Comparison of quantitative parameters and radiomic features as inputs into machine learning models to predict the Gleason score of prostate cancer lesions

The classification of prostate cancer (PCa) lesions using Prostate Imaging Reporting and Data System (PI-RADS) suffers from poor inter-reader agreement. This study compared quantitative parameters or radiomic features from multiparametric magnetic resonance imaging (mpMRI) or positron emission tomog...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance imaging Vol. 100; pp. 64 - 72
Main Authors Nai, Ying-Hwey, Cheong, Dennis Lai Hong, Roy, Sharmili, Kok, Trina, Stephenson, Mary C., Schaefferkoetter, Josh, Totman, John J., Conti, Maurizio, Eriksson, Lars, Robins, Edward G., Wang, Ziting, Chua, Wynne Yuru, Ang, Bertrand Wei Leng, Singha, Arvind Kumar, Thamboo, Thomas Paulraj, Chiong, Edmund, Reilhac, Anthonin
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…