Analysis of the influence of human errors on the occurrence of coastal ship accidents in different wave conditions using Bayesian Belief Networks
•A study is made to assess the human error contribution in ship accidents in different weather conditions.•A Bayesian Belief Network model is developed, which includes variables related to the different wave conditions.•The accident database of the Portuguese Maritime Authority is used, which includ...
Saved in:
Published in | Accident analysis and prevention Vol. 133; p. 105262 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A study is made to assess the human error contribution in ship accidents in different weather conditions.•A Bayesian Belief Network model is developed, which includes variables related to the different wave conditions.•The accident database of the Portuguese Maritime Authority is used, which includes records of 1997–2006.•Several significant wave height databases are used.•The results show high risk acceptance in fishing vessels and a low risk perception in recreational vessels.
The paper describes a study aiming to assess the human error contribution in ship accidents in different weather conditions and the contribution that high significant wave heights have in the occurrence of certain accident typologies. To this aim, a Bayesian Belief Network model is developed, which includes variables related to the maritime accident but also to the different wave conditions. For the quantification of the conditional probability tables the maritime accident database of the Portuguese Maritime Authority is used, which includes 857 validated accidents registered in the period 1997–2006. Similarly, several significant wave height databases are used to populate the node correspondent to this variable. The importance of accurate estimation of the significant wave height is also discussed. To substantiate this discussion a comparison between hard evidence (ε) and a soft one (μ,σ) is performed for the significant wave height node of the BBN model. The application of different combinations of evidence in the model allows the identification of patterns of influence of the human error cause in comparison with others, namely with the sea and weather one. The results show one apparent high-risk acceptance within the crews of the fishing vessels and low risk perception in the recreational vessels. Based on the results, are provided recommendations to decrease the risk associated to specific probable causes. |
---|---|
AbstractList | The paper describes a study aiming to assess the human error contribution in ship accidents in different weather conditions and the contribution that high significant wave heights have in the occurrence of certain accident typologies. To this aim, a Bayesian Belief Network model is developed, which includes variables related to the maritime accident but also to the different wave conditions. For the quantification of the conditional probability tables the maritime accident database of the Portuguese Maritime Authority is used, which includes 857 validated accidents registered in the period 1997-2006. Similarly, several significant wave height databases are used to populate the node correspondent to this variable. The importance of accurate estimation of the significant wave height is also discussed. To substantiate this discussion a comparison between hard evidence (ε) and a soft one (μ,σ) is performed for the significant wave height node of the BBN model. The application of different combinations of evidence in the model allows the identification of patterns of influence of the human error cause in comparison with others, namely with the sea and weather one. The results show one apparent high-risk acceptance within the crews of the fishing vessels and low risk perception in the recreational vessels. Based on the results, are provided recommendations to decrease the risk associated to specific probable causes. The paper describes a study aiming to assess the human error contribution in ship accidents in different weather conditions and the contribution that high significant wave heights have in the occurrence of certain accident typologies. To this aim, a Bayesian Belief Network model is developed, which includes variables related to the maritime accident but also to the different wave conditions. For the quantification of the conditional probability tables the maritime accident database of the Portuguese Maritime Authority is used, which includes 857 validated accidents registered in the period 1997-2006. Similarly, several significant wave height databases are used to populate the node correspondent to this variable. The importance of accurate estimation of the significant wave height is also discussed. To substantiate this discussion a comparison between hard evidence (ε) and a soft one (μ,σ) is performed for the significant wave height node of the BBN model. The application of different combinations of evidence in the model allows the identification of patterns of influence of the human error cause in comparison with others, namely with the sea and weather one. The results show one apparent high-risk acceptance within the crews of the fishing vessels and low risk perception in the recreational vessels. Based on the results, are provided recommendations to decrease the risk associated to specific probable causes.The paper describes a study aiming to assess the human error contribution in ship accidents in different weather conditions and the contribution that high significant wave heights have in the occurrence of certain accident typologies. To this aim, a Bayesian Belief Network model is developed, which includes variables related to the maritime accident but also to the different wave conditions. For the quantification of the conditional probability tables the maritime accident database of the Portuguese Maritime Authority is used, which includes 857 validated accidents registered in the period 1997-2006. Similarly, several significant wave height databases are used to populate the node correspondent to this variable. The importance of accurate estimation of the significant wave height is also discussed. To substantiate this discussion a comparison between hard evidence (ε) and a soft one (μ,σ) is performed for the significant wave height node of the BBN model. The application of different combinations of evidence in the model allows the identification of patterns of influence of the human error cause in comparison with others, namely with the sea and weather one. The results show one apparent high-risk acceptance within the crews of the fishing vessels and low risk perception in the recreational vessels. Based on the results, are provided recommendations to decrease the risk associated to specific probable causes. •A study is made to assess the human error contribution in ship accidents in different weather conditions.•A Bayesian Belief Network model is developed, which includes variables related to the different wave conditions.•The accident database of the Portuguese Maritime Authority is used, which includes records of 1997–2006.•Several significant wave height databases are used.•The results show high risk acceptance in fishing vessels and a low risk perception in recreational vessels. The paper describes a study aiming to assess the human error contribution in ship accidents in different weather conditions and the contribution that high significant wave heights have in the occurrence of certain accident typologies. To this aim, a Bayesian Belief Network model is developed, which includes variables related to the maritime accident but also to the different wave conditions. For the quantification of the conditional probability tables the maritime accident database of the Portuguese Maritime Authority is used, which includes 857 validated accidents registered in the period 1997–2006. Similarly, several significant wave height databases are used to populate the node correspondent to this variable. The importance of accurate estimation of the significant wave height is also discussed. To substantiate this discussion a comparison between hard evidence (ε) and a soft one (μ,σ) is performed for the significant wave height node of the BBN model. The application of different combinations of evidence in the model allows the identification of patterns of influence of the human error cause in comparison with others, namely with the sea and weather one. The results show one apparent high-risk acceptance within the crews of the fishing vessels and low risk perception in the recreational vessels. Based on the results, are provided recommendations to decrease the risk associated to specific probable causes. |
ArticleNumber | 105262 |
Author | Soares, C. Guedes Antão, Pedro |
Author_xml | – sequence: 1 givenname: Pedro surname: Antão fullname: Antão, Pedro – sequence: 2 givenname: C. Guedes orcidid: 0000-0002-8570-4263 surname: Soares fullname: Soares, C. Guedes email: guedess@mar.ist.utl.pt |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31561116$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctuFDEQRS0URCaBD2CDvGTTE5fd7odYJVF4SBFsYG257WrGQ4892O5E8xn8MW4myYJFVlZZ55RU956REx88EvIW2BoYNBfbtdb7NWfQl1nyhr8gK-javuJMtidkxRiDqpatPCVnKW3L2HatfEVOBcgGAJoV-XPp9XRILtEw0rxB6vw4zegNLh-beac9xRhDLID_BwRj5hgfCRN0ynqiaeP2VBvjLPqcyhZq3Thi4TK913dYQG9ddsEnOifnf9IrfcDkyvornByO9Cvm-xB_pdfk5ainhG8e3nPy4-PN9-vP1e23T1-uL28rI6TIlZAgRm5N15dbOKs7YD00QoPpBzs20IlBWxhEyzoOgnNet7VmrFhyAN0N4py8P-7dx_B7xpTVziWD06Q9hjkpzvseatHxuqDvHtB52KFV--h2Oh7UY4wFgCNgYkgp4viEAFNLVWqrSlVqqUodqypO-59jXNZLQjlqNz1rfjiaWOK5cxhVMm4pxLqIJisb3DP2X0cyraU |
CitedBy_id | crossref_primary_10_3390_jmse11112112 crossref_primary_10_1016_j_oceaneng_2023_114577 crossref_primary_10_3390_su16093780 crossref_primary_10_1016_j_ress_2024_110201 crossref_primary_10_1016_j_ress_2021_107901 crossref_primary_10_1080_13467581_2024_2329353 crossref_primary_10_1016_j_oceaneng_2023_114371 crossref_primary_10_18273_revuin_v19n4_2020024 crossref_primary_10_1016_j_ress_2021_107466 crossref_primary_10_1016_j_oceaneng_2024_118051 crossref_primary_10_1016_j_ssci_2021_105336 crossref_primary_10_3390_jmse13030393 crossref_primary_10_1016_j_tranpol_2021_02_006 crossref_primary_10_1016_j_ress_2024_110565 crossref_primary_10_1016_j_oceaneng_2022_110569 crossref_primary_10_1016_j_ress_2023_109166 crossref_primary_10_1016_j_ress_2024_110489 crossref_primary_10_1016_j_ress_2021_108275 crossref_primary_10_1080_19439962_2023_2235323 crossref_primary_10_3390_su16188246 crossref_primary_10_1016_j_oceaneng_2024_116664 crossref_primary_10_1080_25725084_2021_1889869 crossref_primary_10_1016_j_ssci_2024_106645 crossref_primary_10_1016_j_aap_2023_107342 crossref_primary_10_1016_j_apor_2024_104317 crossref_primary_10_1016_j_psep_2022_05_035 crossref_primary_10_1016_j_ress_2021_107993 crossref_primary_10_1016_j_ress_2021_108249 crossref_primary_10_1016_j_ress_2023_109414 crossref_primary_10_1016_j_oceaneng_2020_107197 crossref_primary_10_1016_j_oceaneng_2022_111006 crossref_primary_10_3390_su151813427 crossref_primary_10_1016_j_oceaneng_2022_111568 crossref_primary_10_1016_j_ress_2024_110018 crossref_primary_10_1016_j_oceaneng_2023_115628 crossref_primary_10_3390_su16031152 crossref_primary_10_1016_j_ress_2021_107470 crossref_primary_10_1016_j_oceaneng_2022_113102 crossref_primary_10_1016_j_oceaneng_2022_111089 crossref_primary_10_1038_s41598_022_19563_0 crossref_primary_10_1016_j_oceaneng_2022_113425 crossref_primary_10_1080_18366503_2022_2147694 crossref_primary_10_1177_1748006X221131717 crossref_primary_10_1016_j_oceaneng_2024_117347 crossref_primary_10_2478_pomr_2020_0007 crossref_primary_10_3390_su151310080 crossref_primary_10_1016_j_engappai_2025_110491 crossref_primary_10_1016_j_ress_2021_107846 crossref_primary_10_1080_10803548_2023_2266279 crossref_primary_10_1016_j_marpolbul_2024_116817 crossref_primary_10_1016_j_ress_2022_108498 crossref_primary_10_3390_jmse12091608 crossref_primary_10_3390_ijgi12020073 crossref_primary_10_3390_jmse12122305 crossref_primary_10_1016_j_oceaneng_2020_107544 crossref_primary_10_1016_j_oceaneng_2021_109920 crossref_primary_10_1016_j_marpolbul_2023_114791 crossref_primary_10_1016_j_oceaneng_2020_108078 crossref_primary_10_1016_j_ress_2024_110105 crossref_primary_10_1155_2024_5582660 crossref_primary_10_3390_su16146023 crossref_primary_10_1016_j_ocecoaman_2024_107473 crossref_primary_10_1016_j_ress_2020_107086 crossref_primary_10_1016_j_oceaneng_2021_110162 crossref_primary_10_1016_j_oceaneng_2022_111797 crossref_primary_10_3389_fnins_2023_1172103 crossref_primary_10_1016_j_ress_2021_108189 crossref_primary_10_1155_2024_4998195 crossref_primary_10_3390_jmse11020410 crossref_primary_10_1016_j_jsr_2021_12_012 crossref_primary_10_1016_j_ress_2021_108061 crossref_primary_10_1016_j_aap_2024_107619 crossref_primary_10_1016_j_ress_2020_107073 |
Cites_doi | 10.1016/j.knosys.2010.01.009 10.1016/S0951-8320(01)00104-1 10.1016/j.aap.2011.01.008 10.1111/risa.12519 10.1142/S0218213005002235 10.1016/j.ress.2010.01.009 10.1016/j.ress.2012.02.008 10.1016/j.aap.2009.10.008 10.3923/jas.2009.415.426 10.1016/j.ssci.2016.02.026 10.1016/j.aap.2011.03.022 10.1016/j.aap.2011.05.022 10.1111/j.1539-6924.2006.00775.x 10.1016/j.oceaneng.2015.12.028 10.1016/j.aap.2005.03.011 10.1016/j.ress.2007.03.035 10.1016/j.ress.2007.07.010 10.1016/j.aap.2011.05.027 10.1142/S0219622008003198 10.1016/j.ress.2007.03.006 10.1109/ICIF.2002.1021200 10.1016/j.coastaleng.2008.02.007 10.1016/j.ssci.2007.11.007 10.1016/j.coastaleng.2008.02.027 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.aap.2019.105262 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Social Welfare & Social Work Public Health |
EISSN | 1879-2057 |
ExternalDocumentID | 31561116 10_1016_j_aap_2019_105262 S0001457519311194 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X ..I .~1 0R~ 1B1 1RT 1~. 23M 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABBQC ABDMP ABFNM ABIVO ABJNI ABLVK ABMAC ABMMH ABMZM ABNUV ABXDB ABYKQ ACDAQ ACGFS ACHQT ACNCT ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AHRSL AI. AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY AKURH AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F3I F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEH HMK HMO HMY HVGLF HZ~ IHE J1W JJJVA KOM LCYCR M29 M3W M3Y M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SAE SCC SDF SDG SDP SES SEW SPC SPCBC SSB SSG SSH SSO SSS SST SSZ T5K VH1 WUQ XPP ZCG ZGI ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c353t-3513f2dc891562048109163a1c9bdf6183bad1b3708213222474a005135b1a8b3 |
IEDL.DBID | .~1 |
ISSN | 0001-4575 1879-2057 |
IngestDate | Fri Jul 11 02:39:15 EDT 2025 Thu Apr 03 06:55:49 EDT 2025 Tue Jul 01 02:53:32 EDT 2025 Thu Apr 24 22:53:46 EDT 2025 Fri Feb 23 02:33:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bayesian Belief Networks Significant wave height Human factors Maritime accidents |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-3513f2dc891562048109163a1c9bdf6183bad1b3708213222474a005135b1a8b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8570-4263 |
PMID | 31561116 |
PQID | 2299143824 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2299143824 pubmed_primary_31561116 crossref_primary_10_1016_j_aap_2019_105262 crossref_citationtrail_10_1016_j_aap_2019_105262 elsevier_sciencedirect_doi_10_1016_j_aap_2019_105262 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2019 2019-12-00 2019-Dec 20191201 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Accident analysis and prevention |
PublicationTitleAlternate | Accid Anal Prev |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Madsen, Jensen, Kjaerulff, Lang (bib0145) 2005; 14 Hu, Li, Fang, Yang (bib0105) 2008; 7 Montewka, Goerlandt, Ehlers, Kujala, Erceg, Polic, Klanac, Hinz, Tabri (bib0155) 2011 IUMI (bib0115) 2012 Santos, Assunção (bib0205) 2003 US Army (bib0220) 2008 Eleye-Datubo, Wall, Saajedi, Wang (bib0050) 2006; 26 Grech, Horberry, Koester (bib0070) 2008 Antão, Almeida, Jacinto, Guedes Soares (bib0005) 2008; 46 Bitner-Gregersen, Guedes Soares (bib0030) 2007 Leva, Friis Hansen, Ravn, Lepsoe (bib0140) 2006; Vol. 3 Gouveia, Antão, Guedes Soares (bib0060) 2007; Vol. I Gemelos, Ventikos (bib0055) 2007 IMO (bib0110) 2002 Antão, Guedes Soares (bib0020) 2010; 13 Antão, Grande, Trucco, Guedes Soares (bib0010) 2008 Qu, Meng, Li (bib0195) 2011; 43 Jansen (bib0120) 2001 Campos, Guedes Soares (bib0040) 2016; 9 Guedes Soares, Teixeira (bib0085) 2001; 74 Psarros, Skjong, Eide (bib0190) 2010; 42 Campos, Guedes Soares (bib0035) 2016; 112 Norrington, Quigley, Russell, Van der Meer (bib0170) 2008; 93 Antão, Guedes Soares (bib0015) 2008; 93 Heckerman (bib0095) 1999 Pilar, Guedes Soares, Carretero (bib0185) 2008; 55 Graziano, Teixeira, Guedes Soares (bib0065) 2016; 86 Montewka, Hinz, Kujala, Matusiak (bib0160) 2010; 95 Marsh, Bearfield (bib0150) 2004 Mullai, Paulsson (bib0165) 2011; 43 Baker, Seah (bib0025) 2004 Guedes Soares (bib0080) 2008; 55 Hänninen, Kujala (bib0090) 2012; 102 O’Connor, O’Connor (bib0175) 2005; 37 Laboratory Decision Systems (bib0130) 2003 Lan, Ji, Looney (bib0135) 2002; vol. 1 Rizzuto, Teixeira, Guedes Soares (bib0200) 2010; Vol. 2 Guedes Soares, Bitner-Gregersen, Antão (bib0075) 2001 Knapp, Kumar, Sakurada, Shen (bib0125) 2011; 43 Shahrabi, Pelot (bib0210) 2009; 9 Hassel, Asbjørnslett, Hole (bib0100) 2011; 43 Cinara, Kayakutlu (bib0045) 2010; 23 Zhang, Teixeira, Guedes Soares, Yan, Liu (bib0225) 2016; 36 Trucco, Cagno, Ruggeri, Grande (bib0215) 2008; 93 Pedrali, Trucco, Cagno, Ruggeri (bib0180) 2004 Campos (10.1016/j.aap.2019.105262_bib0040) 2016; 9 Madsen (10.1016/j.aap.2019.105262_bib0145) 2005; 14 Guedes Soares (10.1016/j.aap.2019.105262_bib0085) 2001; 74 O’Connor (10.1016/j.aap.2019.105262_bib0175) 2005; 37 Montewka (10.1016/j.aap.2019.105262_bib0160) 2010; 95 IMO (10.1016/j.aap.2019.105262_bib0110) 2002 Pedrali (10.1016/j.aap.2019.105262_bib0180) 2004 Jansen (10.1016/j.aap.2019.105262_bib0120) 2001 Mullai (10.1016/j.aap.2019.105262_bib0165) 2011; 43 Rizzuto (10.1016/j.aap.2019.105262_bib0200) 2010; Vol. 2 Santos (10.1016/j.aap.2019.105262_bib0205) 2003 Antão (10.1016/j.aap.2019.105262_bib0015) 2008; 93 Eleye-Datubo (10.1016/j.aap.2019.105262_bib0050) 2006; 26 Lan (10.1016/j.aap.2019.105262_bib0135) 2002; vol. 1 Antão (10.1016/j.aap.2019.105262_bib0010) 2008 Qu (10.1016/j.aap.2019.105262_bib0195) 2011; 43 Bitner-Gregersen (10.1016/j.aap.2019.105262_bib0030) 2007 Gemelos (10.1016/j.aap.2019.105262_bib0055) 2007 Cinara (10.1016/j.aap.2019.105262_bib0045) 2010; 23 Hänninen (10.1016/j.aap.2019.105262_bib0090) 2012; 102 Grech (10.1016/j.aap.2019.105262_bib0070) 2008 Hassel (10.1016/j.aap.2019.105262_bib0100) 2011; 43 Leva (10.1016/j.aap.2019.105262_bib0140) 2006; Vol. 3 Pilar (10.1016/j.aap.2019.105262_bib0185) 2008; 55 US Army (10.1016/j.aap.2019.105262_bib0220) 2008 Psarros (10.1016/j.aap.2019.105262_bib0190) 2010; 42 Antão (10.1016/j.aap.2019.105262_bib0005) 2008; 46 Antão (10.1016/j.aap.2019.105262_bib0020) 2010; 13 Norrington (10.1016/j.aap.2019.105262_bib0170) 2008; 93 Zhang (10.1016/j.aap.2019.105262_bib0225) 2016; 36 Heckerman (10.1016/j.aap.2019.105262_bib0095) 1999 Trucco (10.1016/j.aap.2019.105262_bib0215) 2008; 93 IUMI (10.1016/j.aap.2019.105262_bib0115) 2012 Montewka (10.1016/j.aap.2019.105262_bib0155) 2011 Campos (10.1016/j.aap.2019.105262_bib0035) 2016; 112 Graziano (10.1016/j.aap.2019.105262_bib0065) 2016; 86 Laboratory Decision Systems (10.1016/j.aap.2019.105262_bib0130) 2003 Baker (10.1016/j.aap.2019.105262_bib0025) 2004 Shahrabi (10.1016/j.aap.2019.105262_bib0210) 2009; 9 Gouveia (10.1016/j.aap.2019.105262_bib0060) 2007; Vol. I Guedes Soares (10.1016/j.aap.2019.105262_bib0075) 2001 Guedes Soares (10.1016/j.aap.2019.105262_bib0080) 2008; 55 Knapp (10.1016/j.aap.2019.105262_bib0125) 2011; 43 Hu (10.1016/j.aap.2019.105262_bib0105) 2008; 7 Marsh (10.1016/j.aap.2019.105262_bib0150) 2004 |
References_xml | – volume: 7 start-page: 627 year: 2008 end-page: 638 ident: bib0105 article-title: Use of Bayesian method for assessing vessel traffic risks at sea publication-title: Int. J. Inf. Technol. Decis. Mak. – volume: 74 start-page: 299 year: 2001 end-page: 309 ident: bib0085 article-title: Risk assessment in maritime transportation publication-title: Reliab. Eng. Syst. Saf. – volume: 93 start-page: 845 year: 2008 end-page: 856 ident: bib0215 article-title: A Bayesian belief network modelling of organisational factors in risk analysis: a case study in maritime publication-title: Reliab. Eng. Syst. Saf. – year: 2004 ident: bib0180 article-title: Using BBN for integrating human and organisational factors in risk analysis. A case study for the marine industry publication-title: Proceedings of 2nd International ASRANet – volume: 13 start-page: 105 year: 2010 end-page: 116 ident: bib0020 article-title: Analysis of the influence of waves in the occurrence of accidents in the Portuguese coast using Bayesian Belief Networks publication-title: J. Konbin Saf. Reliab. Syst. – start-page: 3265 year: 2008 end-page: 3274 ident: bib0010 publication-title: Analysis of Maritime Accident Data with BBN Modelling. Safety, Reliability and Risk Analysis – Theory, Methods and Applications – year: 2001 ident: bib0120 article-title: Bayesian Networks and Decision Graphs – year: 2003 ident: bib0130 article-title: Genie Bayesian Network Repository – volume: 36 start-page: 1171 year: 2016 end-page: 1187 ident: bib0225 article-title: Maritime transportation risk assessment of Tianjin Port with Bayesian Belief Networks publication-title: Risk Anal. – year: 2008 ident: bib0220 article-title: Coastal Engineering Manual – Water Wave Mechanics – year: 1999 ident: bib0095 article-title: A tutorial on learning with Bayesian Networks publication-title: Learning in Graphical Models – year: 2003 ident: bib0205 article-title: Application of efficient spatial data structures in the estimation of the intensity of point processes (in Portuguese) publication-title: Proc. Brazilian Symposium on GeoInformatics – GEOINFO – volume: 43 start-page: 1590 year: 2011 end-page: 1603 ident: bib0165 article-title: A grounded theory model for analysis of marine accidents publication-title: Accid. Anal. Prev. – volume: 86 start-page: 245 year: 2016 end-page: 257 ident: bib0065 article-title: Classification of human errors in grounding and collision accidents using the TRACEr taxonomy publication-title: Saf. Sci. – volume: 37 start-page: 689 year: 2005 end-page: 698 ident: bib0175 article-title: Causes and prevention of boating fatalities publication-title: Accid. Anal. Prev. – volume: Vol. 2 start-page: 1446 year: 2010 end-page: 1458 ident: bib0200 article-title: Reliability assessment of a tanker in grounding conditions publication-title: Proc 11 – year: 2007 ident: bib0055 article-title: Accidents in Greek coastal shipping: human factor and old ships…or maybe small ships? publication-title: International Symposium on Maritime Safety, Security and Environmental Protection – start-page: 3 year: 2007 end-page: 10 ident: bib0030 article-title: Uncertainty of average wave steepness prediction from global wave databases publication-title: Advancements in Marine Structures – volume: 23 start-page: 267 year: 2010 end-page: 276 ident: bib0045 article-title: Scenario analysis using Bayesian networks: a case study in energy sector publication-title: Knowl. Based Syst. – start-page: 3597 year: 2004 end-page: 3602 ident: bib0150 article-title: Using Bayesian Networks to model accident causation in the UK railway industry publication-title: Proceedings of the Seventh International Conference PSAM – start-page: 221 year: 2001 end-page: 230 ident: bib0075 article-title: Analysis of the frequency of ship accidents under severe North Atlantic weather conditions publication-title: Design and Operation for Abnormal Conditions II – volume: 95 start-page: 573 year: 2010 end-page: 589 ident: bib0160 article-title: Probability modelling of vessel collisions publication-title: Reliab. Eng. Syst. Saf. – year: 2012 ident: bib0115 article-title: IUMI Casualty and World Fleet Statistics – volume: Vol. 3 start-page: 2795 year: 2006 end-page: 2804 ident: bib0140 article-title: SAFEDOR: a practical approach to model the action of an Officer of the Watch in collision scenarios publication-title: Safety and Reliability for Managing Risk – volume: 46 start-page: 885 year: 2008 end-page: 899 ident: bib0005 article-title: Causes of occupational accidents in the fishing sector in Portugal publication-title: Saf. Sci. – volume: 9 start-page: 26 year: 2016 end-page: 44 ident: bib0040 article-title: Comparison and assessment of three wave Hindcasts in the North Atlantic Ocean publication-title: J. Oper. Oceanogr. – volume: 55 start-page: 861 year: 2008 end-page: 871 ident: bib0185 article-title: 44-year wave Hindcast for the north east Atlantic European coast publication-title: Coast. Eng. – volume: 93 start-page: 940 year: 2008 end-page: 949 ident: bib0170 article-title: Modelling the reliability of search and rescue operations with Bayesian Belief Networks publication-title: Reliab. Eng. Syst. Saf. – volume: 102 start-page: 27 year: 2012 end-page: 40 ident: bib0090 article-title: Influences of variables on ship collision probability in a Bayesian belief network model publication-title: Reliab. Eng. Syst. Saf. – volume: Vol. I start-page: 499 year: 2007 end-page: 516 ident: bib0060 article-title: Statistical analysis of accidents in the maritime spaces under Portuguese Juridiction (in Portuguese) publication-title: Riscos Públicos e Industriais – start-page: 721 year: 2011 end-page: 728 ident: bib0155 article-title: A model for consequence evaluation of ship–ship collision based on Bayesian belief network publication-title: Sustainable Maritime Transportation and Exploitation of Sea Resources – volume: 26 start-page: 695 year: 2006 end-page: 721 ident: bib0050 article-title: Enabling a powerful marine and offshore decision-support solution through Bayesian Network Technique publication-title: Risk Anal. – volume: 55 start-page: 825 year: 2008 end-page: 826 ident: bib0080 article-title: Hindcast of dynamic processes of the ocean and coastal areas of Europe publication-title: Coast. Eng. – start-page: 225 year: 2004 end-page: 239 ident: bib0025 article-title: “Maritime Accidents and Human Performance: the Statistic Trail”, Towards Maritime Excellence – Challenges on the Horizon, Singapore – volume: vol. 1 start-page: 535 year: 2002 end-page: 542 ident: bib0135 article-title: Information fusion with Bayesian networks for monitoring human fatigue publication-title: Proceedings of the Fifth International Conference on Information Fusion – volume: 9 start-page: 415 year: 2009 end-page: 426 ident: bib0210 article-title: Kernel density analysis of maritime fishing traffic and incidents in Canadian Atlantic waters publication-title: J. Appl. Sci. – volume: 93 start-page: 1292 year: 2008 end-page: 1304 ident: bib0015 article-title: Causal factors in accidents of high speed craft and conventional ocean-going vessels publication-title: Reliab. Eng. Syst. Saf. – volume: 14 start-page: 507 year: 2005 end-page: 543 ident: bib0145 article-title: HUGIN- the tool for Bayesian Networks and influence diagrams publication-title: Int. J. Artif. Intell. Tools – volume: 42 start-page: 619 year: 2010 end-page: 625 ident: bib0190 article-title: Under-reporting of maritime accidents publication-title: Accid. Anal. Prev. – year: 2008 ident: bib0070 article-title: Human Factors in the Maritime Domain – year: 2002 ident: bib0110 article-title: Guidelines for Formal Safety Assessment (FSA) for Use in the IMO Rule-making Process – volume: 43 start-page: 2030 year: 2011 end-page: 2036 ident: bib0195 article-title: Ship collision risk assessment for the Singapore Strait publication-title: Accid. Anal. Prev. – volume: 112 start-page: 320 year: 2016 end-page: 334 ident: bib0035 article-title: Comparison of HIPOCAS and ERA wind and wave reanalysis in the North Atlantic Ocean publication-title: Ocean. Eng. – volume: 43 start-page: 2053 year: 2011 end-page: 2063 ident: bib0100 article-title: Underreporting of maritime accidents to vessel accident databases publication-title: Accid. Anal. Prev. – volume: 43 start-page: 1252 year: 2011 end-page: 1266 ident: bib0125 article-title: Econometric analysis of the changing effects in wind strength and significant wave height on the probability of casualty in shipping publication-title: Accid. Anal. Prev. – volume: 13 start-page: 105 year: 2010 ident: 10.1016/j.aap.2019.105262_bib0020 article-title: Analysis of the influence of waves in the occurrence of accidents in the Portuguese coast using Bayesian Belief Networks publication-title: J. Konbin Saf. Reliab. Syst. – volume: 9 start-page: 26 issue: 1 year: 2016 ident: 10.1016/j.aap.2019.105262_bib0040 article-title: Comparison and assessment of three wave Hindcasts in the North Atlantic Ocean publication-title: J. Oper. Oceanogr. – year: 2012 ident: 10.1016/j.aap.2019.105262_bib0115 – year: 2008 ident: 10.1016/j.aap.2019.105262_bib0070 – year: 2002 ident: 10.1016/j.aap.2019.105262_bib0110 – year: 2001 ident: 10.1016/j.aap.2019.105262_bib0120 – volume: 23 start-page: 267 issue: 3 year: 2010 ident: 10.1016/j.aap.2019.105262_bib0045 article-title: Scenario analysis using Bayesian networks: a case study in energy sector publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2010.01.009 – volume: 74 start-page: 299 year: 2001 ident: 10.1016/j.aap.2019.105262_bib0085 article-title: Risk assessment in maritime transportation publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/S0951-8320(01)00104-1 – volume: 43 start-page: 1252 issue: 3 year: 2011 ident: 10.1016/j.aap.2019.105262_bib0125 article-title: Econometric analysis of the changing effects in wind strength and significant wave height on the probability of casualty in shipping publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2011.01.008 – volume: 36 start-page: 1171 issue: 6 year: 2016 ident: 10.1016/j.aap.2019.105262_bib0225 article-title: Maritime transportation risk assessment of Tianjin Port with Bayesian Belief Networks publication-title: Risk Anal. doi: 10.1111/risa.12519 – volume: 14 start-page: 507 issue: 3 year: 2005 ident: 10.1016/j.aap.2019.105262_bib0145 article-title: HUGIN- the tool for Bayesian Networks and influence diagrams publication-title: Int. J. Artif. Intell. Tools doi: 10.1142/S0218213005002235 – volume: 95 start-page: 573 issue: 5 year: 2010 ident: 10.1016/j.aap.2019.105262_bib0160 article-title: Probability modelling of vessel collisions publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2010.01.009 – year: 1999 ident: 10.1016/j.aap.2019.105262_bib0095 article-title: A tutorial on learning with Bayesian Networks – start-page: 221 year: 2001 ident: 10.1016/j.aap.2019.105262_bib0075 article-title: Analysis of the frequency of ship accidents under severe North Atlantic weather conditions – volume: 102 start-page: 27 year: 2012 ident: 10.1016/j.aap.2019.105262_bib0090 article-title: Influences of variables on ship collision probability in a Bayesian belief network model publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2012.02.008 – year: 2007 ident: 10.1016/j.aap.2019.105262_bib0055 article-title: Accidents in Greek coastal shipping: human factor and old ships…or maybe small ships? publication-title: International Symposium on Maritime Safety, Security and Environmental Protection – volume: 42 start-page: 619 year: 2010 ident: 10.1016/j.aap.2019.105262_bib0190 article-title: Under-reporting of maritime accidents publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2009.10.008 – volume: 9 start-page: 415 issue: 3 year: 2009 ident: 10.1016/j.aap.2019.105262_bib0210 article-title: Kernel density analysis of maritime fishing traffic and incidents in Canadian Atlantic waters publication-title: J. Appl. Sci. doi: 10.3923/jas.2009.415.426 – volume: 86 start-page: 245 year: 2016 ident: 10.1016/j.aap.2019.105262_bib0065 article-title: Classification of human errors in grounding and collision accidents using the TRACEr taxonomy publication-title: Saf. Sci. doi: 10.1016/j.ssci.2016.02.026 – volume: 43 start-page: 1590 year: 2011 ident: 10.1016/j.aap.2019.105262_bib0165 article-title: A grounded theory model for analysis of marine accidents publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2011.03.022 – volume: Vol. 2 start-page: 1446 year: 2010 ident: 10.1016/j.aap.2019.105262_bib0200 article-title: Reliability assessment of a tanker in grounding conditions publication-title: Proc 11th International Symposium on Practical Design of Ships and Other Floating Structures – volume: 43 start-page: 2030 year: 2011 ident: 10.1016/j.aap.2019.105262_bib0195 article-title: Ship collision risk assessment for the Singapore Strait publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2011.05.022 – start-page: 721 year: 2011 ident: 10.1016/j.aap.2019.105262_bib0155 article-title: A model for consequence evaluation of ship–ship collision based on Bayesian belief network – volume: 26 start-page: 695 issue: 3 year: 2006 ident: 10.1016/j.aap.2019.105262_bib0050 article-title: Enabling a powerful marine and offshore decision-support solution through Bayesian Network Technique publication-title: Risk Anal. doi: 10.1111/j.1539-6924.2006.00775.x – volume: 112 start-page: 320 year: 2016 ident: 10.1016/j.aap.2019.105262_bib0035 article-title: Comparison of HIPOCAS and ERA wind and wave reanalysis in the North Atlantic Ocean publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2015.12.028 – start-page: 225 year: 2004 ident: 10.1016/j.aap.2019.105262_bib0025 – volume: 37 start-page: 689 issue: 4 year: 2005 ident: 10.1016/j.aap.2019.105262_bib0175 article-title: Causes and prevention of boating fatalities publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2005.03.011 – volume: 93 start-page: 845 issue: 6 year: 2008 ident: 10.1016/j.aap.2019.105262_bib0215 article-title: A Bayesian belief network modelling of organisational factors in risk analysis: a case study in maritime publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2007.03.035 – volume: Vol. 3 start-page: 2795 year: 2006 ident: 10.1016/j.aap.2019.105262_bib0140 article-title: SAFEDOR: a practical approach to model the action of an Officer of the Watch in collision scenarios – year: 2004 ident: 10.1016/j.aap.2019.105262_bib0180 article-title: Using BBN for integrating human and organisational factors in risk analysis. A case study for the marine industry publication-title: Proceedings of 2nd International ASRANet – year: 2003 ident: 10.1016/j.aap.2019.105262_bib0130 – volume: 93 start-page: 1292 issue: 9 year: 2008 ident: 10.1016/j.aap.2019.105262_bib0015 article-title: Causal factors in accidents of high speed craft and conventional ocean-going vessels publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2007.07.010 – start-page: 3 year: 2007 ident: 10.1016/j.aap.2019.105262_bib0030 article-title: Uncertainty of average wave steepness prediction from global wave databases – volume: 43 start-page: 2053 year: 2011 ident: 10.1016/j.aap.2019.105262_bib0100 article-title: Underreporting of maritime accidents to vessel accident databases publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2011.05.027 – year: 2008 ident: 10.1016/j.aap.2019.105262_bib0220 – volume: 7 start-page: 627 issue: 4 year: 2008 ident: 10.1016/j.aap.2019.105262_bib0105 article-title: Use of Bayesian method for assessing vessel traffic risks at sea publication-title: Int. J. Inf. Technol. Decis. Mak. doi: 10.1142/S0219622008003198 – volume: Vol. I start-page: 499 year: 2007 ident: 10.1016/j.aap.2019.105262_bib0060 article-title: Statistical analysis of accidents in the maritime spaces under Portuguese Juridiction (in Portuguese) – start-page: 3597 year: 2004 ident: 10.1016/j.aap.2019.105262_bib0150 article-title: Using Bayesian Networks to model accident causation in the UK railway industry – volume: 93 start-page: 940 issue: 7 year: 2008 ident: 10.1016/j.aap.2019.105262_bib0170 article-title: Modelling the reliability of search and rescue operations with Bayesian Belief Networks publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2007.03.006 – start-page: 3265 year: 2008 ident: 10.1016/j.aap.2019.105262_bib0010 – volume: vol. 1 start-page: 535 year: 2002 ident: 10.1016/j.aap.2019.105262_bib0135 article-title: Information fusion with Bayesian networks for monitoring human fatigue publication-title: Proceedings of the Fifth International Conference on Information Fusion doi: 10.1109/ICIF.2002.1021200 – year: 2003 ident: 10.1016/j.aap.2019.105262_bib0205 article-title: Application of efficient spatial data structures in the estimation of the intensity of point processes (in Portuguese) – volume: 55 start-page: 825 issue: 11 year: 2008 ident: 10.1016/j.aap.2019.105262_bib0080 article-title: Hindcast of dynamic processes of the ocean and coastal areas of Europe publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2008.02.007 – volume: 46 start-page: 885 issue: 6 year: 2008 ident: 10.1016/j.aap.2019.105262_bib0005 article-title: Causes of occupational accidents in the fishing sector in Portugal publication-title: Saf. Sci. doi: 10.1016/j.ssci.2007.11.007 – volume: 55 start-page: 861 issue: 11 year: 2008 ident: 10.1016/j.aap.2019.105262_bib0185 article-title: 44-year wave Hindcast for the north east Atlantic European coast publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2008.02.027 |
SSID | ssj0007875 |
Score | 2.5411828 |
Snippet | •A study is made to assess the human error contribution in ship accidents in different weather conditions.•A Bayesian Belief Network model is developed, which... The paper describes a study aiming to assess the human error contribution in ship accidents in different weather conditions and the contribution that high... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 105262 |
SubjectTerms | Accidents - statistics & numerical data Bayes Theorem Bayesian Belief Networks Databases, Factual Human factors Humans Maritime accidents Probability Professional Competence Ships Significant wave height Water Movements Weather |
Title | Analysis of the influence of human errors on the occurrence of coastal ship accidents in different wave conditions using Bayesian Belief Networks |
URI | https://dx.doi.org/10.1016/j.aap.2019.105262 https://www.ncbi.nlm.nih.gov/pubmed/31561116 https://www.proquest.com/docview/2299143824 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwELUQPaKqpdAuUDSVUA-VApvYSZwjoKKlK_ZQFcHNcrx2te0qQdnQqhf-gT_ujB1TcYBDTytZk2yUebbHmTfzGDsQuRPGpTappeCUZrSJzLM8kboacylqLn1G92JWTC7Fl-v8eo2dxloYolUOa39Y0_1qPYwcDW_z6GaxoBpfSomVFILghK2oJ6gQJaH88O4fzQMBGVQM8NhM1jGz6TleWlPLyrQitdusyJ7am56KPf0edPaKvRyCRzgOz_eardlmk22EL28QCoo22V6ouIUru3S6s_AR4kDb_XzD7mMbEmgdYPQHiyhTQgNesg9s17UdGjTeoDXGN3EKFqbVGFAugVheoI0hUdJ-hXeBqLXSw2_9y6IhZcMJ1UDk-u9wov9YKtmEE4uBr4NZYKCvttjl2edvp5Nk0GVIDM95T-R_7rK5kRUe_qjxLzUXLbhOTVXPXYGLRK3nac1LDC98JkeUQtPs53mdalnzbbbetI19x4CayeMBp5CpK0Uu5nJsioobLa1xlBAasXH0iDJD03LSzliqyE77odCJipyoghNH7NPDJTehY8dzxiK6WT2CncId5bnLPkRIKJyOlGPRjW1vVyrD7Z0U5TMxYm8DVh6eguPrQqQWO__3p7v0TQFR7Lk0e2y9727te4yI-nrfQ36fvTg-n05m9Dv9ejX9CyWvCM8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V7QEkhKB8LRQYJMQBKeomdrLOsa2otrTdUyt6sxyvjRZWSZVNW_Ez-MfMxPFKHNoDV2ecRJnxeJyZeQ_gk8y9tD51SaWk4DSjS1Se5Yky5UQoWQnVZ3TP5sXsQn67zC-34DD2wnBZ5eD7g0_vvfUwsjd8zb2r5ZJ7fDklNuUQhBZsKR_ANqNT5SPY3j8-mc03DplsMhAZ0MmZJ8TkZl_mZQyjVqYlE95mRXbX9nRX-NlvQ0dP4ckQP-J-eMVnsOXqHXgcfr5h6Cnagd3QdIvf3cqb1uFnjANN--s5_IlIJNh4pAAQl5GphAd61j50bdu0JFD3Ao21PY5TkLCNoZhyhVzohcZa5iXt1nQXjHQrHd6aG0eCnBBnw0aur_-BB-a3465NPHAU-3qchyL09Qu4OPp6fjhLBmqGxIpcdFz_L3y2sKqk8x9j_zK-aCFMastq4QvyE5VZpJWYUoTRJ3PkVBp2ACKvUqMq8RJGdVO714CMJ09nnEKlfkr6W6iJLUphjXLWc05oDJOoEW0H3HKmz1jpWKD2U5MSNStRByWO4ctmylUA7bhPWEY1638sT9Omct-0j9EkNK1ITrOY2jXXa53RDs-k8pkcw6tgK5u3EPS5yFiLN__30A_wcHZ-dqpPj-cnb-ERXwmlNbsw6tpr944CpK56PyyAv-qhCeg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+influence+of+human+errors+on+the+occurrence+of+coastal+ship+accidents+in+different+wave+conditions+using+Bayesian+Belief+Networks&rft.jtitle=Accident+analysis+and+prevention&rft.au=Ant%C3%A3o%2C+Pedro&rft.au=Soares%2C+C+Guedes&rft.date=2019-12-01&rft.eissn=1879-2057&rft.volume=133&rft.spage=105262&rft_id=info:doi/10.1016%2Fj.aap.2019.105262&rft_id=info%3Apmid%2F31561116&rft.externalDocID=31561116 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4575&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4575&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4575&client=summon |