Fatigue Life Prediction Criterion for Micro-Nanoscale Single-Crystal Silicon Structures

This paper describes fatigue damage evaluation for micro-nanoscale single-crystal silicon (SCS) structures toward the reliable design of microelectromechanical systems subjected to fluctuating stresses. The fatigue tests, by using atomic force microscope (AFM), nanoindentation tester, and specially...

Full description

Saved in:
Bibliographic Details
Published inJournal of microelectromechanical systems Vol. 18; no. 1; pp. 129 - 137
Main Authors Namazu, T., Isono, Y.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.02.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper describes fatigue damage evaluation for micro-nanoscale single-crystal silicon (SCS) structures toward the reliable design of microelectromechanical systems subjected to fluctuating stresses. The fatigue tests, by using atomic force microscope (AFM), nanoindentation tester, and specially developed uniaxial tensile tester, have been conducted under tensile and bending deformation modes for investigating the effects of specimen size, frequency, temperature, and deformation mode on the fatigue life of SCS specimens. Regardless of frequency and temperature, the fatigue life has correlated with specimen size. For example, nanoscale SCS specimens with 200 nm in width and 255 nm in thickness have showed a larger number of cycles to failure, by a factor of 10 5 , at the same stress level, as compared to microscale specimens with 48 ¿m in width and 19 ¿m in thickness. Deformation mode has also affected the lifetime; however, no frequency and temperature dependences have been observed unambiguously in the S - N curves. The stress ratio parameter corresponding to the ratio of peak stress to average fracture strength has enabled us to estimate the lifetime for each deformation mode. To predict the fatigue life of SCS structures regardless of deformation mode and specimen size, we have proposed an empirical parameter that includes the resolved shear stress. The mechanism of fatigue failure of SCS structures is discussed from the viewpoint of dislocation slip, crack nucleation, growth, and failure through observations using AFM and scanning electron microscope.
AbstractList This paper describes fatigue damage evaluation for micro-nanoscale single-crystal silicon (SCS) structures toward the reliable design of microelectromechanical systems subjected to fluctuating stresses. The fatigue tests, by using atomic force microscope (AFM), nanoindentation tester, and specially developed uniaxial tensile tester, have been conducted under tensile and bending deformation modes for investigating the effects of specimen size, frequency, temperature, and deformation mode on the fatigue life of SCS specimens. Regardless of frequency and temperature, the fatigue life has correlated with specimen size. For example, nanoscale SCS specimens with 200 nm in width and 255 nm in thickness have showed a larger number of cycles to failure, by a factor of 10 5 , at the same stress level, as compared to microscale specimens with 48 ¿m in width and 19 ¿m in thickness. Deformation mode has also affected the lifetime; however, no frequency and temperature dependences have been observed unambiguously in the S - N curves. The stress ratio parameter corresponding to the ratio of peak stress to average fracture strength has enabled us to estimate the lifetime for each deformation mode. To predict the fatigue life of SCS structures regardless of deformation mode and specimen size, we have proposed an empirical parameter that includes the resolved shear stress. The mechanism of fatigue failure of SCS structures is discussed from the viewpoint of dislocation slip, crack nucleation, growth, and failure through observations using AFM and scanning electron microscope.
The fatigue tests, by using atomic force microscope (AFM), nanoindentation tester, and specially developed uniaxial tensile tester, have been conducted under tensile and bending deformation modes for investigating the effects of specimen size, frequency, temperature, and deformation mode on the fatigue life of SCS specimens.
This paper describes fatigue damage evaluation for micro-nanoscale single-crystal silicon (SCS) structures toward the reliable design of microelectromechanical systems subjected to fluctuating stresses. The fatigue tests, by using atomic force microscope (AFM), nanoindentation tester, and specially developed uniaxial tensile tester, have been conducted under tensile and bending deformation modes for investigating the effects of specimen size, frequency, temperature, and deformation mode on the fatigue life of SCS specimens. Regardless of frequency and temperature, the fatigue life has correlated with specimen size. For example, nanoscale SCS specimens with 200 nm in width and 255 nm in thickness have showed a larger number of cycles to failure, by a factor of 10 super(5), at the same stress level, as compared to microscale specimens with 48 mum in width and 19 mum in thickness. Deformation mode has also affected the lifetime; however, no frequency and temperature dependences have been observed unambiguously in the S-N curves. The stress ratio parameter corresponding to the ratio of peak stress to average fracture strength has enabled us to estimate the lifetime for each deformation mode. To predict the fatigue life of SCS structures regardless of deformation mode and specimen size, we have proposed an empirical parameter that includes the resolved shear stress. The mechanism of fatigue failure of SCS structures is discussed from the viewpoint of dislocation slip, crack nucleation, growth, and failure through observations using AFM and scanning electron microscope.
Author Isono, Y.
Namazu, T.
Author_xml – sequence: 1
  givenname: T.
  surname: Namazu
  fullname: Namazu, T.
  organization: Dept. of Mech. & Syst. Eng., Univ. of Hyogo, Himeji, Japan
– sequence: 2
  givenname: Y.
  surname: Isono
  fullname: Isono, Y.
  organization: Dept. of Mech. Eng., Kobe Univ., Kobe, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21330498$$DView record in Pascal Francis
BookMark eNpdkE1LAzEQhoNUsK3-Ab0sguBldZJsNslRSusHrQpVPC4xOysp211Ndg_996YfePAyMyHPvMz7jsigaRsk5JzCDaWgb58W08XyhgGoXRGKH5Eh1RlNgQo1iDMImUoq5AkZhbACoFmm8iH5mJnOffWYzF2FyavH0tnOtU0y8a5Dv52q1icLZ32bPpumDdbUmCxd81VjOvGb0Jk6PmtnI7rsfG-73mM4JceVqQOeHfqYvM-mb5OHdP5y_zi5m6eWC96lnIMUeYlU27JCasuSZUJrXn2CtZWUCkBASZViquTUZrnCXEV_pRFKG7B8TK73ut--_ekxdMXaBYt1bRps-1BQYExDngOP6OU_dNX2vonXFZoynmdKyAixPRT9huCxKr69Wxu_iUrFNupiF3WxTbk4RB2Xrg7KZhtP5U1jXfjbZDTazLSK3MWec4j4951JKpkW_BcVKIhc
CODEN JMIYET
CitedBy_id crossref_primary_10_1016_j_microrel_2013_07_074
crossref_primary_10_1016_j_engfracmech_2018_09_006
crossref_primary_10_1016_j_surfcoat_2019_02_077
crossref_primary_10_1016_j_matlet_2014_01_014
crossref_primary_10_1016_j_commatsci_2020_109680
crossref_primary_10_3390_app8122412
crossref_primary_10_1002_advs_202303133
crossref_primary_10_1109_JMEMS_2020_3021947
crossref_primary_10_1002_jnm_2570
crossref_primary_10_7567_JJAP_52_110118
crossref_primary_10_3390_mi9050214
crossref_primary_10_1021_acs_nanolett_3c02479
crossref_primary_10_1109_TED_2012_2214440
crossref_primary_10_1038_s41563_019_0586_y
crossref_primary_10_3390_mi8040120
crossref_primary_10_1155_2014_987847
crossref_primary_10_1002_tee_23747
crossref_primary_10_1049_mnl_2013_0431
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124124
crossref_primary_10_1016_j_sna_2013_12_028
crossref_primary_10_1115_1_4024545
crossref_primary_10_1088_1361_6439_ac3cd6
crossref_primary_10_1109_JMEMS_2012_2226933
crossref_primary_10_1115_1_4040297
crossref_primary_10_1016_j_matdes_2014_08_043
crossref_primary_10_1038_micronano_2016_27
crossref_primary_10_1116_6_0002983
crossref_primary_10_7567_JJAP_56_06GN17
crossref_primary_10_1063_1_4828714
crossref_primary_10_1115_1_4005348
crossref_primary_10_1016_j_ijmecsci_2020_106261
crossref_primary_10_1115_1_4032320
crossref_primary_10_4164_sptj_52_523
crossref_primary_10_7567_JJAP_54_06FP04
crossref_primary_10_1049_mnl_2009_0073
crossref_primary_10_1117_1_JMM_11_2_021206
crossref_primary_10_1007_s10853_011_6098_z
crossref_primary_10_1063_1_4898668
crossref_primary_10_1109_JMEMS_2012_2212422
crossref_primary_10_1016_j_compositesb_2011_04_033
crossref_primary_10_1016_j_optlaseng_2009_12_005
Cites_doi 10.1002/sia.2820
10.1098/rspa.1999.0478
10.1103/PhysRevB.68.205204
10.1016/S0924-4247(01)00623-9
10.1016/S1359-6462(01)01159-9
10.1016/S0924-4247(02)00328-X
10.1080/14786430600764898
10.1109/MEMSYS.2008.4443685
10.1016/j.msea.2005.03.053
10.1016/S0924-4247(01)00709-9
10.1126/science.256.5063.1537
10.1109/84.993447
10.1109/MEMSYS.2008.4443686
10.1007/s005420050137
10.1016/S0921-5093(96)10558-X
10.1002/pssa.200460543
10.1109/JMEMS.2005.859196
10.1063/1.2801390
10.1007/BF02322482
10.4028/www.scientific.net/KEM.297-300.567
10.1109/SENSOR.2005.1496384
10.1109/16.848302
10.1541/ieejsmas.125.374
10.1109/84.896765
10.1109/84.967383
10.1016/S0924-4247(02)00431-4
ContentType Journal Article
Copyright 2009 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
Copyright_xml – notice: 2009 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
DBID 97E
RIA
RIE
IQODW
AAYXX
CITATION
7SP
7TB
7U5
8FD
FR3
L7M
F28
DOI 10.1109/JMEMS.2008.2008583
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
Pascal-Francis
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Solid State and Superconductivity Abstracts
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1941-0158
EndPage 137
ExternalDocumentID 2545394511
10_1109_JMEMS_2008_2008583
21330498
4717295
Genre orig-research
GroupedDBID -~X
.DC
0R~
29L
4.4
5GY
5VS
6IK
97E
9M8
AAIKC
AAJGR
AAMNW
AASAJ
ABQJQ
ABVLG
ACBEA
ACGFS
ACIWK
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
RXW
TAE
TN5
TWZ
VH1
XFK
XWC
ABPTK
IQODW
AAYXX
CITATION
7SP
7TB
7U5
8FD
FR3
L7M
F28
ID FETCH-LOGICAL-c353t-330756de19cdfe1cdd245993fb0ccf7780050d18828d31c468e68085da589a0c3
IEDL.DBID RIE
ISSN 1057-7157
IngestDate Fri Aug 16 09:51:18 EDT 2024
Thu Oct 10 19:49:12 EDT 2024
Fri Aug 23 01:12:38 EDT 2024
Sun Oct 29 17:06:51 EDT 2023
Wed Jun 26 19:26:35 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords fatigue
fatigue life prediction
durability
reliability
resolved shear stress
Atomic force microscope (AFM)
single-crystal silicon (SCS)
size effect
Atomic force microscopy
Nanostructures
Fatigue fracture
Size effect
Silicon
Damage
Microelectromechanical device
Crystal structure
Nanohardness
Fatigue life
Temperature dependence
Scanning electron microscopy
Fatigue testing
Nanoindentation
Durability
Fatigue
Indentation
Microhardness
Monocrystals
Nanotechnology
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-330756de19cdfe1cdd245993fb0ccf7780050d18828d31c468e68085da589a0c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 912364857
PQPubID 106006
PageCount 9
ParticipantIDs proquest_journals_912364857
crossref_primary_10_1109_JMEMS_2008_2008583
ieee_primary_4717295
pascalfrancis_primary_21330498
proquest_miscellaneous_1022906603
PublicationCentury 2000
PublicationDate 2009-02-01
PublicationDateYYYYMMDD 2009-02-01
PublicationDate_xml – month: 02
  year: 2009
  text: 2009-02-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle Journal of microelectromechanical systems
PublicationTitleAbbrev JMEMS
PublicationYear 2009
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
bagdahn (ref1) 2003; 103
ref32
ref10
namazu (ref3) 2003
namazu (ref23) 2003; 104
roark (ref21) 1965
ref17
ref16
ref19
ref18
saka (ref24) 2007; 86
isono (ref30) 2001
ref26
ref25
ref20
ref22
connally (ref8) 1992; 256
ref28
ref27
ref7
ando (ref2) 2001; 93
ref9
namazu (ref4) 2004
isono (ref31) 2001
ref6
ref5
muhlstein (ref11) 2001; 94
isono (ref29) 2001
References_xml – start-page: 135
  year: 2001
  ident: ref29
  article-title: afm bending testing of nanometric single crystal silicon wire at intermediate temperatures for mems
  publication-title: Proc 14th IEEE Int Conf MEMS
  contributor:
    fullname: isono
– ident: ref5
  doi: 10.1002/sia.2820
– ident: ref15
  doi: 10.1098/rspa.1999.0478
– ident: ref28
  doi: 10.1103/PhysRevB.68.205204
– volume: 93
  start-page: 70
  year: 2001
  ident: ref2
  article-title: tensile-mode fatigue testing of silicon films as structural materials for mems
  publication-title: Sens Actuators A Phys
  doi: 10.1016/S0924-4247(01)00623-9
  contributor:
    fullname: ando
– ident: ref25
  doi: 10.1016/S1359-6462(01)01159-9
– volume: 103
  start-page: 9
  year: 2003
  ident: ref1
  article-title: fatigue of polycrystalline silicon under long-term cyclic loading
  publication-title: Sens Actuators A Phys
  doi: 10.1016/S0924-4247(02)00328-X
  contributor:
    fullname: bagdahn
– volume: 86
  start-page: 4841
  year: 2007
  ident: ref24
  article-title: in-situ tem observation of transformation of dislocations from shuffle to glide sets in si under supersaturation of interstitials
  publication-title: Philos Mag
  doi: 10.1080/14786430600764898
  contributor:
    fullname: saka
– ident: ref14
  doi: 10.1109/MEMSYS.2008.4443685
– ident: ref27
  doi: 10.1016/j.msea.2005.03.053
– volume: 94
  start-page: 177
  year: 2001
  ident: ref11
  article-title: high-cycle fatigue and durability of polycrystalline silicon thin films in ambient air
  publication-title: Sens Actuators A Phys
  doi: 10.1016/S0924-4247(01)00709-9
  contributor:
    fullname: muhlstein
– volume: 256
  start-page: 1537
  year: 1992
  ident: ref8
  article-title: slow crack growth in single-crystal silicon
  publication-title: Science
  doi: 10.1126/science.256.5063.1537
  contributor:
    fullname: connally
– ident: ref22
  doi: 10.1109/84.993447
– ident: ref12
  doi: 10.1109/MEMSYS.2008.4443686
– ident: ref7
  doi: 10.1007/s005420050137
– ident: ref20
  doi: 10.1016/S0921-5093(96)10558-X
– start-page: 149
  year: 2004
  ident: ref4
  article-title: high-cycle fatigue damage evaluation for micro-nanoscale single crystal silicon under bending and tensile stressing
  publication-title: Proc 17th IEEE Int Conf Microelectromech Syst
  contributor:
    fullname: namazu
– ident: ref26
  doi: 10.1002/pssa.200460543
– ident: ref32
  doi: 10.1109/JMEMS.2005.859196
– start-page: 662
  year: 2003
  ident: ref3
  article-title: high-cycle fatigue test of nanoscale si and wires based on afm technique
  publication-title: Proc 16th IEEE Int Conf Microelectromech Syst
  contributor:
    fullname: namazu
– ident: ref13
  doi: 10.1063/1.2801390
– ident: ref9
  doi: 10.1007/BF02322482
– start-page: 213
  year: 2001
  ident: ref30
  article-title: size effect on mechanical properties of nano-scale single crystal silicon at elevated temperatures
  publication-title: Proc ISMS 21st Century
  contributor:
    fullname: isono
– ident: ref6
  doi: 10.4028/www.scientific.net/KEM.297-300.567
– ident: ref17
  doi: 10.1109/SENSOR.2005.1496384
– start-page: 112
  year: 1965
  ident: ref21
  publication-title: Formulas for Stress and Strain
  contributor:
    fullname: roark
– ident: ref16
  doi: 10.1109/16.848302
– ident: ref19
  doi: 10.1541/ieejsmas.125.374
– ident: ref18
  doi: 10.1109/84.896765
– start-page: 87
  year: 2001
  ident: ref31
  article-title: plastic behavior of nano-scale single crystal silicon at intermediate temperatures for mems
  publication-title: Proc 10th ICF
  contributor:
    fullname: isono
– ident: ref10
  doi: 10.1109/84.967383
– volume: 104
  start-page: 78
  year: 2003
  ident: ref23
  article-title: quasi-static bending test of nano-scale wire at intermediate temperatures using afm-based technique
  publication-title: Sens Actuators A Phys
  doi: 10.1016/S0924-4247(02)00431-4
  contributor:
    fullname: namazu
SSID ssj0014486
Score 2.1868575
Snippet This paper describes fatigue damage evaluation for micro-nanoscale single-crystal silicon (SCS) structures toward the reliable design of microelectromechanical...
The fatigue tests, by using atomic force microscope (AFM), nanoindentation tester, and specially developed uniaxial tensile tester, have been conducted under...
SourceID proquest
crossref
pascalfrancis
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 129
SubjectTerms Atomic force microscope (AFM)
Atomic force microscopy
Atomic structure
Deformation
durability
Exact sciences and technology
Fatigue
Fatigue failure
Fatigue life
fatigue life prediction
Frequency
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Life estimation
Life testing
Lifetime estimation
Mechanical instruments, equipment and techniques
Metallurgy
Microelectromechanical systems
Micromechanical devices and systems
Nanostructure
Physics
reliability
resolved shear stress
Scanning electron microscopy
Silicon
Single crystals
single-crystal silicon (SCS)
size effect
Stress
Stresses
Temperature dependence
Tensile stress
Title Fatigue Life Prediction Criterion for Micro-Nanoscale Single-Crystal Silicon Structures
URI https://ieeexplore.ieee.org/document/4717295
https://www.proquest.com/docview/912364857
https://search.proquest.com/docview/1022906603
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lSrBodAWRGipgsSteBvH9iY-oqqrqiIIaVvRW5TYE1SxylbdzQF-PTNONmqBA5fIia0k9tiebzwvgA_aKuut9MKljRPaV4mwxmSCeE8qm1qjbPhAv_gyvbzRV7fmdgs-jr4wiBiMz3DCxaDL90vX8VHZGW2khAXNNmznSdr7ao0aAxIzgicR4Q-RSZNtHGQSe3ZVXBTz3mySLyZXT5hQyKrCNpHVioal6fNZ_LU1B34zewHF5k97M5Mfk25dT9yvP4I4_m9XXsLeADzjT_1M2YctbA_g-aNwhAewG8xB3eoQvs2IYN87jD_fNRh_fWBtDlMw5swI1JpKBHbjgq35BG3QS-4TxnN6zQLF-cNPwpwLul3QPGvjeYhR25Fg_wpuZhfX55diSMEgnDJqLRRtAWbqUVrnG5TO-1QbgjRNnTjXZFnO8WO8JJieeyWdnubIuTyMr0xuq8Sp17DTLlt8A3FGswGJXeq6murKZpWx7N-nDT1QiZYRnG5oUt73kTbKIKEktgwU7DNmDhSM4JAHdWw5jGcEJ0_IONankg9ubB7B0Yau5bBaV6XlEDQ6N1kE78daWmasO6laXHarkgVjS_AsUW___eUjeNYrmtjS5Rh2aGTxHeGVdX0SJupvqpjmHQ
link.rule.ids 315,786,790,802,27955,27956,55107
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8amxDjwNjGRBgbmcQN3MW1XcdHNK0qo5kmdRO7RYntIESVorU5wF_Pe04abcBhl8iJrST2s_1-z-8L4L00wjjDHbPDyjLpioQZpTRD3jPkVSk9r-hAP7scTW7kxa263YCPvS-M9z4Yn_kBFYMu3y1sQ0dlp7iRIhZUT2AL-XyiW2-tXmeAgkbwJUIEwjRXeu0ik5jTi-w8m7WGk3RRqXjAhkJeFbKKLJY4MFWb0eKfzTlwnPEOZOt_bQ1NfgyaVTmwv_8K4_jYzryEFx30jD-1c2UXNny9B8_vBSTcg6fBINQu9-HrGEn2rfHx9Hvl46s70ucQDWPKjYCtsYRwN87Ino_hFr2gPvl4hq-Ze3Z29wtR5xxv5zjT6ngWotQ2KNq_gpvx-fXZhHVJGJgVSqyYwE1AjZznxrrKc-vcUCoENVWZWFtpnVIEGccRqKdOcCtHqadsHsoVKjVFYsUBbNaL2r-GWON88MgwZVmMZGF0oQx5-EmFD0QieQQf1jTJf7axNvIgoyQmDxRsc2Z2FIxgnwa1b9mNZwTHD8jY1w85Hd2YNILDNV3zbr0uc0NBaGSqdAQnfS0uNNKeFLVfNMucRGODAC0Rb_7_5XfwbHKdTfPp58svh7Ddqp3I7uUtbOIo-yNEL6vyOEzaP_Bz6XE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fatigue+Life+Prediction+Criterion+for+Micro-Nanoscale+Single-Crystal+Silicon+Structures&rft.jtitle=Journal+of+microelectromechanical+systems&rft.au=Namazu%2C+T&rft.au=Isono%2C+Y&rft.date=2009-02-01&rft.issn=1057-7157&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1109%2FJMEMS.2008.2008583&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7157&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7157&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7157&client=summon