Temporal periodic solutions of non-isentropic compressible Euler equations with geometric effects
In this article, we investigate the general qusi-one-dimensional nozzle flows governed by non-isentropic compressible Euler system. First, the steady states of the subsonic and supersonic flows are analyzed. Then, the existence, stability, and uniqueness of the subsonic temporal periodic solutions a...
Saved in:
Published in | Advances in nonlinear analysis Vol. 13; no. 1; pp. 789 - 812 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
De Gruyter
27.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, we investigate the general qusi-one-dimensional nozzle flows governed by non-isentropic compressible Euler system. First, the steady states of the subsonic and supersonic flows are analyzed. Then, the existence, stability, and uniqueness of the subsonic temporal periodic solutions around the steady states are proved by constructing a new iterative format technically. Besides, further regularity and stability of the obtained temporal periodic solutions are obtained, too. The main difficulty in the proof is coming from derivative loss, which is caused by the diagonalization. Observing that the entropy is conserved along the second characteristic curve, we overcome this difficulty by transforming the derivative of entropy with respect to
into a derivative along the direction of first or third characteristic. The results demonstrate that dissipative boundary feedback control can stabilize the non-isentropic compressible Euler equations in qusi-one-dimensional nozzles. |
---|---|
AbstractList | In this article, we investigate the general qusi-one-dimensional nozzle flows governed by non-isentropic compressible Euler system. First, the steady states of the subsonic and supersonic flows are analyzed. Then, the existence, stability, and uniqueness of the subsonic temporal periodic solutions around the steady states are proved by constructing a new iterative format technically. Besides, further regularity and stability of the obtained temporal periodic solutions are obtained, too. The main difficulty in the proof is coming from derivative loss, which is caused by the diagonalization. Observing that the entropy is conserved along the second characteristic curve, we overcome this difficulty by transforming the derivative of entropy with respect to xx into a derivative along the direction of first or third characteristic. The results demonstrate that dissipative boundary feedback control can stabilize the non-isentropic compressible Euler equations in qusi-one-dimensional nozzles. In this article, we investigate the general qusi-one-dimensional nozzle flows governed by non-isentropic compressible Euler system. First, the steady states of the subsonic and supersonic flows are analyzed. Then, the existence, stability, and uniqueness of the subsonic temporal periodic solutions around the steady states are proved by constructing a new iterative format technically. Besides, further regularity and stability of the obtained temporal periodic solutions are obtained, too. The main difficulty in the proof is coming from derivative loss, which is caused by the diagonalization. Observing that the entropy is conserved along the second characteristic curve, we overcome this difficulty by transforming the derivative of entropy with respect to into a derivative along the direction of first or third characteristic. The results demonstrate that dissipative boundary feedback control can stabilize the non-isentropic compressible Euler equations in qusi-one-dimensional nozzles. In this article, we investigate the general qusi-one-dimensional nozzle flows governed by non-isentropic compressible Euler system. First, the steady states of the subsonic and supersonic flows are analyzed. Then, the existence, stability, and uniqueness of the subsonic temporal periodic solutions around the steady states are proved by constructing a new iterative format technically. Besides, further regularity and stability of the obtained temporal periodic solutions are obtained, too. The main difficulty in the proof is coming from derivative loss, which is caused by the diagonalization. Observing that the entropy is conserved along the second characteristic curve, we overcome this difficulty by transforming the derivative of entropy with respect to x x into a derivative along the direction of first or third characteristic. The results demonstrate that dissipative boundary feedback control can stabilize the non-isentropic compressible Euler equations in qusi-one-dimensional nozzles. |
Author | Fang, Xixi Ma, Shuyue Yu, Huimin |
Author_xml | – sequence: 1 givenname: Xixi surname: Fang fullname: Fang, Xixi email: 2022010091@stu.sdnu.edu.cn organization: School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, China – sequence: 2 givenname: Shuyue surname: Ma fullname: Ma, Shuyue email: 2022020495@stu.sdnu.edu.cn organization: School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, China – sequence: 3 givenname: Huimin surname: Yu fullname: Yu, Huimin email: hmyu@sdnu.edu.cn organization: School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, China |
BookMark | eNp1kEtLw0AQxxep4PPsNV8gOvtqXW9S6gMKXhS8LZPNpG5Js3E3ofjt3bYiXpzLPP8_mP8Zm3ShI8auOFxzzfUN5h5LAUKVAMocsVPBDS-NhvfJn_qEXaa0hhy3ms9mcMrwlTZ9iNgWPUUfau-KFNpx8KFLRWiKzC19om6Ioc87FzZ9pJR81VKxGFuKBX2OeDjf-uGjWFHY0BDzLTUNuSFdsOMG20SXP_mcvT0sXudP5fLl8Xl-vyyd1HIoJTnUpnEzAqM4EDil0BDwRgpRA1Uo66moalTKKMKqEgAi_2T4TICbTuU5ez5w64Br20e_wfhlA3q7H4S4shgH71qyShvtMqoyXCshGwMOCZUwsqq0usXMujmwXAwpRWp-eRzsznC7N9zuDLc7w7Pi7qDYYjtQrGkVx69c2HUYY5f__k_JJZffRaqMFw |
Cites_doi | 10.1007/BF00916643 10.1007/s10473-019-0501-2 10.1137/19M1249436 10.1016/j.jmaa.2015.05.023 10.1002/mana.202200400 10.3934/cam.2023013 10.3934/dcdss.2024029 10.1007/BF01976043 10.1007/s00220-015-2376-y 10.1002/mma.3711 10.1007/BF02101185 10.1002/mma.6399 10.1017/S0308210500023635 10.1016/j.nonrwa.2012.08.012 10.1088/1361-6544/ab31ce 10.1515/anona-2020-0148 10.1016/j.jde.2022.12.042 10.1137/21M1415029 10.4310/CMS.2017.v15.n3.a10 10.1016/j.matpur.2019.10.010 10.1007/s10473-019-0206-6 10.1007/s10915-014-9851-z 10.1016/S0304-0208(08)70506-1 10.1016/j.nonrwa.2023.103954 10.1016/j.jde.2013.01.008 10.1016/j.matpur.2012.09.006 10.1016/j.jde.2009.11.031 10.1007/BF01418125 10.4310/CMS.2023.v21.n5.a7 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1515/anona-2024-0049 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2191-950X |
EndPage | 812 |
ExternalDocumentID | oai_doaj_org_article_4595cbdab915423f90caea4293bb548a 10_1515_anona_2024_0049 10_1515_anona_2024_0049131 |
GroupedDBID | 0R~ 0~D 4.4 AAFPC AAFWJ AAQCX AASOL AASQH ABAOT ABAQN ABFKT ABIQR ABSOE ABUVI ABXMZ ACGFS ACXLN ACZBO ADGQD ADGYE ADJVZ ADOZN AEJTT AENEX AEQDQ AEXIE AFBAA AFBDD AFCXV AFPKN AFQUK AHGSO AIERV AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS AMVHM BAKPI BBCWN CFGNV EBS GROUPED_DOAJ HZ~ IY9 J9A O9- OK1 QD8 SA. SLJYH AAYXX CITATION |
ID | FETCH-LOGICAL-c353t-3eca59fc7e09410e0c44a9e01f322d0eba3d62bda4494eabb200295091720c663 |
IEDL.DBID | DOA |
ISSN | 2191-950X |
IngestDate | Wed Aug 27 01:26:18 EDT 2025 Tue Jul 01 00:37:50 EDT 2025 Thu Jul 10 10:30:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-3eca59fc7e09410e0c44a9e01f322d0eba3d62bda4494eabb200295091720c663 |
OpenAccessLink | https://doaj.org/article/4595cbdab915423f90caea4293bb548a |
PageCount | 26 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4595cbdab915423f90caea4293bb548a crossref_primary_10_1515_anona_2024_0049 walterdegruyter_journals_10_1515_anona_2024_0049131 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-27 |
PublicationDateYYYYMMDD | 2024-11-27 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-27 day: 27 |
PublicationDecade | 2020 |
PublicationTitle | Advances in nonlinear analysis |
PublicationYear | 2024 |
Publisher | De Gruyter |
Publisher_xml | – name: De Gruyter |
References | 2024112800574675659_j_anona-2024-0049_ref_011 2024112800574675659_j_anona-2024-0049_ref_033 2024112800574675659_j_anona-2024-0049_ref_010 2024112800574675659_j_anona-2024-0049_ref_032 2024112800574675659_j_anona-2024-0049_ref_013 2024112800574675659_j_anona-2024-0049_ref_012 2024112800574675659_j_anona-2024-0049_ref_031 2024112800574675659_j_anona-2024-0049_ref_030 2024112800574675659_j_anona-2024-0049_ref_008 2024112800574675659_j_anona-2024-0049_ref_007 2024112800574675659_j_anona-2024-0049_ref_029 2024112800574675659_j_anona-2024-0049_ref_009 2024112800574675659_j_anona-2024-0049_ref_004 2024112800574675659_j_anona-2024-0049_ref_026 2024112800574675659_j_anona-2024-0049_ref_003 2024112800574675659_j_anona-2024-0049_ref_025 2024112800574675659_j_anona-2024-0049_ref_006 2024112800574675659_j_anona-2024-0049_ref_028 2024112800574675659_j_anona-2024-0049_ref_005 2024112800574675659_j_anona-2024-0049_ref_027 2024112800574675659_j_anona-2024-0049_ref_022 2024112800574675659_j_anona-2024-0049_ref_021 2024112800574675659_j_anona-2024-0049_ref_002 2024112800574675659_j_anona-2024-0049_ref_024 2024112800574675659_j_anona-2024-0049_ref_001 2024112800574675659_j_anona-2024-0049_ref_023 2024112800574675659_j_anona-2024-0049_ref_020 2024112800574675659_j_anona-2024-0049_ref_019 2024112800574675659_j_anona-2024-0049_ref_018 2024112800574675659_j_anona-2024-0049_ref_015 2024112800574675659_j_anona-2024-0049_ref_014 2024112800574675659_j_anona-2024-0049_ref_017 2024112800574675659_j_anona-2024-0049_ref_016 |
References_xml | – ident: 2024112800574675659_j_anona-2024-0049_ref_005 doi: 10.1007/BF00916643 – ident: 2024112800574675659_j_anona-2024-0049_ref_028 doi: 10.1007/s10473-019-0501-2 – ident: 2024112800574675659_j_anona-2024-0049_ref_002 doi: 10.1137/19M1249436 – ident: 2024112800574675659_j_anona-2024-0049_ref_009 doi: 10.1016/j.jmaa.2015.05.023 – ident: 2024112800574675659_j_anona-2024-0049_ref_016 doi: 10.1002/mana.202200400 – ident: 2024112800574675659_j_anona-2024-0049_ref_010 – ident: 2024112800574675659_j_anona-2024-0049_ref_021 doi: 10.3934/cam.2023013 – ident: 2024112800574675659_j_anona-2024-0049_ref_022 doi: 10.3934/dcdss.2024029 – ident: 2024112800574675659_j_anona-2024-0049_ref_015 doi: 10.1007/BF01976043 – ident: 2024112800574675659_j_anona-2024-0049_ref_007 doi: 10.1007/s00220-015-2376-y – ident: 2024112800574675659_j_anona-2024-0049_ref_003 doi: 10.1002/mma.3711 – ident: 2024112800574675659_j_anona-2024-0049_ref_004 doi: 10.1007/BF02101185 – ident: 2024112800574675659_j_anona-2024-0049_ref_020 doi: 10.1002/mma.6399 – ident: 2024112800574675659_j_anona-2024-0049_ref_006 doi: 10.1017/S0308210500023635 – ident: 2024112800574675659_j_anona-2024-0049_ref_017 doi: 10.1016/j.nonrwa.2012.08.012 – ident: 2024112800574675659_j_anona-2024-0049_ref_012 doi: 10.1088/1361-6544/ab31ce – ident: 2024112800574675659_j_anona-2024-0049_ref_011 doi: 10.1515/anona-2020-0148 – ident: 2024112800574675659_j_anona-2024-0049_ref_026 doi: 10.1016/j.jde.2022.12.042 – ident: 2024112800574675659_j_anona-2024-0049_ref_024 doi: 10.1137/21M1415029 – ident: 2024112800574675659_j_anona-2024-0049_ref_001 doi: 10.4310/CMS.2017.v15.n3.a10 – ident: 2024112800574675659_j_anona-2024-0049_ref_025 doi: 10.1016/j.matpur.2019.10.010 – ident: 2024112800574675659_j_anona-2024-0049_ref_032 doi: 10.1007/s10473-019-0206-6 – ident: 2024112800574675659_j_anona-2024-0049_ref_029 doi: 10.1007/s10915-014-9851-z – ident: 2024112800574675659_j_anona-2024-0049_ref_023 doi: 10.1016/S0304-0208(08)70506-1 – ident: 2024112800574675659_j_anona-2024-0049_ref_030 – ident: 2024112800574675659_j_anona-2024-0049_ref_033 doi: 10.1016/j.nonrwa.2023.103954 – ident: 2024112800574675659_j_anona-2024-0049_ref_013 – ident: 2024112800574675659_j_anona-2024-0049_ref_018 – ident: 2024112800574675659_j_anona-2024-0049_ref_008 doi: 10.1016/j.jde.2013.01.008 – ident: 2024112800574675659_j_anona-2024-0049_ref_027 doi: 10.1016/j.matpur.2012.09.006 – ident: 2024112800574675659_j_anona-2024-0049_ref_019 doi: 10.1016/j.jde.2009.11.031 – ident: 2024112800574675659_j_anona-2024-0049_ref_014 doi: 10.1007/BF01418125 – ident: 2024112800574675659_j_anona-2024-0049_ref_031 doi: 10.4310/CMS.2023.v21.n5.a7 |
SSID | ssj0000851770 |
Score | 2.4465506 |
Snippet | In this article, we investigate the general qusi-one-dimensional nozzle flows governed by non-isentropic compressible Euler system. First, the steady states of... |
SourceID | doaj crossref walterdegruyter |
SourceType | Open Website Index Database Publisher |
StartPage | 789 |
SubjectTerms | 35A01 35B10 35L50 geometric effects non-isentropic compressible Euler equations subsonic flow temporal periodic solutions |
Title | Temporal periodic solutions of non-isentropic compressible Euler equations with geometric effects |
URI | https://www.degruyter.com/doi/10.1515/anona-2024-0049 https://doaj.org/article/4595cbdab915423f90caea4293bb548a |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skz0Un1hf5ODBS-g-srvdo0pLEfTUQm9LHrOlUt263SL-e2ey21IF8eI1WUj4ZpKZ2Xz5wtiNl2PYiLAssbmyAndJX_TjBAQ2J36kg9wauuD89ByPJvJxGk13nvoiTlgtD1wD15NRGhltlU4x2AdhnnpGgcJdNNQas22XGmHM2ymmXmr2lZ8kXqPlgzG7p7CaVugTgRSUFX8LQ06tv806H-6E2sKsXH9WmxNRF2iGB6zTZIj8rp7ZIduDtyPW3tENPGZqXAtKLTjpFBd2bvjWhXiRc5yEmNOtorJYYh_Rxh3dVS-AD9YLKDm81xLfK04_YvkMild6Wsvwht9xwibDwfhhJJq3EoQJo7ASIRgVpblJAOs13wPPSKlS8PwcV6z1QKvQxgHiKGUqQWlN5IyUsoUk8AymHaeshZODM8Z1QtTP1OD-Q6HL131lw1hFfax2tLHQZbcb6LJlLYmRUSmBKGcO5YxQzgjlLrsnaLefkZa1a0ALZ42Fs78s3GXhD8NkzTpb_TYuutz5fwx9wfadx_i-CJJL1qrKNVxhElLpa-dvX83q3Q4 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5UD3gKCAurQFH3rgYm3e2RwpApb3gUXiZvkx2SItDc1mhfrvO5OECBBcuDqxPJoZe76xx58Bfno5hY2Y0hKXaydplfTlKElRUnPqxybIneULzheXyfgmOr2Nb5fg4OkuDJdVOpyWi39Vw5A6dIVd8EZZxzVAEXioKTfWZOEgkoxxh7-r-9knWE5ogFEPlvfHx9dX3VYLo4o09Vpinze6v4hJNXV_H1Yf6-PqTpZnUedoDVZbuCj2G_uuwxL--QL9ZySCG6AnDbvUTDBpceHurOj8SRS5ICHkHV8xKosH-sY15HXtq5mhOFzMsBT4t-H7ngvelRVTLO75nS0r2mKPTbg5OpwcjGX7cIK0YRxWMkSr4yy3KVLy5nvo2SjSGXp-TtPXeWh06JLAOB1FWYTaGK7UyBg6pIFnCYNsQY-Ew68gTMp1oJmlxYjjmG9G2oWJjkeU-hjrcAB7T6pTDw0_huK8grSsai0r1rJiLQ_gF6u2-42JreuGopyqdp6oKM5iS5KZjLBdEOaZZzVqCpqhMZRc6QGErwyj2kk3f29c8r_tD_XahZXx5OJcnZ9cnn2Dz7W7-L4M0u_Qq8oF_iA4Upmd1t3-Axv64Ew |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BVkL0UJWXutCCDxy4WJvETrI-ltJleRUkWqk3y4_JqtJClnRXVf89M0mIFgQXrk6sjMYznm8m488AL5OKwkZOaUmsXJS0S6ZyWpQoabhMc59VMfAB509nxfxCv7_ML7fOwnBbZcRFs7lddwypk1iHDRfKBq4BisATR7mxoxXOtGSMO1nF6i7sFIVRegQ7x_O3Xz8PlRYGFWWZ9Lw-f5n9W0hqmft3Ye-m_Vs9iLIVdGb7sNejRXHcLe8DuIPfH8LuFofgI3DnHbnUUjBncR2vghjMSdSVICHkFZ8wauoVPeMW8rb11S9RnG6W2Aj80dF9XwsuyooF1t_4mq0g-l6Px3AxOz0_mcv-3gQZVK7WUmFwualCiZS7pQkmQWtnMEkr8t6YoHcqFpmPTmuj0XnPjRqGkUOZJYEgyBMYkXB4AMKX3AZqAu1FHMZSP3VRFS6fUubjQ8QxvPqlOrvq6DEspxWkZdtq2bKWLWt5DK9ZtcNrzGvdDtTNwvZuYnVu8kCSeUPQLlOVSYJDRzFTeU-5lRuD-mNhbO9z1__6Lpnf0_-a9QLufXkzsx_fnX14Bvdba0lTmZWHMFo3GzwiMLL2z3tr-wnYs99y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+periodic+solutions+of+non-isentropic+compressible+Euler+equations+with+geometric+effects&rft.jtitle=Advances+in+nonlinear+analysis&rft.au=Fang+Xixi&rft.au=Ma+Shuyue&rft.au=Yu+Huimin&rft.date=2024-11-27&rft.pub=De+Gruyter&rft.eissn=2191-950X&rft.volume=13&rft.issue=1&rft.spage=789&rft.epage=812&rft_id=info:doi/10.1515%2Fanona-2024-0049&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4595cbdab915423f90caea4293bb548a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-950X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-950X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-950X&client=summon |