cells on flexible substrates.The superlattice in a quantum dot (QD) film on a flexible substrate deformed by uniaxial strain shows a phase transition in unit cell symmetry. With increasing uniaxial strain, the QD superlattice unit cell changes from tetragonal to cubic to tetragonal phase as measured with in situ grazing-incidence small-angle X-ray scattering (GISAXS). The respective changes in the optoelectronic coupling are probed with photoluminescence (PL) measurements. The PL emission intensity follows the phase transition due to the resulting changing inter-dot distances. The changes in PL intensity accompany a redshift in the emission spectrum, which agrees with the Förster resonance energy transfer (FRET) theory. The results are essential for a fundamental understanding of the impact of strain on the performance of flexible devices based on QD films, such as wearable electronics and next-generation solar cells on flexible substrates.
The superlattice in a quantum dot (QD) film on a flexible substrate deformed by uniaxial strain shows a phase transition in unit cell symmetry. With increasing uniaxial strain, the QD superlattice unit cell changes from tetragonal to cubic to tetragonal phase as measured with grazing-incidence small-angle X-ray scattering (GISAXS). The respective changes in the optoelectronic coupling are probed with photoluminescence (PL) measurements. The PL emission intensity follows the phase transition due to the resulting changing inter-dot distances. The changes in PL intensity accompany a redshift in the emission spectrum, which agrees with the Förster resonance energy transfer (FRET) theory. The results are essential for a fundamental understanding of the impact of strain on the performance of flexible devices based on QD films, such as wearable electronics and next-generation solar cells on flexible substrates.
Author Schraa, Lucas
Euchler, Eric
Harder, Constantin
Zhong, Huaying
Apfelbeck, Fabian A. C.
Schwartzkopf, Matthias
Xiao, Tianxiao
Boldt, Regine
Roth, Stephan V.
Heger, Julian E.
Sambale, Anna K.
Chen, Wei
Weinzierl, Alexander F.
Müller-Buschbaum, P.
Schneider, Konrad
Author_xml – sequence: 1
  givenname: Julian E.
  orcidid: 0000-0001-7719-0111
  surname: Heger
  fullname: Heger, Julian E.
  organization: Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
– sequence: 2
  givenname: Wei
  orcidid: 0000-0001-9550-0523
  surname: Chen
  fullname: Chen, Wei
  organization: Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany, College of Engineering Physics, Shenzhen Technology University (SZTU), Lantian Road 3002, Pingshan, 518118 Shenzhen, China
– sequence: 3
  givenname: Huaying
  orcidid: 0000-0002-3882-4131
  surname: Zhong
  fullname: Zhong, Huaying
  organization: Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
– sequence: 4
  givenname: Tianxiao
  orcidid: 0000-0002-5013-4010
  surname: Xiao
  fullname: Xiao, Tianxiao
  organization: Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
– sequence: 5
  givenname: Constantin
  surname: Harder
  fullname: Harder, Constantin
  organization: Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
– sequence: 6
  givenname: Fabian A. C.
  orcidid: 0000-0002-5613-7466
  surname: Apfelbeck
  fullname: Apfelbeck, Fabian A. C.
  organization: Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
– sequence: 7
  givenname: Alexander F.
  surname: Weinzierl
  fullname: Weinzierl, Alexander F.
  organization: Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
– sequence: 8
  givenname: Regine
  surname: Boldt
  fullname: Boldt, Regine
  organization: Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Polymerwerkstoffe, Hohe Straße 6, 01069 Dresden, Germany
– sequence: 9
  givenname: Lucas
  orcidid: 0000-0003-4282-6305
  surname: Schraa
  fullname: Schraa, Lucas
  organization: Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Polymerwerkstoffe, Hohe Straße 6, 01069 Dresden, Germany
– sequence: 10
  givenname: Eric
  orcidid: 0000-0003-3437-4142
  surname: Euchler
  fullname: Euchler, Eric
  organization: Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Polymerwerkstoffe, Hohe Straße 6, 01069 Dresden, Germany
– sequence: 11
  givenname: Anna K.
  orcidid: 0000-0002-8728-0601
  surname: Sambale
  fullname: Sambale, Anna K.
  organization: Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Polymerwerkstoffe, Hohe Straße 6, 01069 Dresden, Germany
– sequence: 12
  givenname: Konrad
  orcidid: 0000-0003-4167-7854
  surname: Schneider
  fullname: Schneider, Konrad
  organization: Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Polymerwerkstoffe, Hohe Straße 6, 01069 Dresden, Germany
– sequence: 13
  givenname: Matthias
  orcidid: 0000-0002-2115-9286
  surname: Schwartzkopf
  fullname: Schwartzkopf, Matthias
  organization: Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
– sequence: 14
  givenname: Stephan V.
  orcidid: 0000-0002-6940-6012
  surname: Roth
  fullname: Roth, Stephan V.
  organization: Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany, Royal Institute of Technology KTH, Teknikringen 34-35, 100 44 Stockholm, Sweden
– sequence: 15
  givenname: P.
  orcidid: 0000-0002-9566-6088
  surname: Müller-Buschbaum
  fullname: Müller-Buschbaum, P.
  organization: Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany, Technical University of Munich, Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstraße 1, 85748 Garching, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36723240$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-325089$$DView record from Swedish Publication Index
BookMark eNptkUtv1TAQhS1UREvphh-ALLGpkAJjO35kWfVCi1TBgofYWXbigEti3_oB5d-T9LZFqljNaPSdo5kzT9FeiMEh9JzAawKse7OhH84BeKs2j9ABBc4bIUW7d99zsY-Ocr4EAKKI7BR7gvaZkJTRFg7Qt09169JkSvG9w4MbY5pN8TFgH_BVNaHUGQ-x4NFPc8bLfJzctbeTw7naXJIpLuNf3uAavLn2ZsLr0Idn6PFopuyObush-vLu7efT8-bi49n705OLpmeclaYFoANY1o1SOEq5pdANUtGWDEoKoWB0bT8QAT1jwHpLJeFUWTL2lg_CcnaImp1v_u221ept8rNJf3Q0Xm_81xMd03f9s_zQjHJQ3cIf7_htilfV5aJnn3s3TSa4WLOmUhLBVKdW65cP0MtYU1iuWamuU0IJsVAvbqlqZzfcL3CX8QLADuhTzDm5Ufe-3GS8BjVpAnr9pP73yUXy6oHkzvU_8F-ZkJxO
CitedBy_id crossref_primary_10_1021_acsami_3c11566
crossref_primary_10_1002_adfm_202419509
Cites_doi 10.1016/j.ijadhadh.2017.12.015
10.1039/C9TC05966K
10.1021/acsami.6b06989
10.1038/s41467-021-24614-7
10.1016/j.bbagen.2020.129770
10.1038/s41467-020-18655-7
10.1021/nl100498e
10.1038/ncomms2637
10.3390/s150613288
10.1002/adfm.202104457
10.1021/nl302324b
10.1039/D1TC03775G
10.1083/jcb.200210140
10.1143/APEX.3.035202
10.1107/S0909049512016895
10.1039/D0TC05902A
10.1021/ja304259y
10.1021/jacs.2c02837
10.1038/s41467-019-13437-2
10.1039/C8NH00341F
10.1021/ja5057032
10.1021/acs.chemmater.7b04322
10.1039/D1EE00832C
10.1038/nnano.2015.247
10.1021/cm503626s
10.1021/jp981598o
10.1021/ja110454b
10.1021/acsnano.7b01778
10.1021/acsanm.9b00889
10.1016/j.nanoen.2020.105254
10.1021/acs.jpcc.2c03348
10.1038/ncomms15257
10.1021/jz300048y
10.1109/JSEN.2019.2933741
10.1021/acs.chemrev.0c00831
10.1002/adfm.202000594
10.1107/S2052252514024178
10.3390/nano11020325
10.1016/j.isci.2020.101753
10.1038/s41928-021-00632-7
10.1016/j.ijsolstr.2019.01.030
10.1021/acs.jpclett.5b00946
10.1021/jp0713561
10.1021/acs.nanolett.7b00584
10.1107/S1600576715004434
10.1039/D0NH00008F
10.1021/acsenergylett.2c00250
10.1021/acs.jpclett.7b00671
10.1016/j.mattod.2017.02.006
10.1088/0957-4484/21/38/385702
10.1038/nmat4007
10.1107/S1600576714019773
10.1021/jz200080d
10.1103/PhysRevB.54.8633
10.1039/D0TC02108C
10.1088/1367-2630/11/10/103027
10.1039/D0RA09332G
10.1021/jp502123n
10.1021/nl201351f
10.1021/acs.jpclett.9b00869
10.1038/nmat4600
10.1021/acs.jpcc.0c02853
10.1038/s41528-018-0023-3
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
NPM
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
7X8
ADTPV
AOWAS
D8V
DOI 10.1039/D2NH00548D
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2055-6764
EndPage 395
ExternalDocumentID oai_DiVA_org_kth_325089
36723240
10_1039_D2NH00548D
Genre Journal Article
GroupedDBID 0R~
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAXHV
AAYXX
ABASK
ABDVN
ABJNI
ABPDG
ABRYZ
ACGFS
ACIWK
ADMRA
AEFDR
AENGV
AETIL
AFOGI
AFRZK
AGEGJ
AGRSR
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
BLAPV
C6K
CITATION
EBS
ECGLT
GGIMP
H13
O9-
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
AGSTE
NPM
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
7X8
ABIQK
ADTPV
AOWAS
D8V
EJD
ID FETCH-LOGICAL-c353t-4002d0b39f76e225b209d78241d876680fe4cd160c3303cb271528b1fcb5d6b53
ISSN 2055-6756
2055-6764
IngestDate Thu Aug 21 06:44:23 EDT 2025
Thu Jul 10 18:22:00 EDT 2025
Sun Jun 29 12:33:34 EDT 2025
Wed Feb 19 02:24:30 EST 2025
Tue Jul 01 01:45:37 EDT 2025
Thu Apr 24 23:05:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c353t-4002d0b39f76e225b209d78241d876680fe4cd160c3303cb271528b1fcb5d6b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9566-6088
0000-0001-9550-0523
0000-0002-5613-7466
0000-0002-2115-9286
0000-0002-5013-4010
0000-0002-3882-4131
0000-0002-8728-0601
0000-0003-4167-7854
0000-0002-6940-6012
0000-0001-7719-0111
0000-0003-4282-6305
0000-0003-3437-4142
PMID 36723240
PQID 2779986866
PQPubID 2047513
PageCount 13
ParticipantIDs swepub_primary_oai_DiVA_org_kth_325089
proquest_miscellaneous_2771638985
proquest_journals_2779986866
pubmed_primary_36723240
crossref_citationtrail_10_1039_D2NH00548D
crossref_primary_10_1039_D2NH00548D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-27
PublicationDateYYYYMMDD 2023-02-27
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-27
  day: 27
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale horizons
PublicationTitleAlternate Nanoscale Horiz
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Chen (D2NH00548D/cit16/1) 2021; 14
Rosendahl (D2NH00548D/cit40/1) 2019; 166
Bian (D2NH00548D/cit53/1) 2012; 134
Novák (D2NH00548D/cit42/1) 2016; 8
Chen (D2NH00548D/cit60/1) 2019; 10
Zhang (D2NH00548D/cit46/1) 2020; 8
Zhou (D2NH00548D/cit22/1) 2021; 9
Gong (D2NH00548D/cit9/1) 2020; 8
Choi (D2NH00548D/cit52/1) 2011; 133
Kagan (D2NH00548D/cit1/1) 2021; 121
Gong (D2NH00548D/cit61/1) 2021; 9
Cheng (D2NH00548D/cit30/1) 2021; 11
Tai (D2NH00548D/cit49/1) 2010; 3
Kagan (D2NH00548D/cit7/1) 1996; 54
Zheng (D2NH00548D/cit17/1) 2020; 23
Wrasman (D2NH00548D/cit25/1) 2022; 144
Zhang (D2NH00548D/cit32/1) 2014; 118
Mork (D2NH00548D/cit47/1) 2014; 118
Shi (D2NH00548D/cit20/1) 2021; 12
Guyot-Sionnest (D2NH00548D/cit6/1) 2012; 3
Zhang (D2NH00548D/cit58/1) 2021; 11
Choi (D2NH00548D/cit3/1) 2010; 10
Georgitzikis (D2NH00548D/cit24/1) 2020; 20
Wolcott (D2NH00548D/cit59/1) 2011
Chen (D2NH00548D/cit23/1) 2020; 78
Siffalovic (D2NH00548D/cit11/1) 2010; 21
Ning (D2NH00548D/cit21/1) 2014; 13
Nakazawa (D2NH00548D/cit56/1) 2019; 4
Choi (D2NH00548D/cit15/1) 2020; 11
Sandoval (D2NH00548D/cit57/1) 2009; 11
Zaluzhnyy (D2NH00548D/cit54/1) 2017; 17
Weidman (D2NH00548D/cit31/1) 2018; 30
Chou (D2NH00548D/cit39/1) 2015; 15
Tang (D2NH00548D/cit33/1) 2019; 2
Benecke (D2NH00548D/cit66/1) 2014; 47
Korgel (D2NH00548D/cit44/1) 1998; 102
Lingley (D2NH00548D/cit34/1) 2011; 11
Hexemer (D2NH00548D/cit38/1) 2015; 2
Sekar (D2NH00548D/cit51/1) 2003; 160
Li (D2NH00548D/cit27/1) 2014; 136
Staudt (D2NH00548D/cit41/1) 2018; 82
Buffet (D2NH00548D/cit64/1) 2012; 19
Chen (D2NH00548D/cit4/1) 2020; 5
Weidman (D2NH00548D/cit28/1) 2015; 27
Winslow (D2NH00548D/cit35/1) 2020; 124
Xia (D2NH00548D/cit37/1) 2020; 30
Lee (D2NH00548D/cit14/1) 2020; 11
Zhou (D2NH00548D/cit29/1) 2017; 20
Goodfellow (D2NH00548D/cit45/1) 2015; 6
Chistyakov (D2NH00548D/cit10/1) 2017; 8
Winslow (D2NH00548D/cit43/1) 2022; 126
Yang (D2NH00548D/cit18/1) 2013; 4
Li (D2NH00548D/cit19/1) 2021; 31
Kroupa (D2NH00548D/cit13/1) 2017; 8
Chang (D2NH00548D/cit62/1) 2018
Euchler (D2NH00548D/cit63/1) 2022; 2380
Choi (D2NH00548D/cit12/1) 2018; 2
Gordon (D2NH00548D/cit50/1) 2021; 1865
Quan (D2NH00548D/cit55/1) 2012; 12
Kirmani (D2NH00548D/cit26/1) 2022; 7
Kagan (D2NH00548D/cit5/1) 2015; 10
Jiang (D2NH00548D/cit65/1) 2015; 48
Weidman (D2NH00548D/cit36/1) 2016; 15
Liu (D2NH00548D/cit2/1) 2021; 4
Kodaimati (D2NH00548D/cit8/1) 2017; 11
Clark (D2NH00548D/cit48/1) 2007; 111
References_xml – volume: 82
  start-page: 126
  year: 2018
  ident: D2NH00548D/cit41/1
  publication-title: Int. J. Adhes. Adhes.
  doi: 10.1016/j.ijadhadh.2017.12.015
– volume: 8
  start-page: 1413
  year: 2020
  ident: D2NH00548D/cit9/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC05966K
– volume: 8
  start-page: 22526
  year: 2016
  ident: D2NH00548D/cit42/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b06989
– volume: 12
  start-page: 4381
  year: 2021
  ident: D2NH00548D/cit20/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24614-7
– volume: 1865
  start-page: 129770
  year: 2021
  ident: D2NH00548D/cit50/1
  publication-title: Biochim. Biophys. Acta, Gen. Subj.
  doi: 10.1016/j.bbagen.2020.129770
– volume: 11
  start-page: 4814
  year: 2020
  ident: D2NH00548D/cit14/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18655-7
– volume: 10
  start-page: 1805
  year: 2010
  ident: D2NH00548D/cit3/1
  publication-title: Nano Lett.
  doi: 10.1021/nl100498e
– volume: 4
  start-page: 1695
  year: 2013
  ident: D2NH00548D/cit18/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2637
– volume: 118
  start-page: 16228
  year: 2014
  ident: D2NH00548D/cit32/1
  publication-title: J. Mater. Chem. C
– volume: 15
  start-page: 13288
  year: 2015
  ident: D2NH00548D/cit39/1
  publication-title: Sensors
  doi: 10.3390/s150613288
– volume: 31
  start-page: 2104457
  year: 2021
  ident: D2NH00548D/cit19/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202104457
– volume: 12
  start-page: 4409
  year: 2012
  ident: D2NH00548D/cit55/1
  publication-title: Nano Lett.
  doi: 10.1021/nl302324b
– volume: 9
  start-page: 14740
  year: 2021
  ident: D2NH00548D/cit22/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D1TC03775G
– volume: 160
  start-page: 629
  year: 2003
  ident: D2NH00548D/cit51/1
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200210140
– volume: 3
  start-page: 35202
  year: 2010
  ident: D2NH00548D/cit49/1
  publication-title: Appl. Phys. Express
  doi: 10.1143/APEX.3.035202
– volume: 19
  start-page: 647
  year: 2012
  ident: D2NH00548D/cit64/1
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049512016895
– volume: 9
  start-page: 2994
  year: 2021
  ident: D2NH00548D/cit61/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC05902A
– volume: 134
  start-page: 10787
  year: 2012
  ident: D2NH00548D/cit53/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja304259y
– volume: 144
  start-page: 11646
  year: 2022
  ident: D2NH00548D/cit25/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c02837
– start-page: 51
  volume-title: Small Angle Scattering and Diffraction
  year: 2018
  ident: D2NH00548D/cit62/1
– volume: 11
  start-page: 103
  year: 2020
  ident: D2NH00548D/cit15/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13437-2
– volume: 4
  start-page: 445
  year: 2019
  ident: D2NH00548D/cit56/1
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C8NH00341F
– volume: 2380
  start-page: 012109
  year: 2022
  ident: D2NH00548D/cit63/1
  publication-title: J. Phys.: Conf. Ser.
– volume: 136
  start-page: 12047
  year: 2014
  ident: D2NH00548D/cit27/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5057032
– volume: 30
  start-page: 807
  year: 2018
  ident: D2NH00548D/cit31/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b04322
– volume: 14
  start-page: 3420
  year: 2021
  ident: D2NH00548D/cit16/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE00832C
– volume: 10
  start-page: 1013
  year: 2015
  ident: D2NH00548D/cit5/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.247
– volume: 27
  start-page: 474
  year: 2015
  ident: D2NH00548D/cit28/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm503626s
– volume: 102
  start-page: 8379
  year: 1998
  ident: D2NH00548D/cit44/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp981598o
– volume: 133
  start-page: 3131
  year: 2011
  ident: D2NH00548D/cit52/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja110454b
– volume: 11
  start-page: 5041
  year: 2017
  ident: D2NH00548D/cit8/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01778
– volume: 2
  start-page: 6135
  year: 2019
  ident: D2NH00548D/cit33/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b00889
– volume: 78
  start-page: 105254
  year: 2020
  ident: D2NH00548D/cit23/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105254
– volume: 126
  start-page: 14264
  year: 2022
  ident: D2NH00548D/cit43/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.2c03348
– volume: 8
  start-page: 15257
  year: 2017
  ident: D2NH00548D/cit13/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15257
– volume: 3
  start-page: 1169
  year: 2012
  ident: D2NH00548D/cit6/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz300048y
– volume: 20
  start-page: 6841
  year: 2020
  ident: D2NH00548D/cit24/1
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2933741
– volume: 121
  start-page: 3186
  year: 2021
  ident: D2NH00548D/cit1/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00831
– volume: 30
  start-page: 2000594
  year: 2020
  ident: D2NH00548D/cit37/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000594
– volume: 2
  start-page: 106
  year: 2015
  ident: D2NH00548D/cit38/1
  publication-title: IUCrJ
  doi: 10.1107/S2052252514024178
– volume: 11
  start-page: 325
  year: 2021
  ident: D2NH00548D/cit30/1
  publication-title: Nanomaterials
  doi: 10.3390/nano11020325
– volume: 23
  start-page: 101753
  year: 2020
  ident: D2NH00548D/cit17/1
  publication-title: iScience
  doi: 10.1016/j.isci.2020.101753
– volume: 4
  start-page: 548
  year: 2021
  ident: D2NH00548D/cit2/1
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-021-00632-7
– volume: 166
  start-page: 32
  year: 2019
  ident: D2NH00548D/cit40/1
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2019.01.030
– volume: 6
  start-page: 2406
  year: 2015
  ident: D2NH00548D/cit45/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00946
– volume: 111
  start-page: 7302
  year: 2007
  ident: D2NH00548D/cit48/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0713561
– volume: 17
  start-page: 3511
  year: 2017
  ident: D2NH00548D/cit54/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00584
– volume: 48
  start-page: 917
  year: 2015
  ident: D2NH00548D/cit65/1
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S1600576715004434
– volume: 5
  start-page: 880
  year: 2020
  ident: D2NH00548D/cit4/1
  publication-title: Nanoscale Horiz.
  doi: 10.1039/D0NH00008F
– volume: 7
  start-page: 1255
  year: 2022
  ident: D2NH00548D/cit26/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c00250
– volume: 8
  start-page: 4129
  year: 2017
  ident: D2NH00548D/cit10/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b00671
– volume: 20
  start-page: 360
  year: 2017
  ident: D2NH00548D/cit29/1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2017.02.006
– volume: 21
  start-page: 385702
  year: 2010
  ident: D2NH00548D/cit11/1
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/38/385702
– volume: 13
  start-page: 822
  year: 2014
  ident: D2NH00548D/cit21/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4007
– volume: 47
  start-page: 1797
  year: 2014
  ident: D2NH00548D/cit66/1
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S1600576714019773
– start-page: 795
  year: 2011
  ident: D2NH00548D/cit59/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz200080d
– volume: 54
  start-page: 8633
  year: 1996
  ident: D2NH00548D/cit7/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.8633
– volume: 8
  start-page: 8953
  year: 2020
  ident: D2NH00548D/cit46/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC02108C
– volume: 11
  start-page: 103027
  year: 2009
  ident: D2NH00548D/cit57/1
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/10/103027
– volume: 11
  start-page: 3043
  year: 2021
  ident: D2NH00548D/cit58/1
  publication-title: RSC Adv.
  doi: 10.1039/D0RA09332G
– volume: 118
  start-page: 13920
  year: 2014
  ident: D2NH00548D/cit47/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp502123n
– volume: 11
  start-page: 2887
  year: 2011
  ident: D2NH00548D/cit34/1
  publication-title: Nano Lett.
  doi: 10.1021/nl201351f
– volume: 10
  start-page: 2058
  year: 2019
  ident: D2NH00548D/cit60/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b00869
– volume: 15
  start-page: 775
  year: 2016
  ident: D2NH00548D/cit36/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4600
– volume: 124
  start-page: 13456
  year: 2020
  ident: D2NH00548D/cit35/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c02853
– volume: 2
  start-page: 10
  year: 2018
  ident: D2NH00548D/cit12/1
  publication-title: npj Flexible Electron.
  doi: 10.1038/s41528-018-0023-3
SSID ssj0001817983
Score 2.2402341
Snippet The superlattice in a quantum dot (QD) film on a flexible substrate deformed by uniaxial strain shows a phase transition in unit cell symmetry. With increasing...
SourceID swepub
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 383
SubjectTerms Deformation
Emission
Energy transfer
Optoelectronics
Phase transitions
Photoluminescence
Photovoltaic cells
Quantum dots
Red shift
Solar cells
Strain
Substrates
Superlattices
Unit cell
X-ray scattering
Title Superlattice deformation in quantum dot films on flexible substrates via uniaxial strain
URI https://www.ncbi.nlm.nih.gov/pubmed/36723240
https://www.proquest.com/docview/2779986866
https://www.proquest.com/docview/2771638985
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-325089
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gIPiDuBgYxASCjKlsSJEz-hihYVBHuhg75FvmWNYMloEwT79RznPjakwUsUOW5j-Xz5fHzs8xmhF6ESimkhnRh8Y7PMCJ-UdiNHehzGD0kZTU0c8uMhXRwF71fhajJ5Pdq1VJViX55dmlfyP1aFMrCryZL9B8v2fwoFcA_2hStYGK5XsvGn6tSE40qzgc1Wuk9ENEGM7xX0WXViw6zTiC-d1MsCqZG_NLlSW-CLWpd2a__IuF3lGf_Zpo7wVou79ViBfostGFLb62KTnXXRvTp8etzY2-RYA03M94e9Ag2ZfdHZEJhu9_4uKv6rGy6hfJXxosEMz6EFxTgK4ZM6qzsayMp3Q5PE0IiEd8wajwBERixJmrNrLrC3S4z4qfLztfEkYzWMUefUsGfZ52lSbI6Tr-U6IeDDxewa2vVhngDMvDudL999GMJssVFkM_sM-hYO9zToBGsJOxhee95FuTDv-ENUtnZElrfQzXYGgacNHG6jic7voBsjXcm7aDUGBh4BA2c5boGBARi4BgaG8g4YeAAGBmDgDhi4AcY9dPR2vnyzcNojNBxJQlI6wNC-cgVhaUQ1ULfwXabAKQw8BcMgjd1UB1J51JUEfBkp_Aj8uVh4qRShoiIk99FOXuT6IcKecFPhBzzSqQooDxmPUwFdb06vFvBLC73qei2Rrb68adq3pN7nQFgy8w8XdQ_PLPS8r3vaqKpcWmuv6_yk_eq2CZiZsZgCtVjoWf8YONEsdPFcF1Vdx0wzWBxa6EFjtP41hEZmEuFa6GVjxf7JX6D16KoVH6Prw5exh3bKTaWfgMdaiqctKn8DFNmaMw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superlattice+deformation+in+quantum+dot+films+on+flexible+substrates+via+uniaxial+strain&rft.jtitle=Nanoscale+horizons&rft.au=Heger%2C+Julian+E.&rft.au=Chen%2C+Wei&rft.au=Zhong%2C+Huaying&rft.au=Xiao%2C+Tianxiao&rft.date=2023-02-27&rft.issn=2055-6756&rft.volume=8&rft.issue=3&rft.spage=383&rft_id=info:doi/10.1039%2Fd2nh00548d&rft.externalDocID=oai_DiVA_org_kth_325089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-6756&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-6756&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-6756&client=summon