Comparison of quantitative parameters and radiomic features as inputs into machine learning models to predict the Gleason score of prostate cancer lesions

The classification of prostate cancer (PCa) lesions using Prostate Imaging Reporting and Data System (PI-RADS) suffers from poor inter-reader agreement. This study compared quantitative parameters or radiomic features from multiparametric magnetic resonance imaging (mpMRI) or positron emission tomog...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance imaging Vol. 100; pp. 64 - 72
Main Authors Nai, Ying-Hwey, Cheong, Dennis Lai Hong, Roy, Sharmili, Kok, Trina, Stephenson, Mary C., Schaefferkoetter, Josh, Totman, John J., Conti, Maurizio, Eriksson, Lars, Robins, Edward G., Wang, Ziting, Chua, Wynne Yuru, Ang, Bertrand Wei Leng, Singha, Arvind Kumar, Thamboo, Thomas Paulraj, Chiong, Edmund, Reilhac, Anthonin
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The classification of prostate cancer (PCa) lesions using Prostate Imaging Reporting and Data System (PI-RADS) suffers from poor inter-reader agreement. This study compared quantitative parameters or radiomic features from multiparametric magnetic resonance imaging (mpMRI) or positron emission tomography (PET), as inputs into machine learning (ML) to predict the Gleason scores (GS) of detected lesions for improved PCa lesion classification. 20 biopsy-confirmed PCa subjects underwent imaging before radical prostatectomy. A pathologist assigned GS from tumour tissue. Two radiologists and one nuclear medicine physician delineated the lesions on the mpMR and PET images, yielding 45 lesion inputs. Seven quantitative parameters were extracted from the lesions, namely T2-weighted (T2w) image intensity, apparent diffusion coefficient (ADC), transfer constant (KTRANS), efflux rate constant (Kep), and extracellular volume ratio (Ve) from mpMR images, and SUVmean and SUVmax from PET images. Eight radiomic features were selected out of 109 radiomic features from T2w, ADC and PET images. Quantitative parameters or radiomic features, with risk factors of age, prostate-specific antigen (PSA), PSA density and volume, of 45 different lesion inputs were input in different combinations into four ML models - Decision Tree (DT), Support Vector Machine (SVM), k-Nearest-Neighbour (kNN), Ensembles model (EM). SUVmax yielded the highest accuracy in discriminating detected lesions. Among the 4 ML models, kNN yielded the highest accuracies of 0.929 using either quantitative parameters or radiomic features with risk factors as input. ML models' performance is dependent on the input combinations and risk factors further improve ML classification accuracy. [Display omitted] •Among 7 quantitative parameters, SUVmax correlated best with Gleason score (GS).•Machine learning yielded higher accuracies than using cut-points of parameters.•Quantitative parameters (QP) and radiomic features (RF) as inputs for GS prediction.•K-Nearest Neighbour yielded highest accuracy of 0.929 with QP and RF.•Combinations of parameters, risk factors and models affect classification accuracy.
AbstractList The classification of prostate cancer (PCa) lesions using Prostate Imaging Reporting and Data System (PI-RADS) suffers from poor inter-reader agreement. This study compared quantitative parameters or radiomic features from multiparametric magnetic resonance imaging (mpMRI) or positron emission tomography (PET), as inputs into machine learning (ML) to predict the Gleason scores (GS) of detected lesions for improved PCa lesion classification. 20 biopsy-confirmed PCa subjects underwent imaging before radical prostatectomy. A pathologist assigned GS from tumour tissue. Two radiologists and one nuclear medicine physician delineated the lesions on the mpMR and PET images, yielding 45 lesion inputs. Seven quantitative parameters were extracted from the lesions, namely T2-weighted (T2w) image intensity, apparent diffusion coefficient (ADC), transfer constant (K ), efflux rate constant (K ), and extracellular volume ratio (V ) from mpMR images, and SUV and SUV from PET images. Eight radiomic features were selected out of 109 radiomic features from T2w, ADC and PET images. Quantitative parameters or radiomic features, with risk factors of age, prostate-specific antigen (PSA), PSA density and volume, of 45 different lesion inputs were input in different combinations into four ML models - Decision Tree (DT), Support Vector Machine (SVM), k-Nearest-Neighbour (kNN), Ensembles model (EM). SUV yielded the highest accuracy in discriminating detected lesions. Among the 4 ML models, kNN yielded the highest accuracies of 0.929 using either quantitative parameters or radiomic features with risk factors as input. ML models' performance is dependent on the input combinations and risk factors further improve ML classification accuracy.
INTRODUCTIONThe classification of prostate cancer (PCa) lesions using Prostate Imaging Reporting and Data System (PI-RADS) suffers from poor inter-reader agreement. This study compared quantitative parameters or radiomic features from multiparametric magnetic resonance imaging (mpMRI) or positron emission tomography (PET), as inputs into machine learning (ML) to predict the Gleason scores (GS) of detected lesions for improved PCa lesion classification. METHODS20 biopsy-confirmed PCa subjects underwent imaging before radical prostatectomy. A pathologist assigned GS from tumour tissue. Two radiologists and one nuclear medicine physician delineated the lesions on the mpMR and PET images, yielding 45 lesion inputs. Seven quantitative parameters were extracted from the lesions, namely T2-weighted (T2w) image intensity, apparent diffusion coefficient (ADC), transfer constant (KTRANS), efflux rate constant (Kep), and extracellular volume ratio (Ve) from mpMR images, and SUVmean and SUVmax from PET images. Eight radiomic features were selected out of 109 radiomic features from T2w, ADC and PET images. Quantitative parameters or radiomic features, with risk factors of age, prostate-specific antigen (PSA), PSA density and volume, of 45 different lesion inputs were input in different combinations into four ML models - Decision Tree (DT), Support Vector Machine (SVM), k-Nearest-Neighbour (kNN), Ensembles model (EM). RESULTSSUVmax yielded the highest accuracy in discriminating detected lesions. Among the 4 ML models, kNN yielded the highest accuracies of 0.929 using either quantitative parameters or radiomic features with risk factors as input. CONCLUSIONSML models' performance is dependent on the input combinations and risk factors further improve ML classification accuracy.
The classification of prostate cancer (PCa) lesions using Prostate Imaging Reporting and Data System (PI-RADS) suffers from poor inter-reader agreement. This study compared quantitative parameters or radiomic features from multiparametric magnetic resonance imaging (mpMRI) or positron emission tomography (PET), as inputs into machine learning (ML) to predict the Gleason scores (GS) of detected lesions for improved PCa lesion classification. 20 biopsy-confirmed PCa subjects underwent imaging before radical prostatectomy. A pathologist assigned GS from tumour tissue. Two radiologists and one nuclear medicine physician delineated the lesions on the mpMR and PET images, yielding 45 lesion inputs. Seven quantitative parameters were extracted from the lesions, namely T2-weighted (T2w) image intensity, apparent diffusion coefficient (ADC), transfer constant (KTRANS), efflux rate constant (Kep), and extracellular volume ratio (Ve) from mpMR images, and SUVmean and SUVmax from PET images. Eight radiomic features were selected out of 109 radiomic features from T2w, ADC and PET images. Quantitative parameters or radiomic features, with risk factors of age, prostate-specific antigen (PSA), PSA density and volume, of 45 different lesion inputs were input in different combinations into four ML models - Decision Tree (DT), Support Vector Machine (SVM), k-Nearest-Neighbour (kNN), Ensembles model (EM). SUVmax yielded the highest accuracy in discriminating detected lesions. Among the 4 ML models, kNN yielded the highest accuracies of 0.929 using either quantitative parameters or radiomic features with risk factors as input. ML models' performance is dependent on the input combinations and risk factors further improve ML classification accuracy. [Display omitted] •Among 7 quantitative parameters, SUVmax correlated best with Gleason score (GS).•Machine learning yielded higher accuracies than using cut-points of parameters.•Quantitative parameters (QP) and radiomic features (RF) as inputs for GS prediction.•K-Nearest Neighbour yielded highest accuracy of 0.929 with QP and RF.•Combinations of parameters, risk factors and models affect classification accuracy.
Author Conti, Maurizio
Roy, Sharmili
Singha, Arvind Kumar
Eriksson, Lars
Chiong, Edmund
Ang, Bertrand Wei Leng
Totman, John J.
Reilhac, Anthonin
Cheong, Dennis Lai Hong
Robins, Edward G.
Kok, Trina
Schaefferkoetter, Josh
Chua, Wynne Yuru
Nai, Ying-Hwey
Thamboo, Thomas Paulraj
Stephenson, Mary C.
Wang, Ziting
Author_xml – sequence: 1
  givenname: Ying-Hwey
  surname: Nai
  fullname: Nai, Ying-Hwey
  email: yinghweynai@yahoo.com
  organization: Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
– sequence: 2
  givenname: Dennis Lai Hong
  surname: Cheong
  fullname: Cheong, Dennis Lai Hong
  organization: Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
– sequence: 3
  givenname: Sharmili
  surname: Roy
  fullname: Roy, Sharmili
  organization: Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
– sequence: 4
  givenname: Trina
  surname: Kok
  fullname: Kok, Trina
  organization: Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
– sequence: 5
  givenname: Mary C.
  surname: Stephenson
  fullname: Stephenson, Mary C.
  organization: Centre for Translational MR, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
– sequence: 6
  givenname: Josh
  surname: Schaefferkoetter
  fullname: Schaefferkoetter, Josh
  organization: Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
– sequence: 7
  givenname: John J.
  surname: Totman
  fullname: Totman, John J.
  organization: Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
– sequence: 8
  givenname: Maurizio
  surname: Conti
  fullname: Conti, Maurizio
  organization: Siemens Medical Solutions USA, Inc., Molecular Imaging, Knoxville, TN, USA
– sequence: 9
  givenname: Lars
  surname: Eriksson
  fullname: Eriksson, Lars
  organization: Siemens Medical Solutions USA, Inc., Molecular Imaging, Knoxville, TN, USA
– sequence: 10
  givenname: Edward G.
  surname: Robins
  fullname: Robins, Edward G.
  organization: Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
– sequence: 11
  givenname: Ziting
  surname: Wang
  fullname: Wang, Ziting
  organization: Department of Urology, National University Hospital, Singapore
– sequence: 12
  givenname: Wynne Yuru
  surname: Chua
  fullname: Chua, Wynne Yuru
  organization: Department of Diagnostic Imaging, National University Hospital, Singapore
– sequence: 13
  givenname: Bertrand Wei Leng
  surname: Ang
  fullname: Ang, Bertrand Wei Leng
  organization: Department of Diagnostic Imaging, National University Hospital, Singapore
– sequence: 14
  givenname: Arvind Kumar
  surname: Singha
  fullname: Singha, Arvind Kumar
  organization: Department of Diagnostic Imaging, National University Hospital, Singapore
– sequence: 15
  givenname: Thomas Paulraj
  surname: Thamboo
  fullname: Thamboo, Thomas Paulraj
  organization: Department of Pathology, National University Health System, Singapore
– sequence: 16
  givenname: Edmund
  surname: Chiong
  fullname: Chiong, Edmund
  organization: Department of Diagnostic Imaging, National University Hospital, Singapore
– sequence: 17
  givenname: Anthonin
  surname: Reilhac
  fullname: Reilhac, Anthonin
  organization: Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36933775$$D View this record in MEDLINE/PubMed
BookMark eNp9Uc2KFDEQDrLizq4-gBfJ0UuPlaTTPY0nGXQVFrwoeAvZpOJm6CS9SXrBV_FpTTOrR6GgoOr7Keq7IhcxRSTkNYM9Aza8O-1D9nsOXOyhFUzPyI4dRtHJw9RfkB2MArqRyx-X5KqUEwBILuQLcimGSYhxlDvy-5jCorMvKdLk6MOqY_VVV_-ItM11wIq5UB0tzdr6FLyhDnVdM7ZpoT4ua91aTTRoc-8j0hl1jj7-pCFZnAttqyWj9abSeo_0pu03u2JSxs10yak0S6RGR4O58YtPsbwkz52eC7566tfk-6eP346fu9uvN1-OH247I6SonXC9MdY4HNgwjNodAIWZnAHkAxNC9CAPYtLAuRy4RtuzXhoHcKctTFL04pq8Peu2Ox5WLFUFXwzOs46Y1qL4OLERejZAg7Iz1LSTS0anluyDzr8UA7VFok6qRaK2SBS0gqlx3jzJr3cB7T_G3wwa4P0Z0H6Fjx6zKsZj-4T1GU1VNvn_yP8BqjChuw
CitedBy_id crossref_primary_10_1007_s13246_024_01402_3
crossref_primary_10_1109_ACCESS_2023_3306515
crossref_primary_10_3390_cancers15184437
crossref_primary_10_3390_jcm13133907
crossref_primary_10_3390_jpm13040643
Cites_doi 10.1016/S0022-5347(17)37394-9
10.1007/s00259-017-3700-x
10.3322/caac.21660
10.1007/s00330-019-06488-y
10.2967/jnumed.120.245605
10.1259/bjr.20170067
10.1186/s41747-019-0109-2
10.1158/0008-5472.CAN-17-0339
10.1016/j.ejrad.2019.05.006
10.3390/cancers10080249
10.1016/j.ejro.2018.03.002
10.1186/s12894-020-00717-z
10.1016/j.radonc.2015.04.012
10.1001/jama.1994.03510290050036
10.1007/s00261-017-1297-y
10.12659/PJR.890805
10.2214/AJR.13.11046
10.1007/s00261-020-02738-6
10.1016/0090-4295(94)90170-8
10.1111/bju.13465
10.1002/jmri.27080
10.1016/j.ejrad.2019.03.010
10.1186/s43055-020-00347-3
10.18632/oncotarget.24652
10.2967/jnumed.115.169243
10.1186/s13550-017-0269-0
10.1186/s40644-020-00311-4
10.1097/PAS.0000000000001497
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright © 2023 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Inc.
– notice: Copyright © 2023 Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1016/j.mri.2023.03.009
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5894
EndPage 72
ExternalDocumentID 10_1016_j_mri_2023_03_009
36933775
S0730725X23000504
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABFNM
ABGSF
ABJNI
ABLVK
ABMAC
ABMZM
ABNEU
ABOCM
ABUDA
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEVXI
AFCTW
AFFNX
AFKWA
AFRHN
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJRQY
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSQ
SSU
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
~G-
~S-
AAXKI
AFJKZ
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
ABDPE
ACRPL
CITATION
7X8
ID FETCH-LOGICAL-c353t-3f4ccdcfe61667af80e3c9fc0e261333405839a022562aed4145cf00bad095343
IEDL.DBID .~1
ISSN 0730-725X
IngestDate Wed Dec 04 15:23:35 EST 2024
Fri Dec 06 00:56:55 EST 2024
Sat Sep 28 08:12:47 EDT 2024
Fri Feb 23 02:40:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords PRC
ADC
TZ
PZ
PSADWP
AUC
GLDM
DT
DWI
EP2D
ML
PSA
DCE
ROC
TSE
EM
Gleason score (GS)
ROI
GLCM
Ktrans
SUV
GRE
GLRLM
PSAD
SUVmax
SVM
TOF-PSF
GLSZM
Radiomics
PCa
Ve
Multiparametric magnetic resonance imaging (mpMRI)
Quantitative parameters
NPV
OP-OSEM
PPV
kep
mRMR
T2w
TURP
WP
SUVmean
PSADTZ
Positron emission tomography (PET)
CG
NGTDM
Machine learning (ML)
kNN
ADC ratio
GS
CT
PSMA
mpMRI
csPCa
PI-RADS
PSADCG
PET
Language English
License Copyright © 2023 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-3f4ccdcfe61667af80e3c9fc0e261333405839a022562aed4145cf00bad095343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 36933775
PQID 2791704160
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2791704160
crossref_primary_10_1016_j_mri_2023_03_009
pubmed_primary_36933775
elsevier_sciencedirect_doi_10_1016_j_mri_2023_03_009
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Magnetic resonance imaging
PublicationTitleAlternate Magn Reson Imaging
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Hauth, Halbritter, Jaeger, Hohmuth, Beer (bb0100) 2017; 90
Sung, Ferlay, Siegel (bb0005) 2021; 71
Cuocolo, Cipullo, Stanzione (bb0050) 2019; 3
Hassanzadeh, Alessandrino, Olubiyi (bb0080) 2018; 43
Min, Li, Dong (bb0110) 2019; 115
Chaddad, Kucharczyk, Niazi (bb0150) 2018; 10
Klingenberg, Jochumsen, Ulhøi (bb0070) 2021; 62
Benson, Whang, Olsson (bb0015) 1992; 147
van Griethuysen, Fedorov, Parmar (bb0135) 2017; 77
de Rooij, Hamoen, Fütterer, Barentsz, Rovers (bb0035) 2014; 202
van Leenders, van der Kwast, Grignon (bb0125) 2020; 44
Giovacchini, Giovannini, Leoncini, Riondato, Ciarmiello (bb0075) 2017; 44
Kalish, Cooner, Graham (bb0020) 1994; 43
Papanikolaou, Matos, Koh (bb0140) 2020; 20
Schaefferkoetter, Wang, Stephenson (bb0060) 2017; 7
Kang, Jeun, Jang (bb0010) 2015; 10
Ma, Lv, Sheng (bb0105) 2019; 17
Steenbergen, Haustermans, Lerut (bb0055) 2015; 115
Washino, Okochi, Saito (bb0030) 2017; 119
Xu, Zhang, Zhang (bb0045) 2020; 45
Chang, Lin, Tsai (bb0025) 2020; 20
Rahbar, Weckesser, Huss (bb0065) 2016; 57
Cuocolo, Stanzione, Ponsiglione (bb0120) 2019; 116
Byun, Park, Kim, Kim (bb0040) 2020; 52
Epstein, Walsh, Carmichael, Brendler (bb0130) 1994; 271
Ragheb, Bassiouny (bb0090) 2020; 51
Wei, Jin, Szewczyk-Bieda (bb0095) 2018; 9
Jyoti, Jain, Haxhimolla, Liddell, Barrett (bb0085) 2018; 5
Bleker, Kwee, Dierckx, de Jong, Huisman, Yakar (bb0115) 2020; 30
Łuczyńska, Heinze-Paluchowska, Domalik (bb0145) 2014; 79
Chang (10.1016/j.mri.2023.03.009_bb0025) 2020; 20
Byun (10.1016/j.mri.2023.03.009_bb0040) 2020; 52
Wei (10.1016/j.mri.2023.03.009_bb0095) 2018; 9
Hauth (10.1016/j.mri.2023.03.009_bb0100) 2017; 90
Ma (10.1016/j.mri.2023.03.009_bb0105) 2019; 17
Klingenberg (10.1016/j.mri.2023.03.009_bb0070) 2021; 62
Epstein (10.1016/j.mri.2023.03.009_bb0130) 1994; 271
van Griethuysen (10.1016/j.mri.2023.03.009_bb0135) 2017; 77
Łuczyńska (10.1016/j.mri.2023.03.009_bb0145) 2014; 79
de Rooij (10.1016/j.mri.2023.03.009_bb0035) 2014; 202
Ragheb (10.1016/j.mri.2023.03.009_bb0090) 2020; 51
Cuocolo (10.1016/j.mri.2023.03.009_bb0050) 2019; 3
Rahbar (10.1016/j.mri.2023.03.009_bb0065) 2016; 57
Min (10.1016/j.mri.2023.03.009_bb0110) 2019; 115
Xu (10.1016/j.mri.2023.03.009_bb0045) 2020; 45
Washino (10.1016/j.mri.2023.03.009_bb0030) 2017; 119
Kalish (10.1016/j.mri.2023.03.009_bb0020) 1994; 43
Kang (10.1016/j.mri.2023.03.009_bb0010) 2015; 10
Chaddad (10.1016/j.mri.2023.03.009_bb0150) 2018; 10
Benson (10.1016/j.mri.2023.03.009_bb0015) 1992; 147
Sung (10.1016/j.mri.2023.03.009_bb0005) 2021; 71
Giovacchini (10.1016/j.mri.2023.03.009_bb0075) 2017; 44
Bleker (10.1016/j.mri.2023.03.009_bb0115) 2020; 30
Schaefferkoetter (10.1016/j.mri.2023.03.009_bb0060) 2017; 7
van Leenders (10.1016/j.mri.2023.03.009_bb0125) 2020; 44
Steenbergen (10.1016/j.mri.2023.03.009_bb0055) 2015; 115
Papanikolaou (10.1016/j.mri.2023.03.009_bb0140) 2020; 20
Jyoti (10.1016/j.mri.2023.03.009_bb0085) 2018; 5
Hassanzadeh (10.1016/j.mri.2023.03.009_bb0080) 2018; 43
Cuocolo (10.1016/j.mri.2023.03.009_bb0120) 2019; 116
References_xml – volume: 5
  start-page: 58
  year: 2018
  end-page: 63
  ident: bb0085
  article-title: Correlation of apparent diffusion coefficient ratio on 3.0 T MRI with prostate cancer Gleason score
  publication-title: Eur J Radiol Open
  contributor:
    fullname: Barrett
– volume: 57
  start-page: 563
  year: 2016
  end-page: 567
  ident: bb0065
  article-title: Correlation of intraprostatic tumor extent with
  publication-title: J Nucl Med
  contributor:
    fullname: Huss
– volume: 51
  start-page: 242
  year: 2020
  ident: bb0090
  article-title: Can mean ADC value and ADC ratio of benign prostate tissue to prostate cancer assist in the prediction of clinically significant prostate cancer within the PI-RADSv2 scoring system?
  publication-title: Egypt J Radiol Nucl Med
  contributor:
    fullname: Bassiouny
– volume: 45
  start-page: 4133
  year: 2020
  end-page: 4141
  ident: bb0045
  article-title: Comparison of PI-RADS version 2.1 and PI-RADS version 2 regarding interreader variability and diagnostic accuracy for transition zone prostate cancer
  publication-title: Abdom Radiol
  contributor:
    fullname: Zhang
– volume: 20
  start-page: 151
  year: 2020
  ident: bb0025
  article-title: Zonal adjusted PSA density improves prostate cancer detection rates compared with PSA in Taiwanese males with PSA <
  publication-title: BMC Urol
  contributor:
    fullname: Tsai
– volume: 44
  start-page: 1751
  year: 2017
  end-page: 1776
  ident: bb0075
  article-title: PET and PET/CT with radiolabeled choline in prostate cancer: a critical reappraisal of 20 years of clinical studies
  publication-title: Eur J Nucl Med Mol Imaging
  contributor:
    fullname: Ciarmiello
– volume: 90
  start-page: 20170067
  year: 2017
  ident: bb0100
  article-title: Diagnostic value of semi-quantitative and quantitative analysis of functional parameters in multiparametric MRI of the prostate
  publication-title: Br J Radiol
  contributor:
    fullname: Beer
– volume: 3
  start-page: 35
  year: 2019
  ident: bb0050
  article-title: Machine learning applications in prostate cancer magnetic resonance imaging
  publication-title: Eur Radiol Exp
  contributor:
    fullname: Stanzione
– volume: 116
  start-page: 144
  year: 2019
  end-page: 149
  ident: bb0120
  article-title: Clinically significant prostate cancer detection on MRI: a radiomic shape features study
  publication-title: Eur J Radiol
  contributor:
    fullname: Ponsiglione
– volume: 43
  start-page: 1237
  year: 2018
  end-page: 1244
  ident: bb0080
  article-title: Comparison of quantitative apparent diffusion coefficient parameters with prostate imaging reporting and data system V2 assessment for detection of clinically significant peripheral zone prostate cancer
  publication-title: Abdom Radiol (NY)
  contributor:
    fullname: Olubiyi
– volume: 71
  start-page: 209
  year: 2021
  end-page: 249
  ident: bb0005
  article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J Clin
  contributor:
    fullname: Siegel
– volume: 44
  start-page: e87
  year: 2020
  end-page: e99
  ident: bb0125
  article-title: The 2019 International Society of Urological Pathology (ISUP) consensus conference on grading of prostatic carcinoma
  publication-title: Am J Surg Pathol
  contributor:
    fullname: Grignon
– volume: 10
  start-page: E249
  year: 2018
  ident: bb0150
  article-title: Multimodal radiomic features for the predicting gleason score of prostate cancer
  publication-title: Cancers (Basel)
  contributor:
    fullname: Niazi
– volume: 115
  start-page: 186
  year: 2015
  end-page: 190
  ident: bb0055
  article-title: Prostate tumor delineation using multiparametric magnetic resonance imaging: inter-observer variability and pathology validation
  publication-title: Radiother Oncol
  contributor:
    fullname: Lerut
– volume: 9
  start-page: 15997
  year: 2018
  end-page: 16007
  ident: bb0095
  article-title: Quantitative parameters in dynamic contrast-enhanced magnetic resonance imaging for the detection and characterization of prostate cancer
  publication-title: Oncotarget.
  contributor:
    fullname: Szewczyk-Bieda
– volume: 52
  start-page: 577
  year: 2020
  end-page: 586
  ident: bb0040
  article-title: Direct comparison of PI-RADS version 2 and 2.1 in transition zone lesions for detection of prostate cancer: preliminary experience
  publication-title: J Magn Reson Imaging
  contributor:
    fullname: Kim
– volume: 62
  start-page: 214
  year: 2021
  end-page: 220
  ident: bb0070
  article-title: 68Ga-PSMA PET/CT for primary lymph node and distant metastasis NM staging of high-risk prostate cancer
  publication-title: J Nucl Med
  contributor:
    fullname: Ulhøi
– volume: 271
  start-page: 368
  year: 1994
  end-page: 374
  ident: bb0130
  article-title: Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer
  publication-title: JAMA.
  contributor:
    fullname: Brendler
– volume: 10
  start-page: 6555
  year: 2015
  end-page: 6569
  ident: bb0010
  article-title: Diagnosis of prostate cancer via nanotechnological approach
  publication-title: Int J Nanomedicine
  contributor:
    fullname: Jang
– volume: 7
  start-page: 25
  year: 2017
  ident: bb0060
  article-title: Quantitative 18F-fluorocholine positron emission tomography for prostate cancer: correlation between kinetic parameters and Gleason scoring
  publication-title: EJNMMI Res
  contributor:
    fullname: Stephenson
– volume: 147
  start-page: 817
  year: 1992
  end-page: 821
  ident: bb0015
  article-title: The use of prostate specific antigen density to enhance the predictive value of intermediate levels of serum prostate specific antigen
  publication-title: J Urol
  contributor:
    fullname: Olsson
– volume: 79
  start-page: 450
  year: 2014
  end-page: 455
  ident: bb0145
  article-title: The utility of diffusion weighted imaging (DWI) using apparent diffusion coefficient (ADC) values in discriminating between prostate cancer and normal tissue
  publication-title: Pol J Radiol
  contributor:
    fullname: Domalik
– volume: 43
  start-page: 601
  year: 1994
  end-page: 606
  ident: bb0020
  article-title: Serum PSA adjusted for volume of transition zone (PSAT) is more accurate than PSA adjusted for total gland volume (PSAD) in detecting adenocarcinoma of the prostate
  publication-title: Urology.
  contributor:
    fullname: Graham
– volume: 202
  start-page: 343
  year: 2014
  end-page: 351
  ident: bb0035
  article-title: Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis
  publication-title: Am J Roentgenol
  contributor:
    fullname: Rovers
– volume: 115
  start-page: 16
  year: 2019
  end-page: 21
  ident: bb0110
  article-title: Multi-parametric MRI-based radiomics signature for discriminating between clinically significant and insignificant prostate cancer: cross-validation of a machine learning method
  publication-title: Eur J Radiol
  contributor:
    fullname: Dong
– volume: 77
  start-page: e104
  year: 2017
  end-page: e107
  ident: bb0135
  article-title: Computational Radiomics system to decode the radiographic phenotype
  publication-title: Cancer Res
  contributor:
    fullname: Parmar
– volume: 20
  start-page: 33
  year: 2020
  ident: bb0140
  article-title: How to develop a meaningful radiomic signature for clinical use in oncologic patients
  publication-title: Cancer Imaging
  contributor:
    fullname: Koh
– volume: 30
  start-page: 1313
  year: 2020
  end-page: 1324
  ident: bb0115
  article-title: Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer
  publication-title: Eur Radiol
  contributor:
    fullname: Yakar
– volume: 119
  start-page: 225
  year: 2017
  end-page: 233
  ident: bb0030
  article-title: Combination of prostate imaging reporting and data system (PI-RADS) score and prostate-specific antigen (PSA) density predicts biopsy outcome in prostate biopsy naïve patients
  publication-title: BJU Int
  contributor:
    fullname: Saito
– volume: 17
  start-page: 3077
  year: 2019
  end-page: 3084
  ident: bb0105
  article-title: Application evaluation of DCE-MRI combined with quantitative analysis of DWI for the diagnosis of prostate cancer
  publication-title: Oncol Lett
  contributor:
    fullname: Sheng
– volume: 147
  start-page: 817
  issue: 3 II
  year: 1992
  ident: 10.1016/j.mri.2023.03.009_bb0015
  article-title: The use of prostate specific antigen density to enhance the predictive value of intermediate levels of serum prostate specific antigen
  publication-title: J Urol
  doi: 10.1016/S0022-5347(17)37394-9
  contributor:
    fullname: Benson
– volume: 44
  start-page: 1751
  issue: 10
  year: 2017
  ident: 10.1016/j.mri.2023.03.009_bb0075
  article-title: PET and PET/CT with radiolabeled choline in prostate cancer: a critical reappraisal of 20 years of clinical studies
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-017-3700-x
  contributor:
    fullname: Giovacchini
– volume: 71
  start-page: 209
  issue: 3
  year: 2021
  ident: 10.1016/j.mri.2023.03.009_bb0005
  article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21660
  contributor:
    fullname: Sung
– volume: 30
  start-page: 1313
  issue: 3
  year: 2020
  ident: 10.1016/j.mri.2023.03.009_bb0115
  article-title: Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06488-y
  contributor:
    fullname: Bleker
– volume: 62
  start-page: 214
  issue: 2
  year: 2021
  ident: 10.1016/j.mri.2023.03.009_bb0070
  article-title: 68Ga-PSMA PET/CT for primary lymph node and distant metastasis NM staging of high-risk prostate cancer
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.120.245605
  contributor:
    fullname: Klingenberg
– volume: 90
  start-page: 20170067
  issue: 1078
  year: 2017
  ident: 10.1016/j.mri.2023.03.009_bb0100
  article-title: Diagnostic value of semi-quantitative and quantitative analysis of functional parameters in multiparametric MRI of the prostate
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20170067
  contributor:
    fullname: Hauth
– volume: 3
  start-page: 35
  issue: 1
  year: 2019
  ident: 10.1016/j.mri.2023.03.009_bb0050
  article-title: Machine learning applications in prostate cancer magnetic resonance imaging
  publication-title: Eur Radiol Exp
  doi: 10.1186/s41747-019-0109-2
  contributor:
    fullname: Cuocolo
– volume: 77
  start-page: e104
  issue: 21
  year: 2017
  ident: 10.1016/j.mri.2023.03.009_bb0135
  article-title: Computational Radiomics system to decode the radiographic phenotype
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-0339
  contributor:
    fullname: van Griethuysen
– volume: 116
  start-page: 144
  year: 2019
  ident: 10.1016/j.mri.2023.03.009_bb0120
  article-title: Clinically significant prostate cancer detection on MRI: a radiomic shape features study
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2019.05.006
  contributor:
    fullname: Cuocolo
– volume: 10
  start-page: E249
  issue: 8
  year: 2018
  ident: 10.1016/j.mri.2023.03.009_bb0150
  article-title: Multimodal radiomic features for the predicting gleason score of prostate cancer
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers10080249
  contributor:
    fullname: Chaddad
– volume: 5
  start-page: 58
  year: 2018
  ident: 10.1016/j.mri.2023.03.009_bb0085
  article-title: Correlation of apparent diffusion coefficient ratio on 3.0 T MRI with prostate cancer Gleason score
  publication-title: Eur J Radiol Open
  doi: 10.1016/j.ejro.2018.03.002
  contributor:
    fullname: Jyoti
– volume: 20
  start-page: 151
  issue: 1
  year: 2020
  ident: 10.1016/j.mri.2023.03.009_bb0025
  article-title: Zonal adjusted PSA density improves prostate cancer detection rates compared with PSA in Taiwanese males with PSA <20 ng/mL
  publication-title: BMC Urol
  doi: 10.1186/s12894-020-00717-z
  contributor:
    fullname: Chang
– volume: 115
  start-page: 186
  issue: 2
  year: 2015
  ident: 10.1016/j.mri.2023.03.009_bb0055
  article-title: Prostate tumor delineation using multiparametric magnetic resonance imaging: inter-observer variability and pathology validation
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2015.04.012
  contributor:
    fullname: Steenbergen
– volume: 271
  start-page: 368
  issue: 5
  year: 1994
  ident: 10.1016/j.mri.2023.03.009_bb0130
  article-title: Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer
  publication-title: JAMA.
  doi: 10.1001/jama.1994.03510290050036
  contributor:
    fullname: Epstein
– volume: 43
  start-page: 1237
  issue: 5
  year: 2018
  ident: 10.1016/j.mri.2023.03.009_bb0080
  article-title: Comparison of quantitative apparent diffusion coefficient parameters with prostate imaging reporting and data system V2 assessment for detection of clinically significant peripheral zone prostate cancer
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-017-1297-y
  contributor:
    fullname: Hassanzadeh
– volume: 17
  start-page: 3077
  issue: 3
  year: 2019
  ident: 10.1016/j.mri.2023.03.009_bb0105
  article-title: Application evaluation of DCE-MRI combined with quantitative analysis of DWI for the diagnosis of prostate cancer
  publication-title: Oncol Lett
  contributor:
    fullname: Ma
– volume: 79
  start-page: 450
  year: 2014
  ident: 10.1016/j.mri.2023.03.009_bb0145
  article-title: The utility of diffusion weighted imaging (DWI) using apparent diffusion coefficient (ADC) values in discriminating between prostate cancer and normal tissue
  publication-title: Pol J Radiol
  doi: 10.12659/PJR.890805
  contributor:
    fullname: Łuczyńska
– volume: 202
  start-page: 343
  issue: 2
  year: 2014
  ident: 10.1016/j.mri.2023.03.009_bb0035
  article-title: Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis
  publication-title: Am J Roentgenol
  doi: 10.2214/AJR.13.11046
  contributor:
    fullname: de Rooij
– volume: 45
  start-page: 4133
  issue: 12
  year: 2020
  ident: 10.1016/j.mri.2023.03.009_bb0045
  article-title: Comparison of PI-RADS version 2.1 and PI-RADS version 2 regarding interreader variability and diagnostic accuracy for transition zone prostate cancer
  publication-title: Abdom Radiol
  doi: 10.1007/s00261-020-02738-6
  contributor:
    fullname: Xu
– volume: 43
  start-page: 601
  issue: 5
  year: 1994
  ident: 10.1016/j.mri.2023.03.009_bb0020
  article-title: Serum PSA adjusted for volume of transition zone (PSAT) is more accurate than PSA adjusted for total gland volume (PSAD) in detecting adenocarcinoma of the prostate
  publication-title: Urology.
  doi: 10.1016/0090-4295(94)90170-8
  contributor:
    fullname: Kalish
– volume: 119
  start-page: 225
  issue: 2
  year: 2017
  ident: 10.1016/j.mri.2023.03.009_bb0030
  article-title: Combination of prostate imaging reporting and data system (PI-RADS) score and prostate-specific antigen (PSA) density predicts biopsy outcome in prostate biopsy naïve patients
  publication-title: BJU Int
  doi: 10.1111/bju.13465
  contributor:
    fullname: Washino
– volume: 52
  start-page: 577
  issue: 2
  year: 2020
  ident: 10.1016/j.mri.2023.03.009_bb0040
  article-title: Direct comparison of PI-RADS version 2 and 2.1 in transition zone lesions for detection of prostate cancer: preliminary experience
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.27080
  contributor:
    fullname: Byun
– volume: 115
  start-page: 16
  year: 2019
  ident: 10.1016/j.mri.2023.03.009_bb0110
  article-title: Multi-parametric MRI-based radiomics signature for discriminating between clinically significant and insignificant prostate cancer: cross-validation of a machine learning method
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2019.03.010
  contributor:
    fullname: Min
– volume: 51
  start-page: 242
  issue: 1
  year: 2020
  ident: 10.1016/j.mri.2023.03.009_bb0090
  article-title: Can mean ADC value and ADC ratio of benign prostate tissue to prostate cancer assist in the prediction of clinically significant prostate cancer within the PI-RADSv2 scoring system?
  publication-title: Egypt J Radiol Nucl Med
  doi: 10.1186/s43055-020-00347-3
  contributor:
    fullname: Ragheb
– volume: 9
  start-page: 15997
  issue: 22
  year: 2018
  ident: 10.1016/j.mri.2023.03.009_bb0095
  article-title: Quantitative parameters in dynamic contrast-enhanced magnetic resonance imaging for the detection and characterization of prostate cancer
  publication-title: Oncotarget.
  doi: 10.18632/oncotarget.24652
  contributor:
    fullname: Wei
– volume: 57
  start-page: 563
  issue: 4
  year: 2016
  ident: 10.1016/j.mri.2023.03.009_bb0065
  article-title: Correlation of intraprostatic tumor extent with 68Ga-PSMA distribution in patients with prostate cancer
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.115.169243
  contributor:
    fullname: Rahbar
– volume: 7
  start-page: 25
  issue: 1
  year: 2017
  ident: 10.1016/j.mri.2023.03.009_bb0060
  article-title: Quantitative 18F-fluorocholine positron emission tomography for prostate cancer: correlation between kinetic parameters and Gleason scoring
  publication-title: EJNMMI Res
  doi: 10.1186/s13550-017-0269-0
  contributor:
    fullname: Schaefferkoetter
– volume: 20
  start-page: 33
  issue: 1
  year: 2020
  ident: 10.1016/j.mri.2023.03.009_bb0140
  article-title: How to develop a meaningful radiomic signature for clinical use in oncologic patients
  publication-title: Cancer Imaging
  doi: 10.1186/s40644-020-00311-4
  contributor:
    fullname: Papanikolaou
– volume: 10
  start-page: 6555
  year: 2015
  ident: 10.1016/j.mri.2023.03.009_bb0010
  article-title: Diagnosis of prostate cancer via nanotechnological approach
  publication-title: Int J Nanomedicine
  contributor:
    fullname: Kang
– volume: 44
  start-page: e87
  issue: 8
  year: 2020
  ident: 10.1016/j.mri.2023.03.009_bb0125
  article-title: The 2019 International Society of Urological Pathology (ISUP) consensus conference on grading of prostatic carcinoma
  publication-title: Am J Surg Pathol
  doi: 10.1097/PAS.0000000000001497
  contributor:
    fullname: van Leenders
SSID ssj0005235
Score 2.4669576
Snippet The classification of prostate cancer (PCa) lesions using Prostate Imaging Reporting and Data System (PI-RADS) suffers from poor inter-reader agreement. This...
INTRODUCTIONThe classification of prostate cancer (PCa) lesions using Prostate Imaging Reporting and Data System (PI-RADS) suffers from poor inter-reader...
SourceID proquest
crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 64
SubjectTerms Gleason score (GS)
Humans
Machine Learning
Machine learning (ML)
Magnetic Resonance Imaging - methods
Male
Multiparametric magnetic resonance imaging (mpMRI)
Neoplasm Grading
Positron emission tomography (PET)
Prostate-Specific Antigen
Prostatic Neoplasms - pathology
Quantitative parameters
Radiomics
Retrospective Studies
Title Comparison of quantitative parameters and radiomic features as inputs into machine learning models to predict the Gleason score of prostate cancer lesions
URI https://dx.doi.org/10.1016/j.mri.2023.03.009
https://www.ncbi.nlm.nih.gov/pubmed/36933775
https://search.proquest.com/docview/2791704160
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhgdBLaZq03T6CCjkVnNWuZMk-hqXptmX3kgZyE7IexYX1urb32h-SX5sZ2Q7JIT0EDMaSzAjNWPpkzcxHyJnKCu6YE4ktbJEIafPEWBWSuVOzwPOQ-cixtFrL5bX4cZPe7JHFGAuDbpXD3N_P6XG2Hkqmw2hO67KcXqFxqjlstnjMYoI5QUXKkMXg_N9DN4-eZBMaJ9h6PNmMPl6bpjxH_vA-z2n-1Nr0FPaMa9DlK_JyAI_0ou_fEdnz1WtyuBqOx4_J7eKeVZBuA_27M1WMIYMZjWKO7w36vrTUVI42xpUYkEyDj6k9obSlZVXvOrx1W7qJXpaeDrQSv2nkzGkpVNUNSuwoYEf6DepRXIvpMFFojWEkAGCpRXtq4H38H9eekOvLr78Wy2QgX0gsT3mX8CCsdTZ4OZNSmZAxz20eLPOw5-KcA9ADbGUAAgCCMt6JmUhtYKwwDlPYCf6G7Ffbyr8jNATAHYWZyVwokRqVSZnNTaGUdYXLUzshX8Zh13WfY0OPzmd_NOhIo440g4vlEyJGxehHhqJhDfjfa59HJWr4gPBUxFR-u2v1XMGOlQEuZRPyttfufS-4zDlXKn3_PKEfyAt86r17P5L9rtn5T4BhuuI0GukpObj4_nO5vgPDXvOM
link.rule.ids 314,780,784,4502,24116,27924,27925,45585,45679
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkYALKpTHQgFX6gkpXe_asZMjWrUs0O2lrdSb5fiBgrTZkGSv_SH9tcw4SQWHcqgUKZIfGsszGX8Tz4OQI5UV3DEnElvYIhHS5omxKiRzp2aB5yHzscbS6lwur8T36_R6hyzGWBh0qxx0f6_To7YeWqbDbk7rspxeoHCqORhbPGYxEY_IY5EC-gWhPr7528-jr7IJoxMcPl5tRievdVMeYwHxPtFpft_hdB_4jIfQ6R55PqBH-qVf4Auy46uX5MlquB_fJ7eLu7KCdBPo762pYhAZqDSKSb7X6PzSUlM52hhXYkQyDT7m9oTWlpZVve3w1W3oOrpZejrUlfhJY9GclkJX3SDFjgJ4pF-hH8m1mA8TidYYRwIIlloUqAbm4w-59hW5Oj25XCyTofpCYnnKu4QHYa2zwcuZlMqEjHlu82CZB6OLcw5ID8CVAQwAEMp4J2YitYGxwjjMYSf4a7JbbSr_ltAQAHgUZiZzoURqVCZlNjeFUtYVLk_thHwet13XfZINPXqf_dLAI4080gwelk-IGBmj_5EUDYfA_6YdjkzU8AXhtYip_Gbb6rkCk5UBMGUT8qbn7t0quMw5Vyp99zCin8jT5eXqTJ99O__xnjzDnt7V94Dsds3WfwBA0xUfo8D-AXyx9Sk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+quantitative+parameters+and+radiomic+features+as+inputs+into+machine+learning+models+to+predict+the+Gleason+score+of+prostate+cancer+lesions&rft.jtitle=Magnetic+resonance+imaging&rft.au=Nai%2C+Ying-Hwey&rft.au=Cheong%2C+Dennis+Lai+Hong&rft.au=Roy%2C+Sharmili&rft.au=Kok%2C+Trina&rft.date=2023-07-01&rft.eissn=1873-5894&rft.volume=100&rft.spage=64&rft_id=info:doi/10.1016%2Fj.mri.2023.03.009&rft_id=info%3Apmid%2F36933775&rft.externalDocID=36933775
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon