Synergistic Effect Between Cavitation Erosion and Corrosion for Friction Stir Processed NiAl Bronze in Artificial Seawater

Herein, the friction stir processing (FSP) method was adopted to modify the microstructure of as-cast nickel aluminum bronze (NAB). The microhardness, cavitation erosion-corrosion mass loss, morphological damage and electrochemical tests were extensively examined. The results show that FSP can refin...

Full description

Saved in:
Bibliographic Details
Published inMetals and materials international Vol. 27; no. 12; pp. 5082 - 5094
Main Authors Li, Yang, Lian, Ying, Sun, Yanjun
Format Journal Article
LanguageEnglish
Published Seoul The Korean Institute of Metals and Materials 01.12.2021
Springer Nature B.V
대한금속·재료학회
Subjects
Online AccessGet full text
ISSN1598-9623
2005-4149
DOI10.1007/s12540-020-00916-1

Cover

Loading…
Abstract Herein, the friction stir processing (FSP) method was adopted to modify the microstructure of as-cast nickel aluminum bronze (NAB). The microhardness, cavitation erosion-corrosion mass loss, morphological damage and electrochemical tests were extensively examined. The results show that FSP can refine and uniform the microstructure of as-cast NAB alloy. FSP NAB alloy displays enhanced cavitation erosion resistance in distilled water and artificial seawater, as well as heightened sensitive to corrosive media in artificial seawater. Quantitative analysis of the synergistic effect between cavitation erosion and corrosion shows that pure cavitation erosion components contributions largest for as-cast NAB. In contrast, FSP NAB is greatly influenced by the synergistic effect component. The damaged surface shows that cavitation erosion mechanisms of as-cast NAB in distilled water and artificial seawater are similar, which is not the case for FSP NAB due to the synergistic effect between cavitation erosion and corrosion. Graphic Abstract
AbstractList Herein, the friction stir processing (FSP) method was adopted to modify the microstructure of as-cast nickel aluminum bronze (NAB). The microhardness, cavitation erosion-corrosion mass loss, morphological damage and electrochemical tests were extensively examined. The results show that FSP can refine and uniform the microstructure of as-cast NAB alloy. FSP NAB alloy displays enhanced cavitation erosion resistance in distilled water and artificial seawater, as well as heightened sensitive to corrosive media in artificial seawater. Quantitative analysis of the synergistic effect between cavitation erosion and corrosion shows that pure cavitation erosion components contributions largest for as-cast NAB. In contrast, FSP NAB is greatly influenced by the synergistic effect component. The damaged surface shows that cavitation erosion mechanisms of as-cast NAB in distilled water and artificial seawater are similar, which is not the case for FSP NAB due to the synergistic effect between cavitation erosion and corrosion.Graphic Abstract
Herein, the friction stir processing (FSP) method was adopted to modify the microstructure of as-cast nickel aluminumbronze (NAB). The microhardness, cavitation erosion-corrosion mass loss, morphological damage and electrochemical testswere extensively examined. The results show that FSP can refine and uniform the microstructure of as-cast NAB alloy. FSPNAB alloy displays enhanced cavitation erosion resistance in distilled water and artificial seawater, as well as heightenedsensitive to corrosive media in artificial seawater. Quantitative analysis of the synergistic effect between cavitation erosionand corrosion shows that pure cavitation erosion components contributions largest for as-cast NAB. In contrast, FSP NABis greatly influenced by the synergistic effect component. The damaged surface shows that cavitation erosion mechanismsof as-cast NAB in distilled water and artificial seawater are similar, which is not the case for FSP NAB due to the synergisticeffect between cavitation erosion and corrosion. KCI Citation Count: 0
Herein, the friction stir processing (FSP) method was adopted to modify the microstructure of as-cast nickel aluminum bronze (NAB). The microhardness, cavitation erosion-corrosion mass loss, morphological damage and electrochemical tests were extensively examined. The results show that FSP can refine and uniform the microstructure of as-cast NAB alloy. FSP NAB alloy displays enhanced cavitation erosion resistance in distilled water and artificial seawater, as well as heightened sensitive to corrosive media in artificial seawater. Quantitative analysis of the synergistic effect between cavitation erosion and corrosion shows that pure cavitation erosion components contributions largest for as-cast NAB. In contrast, FSP NAB is greatly influenced by the synergistic effect component. The damaged surface shows that cavitation erosion mechanisms of as-cast NAB in distilled water and artificial seawater are similar, which is not the case for FSP NAB due to the synergistic effect between cavitation erosion and corrosion. Graphic Abstract
Author Sun, Yanjun
Lian, Ying
Li, Yang
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0002-2848-8920
  surname: Li
  fullname: Li, Yang
  organization: College of Mechanical and Equipment Engineering, Hebei University of Engineering
– sequence: 2
  givenname: Ying
  orcidid: 0000-0002-3364-0018
  surname: Lian
  fullname: Lian, Ying
  email: lianyinghd@163.com
  organization: College of Mechanical and Equipment Engineering, Hebei University of Engineering
– sequence: 3
  givenname: Yanjun
  surname: Sun
  fullname: Sun, Yanjun
  organization: College of Mechanical and Equipment Engineering, Hebei University of Engineering
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002783141$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kc1rGzEQxUVxoXbaf6AnQU85bKOv_dDRMU4TCEmp07PQameNEldyRkpC8tdn7TUEevBheAz83vCYNyOTEAMQ8p2zn5yx-ixxUSpWMDEM07wq-CcyFYyVheJKT8iUl7opdCXkFzJL6Z6xiksupuRt9RoA1z5l7-iy78Fleg75BSDQhX322WYfA11iTDu1oaOLiIetj0gv0Ls9ssoe6W-MDlKCjt74-YaeYwxvQH2gc8y-987bDV2BfbEZ8Cv53NtNgm8HPSF_L5Z3i8vi-vbX1WJ-XThZylzI2nEHom5boVSvedl0re5EB0N-yZhVtnOtFG3LWm1ByqbumlZZKTRYxaCUJ-R0vBuwNw_Om2j9XtfRPKCZ_7m7MrrRUskd-2NktxgfnyBlcx-fMAzxjKhYLUVdqR3VjJQbHpEQeuMOj8po_cZwZnatmLEVM7Ri9q0YPljFf9Yt-n8WX4-b5GhKAxzWgB-pjrjeASb1ofM
CitedBy_id crossref_primary_10_1007_s11665_024_09968_5
crossref_primary_10_1016_j_matchar_2023_113340
crossref_primary_10_1007_s12540_021_01067_7
crossref_primary_10_1016_j_ultsonch_2024_107021
crossref_primary_10_1016_j_triboint_2022_107771
crossref_primary_10_1039_D3MH00951C
crossref_primary_10_1007_s40195_024_01710_3
crossref_primary_10_3390_ma15155401
crossref_primary_10_1080_08927014_2024_2326067
Cites_doi 10.1016/j.wear.2019.04.011
10.1016/j.wear.2014.05.002
10.5006/0984
10.1016/j.electacta.2006.02.018
10.1016/j.wear.2005.02.033
10.1016/j.fusengdes.2020.111962
10.1016/j.corsci.2010.02.026
10.1016/j.corsci.2014.11.039
10.1016/j.mser.2005.07.001
10.1016/j.msea.2019.138577
10.1016/j.wear.2011.06.002
10.1016/j.jmst.2020.05.024
10.1179/bcj.1979.14.3.160
10.1016/j.wear.2020.203258
10.1016/j.engfailanal.2016.07.010
10.1007/s11661-004-0242-1
10.1007/s10854-019-02492-6
10.5006/1391
10.1016/j.triboint.2019.03.071
10.1080/02670836.2019.1704527
10.1146/annurev.fl.09.010177.001045
10.1007/BF02662362
10.1016/j.triboint.2019.04.011
10.1016/j.apor.2019.101868
10.1016/j.corsci.2018.04.043
10.1007/BF02642870
10.1016/j.triboint.2016.01.008
10.1149/1.3622343
10.1016/j.matchar.2018.07.002
10.1007/s40195-019-00963-7
10.1016/j.msea.2015.06.078
10.1016/j.jallcom.2018.03.103
10.1016/S1003-6326(20)65269-4
ContentType Journal Article
Copyright The Korean Institute of Metals and Materials 2021
The Korean Institute of Metals and Materials 2021.
Copyright_xml – notice: The Korean Institute of Metals and Materials 2021
– notice: The Korean Institute of Metals and Materials 2021.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
ACYCR
DOI 10.1007/s12540-020-00916-1
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Korean Citation Index
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2005-4149
EndPage 5094
ExternalDocumentID oai_kci_go_kr_ARTI_9893435
10_1007_s12540_020_00916_1
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51705125
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Science and Technology Research and Development Program Projects of Handan Science and Technology Bureau
  grantid: 1521109072-4
– fundername: Natural Science Foundation of Hebei Province
  grantid: E2020402005
  funderid: http://dx.doi.org/10.13039/501100003787
– fundername: Department of Education of Hebei Province
  grantid: QN2017030
  funderid: http://dx.doi.org/10.13039/501100003482
GroupedDBID -EM
06D
0R~
0VY
123
1N0
2.D
203
29M
2JY
2KG
2VQ
30V
4.4
406
408
40D
5VS
67Z
8FE
8FG
96X
9ZL
AAAVM
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BA0
BENPR
BGLVJ
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZB
HZ~
I0C
IKXTQ
IWAJR
IXC
IXD
I~X
J-C
J0Z
JBSCW
JZLTJ
KB.
KOV
KVFHK
LLZTM
MA-
MZR
N2Q
NDZJH
NPVJJ
NQJWS
O9-
O93
O9G
O9I
O9J
P19
P2P
P9N
PDBOC
PT4
PT5
Q2X
R89
R9I
RLLFE
ROL
RSV
S1Z
S26
S27
S28
S3B
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
T16
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
Z45
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
ZMTXR
ZZE
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SR
8BQ
8FD
ABRTQ
JG9
ACYCR
ID FETCH-LOGICAL-c353t-37c1ce27bb244f9158db9d2de312300a4adcb32bb0b9ae3387d8b4a329ea40e53
IEDL.DBID U2A
ISSN 1598-9623
IngestDate Sun Mar 09 07:53:27 EDT 2025
Fri Jul 25 12:23:24 EDT 2025
Thu Apr 24 22:57:32 EDT 2025
Tue Jul 01 01:15:26 EDT 2025
Fri Feb 21 02:47:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Cavitation erosion resistance
Nickel aluminum bronze
Synergistic effect
Cavitation erosion mechanism
Friction stir processing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-37c1ce27bb244f9158db9d2de312300a4adcb32bb0b9ae3387d8b4a329ea40e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2848-8920
0000-0002-3364-0018
PQID 2607327645
PQPubID 326276
PageCount 13
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9893435
proquest_journals_2607327645
crossref_citationtrail_10_1007_s12540_020_00916_1
crossref_primary_10_1007_s12540_020_00916_1
springer_journals_10_1007_s12540_020_00916_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle Metals and materials international
PublicationTitleAbbrev Met. Mater. Int
PublicationYear 2021
Publisher The Korean Institute of Metals and Materials
Springer Nature B.V
대한금속·재료학회
Publisher_xml – name: The Korean Institute of Metals and Materials
– name: Springer Nature B.V
– name: 대한금속·재료학회
References JahanafroozAHasanFLorimerGWRidleyNMetall. Trans. A1983141951195610.1007/BF02662362
NaikRBReddyKVReddyGMKumarRAFusion Eng. Des.20201611119621:CAS:528:DC%2BB3cXhs12qur%2FF10.1016/j.fusengdes.2020.111962
AktasBUstaOAtlarMAppl. Ocean Res.20209410186810.1016/j.apor.2019.101868
CottamRLuzinVMoodyHEdwardsDMajumdarAWongYCWangJBrandtMWear201431756631:CAS:528:DC%2BC2cXht1Ojsb%2FI10.1016/j.wear.2014.05.002
MoarefARabiezadehATrans. Nonferrous Met. Soc.2020309729811:CAS:528:DC%2BB3cXptVarsbc%3D10.1016/S1003-6326(20)65269-4
TuthillAHMater. Perform.19872612221:CAS:528:DyaL2sXmtVehu7s%3D
SongQNZhengYGNiDRMaZYCorros. Sci.201592951031:CAS:528:DC%2BC2cXitV2is7bE10.1016/j.corsci.2014.11.039
NiDRXiaoBLMaZYQiaoYXZhengYGCorros. Sci.201052161016171:CAS:528:DC%2BC3cXjt1Wjtbc%3D10.1016/j.corsci.2010.02.026
LiuMLiCYLiuLYeYJDastanDGarmestaniHMater. Sci. Technol.2020362842921:CAS:528:DC%2BB3cXovFKj10.1080/02670836.2019.1704527
CulpanEARoseGBr. Corros. J.1979141601661:CAS:528:DyaL3cXhtlelsL4%3D10.1179/bcj.1979.14.3.160
SongQNZhengYGJiangSLNiDRMaZYCorrosion201369111111211:CAS:528:DC%2BC3sXhvVamsLbO10.5006/0984
ZhaoBJLvYTDingYWangLQLuWJMater. Charact.201814477851:CAS:528:DC%2BC1cXht12ltbjI10.1016/j.matchar.2018.07.002
Oh-ishiKMcnelleyRMetall. Mater. Trans. A200435A295129611:CAS:528:DC%2BD2cXns1Snt74%3D10.1007/s11661-004-0242-1
ParkKSKimSJ. Electrochem. Soc.2011158C335C3401:CAS:528:DC%2BC3MXhtVGmsL7N10.1149/1.3622343
LvYTNieBWangLQCuiHZLiLWangRLyuFYMater. Sci. Eng. A20207711385771:CAS:528:DC%2BC1MXitVertbjJ10.1016/j.msea.2019.138577
GuoHXLuBTLuoJLElectrochim. Acta200651534153481:CAS:528:DC%2BD28Xnt1Krsrg%3D10.1016/j.electacta.2006.02.018
JafariAAlamMHDastanDZiakhodadadianSShiZCGarmestaniHWeidenbachASŢăluŞJ. Mater. Sci. Mater. Electron.20193021185211981:CAS:528:DC%2BC1MXitFCjt77J10.1007/s10854-019-02492-6
BlumeMSkodaRWear2019428–42945746910.1016/j.wear.2019.04.011
LuoQZhangQQinZBWuZShenBLiuLHuWBJ. Alloys Compd.20187478618681:CAS:528:DC%2BC1cXks12hs7g%3D10.1016/j.jallcom.2018.03.103
SongQNXuNTongYHuangCMSunSYXuCBBaoYFJiangYFQiaoYXZhuZYWangZBActa Metall. Sin. Engl.201932147014821:CAS:528:DC%2BC1MXisVeju7jK10.1007/s40195-019-00963-7
ThapliyalSDwivediDKTribol. Int.2016971241351:CAS:528:DC%2BC28Xht1KksL8%3D10.1016/j.triboint.2016.01.008
SongQNZhengYGNiDRMaZYCorrosion2015716066141:CAS:528:DC%2BC2MXhtFaltLbF10.5006/1391
LvYTWangLQHanYFXuXYLuWJMater. Sci. Eng. A201564317241:CAS:528:DC%2BC2MXhtleltr%2FK10.1016/j.msea.2015.06.078
HasanFJahanafroozALorimerGWRidleyNMetall. Trans. A198213133713451:CAS:528:DyaL38Xmt1Wiurw%3D10.1007/BF02642870
D1141-98 (Reapproved 2013), Standard Practice for the Preparation of Substitute Ocean Water (ASTM International, West Conshohocken, PA, 2013)
SongQNTongYXuNSunSYLiHLBaoYFJiangYFWangZBQiaoYXWear2020450–45120325810.1016/j.wear.2020.203258
HazraMBalanKPEng. Fail. Anal.2016701411561:CAS:528:DC%2BC28XhsFSjs73M10.1016/j.engfailanal.2016.07.010
LiuLShengYYLiuMDienwiebelMZhangZCDastanDTribol. Int.20191401057271:CAS:528:DC%2BC1MXht1yisbbF10.1016/j.triboint.2019.04.011
ZhangLMMaALYuHUmohAJZhengYGTribol. Int.20191362502581:CAS:528:DC%2BC1MXntVCqsr0%3D10.1016/j.triboint.2019.03.071
HankeSFischerABeyerMdos SantosJWear201127332371:CAS:528:DC%2BC3MXhtlGltbzI10.1016/j.wear.2011.06.002
MishraRSMaZYMater. Sci. Eng. R20055017810.1016/j.mser.2005.07.001
PlessetMSProsperettiAAnnu. Rev. Fluid Mech.197791451851:CAS:528:DyaE2sXltVelt70%3D10.1146/annurev.fl.09.010177.001045
ZengYHYangFFChenZNGuoEYGaoMQWangXJKangHJWangTMJ. Mater. Sci. Technol.20216118619610.1016/j.jmst.2020.05.024
QinZBZhangQLuoQWuZShenBLiuLHuWBCorros. Sci.20181392552661:CAS:528:DC%2BC1cXpsVGjsro%3D10.1016/j.corsci.2018.04.043
BarikRCWhartonJAWoodRJKTanKSStokesKRWear20052592302421:CAS:528:DC%2BD2MXltFyhu78%3D10.1016/j.wear.2005.02.033
M Hazra (916_CR8) 2016; 70
YT Lv (916_CR26) 2020; 771
QN Song (916_CR29) 2013; 69
R Cottam (916_CR19) 2014; 317
QN Song (916_CR11) 2020; 450–451
KS Park (916_CR18) 2011; 158
S Hanke (916_CR16) 2011; 273
A Moaref (916_CR25) 2020; 30
M Blume (916_CR5) 2019; 428–429
QN Song (916_CR7) 2015; 92
ZB Qin (916_CR12) 2018; 139
RB Naik (916_CR24) 2020; 161
B Aktas (916_CR3) 2020; 94
L Liu (916_CR33) 2019; 140
EA Culpan (916_CR6) 1979; 14
F Hasan (916_CR32) 1982; 13
BJ Zhao (916_CR15) 2018; 144
RC Barik (916_CR17) 2005; 259
QN Song (916_CR34) 2015; 71
M Liu (916_CR30) 2020; 36
S Thapliyal (916_CR28) 2016; 97
MS Plesset (916_CR4) 1977; 9
RS Mishra (916_CR22) 2005; 50
YH Zeng (916_CR14) 2021; 61
LM Zhang (916_CR9) 2019; 136
AH Tuthill (916_CR1) 1987; 26
YT Lv (916_CR13) 2015; 643
DR Ni (916_CR27) 2010; 52
Q Luo (916_CR20) 2018; 747
916_CR31
HX Guo (916_CR35) 2006; 51
A Jahanafrooz (916_CR2) 1983; 14
QN Song (916_CR10) 2019; 32
K Oh-ishi (916_CR23) 2004; 35A
A Jafari (916_CR21) 2019; 30
References_xml – reference: ZhaoBJLvYTDingYWangLQLuWJMater. Charact.201814477851:CAS:528:DC%2BC1cXht12ltbjI10.1016/j.matchar.2018.07.002
– reference: NiDRXiaoBLMaZYQiaoYXZhengYGCorros. Sci.201052161016171:CAS:528:DC%2BC3cXjt1Wjtbc%3D10.1016/j.corsci.2010.02.026
– reference: TuthillAHMater. Perform.19872612221:CAS:528:DyaL2sXmtVehu7s%3D
– reference: ZhangLMMaALYuHUmohAJZhengYGTribol. Int.20191362502581:CAS:528:DC%2BC1MXntVCqsr0%3D10.1016/j.triboint.2019.03.071
– reference: LuoQZhangQQinZBWuZShenBLiuLHuWBJ. Alloys Compd.20187478618681:CAS:528:DC%2BC1cXks12hs7g%3D10.1016/j.jallcom.2018.03.103
– reference: AktasBUstaOAtlarMAppl. Ocean Res.20209410186810.1016/j.apor.2019.101868
– reference: GuoHXLuBTLuoJLElectrochim. Acta200651534153481:CAS:528:DC%2BD28Xnt1Krsrg%3D10.1016/j.electacta.2006.02.018
– reference: LiuMLiCYLiuLYeYJDastanDGarmestaniHMater. Sci. Technol.2020362842921:CAS:528:DC%2BB3cXovFKj10.1080/02670836.2019.1704527
– reference: SongQNTongYXuNSunSYLiHLBaoYFJiangYFWangZBQiaoYXWear2020450–45120325810.1016/j.wear.2020.203258
– reference: LvYTNieBWangLQCuiHZLiLWangRLyuFYMater. Sci. Eng. A20207711385771:CAS:528:DC%2BC1MXitVertbjJ10.1016/j.msea.2019.138577
– reference: SongQNXuNTongYHuangCMSunSYXuCBBaoYFJiangYFQiaoYXZhuZYWangZBActa Metall. Sin. Engl.201932147014821:CAS:528:DC%2BC1MXisVeju7jK10.1007/s40195-019-00963-7
– reference: HazraMBalanKPEng. Fail. Anal.2016701411561:CAS:528:DC%2BC28XhsFSjs73M10.1016/j.engfailanal.2016.07.010
– reference: SongQNZhengYGJiangSLNiDRMaZYCorrosion201369111111211:CAS:528:DC%2BC3sXhvVamsLbO10.5006/0984
– reference: HankeSFischerABeyerMdos SantosJWear201127332371:CAS:528:DC%2BC3MXhtlGltbzI10.1016/j.wear.2011.06.002
– reference: CottamRLuzinVMoodyHEdwardsDMajumdarAWongYCWangJBrandtMWear201431756631:CAS:528:DC%2BC2cXht1Ojsb%2FI10.1016/j.wear.2014.05.002
– reference: ParkKSKimSJ. Electrochem. Soc.2011158C335C3401:CAS:528:DC%2BC3MXhtVGmsL7N10.1149/1.3622343
– reference: MoarefARabiezadehATrans. Nonferrous Met. Soc.2020309729811:CAS:528:DC%2BB3cXptVarsbc%3D10.1016/S1003-6326(20)65269-4
– reference: JahanafroozAHasanFLorimerGWRidleyNMetall. Trans. A1983141951195610.1007/BF02662362
– reference: BlumeMSkodaRWear2019428–42945746910.1016/j.wear.2019.04.011
– reference: CulpanEARoseGBr. Corros. J.1979141601661:CAS:528:DyaL3cXhtlelsL4%3D10.1179/bcj.1979.14.3.160
– reference: PlessetMSProsperettiAAnnu. Rev. Fluid Mech.197791451851:CAS:528:DyaE2sXltVelt70%3D10.1146/annurev.fl.09.010177.001045
– reference: LvYTWangLQHanYFXuXYLuWJMater. Sci. Eng. A201564317241:CAS:528:DC%2BC2MXhtleltr%2FK10.1016/j.msea.2015.06.078
– reference: QinZBZhangQLuoQWuZShenBLiuLHuWBCorros. Sci.20181392552661:CAS:528:DC%2BC1cXpsVGjsro%3D10.1016/j.corsci.2018.04.043
– reference: SongQNZhengYGNiDRMaZYCorrosion2015716066141:CAS:528:DC%2BC2MXhtFaltLbF10.5006/1391
– reference: JafariAAlamMHDastanDZiakhodadadianSShiZCGarmestaniHWeidenbachASŢăluŞJ. Mater. Sci. Mater. Electron.20193021185211981:CAS:528:DC%2BC1MXitFCjt77J10.1007/s10854-019-02492-6
– reference: NaikRBReddyKVReddyGMKumarRAFusion Eng. Des.20201611119621:CAS:528:DC%2BB3cXhs12qur%2FF10.1016/j.fusengdes.2020.111962
– reference: HasanFJahanafroozALorimerGWRidleyNMetall. Trans. A198213133713451:CAS:528:DyaL38Xmt1Wiurw%3D10.1007/BF02642870
– reference: ZengYHYangFFChenZNGuoEYGaoMQWangXJKangHJWangTMJ. Mater. Sci. Technol.20216118619610.1016/j.jmst.2020.05.024
– reference: SongQNZhengYGNiDRMaZYCorros. Sci.201592951031:CAS:528:DC%2BC2cXitV2is7bE10.1016/j.corsci.2014.11.039
– reference: BarikRCWhartonJAWoodRJKTanKSStokesKRWear20052592302421:CAS:528:DC%2BD2MXltFyhu78%3D10.1016/j.wear.2005.02.033
– reference: ThapliyalSDwivediDKTribol. Int.2016971241351:CAS:528:DC%2BC28Xht1KksL8%3D10.1016/j.triboint.2016.01.008
– reference: D1141-98 (Reapproved 2013), Standard Practice for the Preparation of Substitute Ocean Water (ASTM International, West Conshohocken, PA, 2013)
– reference: MishraRSMaZYMater. Sci. Eng. R20055017810.1016/j.mser.2005.07.001
– reference: LiuLShengYYLiuMDienwiebelMZhangZCDastanDTribol. Int.20191401057271:CAS:528:DC%2BC1MXht1yisbbF10.1016/j.triboint.2019.04.011
– reference: Oh-ishiKMcnelleyRMetall. Mater. Trans. A200435A295129611:CAS:528:DC%2BD2cXns1Snt74%3D10.1007/s11661-004-0242-1
– volume: 428–429
  start-page: 457
  year: 2019
  ident: 916_CR5
  publication-title: Wear
  doi: 10.1016/j.wear.2019.04.011
– volume: 317
  start-page: 56
  year: 2014
  ident: 916_CR19
  publication-title: Wear
  doi: 10.1016/j.wear.2014.05.002
– volume: 69
  start-page: 1111
  year: 2013
  ident: 916_CR29
  publication-title: Corrosion
  doi: 10.5006/0984
– volume: 51
  start-page: 5341
  year: 2006
  ident: 916_CR35
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2006.02.018
– volume: 259
  start-page: 230
  year: 2005
  ident: 916_CR17
  publication-title: Wear
  doi: 10.1016/j.wear.2005.02.033
– ident: 916_CR31
– volume: 161
  start-page: 111962
  year: 2020
  ident: 916_CR24
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2020.111962
– volume: 52
  start-page: 1610
  year: 2010
  ident: 916_CR27
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2010.02.026
– volume: 92
  start-page: 95
  year: 2015
  ident: 916_CR7
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2014.11.039
– volume: 50
  start-page: 1
  year: 2005
  ident: 916_CR22
  publication-title: Mater. Sci. Eng. R
  doi: 10.1016/j.mser.2005.07.001
– volume: 771
  start-page: 138577
  year: 2020
  ident: 916_CR26
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.138577
– volume: 273
  start-page: 32
  year: 2011
  ident: 916_CR16
  publication-title: Wear
  doi: 10.1016/j.wear.2011.06.002
– volume: 61
  start-page: 186
  year: 2021
  ident: 916_CR14
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.05.024
– volume: 14
  start-page: 160
  year: 1979
  ident: 916_CR6
  publication-title: Br. Corros. J.
  doi: 10.1179/bcj.1979.14.3.160
– volume: 450–451
  start-page: 203258
  year: 2020
  ident: 916_CR11
  publication-title: Wear
  doi: 10.1016/j.wear.2020.203258
– volume: 70
  start-page: 141
  year: 2016
  ident: 916_CR8
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2016.07.010
– volume: 35A
  start-page: 2951
  year: 2004
  ident: 916_CR23
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-004-0242-1
– volume: 30
  start-page: 21185
  year: 2019
  ident: 916_CR21
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-019-02492-6
– volume: 71
  start-page: 606
  year: 2015
  ident: 916_CR34
  publication-title: Corrosion
  doi: 10.5006/1391
– volume: 136
  start-page: 250
  year: 2019
  ident: 916_CR9
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2019.03.071
– volume: 36
  start-page: 284
  year: 2020
  ident: 916_CR30
  publication-title: Mater. Sci. Technol.
  doi: 10.1080/02670836.2019.1704527
– volume: 9
  start-page: 145
  year: 1977
  ident: 916_CR4
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.09.010177.001045
– volume: 14
  start-page: 1951
  year: 1983
  ident: 916_CR2
  publication-title: Metall. Trans. A
  doi: 10.1007/BF02662362
– volume: 26
  start-page: 12
  year: 1987
  ident: 916_CR1
  publication-title: Mater. Perform.
– volume: 140
  start-page: 105727
  year: 2019
  ident: 916_CR33
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2019.04.011
– volume: 94
  start-page: 101868
  year: 2020
  ident: 916_CR3
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2019.101868
– volume: 139
  start-page: 255
  year: 2018
  ident: 916_CR12
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2018.04.043
– volume: 13
  start-page: 1337
  year: 1982
  ident: 916_CR32
  publication-title: Metall. Trans. A
  doi: 10.1007/BF02642870
– volume: 97
  start-page: 124
  year: 2016
  ident: 916_CR28
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2016.01.008
– volume: 158
  start-page: C335
  year: 2011
  ident: 916_CR18
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3622343
– volume: 144
  start-page: 77
  year: 2018
  ident: 916_CR15
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2018.07.002
– volume: 32
  start-page: 1470
  year: 2019
  ident: 916_CR10
  publication-title: Acta Metall. Sin. Engl.
  doi: 10.1007/s40195-019-00963-7
– volume: 643
  start-page: 17
  year: 2015
  ident: 916_CR13
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.06.078
– volume: 747
  start-page: 861
  year: 2018
  ident: 916_CR20
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.03.103
– volume: 30
  start-page: 972
  year: 2020
  ident: 916_CR25
  publication-title: Trans. Nonferrous Met. Soc.
  doi: 10.1016/S1003-6326(20)65269-4
SSID ssj0061312
Score 2.3164456
Snippet Herein, the friction stir processing (FSP) method was adopted to modify the microstructure of as-cast nickel aluminum bronze (NAB). The microhardness,...
Herein, the friction stir processing (FSP) method was adopted to modify the microstructure of as-cast nickel aluminumbronze (NAB). The microhardness,...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5082
SubjectTerms Aluminum bronzes
Cavitation
Cavitation erosion
Cavitation resistance
Characterization and Evaluation of Materials
Chemistry and Materials Science
Corrosion
Corrosion effects
Damage
Distilled water
Engineering Thermodynamics
Erosion mechanisms
Erosion resistance
Erosion-corrosion
Flow control
Friction stir processing
Heat and Mass Transfer
Machines
Magnetic Materials
Magnetism
Manufacturing
Materials Science
Metallic Materials
Microhardness
Microstructure
Nickel aluminides
Nickel base alloys
Nickel compounds
Processes
Seawater
Solid Mechanics
Synergistic effect
재료공학
Title Synergistic Effect Between Cavitation Erosion and Corrosion for Friction Stir Processed NiAl Bronze in Artificial Seawater
URI https://link.springer.com/article/10.1007/s12540-020-00916-1
https://www.proquest.com/docview/2607327645
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002783141
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Metals and Materials International, 2021, 27(12), , pp.5082-5094
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aXvQgPrFaJYg3XdhXdptjW1qrYi-1UE8h2WRlqWxlrYr99U6yWauigqewJPvKJDPfMDNfEDqNfKl4oIQjRUqckHrKoZGQjpcQWA2eEMRUud4Mo8E4vJqQiS0Ke6qy3auQpNHUy2I3XwfxtbsDuMCLHPB56gR8d72ux3670r9gn8oYJ6GwlcG621KZn5_xxRyt5kX6BWl-C44am9PfRBsWLOJ2Kd0ttKLybbT-iUJwBy1Gb7p6z9At45KKGHfK3Cvc5S-WgRv34O265bnE3VlhrwCw4n6RmdIGPJpnBbZ1A0riYdZ-wOCk5wuFs9x8Q0k2gUeKvwJCLXbRuN-77Q4ce56CkwQkmIMuSbxE-bEQYNNT6pGWFFSCsGDCAtflIZeJCHwhXEG5At81li0R8sCnioeuIsEequWzXO0jHKZKAPgIW-CEAqQhlIPeUDGMS10KGLSBvGpaWWJ_VZ958cCWNMlaFAxEwYwomNdAZx_3PJZUG3-OPgFpsWmSMc2Qrdv7GZsWDPyAS0YBhgEQbKBmJUxm9-YTAw8uDvw4CqH7vBLwsvv3Vx78b_ghWvN1AozJfWmi2rx4VkeAYObiGNXb_U5nqNuLu-vesVnA72wN6L8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9BeYA9bHxN68aYNe0NgvJhJ_VjV7WUr76USvBk2bEzRUXpFMKm9a_fOXHWgdgknqzITuKP8_l3urufAb7EoTYyMsrTKmMe5YHxeKy0F6QMpSFQitVZrleTeDyj5zfsxiWF3bfR7q1LstbUq2S30DrxrbmDuCCIPbR5Nija4KwDG_3T24thq4HxhGq8nIzjZsbz3SXLPP-VRwfSelFmj7DmE_dofeqM3sCs7W8TbDI_eajUSbp8QuX40gFtw2sHQ0m_kZsdWDPFLrz6i5xwD5bTXzYvsCZyJg3JMfnaRHWRgfzhuL3JEEdlS1loMliU7gmhMBmVeZ00QaZVXhKXkWA0meT9O4Lmf7E0JC_qPjQ0FmRq5E_EvuU-zEbD68HYczc1eGnEogq1VBqkJkyUQrSQ8YD1tOIaxQAXIvJ9SaVOVRQq5SsuDVrFie4pKqOQG0l9w6K30CkWhXkHhGZGIayhPTRvESwxLlEjmQTbZT5HdNuFoF0ukbqh2ts07sSKgNnOq8B5FfW8iqALR3_e-d6QePy39WeUAjFPc2G5t235bSHmpUAL40xwBHgIMbtw0AqJcLv-XqBtmERhElOsPm7XfFX971--f1nzT7A5vr66FJdnk4sPsBXaMJs6wuYAOlX5YD4iTqrUodsWvwHJHAWY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QfRB_MT5GcQ3LTZt0y6Pczr8HMIc-BaSJpUy6aRWxf31XtLWqajgUylJmzaX3P2Ou_sFof3QU1r4WjpKJtQJGNEOC6VySExhNRApqa1yve6FZ4Pg4o7efarit9nudUiyrGkwLE1ZcfSokqNJ4ZtnAvrG9QGMQEIH_J8ZUMfEJHUNvHati8FWlfFOymBbg6WvymZ-fscX0zSd5ckX1PktUGrtT3cRLVTAEbdLSS-hKZ0to_lPdIIraNx_M5V8lnoZl7TE-LjMw8Id8VKxceNTGN1cRaZwZ5RXdwBecTdPbZkD7hdpjqsaAq1wL20_YHDYs7HGaWa_oSSewH0tXgGt5qto0D297Zw51dkKTuxTvwC9EpNYe5GUYN8TRmhLSaZAcDBhvuuKQKhY-p6UrmRCgx8bqZYMhO8xLQJXU38NNbJRptcRDhItAYgELXBIAd5QJkCH6Aj6JS4DPNpEpJ5WHle_as6_eOATymQjCg6i4FYUnDTRwcczjyXtxp-990BafBin3LBlm-v9iA9zDj7BOWcAyQAUNtFWLUxe7dMnDt5c5HtRGEDzYS3gSfPvQ278r_sumr056fKr897lJprzTF6MTYnZQo0if9bbAGwKuWPX7juDB-ze
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+Effect+Between+Cavitation+Erosion+and+Corrosion+for+Friction+Stir+Processed+NiAl+Bronze+in+Artificial+Seawater&rft.jtitle=Metals+and+materials+international&rft.au=Li%2C+Yang&rft.au=Lian%2C+Ying&rft.au=Sun%2C+Yanjun&rft.date=2021-12-01&rft.pub=The+Korean+Institute+of+Metals+and+Materials&rft.issn=1598-9623&rft.eissn=2005-4149&rft.volume=27&rft.issue=12&rft.spage=5082&rft.epage=5094&rft_id=info:doi/10.1007%2Fs12540-020-00916-1&rft.externalDocID=10_1007_s12540_020_00916_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-9623&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-9623&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-9623&client=summon