Synergistic Effect Between Cavitation Erosion and Corrosion for Friction Stir Processed NiAl Bronze in Artificial Seawater
Herein, the friction stir processing (FSP) method was adopted to modify the microstructure of as-cast nickel aluminum bronze (NAB). The microhardness, cavitation erosion-corrosion mass loss, morphological damage and electrochemical tests were extensively examined. The results show that FSP can refin...
Saved in:
Published in | Metals and materials international Vol. 27; no. 12; pp. 5082 - 5094 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean Institute of Metals and Materials
01.12.2021
Springer Nature B.V 대한금속·재료학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1598-9623 2005-4149 |
DOI | 10.1007/s12540-020-00916-1 |
Cover
Loading…
Abstract | Herein, the friction stir processing (FSP) method was adopted to modify the microstructure of as-cast nickel aluminum bronze (NAB). The microhardness, cavitation erosion-corrosion mass loss, morphological damage and electrochemical tests were extensively examined. The results show that FSP can refine and uniform the microstructure of as-cast NAB alloy. FSP NAB alloy displays enhanced cavitation erosion resistance in distilled water and artificial seawater, as well as heightened sensitive to corrosive media in artificial seawater. Quantitative analysis of the synergistic effect between cavitation erosion and corrosion shows that pure cavitation erosion components contributions largest for as-cast NAB. In contrast, FSP NAB is greatly influenced by the synergistic effect component. The damaged surface shows that cavitation erosion mechanisms of as-cast NAB in distilled water and artificial seawater are similar, which is not the case for FSP NAB due to the synergistic effect between cavitation erosion and corrosion.
Graphic Abstract |
---|---|
AbstractList | Herein, the friction stir processing (FSP) method was adopted to modify the microstructure of as-cast nickel aluminum bronze (NAB). The microhardness, cavitation erosion-corrosion mass loss, morphological damage and electrochemical tests were extensively examined. The results show that FSP can refine and uniform the microstructure of as-cast NAB alloy. FSP NAB alloy displays enhanced cavitation erosion resistance in distilled water and artificial seawater, as well as heightened sensitive to corrosive media in artificial seawater. Quantitative analysis of the synergistic effect between cavitation erosion and corrosion shows that pure cavitation erosion components contributions largest for as-cast NAB. In contrast, FSP NAB is greatly influenced by the synergistic effect component. The damaged surface shows that cavitation erosion mechanisms of as-cast NAB in distilled water and artificial seawater are similar, which is not the case for FSP NAB due to the synergistic effect between cavitation erosion and corrosion.Graphic Abstract Herein, the friction stir processing (FSP) method was adopted to modify the microstructure of as-cast nickel aluminumbronze (NAB). The microhardness, cavitation erosion-corrosion mass loss, morphological damage and electrochemical testswere extensively examined. The results show that FSP can refine and uniform the microstructure of as-cast NAB alloy. FSPNAB alloy displays enhanced cavitation erosion resistance in distilled water and artificial seawater, as well as heightenedsensitive to corrosive media in artificial seawater. Quantitative analysis of the synergistic effect between cavitation erosionand corrosion shows that pure cavitation erosion components contributions largest for as-cast NAB. In contrast, FSP NABis greatly influenced by the synergistic effect component. The damaged surface shows that cavitation erosion mechanismsof as-cast NAB in distilled water and artificial seawater are similar, which is not the case for FSP NAB due to the synergisticeffect between cavitation erosion and corrosion. KCI Citation Count: 0 Herein, the friction stir processing (FSP) method was adopted to modify the microstructure of as-cast nickel aluminum bronze (NAB). The microhardness, cavitation erosion-corrosion mass loss, morphological damage and electrochemical tests were extensively examined. The results show that FSP can refine and uniform the microstructure of as-cast NAB alloy. FSP NAB alloy displays enhanced cavitation erosion resistance in distilled water and artificial seawater, as well as heightened sensitive to corrosive media in artificial seawater. Quantitative analysis of the synergistic effect between cavitation erosion and corrosion shows that pure cavitation erosion components contributions largest for as-cast NAB. In contrast, FSP NAB is greatly influenced by the synergistic effect component. The damaged surface shows that cavitation erosion mechanisms of as-cast NAB in distilled water and artificial seawater are similar, which is not the case for FSP NAB due to the synergistic effect between cavitation erosion and corrosion. Graphic Abstract |
Author | Sun, Yanjun Lian, Ying Li, Yang |
Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0002-2848-8920 surname: Li fullname: Li, Yang organization: College of Mechanical and Equipment Engineering, Hebei University of Engineering – sequence: 2 givenname: Ying orcidid: 0000-0002-3364-0018 surname: Lian fullname: Lian, Ying email: lianyinghd@163.com organization: College of Mechanical and Equipment Engineering, Hebei University of Engineering – sequence: 3 givenname: Yanjun surname: Sun fullname: Sun, Yanjun organization: College of Mechanical and Equipment Engineering, Hebei University of Engineering |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002783141$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kc1rGzEQxUVxoXbaf6AnQU85bKOv_dDRMU4TCEmp07PQameNEldyRkpC8tdn7TUEevBheAz83vCYNyOTEAMQ8p2zn5yx-ixxUSpWMDEM07wq-CcyFYyVheJKT8iUl7opdCXkFzJL6Z6xiksupuRt9RoA1z5l7-iy78Fleg75BSDQhX322WYfA11iTDu1oaOLiIetj0gv0Ls9ssoe6W-MDlKCjt74-YaeYwxvQH2gc8y-987bDV2BfbEZ8Cv53NtNgm8HPSF_L5Z3i8vi-vbX1WJ-XThZylzI2nEHom5boVSvedl0re5EB0N-yZhVtnOtFG3LWm1ByqbumlZZKTRYxaCUJ-R0vBuwNw_Om2j9XtfRPKCZ_7m7MrrRUskd-2NktxgfnyBlcx-fMAzxjKhYLUVdqR3VjJQbHpEQeuMOj8po_cZwZnatmLEVM7Ri9q0YPljFf9Yt-n8WX4-b5GhKAxzWgB-pjrjeASb1ofM |
CitedBy_id | crossref_primary_10_1007_s11665_024_09968_5 crossref_primary_10_1016_j_matchar_2023_113340 crossref_primary_10_1007_s12540_021_01067_7 crossref_primary_10_1016_j_ultsonch_2024_107021 crossref_primary_10_1016_j_triboint_2022_107771 crossref_primary_10_1039_D3MH00951C crossref_primary_10_1007_s40195_024_01710_3 crossref_primary_10_3390_ma15155401 crossref_primary_10_1080_08927014_2024_2326067 |
Cites_doi | 10.1016/j.wear.2019.04.011 10.1016/j.wear.2014.05.002 10.5006/0984 10.1016/j.electacta.2006.02.018 10.1016/j.wear.2005.02.033 10.1016/j.fusengdes.2020.111962 10.1016/j.corsci.2010.02.026 10.1016/j.corsci.2014.11.039 10.1016/j.mser.2005.07.001 10.1016/j.msea.2019.138577 10.1016/j.wear.2011.06.002 10.1016/j.jmst.2020.05.024 10.1179/bcj.1979.14.3.160 10.1016/j.wear.2020.203258 10.1016/j.engfailanal.2016.07.010 10.1007/s11661-004-0242-1 10.1007/s10854-019-02492-6 10.5006/1391 10.1016/j.triboint.2019.03.071 10.1080/02670836.2019.1704527 10.1146/annurev.fl.09.010177.001045 10.1007/BF02662362 10.1016/j.triboint.2019.04.011 10.1016/j.apor.2019.101868 10.1016/j.corsci.2018.04.043 10.1007/BF02642870 10.1016/j.triboint.2016.01.008 10.1149/1.3622343 10.1016/j.matchar.2018.07.002 10.1007/s40195-019-00963-7 10.1016/j.msea.2015.06.078 10.1016/j.jallcom.2018.03.103 10.1016/S1003-6326(20)65269-4 |
ContentType | Journal Article |
Copyright | The Korean Institute of Metals and Materials 2021 The Korean Institute of Metals and Materials 2021. |
Copyright_xml | – notice: The Korean Institute of Metals and Materials 2021 – notice: The Korean Institute of Metals and Materials 2021. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 ACYCR |
DOI | 10.1007/s12540-020-00916-1 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Korean Citation Index |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2005-4149 |
EndPage | 5094 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9893435 10_1007_s12540_020_00916_1 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51705125 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Science and Technology Research and Development Program Projects of Handan Science and Technology Bureau grantid: 1521109072-4 – fundername: Natural Science Foundation of Hebei Province grantid: E2020402005 funderid: http://dx.doi.org/10.13039/501100003787 – fundername: Department of Education of Hebei Province grantid: QN2017030 funderid: http://dx.doi.org/10.13039/501100003482 |
GroupedDBID | -EM 06D 0R~ 0VY 123 1N0 2.D 203 29M 2JY 2KG 2VQ 30V 4.4 406 408 40D 5VS 67Z 8FE 8FG 96X 9ZL AAAVM AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTD ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AVWKF AXYYD AYJHY AZFZN BA0 BENPR BGLVJ CAG CCPQU COF CS3 CSCUP D1I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZB HZ~ I0C IKXTQ IWAJR IXC IXD I~X J-C J0Z JBSCW JZLTJ KB. KOV KVFHK LLZTM MA- MZR N2Q NDZJH NPVJJ NQJWS O9- O93 O9G O9I O9J P19 P2P P9N PDBOC PT4 PT5 Q2X R89 R9I RLLFE ROL RSV S1Z S26 S27 S28 S3B SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 T16 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 Z45 Z7R Z7V Z7X Z7Y Z7Z Z83 Z85 ZMTXR ZZE ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SR 8BQ 8FD ABRTQ JG9 ACYCR |
ID | FETCH-LOGICAL-c353t-37c1ce27bb244f9158db9d2de312300a4adcb32bb0b9ae3387d8b4a329ea40e53 |
IEDL.DBID | U2A |
ISSN | 1598-9623 |
IngestDate | Sun Mar 09 07:53:27 EDT 2025 Fri Jul 25 12:23:24 EDT 2025 Thu Apr 24 22:57:32 EDT 2025 Tue Jul 01 01:15:26 EDT 2025 Fri Feb 21 02:47:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Cavitation erosion resistance Nickel aluminum bronze Synergistic effect Cavitation erosion mechanism Friction stir processing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-37c1ce27bb244f9158db9d2de312300a4adcb32bb0b9ae3387d8b4a329ea40e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2848-8920 0000-0002-3364-0018 |
PQID | 2607327645 |
PQPubID | 326276 |
PageCount | 13 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9893435 proquest_journals_2607327645 crossref_citationtrail_10_1007_s12540_020_00916_1 crossref_primary_10_1007_s12540_020_00916_1 springer_journals_10_1007_s12540_020_00916_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul |
PublicationTitle | Metals and materials international |
PublicationTitleAbbrev | Met. Mater. Int |
PublicationYear | 2021 |
Publisher | The Korean Institute of Metals and Materials Springer Nature B.V 대한금속·재료학회 |
Publisher_xml | – name: The Korean Institute of Metals and Materials – name: Springer Nature B.V – name: 대한금속·재료학회 |
References | JahanafroozAHasanFLorimerGWRidleyNMetall. Trans. A1983141951195610.1007/BF02662362 NaikRBReddyKVReddyGMKumarRAFusion Eng. Des.20201611119621:CAS:528:DC%2BB3cXhs12qur%2FF10.1016/j.fusengdes.2020.111962 AktasBUstaOAtlarMAppl. Ocean Res.20209410186810.1016/j.apor.2019.101868 CottamRLuzinVMoodyHEdwardsDMajumdarAWongYCWangJBrandtMWear201431756631:CAS:528:DC%2BC2cXht1Ojsb%2FI10.1016/j.wear.2014.05.002 MoarefARabiezadehATrans. Nonferrous Met. Soc.2020309729811:CAS:528:DC%2BB3cXptVarsbc%3D10.1016/S1003-6326(20)65269-4 TuthillAHMater. Perform.19872612221:CAS:528:DyaL2sXmtVehu7s%3D SongQNZhengYGNiDRMaZYCorros. Sci.201592951031:CAS:528:DC%2BC2cXitV2is7bE10.1016/j.corsci.2014.11.039 NiDRXiaoBLMaZYQiaoYXZhengYGCorros. Sci.201052161016171:CAS:528:DC%2BC3cXjt1Wjtbc%3D10.1016/j.corsci.2010.02.026 LiuMLiCYLiuLYeYJDastanDGarmestaniHMater. Sci. Technol.2020362842921:CAS:528:DC%2BB3cXovFKj10.1080/02670836.2019.1704527 CulpanEARoseGBr. Corros. J.1979141601661:CAS:528:DyaL3cXhtlelsL4%3D10.1179/bcj.1979.14.3.160 SongQNZhengYGJiangSLNiDRMaZYCorrosion201369111111211:CAS:528:DC%2BC3sXhvVamsLbO10.5006/0984 ZhaoBJLvYTDingYWangLQLuWJMater. Charact.201814477851:CAS:528:DC%2BC1cXht12ltbjI10.1016/j.matchar.2018.07.002 Oh-ishiKMcnelleyRMetall. Mater. Trans. A200435A295129611:CAS:528:DC%2BD2cXns1Snt74%3D10.1007/s11661-004-0242-1 ParkKSKimSJ. Electrochem. Soc.2011158C335C3401:CAS:528:DC%2BC3MXhtVGmsL7N10.1149/1.3622343 LvYTNieBWangLQCuiHZLiLWangRLyuFYMater. Sci. Eng. A20207711385771:CAS:528:DC%2BC1MXitVertbjJ10.1016/j.msea.2019.138577 GuoHXLuBTLuoJLElectrochim. Acta200651534153481:CAS:528:DC%2BD28Xnt1Krsrg%3D10.1016/j.electacta.2006.02.018 JafariAAlamMHDastanDZiakhodadadianSShiZCGarmestaniHWeidenbachASŢăluŞJ. Mater. Sci. Mater. Electron.20193021185211981:CAS:528:DC%2BC1MXitFCjt77J10.1007/s10854-019-02492-6 BlumeMSkodaRWear2019428–42945746910.1016/j.wear.2019.04.011 LuoQZhangQQinZBWuZShenBLiuLHuWBJ. Alloys Compd.20187478618681:CAS:528:DC%2BC1cXks12hs7g%3D10.1016/j.jallcom.2018.03.103 SongQNXuNTongYHuangCMSunSYXuCBBaoYFJiangYFQiaoYXZhuZYWangZBActa Metall. Sin. Engl.201932147014821:CAS:528:DC%2BC1MXisVeju7jK10.1007/s40195-019-00963-7 ThapliyalSDwivediDKTribol. Int.2016971241351:CAS:528:DC%2BC28Xht1KksL8%3D10.1016/j.triboint.2016.01.008 SongQNZhengYGNiDRMaZYCorrosion2015716066141:CAS:528:DC%2BC2MXhtFaltLbF10.5006/1391 LvYTWangLQHanYFXuXYLuWJMater. Sci. Eng. A201564317241:CAS:528:DC%2BC2MXhtleltr%2FK10.1016/j.msea.2015.06.078 HasanFJahanafroozALorimerGWRidleyNMetall. Trans. A198213133713451:CAS:528:DyaL38Xmt1Wiurw%3D10.1007/BF02642870 D1141-98 (Reapproved 2013), Standard Practice for the Preparation of Substitute Ocean Water (ASTM International, West Conshohocken, PA, 2013) SongQNTongYXuNSunSYLiHLBaoYFJiangYFWangZBQiaoYXWear2020450–45120325810.1016/j.wear.2020.203258 HazraMBalanKPEng. Fail. Anal.2016701411561:CAS:528:DC%2BC28XhsFSjs73M10.1016/j.engfailanal.2016.07.010 LiuLShengYYLiuMDienwiebelMZhangZCDastanDTribol. Int.20191401057271:CAS:528:DC%2BC1MXht1yisbbF10.1016/j.triboint.2019.04.011 ZhangLMMaALYuHUmohAJZhengYGTribol. Int.20191362502581:CAS:528:DC%2BC1MXntVCqsr0%3D10.1016/j.triboint.2019.03.071 HankeSFischerABeyerMdos SantosJWear201127332371:CAS:528:DC%2BC3MXhtlGltbzI10.1016/j.wear.2011.06.002 MishraRSMaZYMater. Sci. Eng. R20055017810.1016/j.mser.2005.07.001 PlessetMSProsperettiAAnnu. Rev. Fluid Mech.197791451851:CAS:528:DyaE2sXltVelt70%3D10.1146/annurev.fl.09.010177.001045 ZengYHYangFFChenZNGuoEYGaoMQWangXJKangHJWangTMJ. Mater. Sci. Technol.20216118619610.1016/j.jmst.2020.05.024 QinZBZhangQLuoQWuZShenBLiuLHuWBCorros. Sci.20181392552661:CAS:528:DC%2BC1cXpsVGjsro%3D10.1016/j.corsci.2018.04.043 BarikRCWhartonJAWoodRJKTanKSStokesKRWear20052592302421:CAS:528:DC%2BD2MXltFyhu78%3D10.1016/j.wear.2005.02.033 M Hazra (916_CR8) 2016; 70 YT Lv (916_CR26) 2020; 771 QN Song (916_CR29) 2013; 69 R Cottam (916_CR19) 2014; 317 QN Song (916_CR11) 2020; 450–451 KS Park (916_CR18) 2011; 158 S Hanke (916_CR16) 2011; 273 A Moaref (916_CR25) 2020; 30 M Blume (916_CR5) 2019; 428–429 QN Song (916_CR7) 2015; 92 ZB Qin (916_CR12) 2018; 139 RB Naik (916_CR24) 2020; 161 B Aktas (916_CR3) 2020; 94 L Liu (916_CR33) 2019; 140 EA Culpan (916_CR6) 1979; 14 F Hasan (916_CR32) 1982; 13 BJ Zhao (916_CR15) 2018; 144 RC Barik (916_CR17) 2005; 259 QN Song (916_CR34) 2015; 71 M Liu (916_CR30) 2020; 36 S Thapliyal (916_CR28) 2016; 97 MS Plesset (916_CR4) 1977; 9 RS Mishra (916_CR22) 2005; 50 YH Zeng (916_CR14) 2021; 61 LM Zhang (916_CR9) 2019; 136 AH Tuthill (916_CR1) 1987; 26 YT Lv (916_CR13) 2015; 643 DR Ni (916_CR27) 2010; 52 Q Luo (916_CR20) 2018; 747 916_CR31 HX Guo (916_CR35) 2006; 51 A Jahanafrooz (916_CR2) 1983; 14 QN Song (916_CR10) 2019; 32 K Oh-ishi (916_CR23) 2004; 35A A Jafari (916_CR21) 2019; 30 |
References_xml | – reference: ZhaoBJLvYTDingYWangLQLuWJMater. Charact.201814477851:CAS:528:DC%2BC1cXht12ltbjI10.1016/j.matchar.2018.07.002 – reference: NiDRXiaoBLMaZYQiaoYXZhengYGCorros. Sci.201052161016171:CAS:528:DC%2BC3cXjt1Wjtbc%3D10.1016/j.corsci.2010.02.026 – reference: TuthillAHMater. Perform.19872612221:CAS:528:DyaL2sXmtVehu7s%3D – reference: ZhangLMMaALYuHUmohAJZhengYGTribol. Int.20191362502581:CAS:528:DC%2BC1MXntVCqsr0%3D10.1016/j.triboint.2019.03.071 – reference: LuoQZhangQQinZBWuZShenBLiuLHuWBJ. Alloys Compd.20187478618681:CAS:528:DC%2BC1cXks12hs7g%3D10.1016/j.jallcom.2018.03.103 – reference: AktasBUstaOAtlarMAppl. Ocean Res.20209410186810.1016/j.apor.2019.101868 – reference: GuoHXLuBTLuoJLElectrochim. Acta200651534153481:CAS:528:DC%2BD28Xnt1Krsrg%3D10.1016/j.electacta.2006.02.018 – reference: LiuMLiCYLiuLYeYJDastanDGarmestaniHMater. Sci. Technol.2020362842921:CAS:528:DC%2BB3cXovFKj10.1080/02670836.2019.1704527 – reference: SongQNTongYXuNSunSYLiHLBaoYFJiangYFWangZBQiaoYXWear2020450–45120325810.1016/j.wear.2020.203258 – reference: LvYTNieBWangLQCuiHZLiLWangRLyuFYMater. Sci. Eng. A20207711385771:CAS:528:DC%2BC1MXitVertbjJ10.1016/j.msea.2019.138577 – reference: SongQNXuNTongYHuangCMSunSYXuCBBaoYFJiangYFQiaoYXZhuZYWangZBActa Metall. Sin. Engl.201932147014821:CAS:528:DC%2BC1MXisVeju7jK10.1007/s40195-019-00963-7 – reference: HazraMBalanKPEng. Fail. Anal.2016701411561:CAS:528:DC%2BC28XhsFSjs73M10.1016/j.engfailanal.2016.07.010 – reference: SongQNZhengYGJiangSLNiDRMaZYCorrosion201369111111211:CAS:528:DC%2BC3sXhvVamsLbO10.5006/0984 – reference: HankeSFischerABeyerMdos SantosJWear201127332371:CAS:528:DC%2BC3MXhtlGltbzI10.1016/j.wear.2011.06.002 – reference: CottamRLuzinVMoodyHEdwardsDMajumdarAWongYCWangJBrandtMWear201431756631:CAS:528:DC%2BC2cXht1Ojsb%2FI10.1016/j.wear.2014.05.002 – reference: ParkKSKimSJ. Electrochem. Soc.2011158C335C3401:CAS:528:DC%2BC3MXhtVGmsL7N10.1149/1.3622343 – reference: MoarefARabiezadehATrans. Nonferrous Met. Soc.2020309729811:CAS:528:DC%2BB3cXptVarsbc%3D10.1016/S1003-6326(20)65269-4 – reference: JahanafroozAHasanFLorimerGWRidleyNMetall. Trans. A1983141951195610.1007/BF02662362 – reference: BlumeMSkodaRWear2019428–42945746910.1016/j.wear.2019.04.011 – reference: CulpanEARoseGBr. Corros. J.1979141601661:CAS:528:DyaL3cXhtlelsL4%3D10.1179/bcj.1979.14.3.160 – reference: PlessetMSProsperettiAAnnu. Rev. Fluid Mech.197791451851:CAS:528:DyaE2sXltVelt70%3D10.1146/annurev.fl.09.010177.001045 – reference: LvYTWangLQHanYFXuXYLuWJMater. Sci. Eng. A201564317241:CAS:528:DC%2BC2MXhtleltr%2FK10.1016/j.msea.2015.06.078 – reference: QinZBZhangQLuoQWuZShenBLiuLHuWBCorros. Sci.20181392552661:CAS:528:DC%2BC1cXpsVGjsro%3D10.1016/j.corsci.2018.04.043 – reference: SongQNZhengYGNiDRMaZYCorrosion2015716066141:CAS:528:DC%2BC2MXhtFaltLbF10.5006/1391 – reference: JafariAAlamMHDastanDZiakhodadadianSShiZCGarmestaniHWeidenbachASŢăluŞJ. Mater. Sci. Mater. Electron.20193021185211981:CAS:528:DC%2BC1MXitFCjt77J10.1007/s10854-019-02492-6 – reference: NaikRBReddyKVReddyGMKumarRAFusion Eng. Des.20201611119621:CAS:528:DC%2BB3cXhs12qur%2FF10.1016/j.fusengdes.2020.111962 – reference: HasanFJahanafroozALorimerGWRidleyNMetall. Trans. A198213133713451:CAS:528:DyaL38Xmt1Wiurw%3D10.1007/BF02642870 – reference: ZengYHYangFFChenZNGuoEYGaoMQWangXJKangHJWangTMJ. Mater. Sci. Technol.20216118619610.1016/j.jmst.2020.05.024 – reference: SongQNZhengYGNiDRMaZYCorros. Sci.201592951031:CAS:528:DC%2BC2cXitV2is7bE10.1016/j.corsci.2014.11.039 – reference: BarikRCWhartonJAWoodRJKTanKSStokesKRWear20052592302421:CAS:528:DC%2BD2MXltFyhu78%3D10.1016/j.wear.2005.02.033 – reference: ThapliyalSDwivediDKTribol. Int.2016971241351:CAS:528:DC%2BC28Xht1KksL8%3D10.1016/j.triboint.2016.01.008 – reference: D1141-98 (Reapproved 2013), Standard Practice for the Preparation of Substitute Ocean Water (ASTM International, West Conshohocken, PA, 2013) – reference: MishraRSMaZYMater. Sci. Eng. R20055017810.1016/j.mser.2005.07.001 – reference: LiuLShengYYLiuMDienwiebelMZhangZCDastanDTribol. Int.20191401057271:CAS:528:DC%2BC1MXht1yisbbF10.1016/j.triboint.2019.04.011 – reference: Oh-ishiKMcnelleyRMetall. Mater. Trans. A200435A295129611:CAS:528:DC%2BD2cXns1Snt74%3D10.1007/s11661-004-0242-1 – volume: 428–429 start-page: 457 year: 2019 ident: 916_CR5 publication-title: Wear doi: 10.1016/j.wear.2019.04.011 – volume: 317 start-page: 56 year: 2014 ident: 916_CR19 publication-title: Wear doi: 10.1016/j.wear.2014.05.002 – volume: 69 start-page: 1111 year: 2013 ident: 916_CR29 publication-title: Corrosion doi: 10.5006/0984 – volume: 51 start-page: 5341 year: 2006 ident: 916_CR35 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2006.02.018 – volume: 259 start-page: 230 year: 2005 ident: 916_CR17 publication-title: Wear doi: 10.1016/j.wear.2005.02.033 – ident: 916_CR31 – volume: 161 start-page: 111962 year: 2020 ident: 916_CR24 publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2020.111962 – volume: 52 start-page: 1610 year: 2010 ident: 916_CR27 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2010.02.026 – volume: 92 start-page: 95 year: 2015 ident: 916_CR7 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2014.11.039 – volume: 50 start-page: 1 year: 2005 ident: 916_CR22 publication-title: Mater. Sci. Eng. R doi: 10.1016/j.mser.2005.07.001 – volume: 771 start-page: 138577 year: 2020 ident: 916_CR26 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.138577 – volume: 273 start-page: 32 year: 2011 ident: 916_CR16 publication-title: Wear doi: 10.1016/j.wear.2011.06.002 – volume: 61 start-page: 186 year: 2021 ident: 916_CR14 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.05.024 – volume: 14 start-page: 160 year: 1979 ident: 916_CR6 publication-title: Br. Corros. J. doi: 10.1179/bcj.1979.14.3.160 – volume: 450–451 start-page: 203258 year: 2020 ident: 916_CR11 publication-title: Wear doi: 10.1016/j.wear.2020.203258 – volume: 70 start-page: 141 year: 2016 ident: 916_CR8 publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2016.07.010 – volume: 35A start-page: 2951 year: 2004 ident: 916_CR23 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-004-0242-1 – volume: 30 start-page: 21185 year: 2019 ident: 916_CR21 publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-019-02492-6 – volume: 71 start-page: 606 year: 2015 ident: 916_CR34 publication-title: Corrosion doi: 10.5006/1391 – volume: 136 start-page: 250 year: 2019 ident: 916_CR9 publication-title: Tribol. Int. doi: 10.1016/j.triboint.2019.03.071 – volume: 36 start-page: 284 year: 2020 ident: 916_CR30 publication-title: Mater. Sci. Technol. doi: 10.1080/02670836.2019.1704527 – volume: 9 start-page: 145 year: 1977 ident: 916_CR4 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.09.010177.001045 – volume: 14 start-page: 1951 year: 1983 ident: 916_CR2 publication-title: Metall. Trans. A doi: 10.1007/BF02662362 – volume: 26 start-page: 12 year: 1987 ident: 916_CR1 publication-title: Mater. Perform. – volume: 140 start-page: 105727 year: 2019 ident: 916_CR33 publication-title: Tribol. Int. doi: 10.1016/j.triboint.2019.04.011 – volume: 94 start-page: 101868 year: 2020 ident: 916_CR3 publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2019.101868 – volume: 139 start-page: 255 year: 2018 ident: 916_CR12 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2018.04.043 – volume: 13 start-page: 1337 year: 1982 ident: 916_CR32 publication-title: Metall. Trans. A doi: 10.1007/BF02642870 – volume: 97 start-page: 124 year: 2016 ident: 916_CR28 publication-title: Tribol. Int. doi: 10.1016/j.triboint.2016.01.008 – volume: 158 start-page: C335 year: 2011 ident: 916_CR18 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3622343 – volume: 144 start-page: 77 year: 2018 ident: 916_CR15 publication-title: Mater. Charact. doi: 10.1016/j.matchar.2018.07.002 – volume: 32 start-page: 1470 year: 2019 ident: 916_CR10 publication-title: Acta Metall. Sin. Engl. doi: 10.1007/s40195-019-00963-7 – volume: 643 start-page: 17 year: 2015 ident: 916_CR13 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.06.078 – volume: 747 start-page: 861 year: 2018 ident: 916_CR20 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.03.103 – volume: 30 start-page: 972 year: 2020 ident: 916_CR25 publication-title: Trans. Nonferrous Met. Soc. doi: 10.1016/S1003-6326(20)65269-4 |
SSID | ssj0061312 |
Score | 2.3164456 |
Snippet | Herein, the friction stir processing (FSP) method was adopted to modify the microstructure of as-cast nickel aluminum bronze (NAB). The microhardness,... Herein, the friction stir processing (FSP) method was adopted to modify the microstructure of as-cast nickel aluminumbronze (NAB). The microhardness,... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5082 |
SubjectTerms | Aluminum bronzes Cavitation Cavitation erosion Cavitation resistance Characterization and Evaluation of Materials Chemistry and Materials Science Corrosion Corrosion effects Damage Distilled water Engineering Thermodynamics Erosion mechanisms Erosion resistance Erosion-corrosion Flow control Friction stir processing Heat and Mass Transfer Machines Magnetic Materials Magnetism Manufacturing Materials Science Metallic Materials Microhardness Microstructure Nickel aluminides Nickel base alloys Nickel compounds Processes Seawater Solid Mechanics Synergistic effect 재료공학 |
Title | Synergistic Effect Between Cavitation Erosion and Corrosion for Friction Stir Processed NiAl Bronze in Artificial Seawater |
URI | https://link.springer.com/article/10.1007/s12540-020-00916-1 https://www.proquest.com/docview/2607327645 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002783141 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Metals and Materials International, 2021, 27(12), , pp.5082-5094 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aXvQgPrFaJYg3XdhXdptjW1qrYi-1UE8h2WRlqWxlrYr99U6yWauigqewJPvKJDPfMDNfEDqNfKl4oIQjRUqckHrKoZGQjpcQWA2eEMRUud4Mo8E4vJqQiS0Ke6qy3auQpNHUy2I3XwfxtbsDuMCLHPB56gR8d72ux3670r9gn8oYJ6GwlcG621KZn5_xxRyt5kX6BWl-C44am9PfRBsWLOJ2Kd0ttKLybbT-iUJwBy1Gb7p6z9At45KKGHfK3Cvc5S-WgRv34O265bnE3VlhrwCw4n6RmdIGPJpnBbZ1A0riYdZ-wOCk5wuFs9x8Q0k2gUeKvwJCLXbRuN-77Q4ce56CkwQkmIMuSbxE-bEQYNNT6pGWFFSCsGDCAtflIZeJCHwhXEG5At81li0R8sCnioeuIsEequWzXO0jHKZKAPgIW-CEAqQhlIPeUDGMS10KGLSBvGpaWWJ_VZ958cCWNMlaFAxEwYwomNdAZx_3PJZUG3-OPgFpsWmSMc2Qrdv7GZsWDPyAS0YBhgEQbKBmJUxm9-YTAw8uDvw4CqH7vBLwsvv3Vx78b_ghWvN1AozJfWmi2rx4VkeAYObiGNXb_U5nqNuLu-vesVnA72wN6L8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9BeYA9bHxN68aYNe0NgvJhJ_VjV7WUr76USvBk2bEzRUXpFMKm9a_fOXHWgdgknqzITuKP8_l3urufAb7EoTYyMsrTKmMe5YHxeKy0F6QMpSFQitVZrleTeDyj5zfsxiWF3bfR7q1LstbUq2S30DrxrbmDuCCIPbR5Nija4KwDG_3T24thq4HxhGq8nIzjZsbz3SXLPP-VRwfSelFmj7DmE_dofeqM3sCs7W8TbDI_eajUSbp8QuX40gFtw2sHQ0m_kZsdWDPFLrz6i5xwD5bTXzYvsCZyJg3JMfnaRHWRgfzhuL3JEEdlS1loMliU7gmhMBmVeZ00QaZVXhKXkWA0meT9O4Lmf7E0JC_qPjQ0FmRq5E_EvuU-zEbD68HYczc1eGnEogq1VBqkJkyUQrSQ8YD1tOIaxQAXIvJ9SaVOVRQq5SsuDVrFie4pKqOQG0l9w6K30CkWhXkHhGZGIayhPTRvESwxLlEjmQTbZT5HdNuFoF0ukbqh2ts07sSKgNnOq8B5FfW8iqALR3_e-d6QePy39WeUAjFPc2G5t235bSHmpUAL40xwBHgIMbtw0AqJcLv-XqBtmERhElOsPm7XfFX971--f1nzT7A5vr66FJdnk4sPsBXaMJs6wuYAOlX5YD4iTqrUodsWvwHJHAWY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QfRB_MT5GcQ3LTZt0y6Pczr8HMIc-BaSJpUy6aRWxf31XtLWqajgUylJmzaX3P2Ou_sFof3QU1r4WjpKJtQJGNEOC6VySExhNRApqa1yve6FZ4Pg4o7efarit9nudUiyrGkwLE1ZcfSokqNJ4ZtnAvrG9QGMQEIH_J8ZUMfEJHUNvHati8FWlfFOymBbg6WvymZ-fscX0zSd5ckX1PktUGrtT3cRLVTAEbdLSS-hKZ0to_lPdIIraNx_M5V8lnoZl7TE-LjMw8Id8VKxceNTGN1cRaZwZ5RXdwBecTdPbZkD7hdpjqsaAq1wL20_YHDYs7HGaWa_oSSewH0tXgGt5qto0D297Zw51dkKTuxTvwC9EpNYe5GUYN8TRmhLSaZAcDBhvuuKQKhY-p6UrmRCgx8bqZYMhO8xLQJXU38NNbJRptcRDhItAYgELXBIAd5QJkCH6Aj6JS4DPNpEpJ5WHle_as6_eOATymQjCg6i4FYUnDTRwcczjyXtxp-990BafBin3LBlm-v9iA9zDj7BOWcAyQAUNtFWLUxe7dMnDt5c5HtRGEDzYS3gSfPvQ278r_sumr056fKr897lJprzTF6MTYnZQo0if9bbAGwKuWPX7juDB-ze |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+Effect+Between+Cavitation+Erosion+and+Corrosion+for+Friction+Stir+Processed+NiAl+Bronze+in+Artificial+Seawater&rft.jtitle=Metals+and+materials+international&rft.au=Li%2C+Yang&rft.au=Lian%2C+Ying&rft.au=Sun%2C+Yanjun&rft.date=2021-12-01&rft.pub=The+Korean+Institute+of+Metals+and+Materials&rft.issn=1598-9623&rft.eissn=2005-4149&rft.volume=27&rft.issue=12&rft.spage=5082&rft.epage=5094&rft_id=info:doi/10.1007%2Fs12540-020-00916-1&rft.externalDocID=10_1007_s12540_020_00916_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-9623&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-9623&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-9623&client=summon |