Superlattice deformation in quantum dot films on flexible substrates via uniaxial strain
The superlattice in a quantum dot (QD) film on a flexible substrate deformed by uniaxial strain shows a phase transition in unit cell symmetry. With increasing uniaxial strain, the QD superlattice unit cell changes from tetragonal to cubic to tetragonal phase as measured with in situ grazing-inciden...
Saved in:
Published in | Nanoscale horizons Vol. 8; no. 3; pp. 383 - 395 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
27.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2055-6756 2055-6764 2055-6764 |
DOI | 10.1039/D2NH00548D |
Cover
Loading…
Abstract | The superlattice in a quantum dot (QD) film on a flexible substrate deformed by uniaxial strain shows a phase transition in unit cell symmetry. With increasing uniaxial strain, the QD superlattice unit cell changes from tetragonal to cubic to tetragonal phase as measured with
in situ
grazing-incidence small-angle X-ray scattering (GISAXS). The respective changes in the optoelectronic coupling are probed with photoluminescence (PL) measurements. The PL emission intensity follows the phase transition due to the resulting changing inter-dot distances. The changes in PL intensity accompany a redshift in the emission spectrum, which agrees with the Förster resonance energy transfer (FRET) theory. The results are essential for a fundamental understanding of the impact of strain on the performance of flexible devices based on QD films, such as wearable electronics and next-generation solar cells on flexible substrates. |
---|---|
AbstractList | The superlattice in a quantum dot (QD) film on a flexible substrate deformed by uniaxial strain shows a phase transition in unit cell symmetry. With increasing uniaxial strain, the QD superlattice unit cell changes from tetragonal to cubic to tetragonal phase as measured with in situ grazing-incidence small-angle X-ray scattering (GISAXS). The respective changes in the optoelectronic coupling are probed with photoluminescence (PL) measurements. The PL emission intensity follows the phase transition due to the resulting changing inter-dot distances. The changes in PL intensity accompany a redshift in the emission spectrum, which agrees with the Förster resonance energy transfer (FRET) theory. The results are essential for a fundamental understanding of the impact of strain on the performance of flexible devices based on QD films, such as wearable electronics and next-generation solar cells on flexible substrates. The superlattice in a quantum dot (QD) film on a flexible substrate deformed by uniaxial strain shows a phase transition in unit cell symmetry. With increasing uniaxial strain, the QD superlattice unit cell changes from tetragonal to cubic to tetragonal phase as measured with in situ grazing-incidence small-angle X-ray scattering (GISAXS). The respective changes in the optoelectronic coupling are probed with photoluminescence (PL) measurements. The PL emission intensity follows the phase transition due to the resulting changing inter-dot distances. The changes in PL intensity accompany a redshift in the emission spectrum, which agrees with the Förster resonance energy transfer (FRET) theory. The results are essential for a fundamental understanding of the impact of strain on the performance of flexible devices based on QD films, such as wearable electronics and next-generation solar cells on flexible substrates. The superlattice in a quantum dot (QD) film on a flexible substrate deformed by uniaxial strain shows a phase transition in unit cell symmetry. With increasing uniaxial strain, the QD superlattice unit cell changes from tetragonal to cubic to tetragonal phase as measured with in situ grazing-incidence small-angle X-ray scattering (GISAXS). The respective changes in the optoelectronic coupling are probed with photoluminescence (PL) measurements. The PL emission intensity follows the phase transition due to the resulting changing inter-dot distances. The changes in PL intensity accompany a redshift in the emission spectrum, which agrees with the Forster resonance energy transfer (FRET) theory. The results are essential for a fundamental understanding of the impact of strain on the performance of flexible devices based on QD films, such as wearable electronics and next-generation solar cells on flexible substrates. The superlattice in a quantum dot (QD) film on a flexible substrate deformed by uniaxial strain shows a phase transition in unit cell symmetry. With increasing uniaxial strain, the QD superlattice unit cell changes from tetragonal to cubic to tetragonal phase as measured with in situ grazing-incidence small-angle X-ray scattering (GISAXS). The respective changes in the optoelectronic coupling are probed with photoluminescence (PL) measurements. The PL emission intensity follows the phase transition due to the resulting changing inter-dot distances. The changes in PL intensity accompany a redshift in the emission spectrum, which agrees with the Förster resonance energy transfer (FRET) theory. The results are essential for a fundamental understanding of the impact of strain on the performance of flexible devices based on QD films, such as wearable electronics and next-generation solar cells on flexible substrates.The superlattice in a quantum dot (QD) film on a flexible substrate deformed by uniaxial strain shows a phase transition in unit cell symmetry. With increasing uniaxial strain, the QD superlattice unit cell changes from tetragonal to cubic to tetragonal phase as measured with in situ grazing-incidence small-angle X-ray scattering (GISAXS). The respective changes in the optoelectronic coupling are probed with photoluminescence (PL) measurements. The PL emission intensity follows the phase transition due to the resulting changing inter-dot distances. The changes in PL intensity accompany a redshift in the emission spectrum, which agrees with the Förster resonance energy transfer (FRET) theory. The results are essential for a fundamental understanding of the impact of strain on the performance of flexible devices based on QD films, such as wearable electronics and next-generation solar cells on flexible substrates. The superlattice in a quantum dot (QD) film on a flexible substrate deformed by uniaxial strain shows a phase transition in unit cell symmetry. With increasing uniaxial strain, the QD superlattice unit cell changes from tetragonal to cubic to tetragonal phase as measured with grazing-incidence small-angle X-ray scattering (GISAXS). The respective changes in the optoelectronic coupling are probed with photoluminescence (PL) measurements. The PL emission intensity follows the phase transition due to the resulting changing inter-dot distances. The changes in PL intensity accompany a redshift in the emission spectrum, which agrees with the Förster resonance energy transfer (FRET) theory. The results are essential for a fundamental understanding of the impact of strain on the performance of flexible devices based on QD films, such as wearable electronics and next-generation solar cells on flexible substrates. |
Author | Schraa, Lucas Euchler, Eric Harder, Constantin Zhong, Huaying Apfelbeck, Fabian A. C. Schwartzkopf, Matthias Xiao, Tianxiao Boldt, Regine Roth, Stephan V. Heger, Julian E. Sambale, Anna K. Chen, Wei Weinzierl, Alexander F. Müller-Buschbaum, P. Schneider, Konrad |
Author_xml | – sequence: 1 givenname: Julian E. orcidid: 0000-0001-7719-0111 surname: Heger fullname: Heger, Julian E. organization: Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany – sequence: 2 givenname: Wei orcidid: 0000-0001-9550-0523 surname: Chen fullname: Chen, Wei organization: Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany, College of Engineering Physics, Shenzhen Technology University (SZTU), Lantian Road 3002, Pingshan, 518118 Shenzhen, China – sequence: 3 givenname: Huaying orcidid: 0000-0002-3882-4131 surname: Zhong fullname: Zhong, Huaying organization: Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany – sequence: 4 givenname: Tianxiao orcidid: 0000-0002-5013-4010 surname: Xiao fullname: Xiao, Tianxiao organization: Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany – sequence: 5 givenname: Constantin surname: Harder fullname: Harder, Constantin organization: Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany – sequence: 6 givenname: Fabian A. C. orcidid: 0000-0002-5613-7466 surname: Apfelbeck fullname: Apfelbeck, Fabian A. C. organization: Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany – sequence: 7 givenname: Alexander F. surname: Weinzierl fullname: Weinzierl, Alexander F. organization: Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany – sequence: 8 givenname: Regine surname: Boldt fullname: Boldt, Regine organization: Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Polymerwerkstoffe, Hohe Straße 6, 01069 Dresden, Germany – sequence: 9 givenname: Lucas orcidid: 0000-0003-4282-6305 surname: Schraa fullname: Schraa, Lucas organization: Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Polymerwerkstoffe, Hohe Straße 6, 01069 Dresden, Germany – sequence: 10 givenname: Eric orcidid: 0000-0003-3437-4142 surname: Euchler fullname: Euchler, Eric organization: Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Polymerwerkstoffe, Hohe Straße 6, 01069 Dresden, Germany – sequence: 11 givenname: Anna K. orcidid: 0000-0002-8728-0601 surname: Sambale fullname: Sambale, Anna K. organization: Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Polymerwerkstoffe, Hohe Straße 6, 01069 Dresden, Germany – sequence: 12 givenname: Konrad orcidid: 0000-0003-4167-7854 surname: Schneider fullname: Schneider, Konrad organization: Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Polymerwerkstoffe, Hohe Straße 6, 01069 Dresden, Germany – sequence: 13 givenname: Matthias orcidid: 0000-0002-2115-9286 surname: Schwartzkopf fullname: Schwartzkopf, Matthias organization: Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany – sequence: 14 givenname: Stephan V. orcidid: 0000-0002-6940-6012 surname: Roth fullname: Roth, Stephan V. organization: Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany, Royal Institute of Technology KTH, Teknikringen 34-35, 100 44 Stockholm, Sweden – sequence: 15 givenname: P. orcidid: 0000-0002-9566-6088 surname: Müller-Buschbaum fullname: Müller-Buschbaum, P. organization: Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany, Technical University of Munich, Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstraße 1, 85748 Garching, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36723240$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-325089$$DView record from Swedish Publication Index |
BookMark | eNptkUtv1TAQhS1UREvphh-ALLGpkAJjO35kWfVCi1TBgofYWXbigEti3_oB5d-T9LZFqljNaPSdo5kzT9FeiMEh9JzAawKse7OhH84BeKs2j9ABBc4bIUW7d99zsY-Ocr4EAKKI7BR7gvaZkJTRFg7Qt09169JkSvG9w4MbY5pN8TFgH_BVNaHUGQ-x4NFPc8bLfJzctbeTw7naXJIpLuNf3uAavLn2ZsLr0Idn6PFopuyObush-vLu7efT8-bi49n705OLpmeclaYFoANY1o1SOEq5pdANUtGWDEoKoWB0bT8QAT1jwHpLJeFUWTL2lg_CcnaImp1v_u221ept8rNJf3Q0Xm_81xMd03f9s_zQjHJQ3cIf7_htilfV5aJnn3s3TSa4WLOmUhLBVKdW65cP0MtYU1iuWamuU0IJsVAvbqlqZzfcL3CX8QLADuhTzDm5Ufe-3GS8BjVpAnr9pP73yUXy6oHkzvU_8F-ZkJxO |
CitedBy_id | crossref_primary_10_1021_acsami_3c11566 crossref_primary_10_1002_adfm_202419509 |
Cites_doi | 10.1016/j.ijadhadh.2017.12.015 10.1039/C9TC05966K 10.1021/acsami.6b06989 10.1038/s41467-021-24614-7 10.1016/j.bbagen.2020.129770 10.1038/s41467-020-18655-7 10.1021/nl100498e 10.1038/ncomms2637 10.3390/s150613288 10.1002/adfm.202104457 10.1021/nl302324b 10.1039/D1TC03775G 10.1083/jcb.200210140 10.1143/APEX.3.035202 10.1107/S0909049512016895 10.1039/D0TC05902A 10.1021/ja304259y 10.1021/jacs.2c02837 10.1038/s41467-019-13437-2 10.1039/C8NH00341F 10.1021/ja5057032 10.1021/acs.chemmater.7b04322 10.1039/D1EE00832C 10.1038/nnano.2015.247 10.1021/cm503626s 10.1021/jp981598o 10.1021/ja110454b 10.1021/acsnano.7b01778 10.1021/acsanm.9b00889 10.1016/j.nanoen.2020.105254 10.1021/acs.jpcc.2c03348 10.1038/ncomms15257 10.1021/jz300048y 10.1109/JSEN.2019.2933741 10.1021/acs.chemrev.0c00831 10.1002/adfm.202000594 10.1107/S2052252514024178 10.3390/nano11020325 10.1016/j.isci.2020.101753 10.1038/s41928-021-00632-7 10.1016/j.ijsolstr.2019.01.030 10.1021/acs.jpclett.5b00946 10.1021/jp0713561 10.1021/acs.nanolett.7b00584 10.1107/S1600576715004434 10.1039/D0NH00008F 10.1021/acsenergylett.2c00250 10.1021/acs.jpclett.7b00671 10.1016/j.mattod.2017.02.006 10.1088/0957-4484/21/38/385702 10.1038/nmat4007 10.1107/S1600576714019773 10.1021/jz200080d 10.1103/PhysRevB.54.8633 10.1039/D0TC02108C 10.1088/1367-2630/11/10/103027 10.1039/D0RA09332G 10.1021/jp502123n 10.1021/nl201351f 10.1021/acs.jpclett.9b00869 10.1038/nmat4600 10.1021/acs.jpcc.0c02853 10.1038/s41528-018-0023-3 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION NPM 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M 7X8 ADTPV AOWAS D8V |
DOI | 10.1039/D2NH00548D |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2055-6764 |
EndPage | 395 |
ExternalDocumentID | oai_DiVA_org_kth_325089 36723240 10_1039_D2NH00548D |
Genre | Journal Article |
GroupedDBID | 0R~ AAEMU AAIWI AAJAE AANOJ AARTK AAXHV AAYXX ABASK ABDVN ABJNI ABPDG ABRYZ ACGFS ACIWK ADMRA AEFDR AENGV AETIL AFOGI AFRZK AGEGJ AGRSR AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT BLAPV C6K CITATION EBS ECGLT GGIMP H13 O9- RAOCF RCNCU RPMJG RRC RSCEA RVUXY AGSTE NPM 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M 7X8 ABIQK ADTPV AOWAS D8V EJD |
ID | FETCH-LOGICAL-c353t-4002d0b39f76e225b209d78241d876680fe4cd160c3303cb271528b1fcb5d6b53 |
ISSN | 2055-6756 2055-6764 |
IngestDate | Thu Aug 21 06:44:23 EDT 2025 Thu Jul 10 18:22:00 EDT 2025 Sun Jun 29 12:33:34 EDT 2025 Wed Feb 19 02:24:30 EST 2025 Tue Jul 01 01:45:37 EDT 2025 Thu Apr 24 23:05:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c353t-4002d0b39f76e225b209d78241d876680fe4cd160c3303cb271528b1fcb5d6b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9566-6088 0000-0001-9550-0523 0000-0002-5613-7466 0000-0002-2115-9286 0000-0002-5013-4010 0000-0002-3882-4131 0000-0002-8728-0601 0000-0003-4167-7854 0000-0002-6940-6012 0000-0001-7719-0111 0000-0003-4282-6305 0000-0003-3437-4142 |
PMID | 36723240 |
PQID | 2779986866 |
PQPubID | 2047513 |
PageCount | 13 |
ParticipantIDs | swepub_primary_oai_DiVA_org_kth_325089 proquest_miscellaneous_2771638985 proquest_journals_2779986866 pubmed_primary_36723240 crossref_citationtrail_10_1039_D2NH00548D crossref_primary_10_1039_D2NH00548D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-27 |
PublicationDateYYYYMMDD | 2023-02-27 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale horizons |
PublicationTitleAlternate | Nanoscale Horiz |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Chen (D2NH00548D/cit16/1) 2021; 14 Rosendahl (D2NH00548D/cit40/1) 2019; 166 Bian (D2NH00548D/cit53/1) 2012; 134 Novák (D2NH00548D/cit42/1) 2016; 8 Chen (D2NH00548D/cit60/1) 2019; 10 Zhang (D2NH00548D/cit46/1) 2020; 8 Zhou (D2NH00548D/cit22/1) 2021; 9 Gong (D2NH00548D/cit9/1) 2020; 8 Choi (D2NH00548D/cit52/1) 2011; 133 Kagan (D2NH00548D/cit1/1) 2021; 121 Gong (D2NH00548D/cit61/1) 2021; 9 Cheng (D2NH00548D/cit30/1) 2021; 11 Tai (D2NH00548D/cit49/1) 2010; 3 Kagan (D2NH00548D/cit7/1) 1996; 54 Zheng (D2NH00548D/cit17/1) 2020; 23 Wrasman (D2NH00548D/cit25/1) 2022; 144 Zhang (D2NH00548D/cit32/1) 2014; 118 Mork (D2NH00548D/cit47/1) 2014; 118 Shi (D2NH00548D/cit20/1) 2021; 12 Guyot-Sionnest (D2NH00548D/cit6/1) 2012; 3 Zhang (D2NH00548D/cit58/1) 2021; 11 Choi (D2NH00548D/cit3/1) 2010; 10 Georgitzikis (D2NH00548D/cit24/1) 2020; 20 Wolcott (D2NH00548D/cit59/1) 2011 Chen (D2NH00548D/cit23/1) 2020; 78 Siffalovic (D2NH00548D/cit11/1) 2010; 21 Ning (D2NH00548D/cit21/1) 2014; 13 Nakazawa (D2NH00548D/cit56/1) 2019; 4 Choi (D2NH00548D/cit15/1) 2020; 11 Sandoval (D2NH00548D/cit57/1) 2009; 11 Zaluzhnyy (D2NH00548D/cit54/1) 2017; 17 Weidman (D2NH00548D/cit31/1) 2018; 30 Chou (D2NH00548D/cit39/1) 2015; 15 Tang (D2NH00548D/cit33/1) 2019; 2 Benecke (D2NH00548D/cit66/1) 2014; 47 Korgel (D2NH00548D/cit44/1) 1998; 102 Lingley (D2NH00548D/cit34/1) 2011; 11 Hexemer (D2NH00548D/cit38/1) 2015; 2 Sekar (D2NH00548D/cit51/1) 2003; 160 Li (D2NH00548D/cit27/1) 2014; 136 Staudt (D2NH00548D/cit41/1) 2018; 82 Buffet (D2NH00548D/cit64/1) 2012; 19 Chen (D2NH00548D/cit4/1) 2020; 5 Weidman (D2NH00548D/cit28/1) 2015; 27 Winslow (D2NH00548D/cit35/1) 2020; 124 Xia (D2NH00548D/cit37/1) 2020; 30 Lee (D2NH00548D/cit14/1) 2020; 11 Zhou (D2NH00548D/cit29/1) 2017; 20 Goodfellow (D2NH00548D/cit45/1) 2015; 6 Chistyakov (D2NH00548D/cit10/1) 2017; 8 Winslow (D2NH00548D/cit43/1) 2022; 126 Yang (D2NH00548D/cit18/1) 2013; 4 Li (D2NH00548D/cit19/1) 2021; 31 Kroupa (D2NH00548D/cit13/1) 2017; 8 Chang (D2NH00548D/cit62/1) 2018 Euchler (D2NH00548D/cit63/1) 2022; 2380 Choi (D2NH00548D/cit12/1) 2018; 2 Gordon (D2NH00548D/cit50/1) 2021; 1865 Quan (D2NH00548D/cit55/1) 2012; 12 Kirmani (D2NH00548D/cit26/1) 2022; 7 Kagan (D2NH00548D/cit5/1) 2015; 10 Jiang (D2NH00548D/cit65/1) 2015; 48 Weidman (D2NH00548D/cit36/1) 2016; 15 Liu (D2NH00548D/cit2/1) 2021; 4 Kodaimati (D2NH00548D/cit8/1) 2017; 11 Clark (D2NH00548D/cit48/1) 2007; 111 |
References_xml | – volume: 82 start-page: 126 year: 2018 ident: D2NH00548D/cit41/1 publication-title: Int. J. Adhes. Adhes. doi: 10.1016/j.ijadhadh.2017.12.015 – volume: 8 start-page: 1413 year: 2020 ident: D2NH00548D/cit9/1 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC05966K – volume: 8 start-page: 22526 year: 2016 ident: D2NH00548D/cit42/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b06989 – volume: 12 start-page: 4381 year: 2021 ident: D2NH00548D/cit20/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24614-7 – volume: 1865 start-page: 129770 year: 2021 ident: D2NH00548D/cit50/1 publication-title: Biochim. Biophys. Acta, Gen. Subj. doi: 10.1016/j.bbagen.2020.129770 – volume: 11 start-page: 4814 year: 2020 ident: D2NH00548D/cit14/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18655-7 – volume: 10 start-page: 1805 year: 2010 ident: D2NH00548D/cit3/1 publication-title: Nano Lett. doi: 10.1021/nl100498e – volume: 4 start-page: 1695 year: 2013 ident: D2NH00548D/cit18/1 publication-title: Nat. Commun. doi: 10.1038/ncomms2637 – volume: 118 start-page: 16228 year: 2014 ident: D2NH00548D/cit32/1 publication-title: J. Mater. Chem. C – volume: 15 start-page: 13288 year: 2015 ident: D2NH00548D/cit39/1 publication-title: Sensors doi: 10.3390/s150613288 – volume: 31 start-page: 2104457 year: 2021 ident: D2NH00548D/cit19/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202104457 – volume: 12 start-page: 4409 year: 2012 ident: D2NH00548D/cit55/1 publication-title: Nano Lett. doi: 10.1021/nl302324b – volume: 9 start-page: 14740 year: 2021 ident: D2NH00548D/cit22/1 publication-title: J. Mater. Chem. C doi: 10.1039/D1TC03775G – volume: 160 start-page: 629 year: 2003 ident: D2NH00548D/cit51/1 publication-title: J. Cell Biol. doi: 10.1083/jcb.200210140 – volume: 3 start-page: 35202 year: 2010 ident: D2NH00548D/cit49/1 publication-title: Appl. Phys. Express doi: 10.1143/APEX.3.035202 – volume: 19 start-page: 647 year: 2012 ident: D2NH00548D/cit64/1 publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049512016895 – volume: 9 start-page: 2994 year: 2021 ident: D2NH00548D/cit61/1 publication-title: J. Mater. Chem. C doi: 10.1039/D0TC05902A – volume: 134 start-page: 10787 year: 2012 ident: D2NH00548D/cit53/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja304259y – volume: 144 start-page: 11646 year: 2022 ident: D2NH00548D/cit25/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c02837 – start-page: 51 volume-title: Small Angle Scattering and Diffraction year: 2018 ident: D2NH00548D/cit62/1 – volume: 11 start-page: 103 year: 2020 ident: D2NH00548D/cit15/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13437-2 – volume: 4 start-page: 445 year: 2019 ident: D2NH00548D/cit56/1 publication-title: Nanoscale Horiz. doi: 10.1039/C8NH00341F – volume: 2380 start-page: 012109 year: 2022 ident: D2NH00548D/cit63/1 publication-title: J. Phys.: Conf. Ser. – volume: 136 start-page: 12047 year: 2014 ident: D2NH00548D/cit27/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5057032 – volume: 30 start-page: 807 year: 2018 ident: D2NH00548D/cit31/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b04322 – volume: 14 start-page: 3420 year: 2021 ident: D2NH00548D/cit16/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE00832C – volume: 10 start-page: 1013 year: 2015 ident: D2NH00548D/cit5/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.247 – volume: 27 start-page: 474 year: 2015 ident: D2NH00548D/cit28/1 publication-title: Chem. Mater. doi: 10.1021/cm503626s – volume: 102 start-page: 8379 year: 1998 ident: D2NH00548D/cit44/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp981598o – volume: 133 start-page: 3131 year: 2011 ident: D2NH00548D/cit52/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja110454b – volume: 11 start-page: 5041 year: 2017 ident: D2NH00548D/cit8/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b01778 – volume: 2 start-page: 6135 year: 2019 ident: D2NH00548D/cit33/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b00889 – volume: 78 start-page: 105254 year: 2020 ident: D2NH00548D/cit23/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105254 – volume: 126 start-page: 14264 year: 2022 ident: D2NH00548D/cit43/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.2c03348 – volume: 8 start-page: 15257 year: 2017 ident: D2NH00548D/cit13/1 publication-title: Nat. Commun. doi: 10.1038/ncomms15257 – volume: 3 start-page: 1169 year: 2012 ident: D2NH00548D/cit6/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz300048y – volume: 20 start-page: 6841 year: 2020 ident: D2NH00548D/cit24/1 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2933741 – volume: 121 start-page: 3186 year: 2021 ident: D2NH00548D/cit1/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00831 – volume: 30 start-page: 2000594 year: 2020 ident: D2NH00548D/cit37/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000594 – volume: 2 start-page: 106 year: 2015 ident: D2NH00548D/cit38/1 publication-title: IUCrJ doi: 10.1107/S2052252514024178 – volume: 11 start-page: 325 year: 2021 ident: D2NH00548D/cit30/1 publication-title: Nanomaterials doi: 10.3390/nano11020325 – volume: 23 start-page: 101753 year: 2020 ident: D2NH00548D/cit17/1 publication-title: iScience doi: 10.1016/j.isci.2020.101753 – volume: 4 start-page: 548 year: 2021 ident: D2NH00548D/cit2/1 publication-title: Nat. Electron. doi: 10.1038/s41928-021-00632-7 – volume: 166 start-page: 32 year: 2019 ident: D2NH00548D/cit40/1 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2019.01.030 – volume: 6 start-page: 2406 year: 2015 ident: D2NH00548D/cit45/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00946 – volume: 111 start-page: 7302 year: 2007 ident: D2NH00548D/cit48/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp0713561 – volume: 17 start-page: 3511 year: 2017 ident: D2NH00548D/cit54/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00584 – volume: 48 start-page: 917 year: 2015 ident: D2NH00548D/cit65/1 publication-title: J. Appl. Crystallogr. doi: 10.1107/S1600576715004434 – volume: 5 start-page: 880 year: 2020 ident: D2NH00548D/cit4/1 publication-title: Nanoscale Horiz. doi: 10.1039/D0NH00008F – volume: 7 start-page: 1255 year: 2022 ident: D2NH00548D/cit26/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c00250 – volume: 8 start-page: 4129 year: 2017 ident: D2NH00548D/cit10/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b00671 – volume: 20 start-page: 360 year: 2017 ident: D2NH00548D/cit29/1 publication-title: Mater. Today doi: 10.1016/j.mattod.2017.02.006 – volume: 21 start-page: 385702 year: 2010 ident: D2NH00548D/cit11/1 publication-title: Nanotechnology doi: 10.1088/0957-4484/21/38/385702 – volume: 13 start-page: 822 year: 2014 ident: D2NH00548D/cit21/1 publication-title: Nat. Mater. doi: 10.1038/nmat4007 – volume: 47 start-page: 1797 year: 2014 ident: D2NH00548D/cit66/1 publication-title: J. Appl. Crystallogr. doi: 10.1107/S1600576714019773 – start-page: 795 year: 2011 ident: D2NH00548D/cit59/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz200080d – volume: 54 start-page: 8633 year: 1996 ident: D2NH00548D/cit7/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.54.8633 – volume: 8 start-page: 8953 year: 2020 ident: D2NH00548D/cit46/1 publication-title: J. Mater. Chem. C doi: 10.1039/D0TC02108C – volume: 11 start-page: 103027 year: 2009 ident: D2NH00548D/cit57/1 publication-title: New J. Phys. doi: 10.1088/1367-2630/11/10/103027 – volume: 11 start-page: 3043 year: 2021 ident: D2NH00548D/cit58/1 publication-title: RSC Adv. doi: 10.1039/D0RA09332G – volume: 118 start-page: 13920 year: 2014 ident: D2NH00548D/cit47/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp502123n – volume: 11 start-page: 2887 year: 2011 ident: D2NH00548D/cit34/1 publication-title: Nano Lett. doi: 10.1021/nl201351f – volume: 10 start-page: 2058 year: 2019 ident: D2NH00548D/cit60/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b00869 – volume: 15 start-page: 775 year: 2016 ident: D2NH00548D/cit36/1 publication-title: Nat. Mater. doi: 10.1038/nmat4600 – volume: 124 start-page: 13456 year: 2020 ident: D2NH00548D/cit35/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c02853 – volume: 2 start-page: 10 year: 2018 ident: D2NH00548D/cit12/1 publication-title: npj Flexible Electron. doi: 10.1038/s41528-018-0023-3 |
SSID | ssj0001817983 |
Score | 2.2402341 |
Snippet | The superlattice in a quantum dot (QD) film on a flexible substrate deformed by uniaxial strain shows a phase transition in unit cell symmetry. With increasing... |
SourceID | swepub proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 383 |
SubjectTerms | Deformation Emission Energy transfer Optoelectronics Phase transitions Photoluminescence Photovoltaic cells Quantum dots Red shift Solar cells Strain Substrates Superlattices Unit cell X-ray scattering |
Title | Superlattice deformation in quantum dot films on flexible substrates via uniaxial strain |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36723240 https://www.proquest.com/docview/2779986866 https://www.proquest.com/docview/2771638985 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-325089 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gIPiDuBgYxASCjKlsSJEz-hihYVBHuhg75FvmWNYMloEwT79RznPjakwUsUOW5j-Xz5fHzs8xmhF6ESimkhnRh8Y7PMCJ-UdiNHehzGD0kZTU0c8uMhXRwF71fhajJ5Pdq1VJViX55dmlfyP1aFMrCryZL9B8v2fwoFcA_2hStYGK5XsvGn6tSE40qzgc1Wuk9ENEGM7xX0WXViw6zTiC-d1MsCqZG_NLlSW-CLWpd2a__IuF3lGf_Zpo7wVou79ViBfostGFLb62KTnXXRvTp8etzY2-RYA03M94e9Ag2ZfdHZEJhu9_4uKv6rGy6hfJXxosEMz6EFxTgK4ZM6qzsayMp3Q5PE0IiEd8wajwBERixJmrNrLrC3S4z4qfLztfEkYzWMUefUsGfZ52lSbI6Tr-U6IeDDxewa2vVhngDMvDudL999GMJssVFkM_sM-hYO9zToBGsJOxhee95FuTDv-ENUtnZElrfQzXYGgacNHG6jic7voBsjXcm7aDUGBh4BA2c5boGBARi4BgaG8g4YeAAGBmDgDhi4AcY9dPR2vnyzcNojNBxJQlI6wNC-cgVhaUQ1ULfwXabAKQw8BcMgjd1UB1J51JUEfBkp_Aj8uVh4qRShoiIk99FOXuT6IcKecFPhBzzSqQooDxmPUwFdb06vFvBLC73qei2Rrb68adq3pN7nQFgy8w8XdQ_PLPS8r3vaqKpcWmuv6_yk_eq2CZiZsZgCtVjoWf8YONEsdPFcF1Vdx0wzWBxa6EFjtP41hEZmEuFa6GVjxf7JX6D16KoVH6Prw5exh3bKTaWfgMdaiqctKn8DFNmaMw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superlattice+deformation+in+quantum+dot+films+on+flexible+substrates+via+uniaxial+strain&rft.jtitle=Nanoscale+horizons&rft.au=Heger%2C+Julian+E.&rft.au=Chen%2C+Wei&rft.au=Zhong%2C+Huaying&rft.au=Xiao%2C+Tianxiao&rft.date=2023-02-27&rft.issn=2055-6756&rft.volume=8&rft.issue=3&rft.spage=383&rft_id=info:doi/10.1039%2Fd2nh00548d&rft.externalDocID=oai_DiVA_org_kth_325089 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-6756&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-6756&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-6756&client=summon |