Analysis of the influence of human errors on the occurrence of coastal ship accidents in different wave conditions using Bayesian Belief Networks

•A study is made to assess the human error contribution in ship accidents in different weather conditions.•A Bayesian Belief Network model is developed, which includes variables related to the different wave conditions.•The accident database of the Portuguese Maritime Authority is used, which includ...

Full description

Saved in:
Bibliographic Details
Published inAccident analysis and prevention Vol. 133; p. 105262
Main Authors Antão, Pedro, Soares, C. Guedes
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A study is made to assess the human error contribution in ship accidents in different weather conditions.•A Bayesian Belief Network model is developed, which includes variables related to the different wave conditions.•The accident database of the Portuguese Maritime Authority is used, which includes records of 1997–2006.•Several significant wave height databases are used.•The results show high risk acceptance in fishing vessels and a low risk perception in recreational vessels. The paper describes a study aiming to assess the human error contribution in ship accidents in different weather conditions and the contribution that high significant wave heights have in the occurrence of certain accident typologies. To this aim, a Bayesian Belief Network model is developed, which includes variables related to the maritime accident but also to the different wave conditions. For the quantification of the conditional probability tables the maritime accident database of the Portuguese Maritime Authority is used, which includes 857 validated accidents registered in the period 1997–2006. Similarly, several significant wave height databases are used to populate the node correspondent to this variable. The importance of accurate estimation of the significant wave height is also discussed. To substantiate this discussion a comparison between hard evidence (ε) and a soft one (μ,σ) is performed for the significant wave height node of the BBN model. The application of different combinations of evidence in the model allows the identification of patterns of influence of the human error cause in comparison with others, namely with the sea and weather one. The results show one apparent high-risk acceptance within the crews of the fishing vessels and low risk perception in the recreational vessels. Based on the results, are provided recommendations to decrease the risk associated to specific probable causes.
AbstractList The paper describes a study aiming to assess the human error contribution in ship accidents in different weather conditions and the contribution that high significant wave heights have in the occurrence of certain accident typologies. To this aim, a Bayesian Belief Network model is developed, which includes variables related to the maritime accident but also to the different wave conditions. For the quantification of the conditional probability tables the maritime accident database of the Portuguese Maritime Authority is used, which includes 857 validated accidents registered in the period 1997-2006. Similarly, several significant wave height databases are used to populate the node correspondent to this variable. The importance of accurate estimation of the significant wave height is also discussed. To substantiate this discussion a comparison between hard evidence (ε) and a soft one (μ,σ) is performed for the significant wave height node of the BBN model. The application of different combinations of evidence in the model allows the identification of patterns of influence of the human error cause in comparison with others, namely with the sea and weather one. The results show one apparent high-risk acceptance within the crews of the fishing vessels and low risk perception in the recreational vessels. Based on the results, are provided recommendations to decrease the risk associated to specific probable causes.
The paper describes a study aiming to assess the human error contribution in ship accidents in different weather conditions and the contribution that high significant wave heights have in the occurrence of certain accident typologies. To this aim, a Bayesian Belief Network model is developed, which includes variables related to the maritime accident but also to the different wave conditions. For the quantification of the conditional probability tables the maritime accident database of the Portuguese Maritime Authority is used, which includes 857 validated accidents registered in the period 1997-2006. Similarly, several significant wave height databases are used to populate the node correspondent to this variable. The importance of accurate estimation of the significant wave height is also discussed. To substantiate this discussion a comparison between hard evidence (ε) and a soft one (μ,σ) is performed for the significant wave height node of the BBN model. The application of different combinations of evidence in the model allows the identification of patterns of influence of the human error cause in comparison with others, namely with the sea and weather one. The results show one apparent high-risk acceptance within the crews of the fishing vessels and low risk perception in the recreational vessels. Based on the results, are provided recommendations to decrease the risk associated to specific probable causes.The paper describes a study aiming to assess the human error contribution in ship accidents in different weather conditions and the contribution that high significant wave heights have in the occurrence of certain accident typologies. To this aim, a Bayesian Belief Network model is developed, which includes variables related to the maritime accident but also to the different wave conditions. For the quantification of the conditional probability tables the maritime accident database of the Portuguese Maritime Authority is used, which includes 857 validated accidents registered in the period 1997-2006. Similarly, several significant wave height databases are used to populate the node correspondent to this variable. The importance of accurate estimation of the significant wave height is also discussed. To substantiate this discussion a comparison between hard evidence (ε) and a soft one (μ,σ) is performed for the significant wave height node of the BBN model. The application of different combinations of evidence in the model allows the identification of patterns of influence of the human error cause in comparison with others, namely with the sea and weather one. The results show one apparent high-risk acceptance within the crews of the fishing vessels and low risk perception in the recreational vessels. Based on the results, are provided recommendations to decrease the risk associated to specific probable causes.
•A study is made to assess the human error contribution in ship accidents in different weather conditions.•A Bayesian Belief Network model is developed, which includes variables related to the different wave conditions.•The accident database of the Portuguese Maritime Authority is used, which includes records of 1997–2006.•Several significant wave height databases are used.•The results show high risk acceptance in fishing vessels and a low risk perception in recreational vessels. The paper describes a study aiming to assess the human error contribution in ship accidents in different weather conditions and the contribution that high significant wave heights have in the occurrence of certain accident typologies. To this aim, a Bayesian Belief Network model is developed, which includes variables related to the maritime accident but also to the different wave conditions. For the quantification of the conditional probability tables the maritime accident database of the Portuguese Maritime Authority is used, which includes 857 validated accidents registered in the period 1997–2006. Similarly, several significant wave height databases are used to populate the node correspondent to this variable. The importance of accurate estimation of the significant wave height is also discussed. To substantiate this discussion a comparison between hard evidence (ε) and a soft one (μ,σ) is performed for the significant wave height node of the BBN model. The application of different combinations of evidence in the model allows the identification of patterns of influence of the human error cause in comparison with others, namely with the sea and weather one. The results show one apparent high-risk acceptance within the crews of the fishing vessels and low risk perception in the recreational vessels. Based on the results, are provided recommendations to decrease the risk associated to specific probable causes.
ArticleNumber 105262
Author Soares, C. Guedes
Antão, Pedro
Author_xml – sequence: 1
  givenname: Pedro
  surname: Antão
  fullname: Antão, Pedro
– sequence: 2
  givenname: C. Guedes
  orcidid: 0000-0002-8570-4263
  surname: Soares
  fullname: Soares, C. Guedes
  email: guedess@mar.ist.utl.pt
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31561116$$D View this record in MEDLINE/PubMed
BookMark eNp9kctuFDEQRS0URCaBD2CDvGTTE5fd7odYJVF4SBFsYG257WrGQ4892O5E8xn8MW4myYJFVlZZ55RU956REx88EvIW2BoYNBfbtdb7NWfQl1nyhr8gK-javuJMtidkxRiDqpatPCVnKW3L2HatfEVOBcgGAJoV-XPp9XRILtEw0rxB6vw4zegNLh-beac9xRhDLID_BwRj5hgfCRN0ynqiaeP2VBvjLPqcyhZq3Thi4TK913dYQG9ddsEnOifnf9IrfcDkyvornByO9Cvm-xB_pdfk5ainhG8e3nPy4-PN9-vP1e23T1-uL28rI6TIlZAgRm5N15dbOKs7YD00QoPpBzs20IlBWxhEyzoOgnNet7VmrFhyAN0N4py8P-7dx_B7xpTVziWD06Q9hjkpzvseatHxuqDvHtB52KFV--h2Oh7UY4wFgCNgYkgp4viEAFNLVWqrSlVqqUodqypO-59jXNZLQjlqNz1rfjiaWOK5cxhVMm4pxLqIJisb3DP2X0cyraU
CitedBy_id crossref_primary_10_3390_jmse11112112
crossref_primary_10_1016_j_oceaneng_2023_114577
crossref_primary_10_3390_su16093780
crossref_primary_10_1016_j_ress_2024_110201
crossref_primary_10_1016_j_ress_2021_107901
crossref_primary_10_1080_13467581_2024_2329353
crossref_primary_10_1016_j_oceaneng_2023_114371
crossref_primary_10_18273_revuin_v19n4_2020024
crossref_primary_10_1016_j_ress_2021_107466
crossref_primary_10_1016_j_oceaneng_2024_118051
crossref_primary_10_1016_j_ssci_2021_105336
crossref_primary_10_3390_jmse13030393
crossref_primary_10_1016_j_tranpol_2021_02_006
crossref_primary_10_1016_j_ress_2024_110565
crossref_primary_10_1016_j_oceaneng_2022_110569
crossref_primary_10_1016_j_ress_2023_109166
crossref_primary_10_1016_j_ress_2024_110489
crossref_primary_10_1016_j_ress_2021_108275
crossref_primary_10_1080_19439962_2023_2235323
crossref_primary_10_3390_su16188246
crossref_primary_10_1016_j_oceaneng_2024_116664
crossref_primary_10_1080_25725084_2021_1889869
crossref_primary_10_1016_j_ssci_2024_106645
crossref_primary_10_1016_j_aap_2023_107342
crossref_primary_10_1016_j_apor_2024_104317
crossref_primary_10_1016_j_psep_2022_05_035
crossref_primary_10_1016_j_ress_2021_107993
crossref_primary_10_1016_j_ress_2021_108249
crossref_primary_10_1016_j_ress_2023_109414
crossref_primary_10_1016_j_oceaneng_2020_107197
crossref_primary_10_1016_j_oceaneng_2022_111006
crossref_primary_10_3390_su151813427
crossref_primary_10_1016_j_oceaneng_2022_111568
crossref_primary_10_1016_j_ress_2024_110018
crossref_primary_10_1016_j_oceaneng_2023_115628
crossref_primary_10_3390_su16031152
crossref_primary_10_1016_j_ress_2021_107470
crossref_primary_10_1016_j_oceaneng_2022_113102
crossref_primary_10_1016_j_oceaneng_2022_111089
crossref_primary_10_1038_s41598_022_19563_0
crossref_primary_10_1016_j_oceaneng_2022_113425
crossref_primary_10_1080_18366503_2022_2147694
crossref_primary_10_1177_1748006X221131717
crossref_primary_10_1016_j_oceaneng_2024_117347
crossref_primary_10_2478_pomr_2020_0007
crossref_primary_10_3390_su151310080
crossref_primary_10_1016_j_engappai_2025_110491
crossref_primary_10_1016_j_ress_2021_107846
crossref_primary_10_1080_10803548_2023_2266279
crossref_primary_10_1016_j_marpolbul_2024_116817
crossref_primary_10_1016_j_ress_2022_108498
crossref_primary_10_3390_jmse12091608
crossref_primary_10_3390_ijgi12020073
crossref_primary_10_3390_jmse12122305
crossref_primary_10_1016_j_oceaneng_2020_107544
crossref_primary_10_1016_j_oceaneng_2021_109920
crossref_primary_10_1016_j_marpolbul_2023_114791
crossref_primary_10_1016_j_oceaneng_2020_108078
crossref_primary_10_1016_j_ress_2024_110105
crossref_primary_10_1155_2024_5582660
crossref_primary_10_3390_su16146023
crossref_primary_10_1016_j_ocecoaman_2024_107473
crossref_primary_10_1016_j_ress_2020_107086
crossref_primary_10_1016_j_oceaneng_2021_110162
crossref_primary_10_1016_j_oceaneng_2022_111797
crossref_primary_10_3389_fnins_2023_1172103
crossref_primary_10_1016_j_ress_2021_108189
crossref_primary_10_1155_2024_4998195
crossref_primary_10_3390_jmse11020410
crossref_primary_10_1016_j_jsr_2021_12_012
crossref_primary_10_1016_j_ress_2021_108061
crossref_primary_10_1016_j_aap_2024_107619
crossref_primary_10_1016_j_ress_2020_107073
Cites_doi 10.1016/j.knosys.2010.01.009
10.1016/S0951-8320(01)00104-1
10.1016/j.aap.2011.01.008
10.1111/risa.12519
10.1142/S0218213005002235
10.1016/j.ress.2010.01.009
10.1016/j.ress.2012.02.008
10.1016/j.aap.2009.10.008
10.3923/jas.2009.415.426
10.1016/j.ssci.2016.02.026
10.1016/j.aap.2011.03.022
10.1016/j.aap.2011.05.022
10.1111/j.1539-6924.2006.00775.x
10.1016/j.oceaneng.2015.12.028
10.1016/j.aap.2005.03.011
10.1016/j.ress.2007.03.035
10.1016/j.ress.2007.07.010
10.1016/j.aap.2011.05.027
10.1142/S0219622008003198
10.1016/j.ress.2007.03.006
10.1109/ICIF.2002.1021200
10.1016/j.coastaleng.2008.02.007
10.1016/j.ssci.2007.11.007
10.1016/j.coastaleng.2008.02.027
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.aap.2019.105262
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Social Welfare & Social Work
Public Health
EISSN 1879-2057
ExternalDocumentID 31561116
10_1016_j_aap_2019_105262
S0001457519311194
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
..I
.~1
0R~
1B1
1RT
1~.
23M
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABDMP
ABFNM
ABIVO
ABJNI
ABLVK
ABMAC
ABMMH
ABMZM
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHQT
ACNCT
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AHRSL
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
AKURH
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F3I
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEH
HMK
HMO
HMY
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M29
M3W
M3Y
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSG
SSH
SSO
SSS
SST
SSZ
T5K
VH1
WUQ
XPP
ZCG
ZGI
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c353t-3513f2dc891562048109163a1c9bdf6183bad1b3708213222474a005135b1a8b3
IEDL.DBID .~1
ISSN 0001-4575
1879-2057
IngestDate Fri Jul 11 02:39:15 EDT 2025
Thu Apr 03 06:55:49 EDT 2025
Tue Jul 01 02:53:32 EDT 2025
Thu Apr 24 22:53:46 EDT 2025
Fri Feb 23 02:33:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bayesian Belief Networks
Significant wave height
Human factors
Maritime accidents
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-3513f2dc891562048109163a1c9bdf6183bad1b3708213222474a005135b1a8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8570-4263
PMID 31561116
PQID 2299143824
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2299143824
pubmed_primary_31561116
crossref_primary_10_1016_j_aap_2019_105262
crossref_citationtrail_10_1016_j_aap_2019_105262
elsevier_sciencedirect_doi_10_1016_j_aap_2019_105262
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
2019-Dec
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Accident analysis and prevention
PublicationTitleAlternate Accid Anal Prev
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Madsen, Jensen, Kjaerulff, Lang (bib0145) 2005; 14
Hu, Li, Fang, Yang (bib0105) 2008; 7
Montewka, Goerlandt, Ehlers, Kujala, Erceg, Polic, Klanac, Hinz, Tabri (bib0155) 2011
IUMI (bib0115) 2012
Santos, Assunção (bib0205) 2003
US Army (bib0220) 2008
Eleye-Datubo, Wall, Saajedi, Wang (bib0050) 2006; 26
Grech, Horberry, Koester (bib0070) 2008
Antão, Almeida, Jacinto, Guedes Soares (bib0005) 2008; 46
Bitner-Gregersen, Guedes Soares (bib0030) 2007
Leva, Friis Hansen, Ravn, Lepsoe (bib0140) 2006; Vol. 3
Gouveia, Antão, Guedes Soares (bib0060) 2007; Vol. I
Gemelos, Ventikos (bib0055) 2007
IMO (bib0110) 2002
Antão, Guedes Soares (bib0020) 2010; 13
Antão, Grande, Trucco, Guedes Soares (bib0010) 2008
Qu, Meng, Li (bib0195) 2011; 43
Jansen (bib0120) 2001
Campos, Guedes Soares (bib0040) 2016; 9
Guedes Soares, Teixeira (bib0085) 2001; 74
Psarros, Skjong, Eide (bib0190) 2010; 42
Campos, Guedes Soares (bib0035) 2016; 112
Norrington, Quigley, Russell, Van der Meer (bib0170) 2008; 93
Antão, Guedes Soares (bib0015) 2008; 93
Heckerman (bib0095) 1999
Pilar, Guedes Soares, Carretero (bib0185) 2008; 55
Graziano, Teixeira, Guedes Soares (bib0065) 2016; 86
Montewka, Hinz, Kujala, Matusiak (bib0160) 2010; 95
Marsh, Bearfield (bib0150) 2004
Mullai, Paulsson (bib0165) 2011; 43
Baker, Seah (bib0025) 2004
Guedes Soares (bib0080) 2008; 55
Hänninen, Kujala (bib0090) 2012; 102
O’Connor, O’Connor (bib0175) 2005; 37
Laboratory Decision Systems (bib0130) 2003
Lan, Ji, Looney (bib0135) 2002; vol. 1
Rizzuto, Teixeira, Guedes Soares (bib0200) 2010; Vol. 2
Guedes Soares, Bitner-Gregersen, Antão (bib0075) 2001
Knapp, Kumar, Sakurada, Shen (bib0125) 2011; 43
Shahrabi, Pelot (bib0210) 2009; 9
Hassel, Asbjørnslett, Hole (bib0100) 2011; 43
Cinara, Kayakutlu (bib0045) 2010; 23
Zhang, Teixeira, Guedes Soares, Yan, Liu (bib0225) 2016; 36
Trucco, Cagno, Ruggeri, Grande (bib0215) 2008; 93
Pedrali, Trucco, Cagno, Ruggeri (bib0180) 2004
Campos (10.1016/j.aap.2019.105262_bib0040) 2016; 9
Madsen (10.1016/j.aap.2019.105262_bib0145) 2005; 14
Guedes Soares (10.1016/j.aap.2019.105262_bib0085) 2001; 74
O’Connor (10.1016/j.aap.2019.105262_bib0175) 2005; 37
Montewka (10.1016/j.aap.2019.105262_bib0160) 2010; 95
IMO (10.1016/j.aap.2019.105262_bib0110) 2002
Pedrali (10.1016/j.aap.2019.105262_bib0180) 2004
Jansen (10.1016/j.aap.2019.105262_bib0120) 2001
Mullai (10.1016/j.aap.2019.105262_bib0165) 2011; 43
Rizzuto (10.1016/j.aap.2019.105262_bib0200) 2010; Vol. 2
Santos (10.1016/j.aap.2019.105262_bib0205) 2003
Antão (10.1016/j.aap.2019.105262_bib0015) 2008; 93
Eleye-Datubo (10.1016/j.aap.2019.105262_bib0050) 2006; 26
Lan (10.1016/j.aap.2019.105262_bib0135) 2002; vol. 1
Antão (10.1016/j.aap.2019.105262_bib0010) 2008
Qu (10.1016/j.aap.2019.105262_bib0195) 2011; 43
Bitner-Gregersen (10.1016/j.aap.2019.105262_bib0030) 2007
Gemelos (10.1016/j.aap.2019.105262_bib0055) 2007
Cinara (10.1016/j.aap.2019.105262_bib0045) 2010; 23
Hänninen (10.1016/j.aap.2019.105262_bib0090) 2012; 102
Grech (10.1016/j.aap.2019.105262_bib0070) 2008
Hassel (10.1016/j.aap.2019.105262_bib0100) 2011; 43
Leva (10.1016/j.aap.2019.105262_bib0140) 2006; Vol. 3
Pilar (10.1016/j.aap.2019.105262_bib0185) 2008; 55
US Army (10.1016/j.aap.2019.105262_bib0220) 2008
Psarros (10.1016/j.aap.2019.105262_bib0190) 2010; 42
Antão (10.1016/j.aap.2019.105262_bib0005) 2008; 46
Antão (10.1016/j.aap.2019.105262_bib0020) 2010; 13
Norrington (10.1016/j.aap.2019.105262_bib0170) 2008; 93
Zhang (10.1016/j.aap.2019.105262_bib0225) 2016; 36
Heckerman (10.1016/j.aap.2019.105262_bib0095) 1999
Trucco (10.1016/j.aap.2019.105262_bib0215) 2008; 93
IUMI (10.1016/j.aap.2019.105262_bib0115) 2012
Montewka (10.1016/j.aap.2019.105262_bib0155) 2011
Campos (10.1016/j.aap.2019.105262_bib0035) 2016; 112
Graziano (10.1016/j.aap.2019.105262_bib0065) 2016; 86
Laboratory Decision Systems (10.1016/j.aap.2019.105262_bib0130) 2003
Baker (10.1016/j.aap.2019.105262_bib0025) 2004
Shahrabi (10.1016/j.aap.2019.105262_bib0210) 2009; 9
Gouveia (10.1016/j.aap.2019.105262_bib0060) 2007; Vol. I
Guedes Soares (10.1016/j.aap.2019.105262_bib0075) 2001
Guedes Soares (10.1016/j.aap.2019.105262_bib0080) 2008; 55
Knapp (10.1016/j.aap.2019.105262_bib0125) 2011; 43
Hu (10.1016/j.aap.2019.105262_bib0105) 2008; 7
Marsh (10.1016/j.aap.2019.105262_bib0150) 2004
References_xml – volume: 7
  start-page: 627
  year: 2008
  end-page: 638
  ident: bib0105
  article-title: Use of Bayesian method for assessing vessel traffic risks at sea
  publication-title: Int. J. Inf. Technol. Decis. Mak.
– volume: 74
  start-page: 299
  year: 2001
  end-page: 309
  ident: bib0085
  article-title: Risk assessment in maritime transportation
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 93
  start-page: 845
  year: 2008
  end-page: 856
  ident: bib0215
  article-title: A Bayesian belief network modelling of organisational factors in risk analysis: a case study in maritime
  publication-title: Reliab. Eng. Syst. Saf.
– year: 2004
  ident: bib0180
  article-title: Using BBN for integrating human and organisational factors in risk analysis. A case study for the marine industry
  publication-title: Proceedings of 2nd International ASRANet
– volume: 13
  start-page: 105
  year: 2010
  end-page: 116
  ident: bib0020
  article-title: Analysis of the influence of waves in the occurrence of accidents in the Portuguese coast using Bayesian Belief Networks
  publication-title: J. Konbin Saf. Reliab. Syst.
– start-page: 3265
  year: 2008
  end-page: 3274
  ident: bib0010
  publication-title: Analysis of Maritime Accident Data with BBN Modelling. Safety, Reliability and Risk Analysis – Theory, Methods and Applications
– year: 2001
  ident: bib0120
  article-title: Bayesian Networks and Decision Graphs
– year: 2003
  ident: bib0130
  article-title: Genie Bayesian Network Repository
– volume: 36
  start-page: 1171
  year: 2016
  end-page: 1187
  ident: bib0225
  article-title: Maritime transportation risk assessment of Tianjin Port with Bayesian Belief Networks
  publication-title: Risk Anal.
– year: 2008
  ident: bib0220
  article-title: Coastal Engineering Manual – Water Wave Mechanics
– year: 1999
  ident: bib0095
  article-title: A tutorial on learning with Bayesian Networks
  publication-title: Learning in Graphical Models
– year: 2003
  ident: bib0205
  article-title: Application of efficient spatial data structures in the estimation of the intensity of point processes (in Portuguese)
  publication-title: Proc. Brazilian Symposium on GeoInformatics – GEOINFO
– volume: 43
  start-page: 1590
  year: 2011
  end-page: 1603
  ident: bib0165
  article-title: A grounded theory model for analysis of marine accidents
  publication-title: Accid. Anal. Prev.
– volume: 86
  start-page: 245
  year: 2016
  end-page: 257
  ident: bib0065
  article-title: Classification of human errors in grounding and collision accidents using the TRACEr taxonomy
  publication-title: Saf. Sci.
– volume: 37
  start-page: 689
  year: 2005
  end-page: 698
  ident: bib0175
  article-title: Causes and prevention of boating fatalities
  publication-title: Accid. Anal. Prev.
– volume: Vol. 2
  start-page: 1446
  year: 2010
  end-page: 1458
  ident: bib0200
  article-title: Reliability assessment of a tanker in grounding conditions
  publication-title: Proc 11
– year: 2007
  ident: bib0055
  article-title: Accidents in Greek coastal shipping: human factor and old ships…or maybe small ships?
  publication-title: International Symposium on Maritime Safety, Security and Environmental Protection
– start-page: 3
  year: 2007
  end-page: 10
  ident: bib0030
  article-title: Uncertainty of average wave steepness prediction from global wave databases
  publication-title: Advancements in Marine Structures
– volume: 23
  start-page: 267
  year: 2010
  end-page: 276
  ident: bib0045
  article-title: Scenario analysis using Bayesian networks: a case study in energy sector
  publication-title: Knowl. Based Syst.
– start-page: 3597
  year: 2004
  end-page: 3602
  ident: bib0150
  article-title: Using Bayesian Networks to model accident causation in the UK railway industry
  publication-title: Proceedings of the Seventh International Conference PSAM
– start-page: 221
  year: 2001
  end-page: 230
  ident: bib0075
  article-title: Analysis of the frequency of ship accidents under severe North Atlantic weather conditions
  publication-title: Design and Operation for Abnormal Conditions II
– volume: 95
  start-page: 573
  year: 2010
  end-page: 589
  ident: bib0160
  article-title: Probability modelling of vessel collisions
  publication-title: Reliab. Eng. Syst. Saf.
– year: 2012
  ident: bib0115
  article-title: IUMI Casualty and World Fleet Statistics
– volume: Vol. 3
  start-page: 2795
  year: 2006
  end-page: 2804
  ident: bib0140
  article-title: SAFEDOR: a practical approach to model the action of an Officer of the Watch in collision scenarios
  publication-title: Safety and Reliability for Managing Risk
– volume: 46
  start-page: 885
  year: 2008
  end-page: 899
  ident: bib0005
  article-title: Causes of occupational accidents in the fishing sector in Portugal
  publication-title: Saf. Sci.
– volume: 9
  start-page: 26
  year: 2016
  end-page: 44
  ident: bib0040
  article-title: Comparison and assessment of three wave Hindcasts in the North Atlantic Ocean
  publication-title: J. Oper. Oceanogr.
– volume: 55
  start-page: 861
  year: 2008
  end-page: 871
  ident: bib0185
  article-title: 44-year wave Hindcast for the north east Atlantic European coast
  publication-title: Coast. Eng.
– volume: 93
  start-page: 940
  year: 2008
  end-page: 949
  ident: bib0170
  article-title: Modelling the reliability of search and rescue operations with Bayesian Belief Networks
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 102
  start-page: 27
  year: 2012
  end-page: 40
  ident: bib0090
  article-title: Influences of variables on ship collision probability in a Bayesian belief network model
  publication-title: Reliab. Eng. Syst. Saf.
– volume: Vol. I
  start-page: 499
  year: 2007
  end-page: 516
  ident: bib0060
  article-title: Statistical analysis of accidents in the maritime spaces under Portuguese Juridiction (in Portuguese)
  publication-title: Riscos Públicos e Industriais
– start-page: 721
  year: 2011
  end-page: 728
  ident: bib0155
  article-title: A model for consequence evaluation of ship–ship collision based on Bayesian belief network
  publication-title: Sustainable Maritime Transportation and Exploitation of Sea Resources
– volume: 26
  start-page: 695
  year: 2006
  end-page: 721
  ident: bib0050
  article-title: Enabling a powerful marine and offshore decision-support solution through Bayesian Network Technique
  publication-title: Risk Anal.
– volume: 55
  start-page: 825
  year: 2008
  end-page: 826
  ident: bib0080
  article-title: Hindcast of dynamic processes of the ocean and coastal areas of Europe
  publication-title: Coast. Eng.
– start-page: 225
  year: 2004
  end-page: 239
  ident: bib0025
  article-title: “Maritime Accidents and Human Performance: the Statistic Trail”, Towards Maritime Excellence – Challenges on the Horizon, Singapore
– volume: vol. 1
  start-page: 535
  year: 2002
  end-page: 542
  ident: bib0135
  article-title: Information fusion with Bayesian networks for monitoring human fatigue
  publication-title: Proceedings of the Fifth International Conference on Information Fusion
– volume: 9
  start-page: 415
  year: 2009
  end-page: 426
  ident: bib0210
  article-title: Kernel density analysis of maritime fishing traffic and incidents in Canadian Atlantic waters
  publication-title: J. Appl. Sci.
– volume: 93
  start-page: 1292
  year: 2008
  end-page: 1304
  ident: bib0015
  article-title: Causal factors in accidents of high speed craft and conventional ocean-going vessels
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 14
  start-page: 507
  year: 2005
  end-page: 543
  ident: bib0145
  article-title: HUGIN- the tool for Bayesian Networks and influence diagrams
  publication-title: Int. J. Artif. Intell. Tools
– volume: 42
  start-page: 619
  year: 2010
  end-page: 625
  ident: bib0190
  article-title: Under-reporting of maritime accidents
  publication-title: Accid. Anal. Prev.
– year: 2008
  ident: bib0070
  article-title: Human Factors in the Maritime Domain
– year: 2002
  ident: bib0110
  article-title: Guidelines for Formal Safety Assessment (FSA) for Use in the IMO Rule-making Process
– volume: 43
  start-page: 2030
  year: 2011
  end-page: 2036
  ident: bib0195
  article-title: Ship collision risk assessment for the Singapore Strait
  publication-title: Accid. Anal. Prev.
– volume: 112
  start-page: 320
  year: 2016
  end-page: 334
  ident: bib0035
  article-title: Comparison of HIPOCAS and ERA wind and wave reanalysis in the North Atlantic Ocean
  publication-title: Ocean. Eng.
– volume: 43
  start-page: 2053
  year: 2011
  end-page: 2063
  ident: bib0100
  article-title: Underreporting of maritime accidents to vessel accident databases
  publication-title: Accid. Anal. Prev.
– volume: 43
  start-page: 1252
  year: 2011
  end-page: 1266
  ident: bib0125
  article-title: Econometric analysis of the changing effects in wind strength and significant wave height on the probability of casualty in shipping
  publication-title: Accid. Anal. Prev.
– volume: 13
  start-page: 105
  year: 2010
  ident: 10.1016/j.aap.2019.105262_bib0020
  article-title: Analysis of the influence of waves in the occurrence of accidents in the Portuguese coast using Bayesian Belief Networks
  publication-title: J. Konbin Saf. Reliab. Syst.
– volume: 9
  start-page: 26
  issue: 1
  year: 2016
  ident: 10.1016/j.aap.2019.105262_bib0040
  article-title: Comparison and assessment of three wave Hindcasts in the North Atlantic Ocean
  publication-title: J. Oper. Oceanogr.
– year: 2012
  ident: 10.1016/j.aap.2019.105262_bib0115
– year: 2008
  ident: 10.1016/j.aap.2019.105262_bib0070
– year: 2002
  ident: 10.1016/j.aap.2019.105262_bib0110
– year: 2001
  ident: 10.1016/j.aap.2019.105262_bib0120
– volume: 23
  start-page: 267
  issue: 3
  year: 2010
  ident: 10.1016/j.aap.2019.105262_bib0045
  article-title: Scenario analysis using Bayesian networks: a case study in energy sector
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2010.01.009
– volume: 74
  start-page: 299
  year: 2001
  ident: 10.1016/j.aap.2019.105262_bib0085
  article-title: Risk assessment in maritime transportation
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/S0951-8320(01)00104-1
– volume: 43
  start-page: 1252
  issue: 3
  year: 2011
  ident: 10.1016/j.aap.2019.105262_bib0125
  article-title: Econometric analysis of the changing effects in wind strength and significant wave height on the probability of casualty in shipping
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2011.01.008
– volume: 36
  start-page: 1171
  issue: 6
  year: 2016
  ident: 10.1016/j.aap.2019.105262_bib0225
  article-title: Maritime transportation risk assessment of Tianjin Port with Bayesian Belief Networks
  publication-title: Risk Anal.
  doi: 10.1111/risa.12519
– volume: 14
  start-page: 507
  issue: 3
  year: 2005
  ident: 10.1016/j.aap.2019.105262_bib0145
  article-title: HUGIN- the tool for Bayesian Networks and influence diagrams
  publication-title: Int. J. Artif. Intell. Tools
  doi: 10.1142/S0218213005002235
– volume: 95
  start-page: 573
  issue: 5
  year: 2010
  ident: 10.1016/j.aap.2019.105262_bib0160
  article-title: Probability modelling of vessel collisions
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2010.01.009
– year: 1999
  ident: 10.1016/j.aap.2019.105262_bib0095
  article-title: A tutorial on learning with Bayesian Networks
– start-page: 221
  year: 2001
  ident: 10.1016/j.aap.2019.105262_bib0075
  article-title: Analysis of the frequency of ship accidents under severe North Atlantic weather conditions
– volume: 102
  start-page: 27
  year: 2012
  ident: 10.1016/j.aap.2019.105262_bib0090
  article-title: Influences of variables on ship collision probability in a Bayesian belief network model
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2012.02.008
– year: 2007
  ident: 10.1016/j.aap.2019.105262_bib0055
  article-title: Accidents in Greek coastal shipping: human factor and old ships…or maybe small ships?
  publication-title: International Symposium on Maritime Safety, Security and Environmental Protection
– volume: 42
  start-page: 619
  year: 2010
  ident: 10.1016/j.aap.2019.105262_bib0190
  article-title: Under-reporting of maritime accidents
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2009.10.008
– volume: 9
  start-page: 415
  issue: 3
  year: 2009
  ident: 10.1016/j.aap.2019.105262_bib0210
  article-title: Kernel density analysis of maritime fishing traffic and incidents in Canadian Atlantic waters
  publication-title: J. Appl. Sci.
  doi: 10.3923/jas.2009.415.426
– volume: 86
  start-page: 245
  year: 2016
  ident: 10.1016/j.aap.2019.105262_bib0065
  article-title: Classification of human errors in grounding and collision accidents using the TRACEr taxonomy
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2016.02.026
– volume: 43
  start-page: 1590
  year: 2011
  ident: 10.1016/j.aap.2019.105262_bib0165
  article-title: A grounded theory model for analysis of marine accidents
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2011.03.022
– volume: Vol. 2
  start-page: 1446
  year: 2010
  ident: 10.1016/j.aap.2019.105262_bib0200
  article-title: Reliability assessment of a tanker in grounding conditions
  publication-title: Proc 11th International Symposium on Practical Design of Ships and Other Floating Structures
– volume: 43
  start-page: 2030
  year: 2011
  ident: 10.1016/j.aap.2019.105262_bib0195
  article-title: Ship collision risk assessment for the Singapore Strait
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2011.05.022
– start-page: 721
  year: 2011
  ident: 10.1016/j.aap.2019.105262_bib0155
  article-title: A model for consequence evaluation of ship–ship collision based on Bayesian belief network
– volume: 26
  start-page: 695
  issue: 3
  year: 2006
  ident: 10.1016/j.aap.2019.105262_bib0050
  article-title: Enabling a powerful marine and offshore decision-support solution through Bayesian Network Technique
  publication-title: Risk Anal.
  doi: 10.1111/j.1539-6924.2006.00775.x
– volume: 112
  start-page: 320
  year: 2016
  ident: 10.1016/j.aap.2019.105262_bib0035
  article-title: Comparison of HIPOCAS and ERA wind and wave reanalysis in the North Atlantic Ocean
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2015.12.028
– start-page: 225
  year: 2004
  ident: 10.1016/j.aap.2019.105262_bib0025
– volume: 37
  start-page: 689
  issue: 4
  year: 2005
  ident: 10.1016/j.aap.2019.105262_bib0175
  article-title: Causes and prevention of boating fatalities
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2005.03.011
– volume: 93
  start-page: 845
  issue: 6
  year: 2008
  ident: 10.1016/j.aap.2019.105262_bib0215
  article-title: A Bayesian belief network modelling of organisational factors in risk analysis: a case study in maritime
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2007.03.035
– volume: Vol. 3
  start-page: 2795
  year: 2006
  ident: 10.1016/j.aap.2019.105262_bib0140
  article-title: SAFEDOR: a practical approach to model the action of an Officer of the Watch in collision scenarios
– year: 2004
  ident: 10.1016/j.aap.2019.105262_bib0180
  article-title: Using BBN for integrating human and organisational factors in risk analysis. A case study for the marine industry
  publication-title: Proceedings of 2nd International ASRANet
– year: 2003
  ident: 10.1016/j.aap.2019.105262_bib0130
– volume: 93
  start-page: 1292
  issue: 9
  year: 2008
  ident: 10.1016/j.aap.2019.105262_bib0015
  article-title: Causal factors in accidents of high speed craft and conventional ocean-going vessels
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2007.07.010
– start-page: 3
  year: 2007
  ident: 10.1016/j.aap.2019.105262_bib0030
  article-title: Uncertainty of average wave steepness prediction from global wave databases
– volume: 43
  start-page: 2053
  year: 2011
  ident: 10.1016/j.aap.2019.105262_bib0100
  article-title: Underreporting of maritime accidents to vessel accident databases
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2011.05.027
– year: 2008
  ident: 10.1016/j.aap.2019.105262_bib0220
– volume: 7
  start-page: 627
  issue: 4
  year: 2008
  ident: 10.1016/j.aap.2019.105262_bib0105
  article-title: Use of Bayesian method for assessing vessel traffic risks at sea
  publication-title: Int. J. Inf. Technol. Decis. Mak.
  doi: 10.1142/S0219622008003198
– volume: Vol. I
  start-page: 499
  year: 2007
  ident: 10.1016/j.aap.2019.105262_bib0060
  article-title: Statistical analysis of accidents in the maritime spaces under Portuguese Juridiction (in Portuguese)
– start-page: 3597
  year: 2004
  ident: 10.1016/j.aap.2019.105262_bib0150
  article-title: Using Bayesian Networks to model accident causation in the UK railway industry
– volume: 93
  start-page: 940
  issue: 7
  year: 2008
  ident: 10.1016/j.aap.2019.105262_bib0170
  article-title: Modelling the reliability of search and rescue operations with Bayesian Belief Networks
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2007.03.006
– start-page: 3265
  year: 2008
  ident: 10.1016/j.aap.2019.105262_bib0010
– volume: vol. 1
  start-page: 535
  year: 2002
  ident: 10.1016/j.aap.2019.105262_bib0135
  article-title: Information fusion with Bayesian networks for monitoring human fatigue
  publication-title: Proceedings of the Fifth International Conference on Information Fusion
  doi: 10.1109/ICIF.2002.1021200
– year: 2003
  ident: 10.1016/j.aap.2019.105262_bib0205
  article-title: Application of efficient spatial data structures in the estimation of the intensity of point processes (in Portuguese)
– volume: 55
  start-page: 825
  issue: 11
  year: 2008
  ident: 10.1016/j.aap.2019.105262_bib0080
  article-title: Hindcast of dynamic processes of the ocean and coastal areas of Europe
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2008.02.007
– volume: 46
  start-page: 885
  issue: 6
  year: 2008
  ident: 10.1016/j.aap.2019.105262_bib0005
  article-title: Causes of occupational accidents in the fishing sector in Portugal
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2007.11.007
– volume: 55
  start-page: 861
  issue: 11
  year: 2008
  ident: 10.1016/j.aap.2019.105262_bib0185
  article-title: 44-year wave Hindcast for the north east Atlantic European coast
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2008.02.027
SSID ssj0007875
Score 2.5411828
Snippet •A study is made to assess the human error contribution in ship accidents in different weather conditions.•A Bayesian Belief Network model is developed, which...
The paper describes a study aiming to assess the human error contribution in ship accidents in different weather conditions and the contribution that high...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105262
SubjectTerms Accidents - statistics & numerical data
Bayes Theorem
Bayesian Belief Networks
Databases, Factual
Human factors
Humans
Maritime accidents
Probability
Professional Competence
Ships
Significant wave height
Water Movements
Weather
Title Analysis of the influence of human errors on the occurrence of coastal ship accidents in different wave conditions using Bayesian Belief Networks
URI https://dx.doi.org/10.1016/j.aap.2019.105262
https://www.ncbi.nlm.nih.gov/pubmed/31561116
https://www.proquest.com/docview/2299143824
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwELUQPaKqpdAuUDSVUA-VApvYSZwjoKKlK_ZQFcHNcrx2te0qQdnQqhf-gT_ujB1TcYBDTytZk2yUebbHmTfzGDsQuRPGpTappeCUZrSJzLM8kboacylqLn1G92JWTC7Fl-v8eo2dxloYolUOa39Y0_1qPYwcDW_z6GaxoBpfSomVFILghK2oJ6gQJaH88O4fzQMBGVQM8NhM1jGz6TleWlPLyrQitdusyJ7am56KPf0edPaKvRyCRzgOz_eardlmk22EL28QCoo22V6ouIUru3S6s_AR4kDb_XzD7mMbEmgdYPQHiyhTQgNesg9s17UdGjTeoDXGN3EKFqbVGFAugVheoI0hUdJ-hXeBqLXSw2_9y6IhZcMJ1UDk-u9wov9YKtmEE4uBr4NZYKCvttjl2edvp5Nk0GVIDM95T-R_7rK5kRUe_qjxLzUXLbhOTVXPXYGLRK3nac1LDC98JkeUQtPs53mdalnzbbbetI19x4CayeMBp5CpK0Uu5nJsioobLa1xlBAasXH0iDJD03LSzliqyE77odCJipyoghNH7NPDJTehY8dzxiK6WT2CncId5bnLPkRIKJyOlGPRjW1vVyrD7Z0U5TMxYm8DVh6eguPrQqQWO__3p7v0TQFR7Lk0e2y9727te4yI-nrfQ36fvTg-n05m9Dv9ejX9CyWvCM8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V7QEkhKB8LRQYJMQBKeomdrLOsa2otrTdUyt6sxyvjRZWSZVNW_Ez-MfMxPFKHNoDV2ecRJnxeJyZeQ_gk8y9tD51SaWk4DSjS1Se5Yky5UQoWQnVZ3TP5sXsQn67zC-34DD2wnBZ5eD7g0_vvfUwsjd8zb2r5ZJ7fDklNuUQhBZsKR_ANqNT5SPY3j8-mc03DplsMhAZ0MmZJ8TkZl_mZQyjVqYlE95mRXbX9nRX-NlvQ0dP4ckQP-J-eMVnsOXqHXgcfr5h6Cnagd3QdIvf3cqb1uFnjANN--s5_IlIJNh4pAAQl5GphAd61j50bdu0JFD3Ao21PY5TkLCNoZhyhVzohcZa5iXt1nQXjHQrHd6aG0eCnBBnw0aur_-BB-a3465NPHAU-3qchyL09Qu4OPp6fjhLBmqGxIpcdFz_L3y2sKqk8x9j_zK-aCFMastq4QvyE5VZpJWYUoTRJ3PkVBp2ACKvUqMq8RJGdVO714CMJ09nnEKlfkr6W6iJLUphjXLWc05oDJOoEW0H3HKmz1jpWKD2U5MSNStRByWO4ctmylUA7bhPWEY1638sT9Omct-0j9EkNK1ITrOY2jXXa53RDs-k8pkcw6tgK5u3EPS5yFiLN__30A_wcHZ-dqpPj-cnb-ERXwmlNbsw6tpr944CpK56PyyAv-qhCeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+influence+of+human+errors+on+the+occurrence+of+coastal+ship+accidents+in+different+wave+conditions+using+Bayesian+Belief+Networks&rft.jtitle=Accident+analysis+and+prevention&rft.au=Ant%C3%A3o%2C+Pedro&rft.au=Soares%2C+C+Guedes&rft.date=2019-12-01&rft.eissn=1879-2057&rft.volume=133&rft.spage=105262&rft_id=info:doi/10.1016%2Fj.aap.2019.105262&rft_id=info%3Apmid%2F31561116&rft.externalDocID=31561116
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4575&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4575&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4575&client=summon