Macrophage polarization in atherosclerosis

•Effects of macrophages on atherosclerosis are related to macrophage polarization.•Different macrophage phenotypes have different effects on the plaque progress.•Macrophage polarization is the potential targets for treating atherosclerosis. Atherosclerosis is a chronic inflammatory response that inc...

Full description

Saved in:
Bibliographic Details
Published inClinica chimica acta Vol. 501; pp. 142 - 146
Main Authors Yang, Sai, Yuan, Hou-Qin, Hao, Ya-Meng, Ren, Zhong, Qu, Shun-Lin, Liu, Lu-Shan, Wei, Dang-Heng, Tang, Zhi-Han, Zhang, Ji-Feng, Jiang, Zhi-Sheng
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.2020
Subjects
Online AccessGet full text
ISSN0009-8981
1873-3492
1873-3492
DOI10.1016/j.cca.2019.10.034

Cover

Loading…
Abstract •Effects of macrophages on atherosclerosis are related to macrophage polarization.•Different macrophage phenotypes have different effects on the plaque progress.•Macrophage polarization is the potential targets for treating atherosclerosis. Atherosclerosis is a chronic inflammatory response that increases the risk of cardiovascular diseases. An in-depth study of the pathogenesis of atherosclerosis is critical for the treatment of atherosclerotic cardiovascular disease. The development of atherosclerosis involves many cells, such as endothelial cells, vascular smooth muscle cells, macrophages, and others. The considerable effects of macrophages in atherosclerosis are inextricably linked to macrophage polarization and the resulting phenotype. Moreover, the significant impact of macrophages on atherosclerosis depend not only on the function of the different macrophage phenotypes but also on the relative ratio of different phenotypes in the plaque. Research on atherosclerosis therapy indicates that the reduced plaque size and enhanced stability are partly due to modulating macrophage polarization. Therefore, regulating macrophage polarization and changing the proportion of macrophage phenotypes in plaques is a new therapeutic approach for atherosclerosis. This review provides a new perspective for atherosclerosis therapy by summarizing the relationship between macrophage polarization and atherosclerosis, as well as treatment targeting macrophage polarization.
AbstractList Atherosclerosis is a chronic inflammatory response that increases the risk of cardiovascular diseases. An in-depth study of the pathogenesis of atherosclerosis is critical for the treatment of atherosclerotic cardiovascular disease. The development of atherosclerosis involves many cells, such as endothelial cells, vascular smooth muscle cells, macrophages, and others. The considerable effects of macrophages in atherosclerosis are inextricably linked to macrophage polarization and the resulting phenotype. Moreover, the significant impact of macrophages on atherosclerosis depend not only on the function of the different macrophage phenotypes but also on the relative ratio of different phenotypes in the plaque. Research on atherosclerosis therapy indicates that the reduced plaque size and enhanced stability are partly due to modulating macrophage polarization. Therefore, regulating macrophage polarization and changing the proportion of macrophage phenotypes in plaques is a new therapeutic approach for atherosclerosis. This review provides a new perspective for atherosclerosis therapy by summarizing the relationship between macrophage polarization and atherosclerosis, as well as treatment targeting macrophage polarization.Atherosclerosis is a chronic inflammatory response that increases the risk of cardiovascular diseases. An in-depth study of the pathogenesis of atherosclerosis is critical for the treatment of atherosclerotic cardiovascular disease. The development of atherosclerosis involves many cells, such as endothelial cells, vascular smooth muscle cells, macrophages, and others. The considerable effects of macrophages in atherosclerosis are inextricably linked to macrophage polarization and the resulting phenotype. Moreover, the significant impact of macrophages on atherosclerosis depend not only on the function of the different macrophage phenotypes but also on the relative ratio of different phenotypes in the plaque. Research on atherosclerosis therapy indicates that the reduced plaque size and enhanced stability are partly due to modulating macrophage polarization. Therefore, regulating macrophage polarization and changing the proportion of macrophage phenotypes in plaques is a new therapeutic approach for atherosclerosis. This review provides a new perspective for atherosclerosis therapy by summarizing the relationship between macrophage polarization and atherosclerosis, as well as treatment targeting macrophage polarization.
Atherosclerosis is a chronic inflammatory response that increases the risk of cardiovascular diseases. An in-depth study of the pathogenesis of atherosclerosis is critical for the treatment of atherosclerotic cardiovascular disease. The development of atherosclerosis involves many cells, such as endothelial cells, vascular smooth muscle cells, macrophages, and others. The considerable effects of macrophages in atherosclerosis are inextricably linked to macrophage polarization and the resulting phenotype. Moreover, the significant impact of macrophages on atherosclerosis depend not only on the function of the different macrophage phenotypes but also on the relative ratio of different phenotypes in the plaque. Research on atherosclerosis therapy indicates that the reduced plaque size and enhanced stability are partly due to modulating macrophage polarization. Therefore, regulating macrophage polarization and changing the proportion of macrophage phenotypes in plaques is a new therapeutic approach for atherosclerosis. This review provides a new perspective for atherosclerosis therapy by summarizing the relationship between macrophage polarization and atherosclerosis, as well as treatment targeting macrophage polarization.
•Effects of macrophages on atherosclerosis are related to macrophage polarization.•Different macrophage phenotypes have different effects on the plaque progress.•Macrophage polarization is the potential targets for treating atherosclerosis. Atherosclerosis is a chronic inflammatory response that increases the risk of cardiovascular diseases. An in-depth study of the pathogenesis of atherosclerosis is critical for the treatment of atherosclerotic cardiovascular disease. The development of atherosclerosis involves many cells, such as endothelial cells, vascular smooth muscle cells, macrophages, and others. The considerable effects of macrophages in atherosclerosis are inextricably linked to macrophage polarization and the resulting phenotype. Moreover, the significant impact of macrophages on atherosclerosis depend not only on the function of the different macrophage phenotypes but also on the relative ratio of different phenotypes in the plaque. Research on atherosclerosis therapy indicates that the reduced plaque size and enhanced stability are partly due to modulating macrophage polarization. Therefore, regulating macrophage polarization and changing the proportion of macrophage phenotypes in plaques is a new therapeutic approach for atherosclerosis. This review provides a new perspective for atherosclerosis therapy by summarizing the relationship between macrophage polarization and atherosclerosis, as well as treatment targeting macrophage polarization.
Author Jiang, Zhi-Sheng
Hao, Ya-Meng
Ren, Zhong
Tang, Zhi-Han
Zhang, Ji-Feng
Qu, Shun-Lin
Yuan, Hou-Qin
Wei, Dang-Heng
Yang, Sai
Liu, Lu-Shan
Author_xml – sequence: 1
  givenname: Sai
  surname: Yang
  fullname: Yang, Sai
  organization: Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China
– sequence: 2
  givenname: Hou-Qin
  surname: Yuan
  fullname: Yuan, Hou-Qin
  organization: Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China
– sequence: 3
  givenname: Ya-Meng
  surname: Hao
  fullname: Hao, Ya-Meng
  organization: Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China
– sequence: 4
  givenname: Zhong
  surname: Ren
  fullname: Ren, Zhong
  organization: Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China
– sequence: 5
  givenname: Shun-Lin
  surname: Qu
  fullname: Qu, Shun-Lin
  organization: Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China
– sequence: 6
  givenname: Lu-Shan
  surname: Liu
  fullname: Liu, Lu-Shan
  organization: Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China
– sequence: 7
  givenname: Dang-Heng
  surname: Wei
  fullname: Wei, Dang-Heng
  organization: Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China
– sequence: 8
  givenname: Zhi-Han
  surname: Tang
  fullname: Tang, Zhi-Han
  organization: Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China
– sequence: 9
  givenname: Ji-Feng
  surname: Zhang
  fullname: Zhang, Ji-Feng
  organization: Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Rd, NCRC Bldg26-357S, Ann Arbor, MI 48109, USA
– sequence: 10
  givenname: Zhi-Sheng
  surname: Jiang
  fullname: Jiang, Zhi-Sheng
  email: zsjiang2005@163.com
  organization: Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31730809$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtKAzEUhoMo9qIP4Ea6FGHGnMncgisp3qDiRtchk5zYlOnMmEwFfXoztt246CbhhP875P8m5LhpGyTkAmgMFPKbVayUjBMKPMwxZekRGUNZsIilPDkmY0opj0pewohMvF-FMaU5nJIRg4LRkvIxuX6RyrXdUn7grGtr6eyP7G3bzGwzk_0SXetVPZzWn5ETI2uP57t7St4f7t_mT9Hi9fF5freIFMtYH7EEChM-oTWnmYFcyTzNKJVpxk2qWZmVqtTaQJVyw7GCJDOagWTGVGhyKdmUXG33dq793KDvxdp6hXUtG2w3XiQMMqAs1ArRy110U61Ri87ZtXTfYt8vBIptIJT03qERyvZ_BXsnbS2AisGkWIlgUgwmh6dgMpDwj9wvP8TcbhkMer4sOuGVxUahtg5VL3RrD9C_GsCKTw
CitedBy_id crossref_primary_10_1016_j_phymed_2023_155139
crossref_primary_10_1016_j_microb_2024_100212
crossref_primary_10_1139_cjpp_2021_0731
crossref_primary_10_3389_fimmu_2024_1365422
crossref_primary_10_3390_ijms231911718
crossref_primary_10_1016_j_atherosclerosis_2024_117478
crossref_primary_10_3389_fcvm_2021_739212
crossref_primary_10_2147_IJN_S318331
crossref_primary_10_1080_08916934_2021_2015579
crossref_primary_10_3390_ijms24032429
crossref_primary_10_1016_j_phrs_2021_105627
crossref_primary_10_1016_j_arr_2024_102654
crossref_primary_10_1016_j_cjco_2024_11_018
crossref_primary_10_3389_fmolb_2021_715461
crossref_primary_10_1039_D0TB02956D
crossref_primary_10_3390_genes13050756
crossref_primary_10_3390_ijms21082920
crossref_primary_10_1155_2020_8848930
crossref_primary_10_3389_fgene_2022_989459
crossref_primary_10_4103_ejpi_EJPI_D_23_00040
crossref_primary_10_1016_j_intimp_2022_109100
crossref_primary_10_1016_j_phymed_2024_155526
crossref_primary_10_1016_j_phrs_2024_107258
crossref_primary_10_1002_adma_202110660
crossref_primary_10_1016_j_isci_2025_112168
crossref_primary_10_26724_2079_8334_2022_1_79_179_183
crossref_primary_10_1002_adhm_202401113
crossref_primary_10_3389_fimmu_2024_1364161
crossref_primary_10_3389_fcvm_2024_1388025
crossref_primary_10_3389_fmolb_2021_679797
crossref_primary_10_1016_j_foodres_2025_115913
crossref_primary_10_2217_bmm_2020_0529
crossref_primary_10_36660_abc_20230398
crossref_primary_10_1016_j_molimm_2024_01_002
crossref_primary_10_1080_15592294_2024_2437272
crossref_primary_10_3390_v15030773
crossref_primary_10_1186_s10020_023_00753_z
crossref_primary_10_4239_wjd_v14_i10_1478
crossref_primary_10_3390_ijms25179737
crossref_primary_10_1016_j_fct_2023_113603
crossref_primary_10_1155_2022_9763377
crossref_primary_10_12997_jla_2023_12_2_132
crossref_primary_10_1002_jev2_12354
crossref_primary_10_3389_fimmu_2022_705472
crossref_primary_10_1016_j_ecoenv_2023_115325
crossref_primary_10_1080_13510002_2021_1976568
crossref_primary_10_1007_s12079_023_00730_5
crossref_primary_10_2174_0113862073258523231025095117
crossref_primary_10_1186_s12951_025_03271_8
crossref_primary_10_1016_j_biopha_2022_114201
crossref_primary_10_1038_s41419_021_03544_8
crossref_primary_10_3390_nu15030591
crossref_primary_10_1002_adfm_202214655
crossref_primary_10_1186_s41065_025_00367_x
crossref_primary_10_18632_aging_202491
crossref_primary_10_1002_adfm_202311305
crossref_primary_10_1016_j_jff_2023_105985
crossref_primary_10_3389_fcvm_2024_1478827
crossref_primary_10_1016_j_intimp_2021_107791
crossref_primary_10_1096_fj_202201486R
crossref_primary_10_1166_jbn_2022_3359
crossref_primary_10_1007_s11033_023_09014_y
crossref_primary_10_1016_j_heliyon_2023_e16960
crossref_primary_10_1042_BSR20221394
crossref_primary_10_3390_molecules28052012
crossref_primary_10_1002_mnfr_202300867
crossref_primary_10_1016_j_envres_2024_118523
crossref_primary_10_1515_jbcpp_2021_0291
crossref_primary_10_1097_MD_0000000000037811
crossref_primary_10_1111_jcmm_70263
crossref_primary_10_1177_20406223221076891
crossref_primary_10_3389_fphar_2021_669730
crossref_primary_10_1155_2020_4749135
crossref_primary_10_1016_j_avsg_2023_08_030
crossref_primary_10_1016_j_molimm_2022_02_018
crossref_primary_10_1016_j_medidd_2024_100189
crossref_primary_10_1016_j_atherosclerosis_2021_02_016
crossref_primary_10_3390_biology12030376
crossref_primary_10_1111_cpr_70012
crossref_primary_10_1016_j_vph_2024_107419
crossref_primary_10_31083_j_rcm2404097
crossref_primary_10_1055_a_1342_3648
crossref_primary_10_3390_bios14100475
crossref_primary_10_1016_j_jep_2024_118545
crossref_primary_10_1515_jbcpp_2021_0080
crossref_primary_10_3389_fimmu_2024_1435021
crossref_primary_10_1038_s41598_021_01866_3
crossref_primary_10_3389_fcvm_2023_1038738
crossref_primary_10_3389_fimmu_2024_1352946
crossref_primary_10_1016_j_intimp_2024_113131
crossref_primary_10_15789_1563_0625_PIA_16639
crossref_primary_10_1002_iid3_1197
crossref_primary_10_1016_j_jconrel_2023_01_024
crossref_primary_10_1089_hum_2024_166
crossref_primary_10_3389_fphar_2021_764175
crossref_primary_10_1016_j_imlet_2020_10_003
crossref_primary_10_1016_j_phrs_2022_106236
crossref_primary_10_1016_j_mehy_2023_111078
crossref_primary_10_1155_2020_8881683
crossref_primary_10_1002_jgm_3626
crossref_primary_10_1097_MD_0000000000034362
crossref_primary_10_1016_j_phymed_2024_155848
crossref_primary_10_1016_j_intimp_2022_109260
crossref_primary_10_1124_jpet_122_001284
crossref_primary_10_3389_fimmu_2021_682853
crossref_primary_10_3389_fphar_2022_954938
crossref_primary_10_1111_iej_14138
crossref_primary_10_1016_j_carbpol_2024_123203
crossref_primary_10_1016_j_ijbiomac_2022_08_059
crossref_primary_10_3389_fimmu_2022_910444
crossref_primary_10_4103_NRR_NRR_D_23_01355
crossref_primary_10_36660_abc_20210682
crossref_primary_10_1016_j_isci_2022_105147
crossref_primary_10_1182_bloodadvances_2021005983
crossref_primary_10_3389_fcvm_2021_752337
crossref_primary_10_1016_j_nantod_2021_101351
crossref_primary_10_2174_0113892010267577231005102901
crossref_primary_10_1016_j_jep_2024_117838
crossref_primary_10_1016_j_intimp_2023_109730
crossref_primary_10_2147_CCID_S396173
crossref_primary_10_3389_fmicb_2022_798685
crossref_primary_10_1002_mabi_202200537
crossref_primary_10_1016_j_cclet_2022_06_008
crossref_primary_10_1177_0271678X241251976
crossref_primary_10_2147_TCRM_S353199
crossref_primary_10_1016_j_cca_2021_01_019
crossref_primary_10_1186_s13020_023_00758_0
crossref_primary_10_3390_molecules29071511
crossref_primary_10_3389_fcvm_2022_816369
crossref_primary_10_1097_FJC_0000000000001186
crossref_primary_10_3389_fimmu_2020_617804
crossref_primary_10_3389_fmolb_2020_621324
crossref_primary_10_3390_life12020197
crossref_primary_10_1002_adfm_202415477
crossref_primary_10_3390_biomedicines10030565
crossref_primary_10_1111_cei_13572
crossref_primary_10_3389_fimmu_2024_1507420
crossref_primary_10_1016_j_ajur_2023_01_008
crossref_primary_10_1016_j_lfs_2024_122811
crossref_primary_10_1155_2022_1609244
crossref_primary_10_3389_fimmu_2024_1490387
crossref_primary_10_1016_j_intimp_2023_110338
crossref_primary_10_4103_JHCR_JHCR_10_23
crossref_primary_10_3389_fimmu_2021_753940
crossref_primary_10_1021_acs_jafc_3c06375
crossref_primary_10_1016_j_ejphar_2021_174715
crossref_primary_10_1016_j_intimp_2023_109905
crossref_primary_10_1007_s10753_022_01725_x
crossref_primary_10_1016_j_bbrc_2025_151537
crossref_primary_10_3389_fcell_2020_600160
crossref_primary_10_1007_s10557_022_07335_x
crossref_primary_10_1021_acs_analchem_3c03999
crossref_primary_10_1186_s12872_024_03774_6
crossref_primary_10_1186_s12964_022_01016_w
crossref_primary_10_3389_fimmu_2022_993614
Cites_doi 10.1161/ATVBAHA.115.306132
10.3389/fphar.2018.00464
10.1089/ars.2015.6577
10.1159/000430126
10.5551/jat.RV17020
10.1016/j.ijcard.2015.03.151
10.1161/ATVBAHA.115.305438
10.1016/j.intimp.2017.11.037
10.1038/ncomms7676
10.2353/ajpath.2009.080431
10.1186/s12933-017-0626-3
10.1016/j.jacc.2011.10.852
10.1161/CIRCRESAHA.109.215715
10.1161/ATVBAHA.118.311185
10.1038/srep35234
10.1161/CIRCRESAHA.117.312513
10.1038/74680
10.1089/hum.2018.084
10.1080/10717544.2018.1477860
10.1016/j.pharmthera.2018.02.003
10.1152/ajpcell.00370.2015
10.1016/j.ijcard.2015.07.044
10.1177/1753425914526461
10.1155/2015/909572
10.1161/ATVBAHA.113.300986
10.3390/md15110358
10.1016/j.immuni.2014.06.008
10.3389/fimmu.2018.00878
10.1161/hh2201.099415
10.1111/jcmm.13329
10.1172/JCI75005
10.1161/ATVBAHA.116.308461
10.1016/j.atherosclerosis.2012.09.013
10.1016/j.celrep.2016.09.008
10.4049/jimmunol.0901368
10.1161/CIRCRESAHA.116.310262
10.1161/CIRCRESAHA.111.247577
10.1161/CIRCRESAHA.110.233775
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.cca.2019.10.034
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
EISSN 1873-3492
EndPage 146
ExternalDocumentID 31730809
10_1016_j_cca_2019_10_034
S0009898119320984
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.55
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABLVK
ABMAC
ABMZM
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
LCYCR
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBG
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
WH7
WUQ
X7M
XPP
ZA5
ZGI
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
NPM
PKN
7X8
ID FETCH-LOGICAL-c353t-3217f873dd905f16ca64500a459f4d3858c8ddf1b49f9eb125fd31a3ffbef6aa3
IEDL.DBID .~1
ISSN 0009-8981
1873-3492
IngestDate Fri Jul 11 04:35:17 EDT 2025
Wed Feb 19 02:31:55 EST 2025
Tue Jul 01 03:32:03 EDT 2025
Thu Apr 24 23:02:23 EDT 2025
Fri Feb 23 02:49:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Macrophage polarization
Phenotype
Atherosclerosis
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-3217f873dd905f16ca64500a459f4d3858c8ddf1b49f9eb125fd31a3ffbef6aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 31730809
PQID 2315103981
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_2315103981
pubmed_primary_31730809
crossref_citationtrail_10_1016_j_cca_2019_10_034
crossref_primary_10_1016_j_cca_2019_10_034
elsevier_sciencedirect_doi_10_1016_j_cca_2019_10_034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
2020-Feb
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Clinica chimica acta
PublicationTitleAlternate Clin Chim Acta
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhou, Zhang, Wang, Wei, Chen, Guo, Zhang, Wang (b0105) 2015; 36
Brenner, Franz, Kühlenthal, Kuschnerus, Remm, Gross, Theiss, Landmesser, Kränkel (b0120) 2015; 199
Erbel, Tyka, Helmes, Akhavanpoor, Rupp, Domschke, Linden, Wolf, Doesch, Lasitschka, Katus, Gleissner (b0095) 2015; 21
Li, Lei, Cao, Mi, Li, Cao (b0100) 2018; 55
Gleissner, Shaked, Little, Ley (b0090) 2010; 184
Zhou, Chen, Liu, Wu, Guo, Lin (b0135) 2017; 15
H. Winkels, E. hinger, M. Vassallo, K. Buscher, H.Q. Dinh, K. Kobiyama, A.A.J. Hamers, C. Cochain, E. Vafadarnejad, A.E. Saliba, A. Zernecke, A.B. Pramod, A.K. Ghosh, N. Anto Michel, N. Hoppe, I. Hilgendorf, A. Zirlik, C.C. Hedrick, K. Ley, D. Wolf, Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry, Circ. Res. 122 (2018) 1675–1688. https://doi.org/10.1161/CIRCRESAHA.117.312513.
Rinne, Guillamat-Prats, Rami, Bindila, Ring, Lyytikäinen, Raitoharju, Oksala, Lehtimäki, Weber, van der Vorst, Steffens (b0145) 2018; 38
Guo, Xiao, Sheng, Zhang, Tie, Wang, Zhao, Ji (b0115) 2018; 9
Van den Bossche, Baardman, Otto, van der Velden, Neele, van den Berg, Luque-Martin, Chen, Boshuizen, Ahmed, Hoeksema, de Vos, de Winther (b0185) 2016; 17
Chinetti-Gbaguidi, Daoudi, Rosa, Vinod, Louvet, Copin, Fanchon, Vanhoutte, Derudas, Belloy, Haulon, Zawadzki, Susen, Massy, Eeckhoute, Staels (b0035) 2017; 121
Erbel, Wolf, Lasitschka, Linden, Domschke, Akhavanpoor, Doesch, Katus, Gleissner (b0045) 2015; 186
Bruen, Curley, Kajani, Crean, O'Reilly, Lucitt, Godson, McGillicuddy, Belton (b0125) 2017; 16
Yin, You, Swier, Tang, Radwan, Pandya, Agrawal (b0150) 2015; 35
Stöger, Gijbels, van der Velden, Manca, van der Loos, Biessen, Daemen, Lutgens, de Winther (b0025) 2012; 225
Finn, Nakano, Polavarapu, Karmali, Saeed, Zhao, Yazdani, Otsuka, Davis, Habib, Narula, Kolodgie, Virmani (b0040) 2012; 59
Li, Sheng, Liu, Qian, Wu, Wu, Ma, Yao (b0140) 2019; 30
L.E. Otterbein, F.H. Bach, I. Alam, M. Soares, T.L.H.M. Wysk, R.J. Davis, R.A. Flavell, A.M. Choi, Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway, Nat Med. 6 (2000) 422–428. https://doi.org/10.1038/74680.
Taguchi, Nagao, Maeda, Yanagisawa, Sakai, Yamasaki, Wakayama, Watanabe, Otagiri, Maruyama (b0195) 2018; 25
Tajbakhsh, Rezaee, Kovanen, Sahebkar (b0065) 2018; 188
Zhang, Huang, Li, Dang, Yuan, Wang, Zeng, Sun, Liu, Ao, Tan, Su, Qian, Olsen, Zheng (b0160) 2018; 9
Boyle, Johns, Kampfer, Nguyen, Game, Schaer, Mason, Haskard (b0085) 2012; 110
Wan, Huo, Johns, Piper, Mason, Carling, Haskard, Boyle (b0130) 2013; 33
P.J. Murray, J.E. Allen, S.K. Biswas, E.A. Fisher, D.W. Gilroy, S. Goerdt, S. Gordon, J.A. Hamilton, L.B. Ivashkiv, T. Lawrence, M. Locati, A. Mantovani, F.O. Martinez, J.L. Mege, D.M. Mosser, G. Natoli, J.P. Saeij, J.L. Schultze, K.A. Shirey, A. Sica, J. Suttles, I. Udalova, J.A. van Ginderachter, S.N. Vogel, T.A. Wynn, Macrophage activation and polarization: nomenclature and experimental guidelines, Immunity. 41 (2014) 14–20. https://doi.org/10.1016/j.immuni.2014.06.008.
A. Kadl, A.K. Meher, P.R. Sharma, M.Y. Lee, A.C. Doran, S.R. Johnstone, M.R. Elliott, F. Gruber, J. Han, W. Chen, T. Kensler, K.S. Ravichandran, B.E. Isakson, B.R. Wamhoff, Leitinger. N, Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2, Circ Res. 107 (2010) 737–746. https://doi: 10.1161/CIRCRESAHA.109.215715.
Kadl, Meher, Sharma, Lee, Doran, Johnstone, Elliott, Gruber, Han, Chen, Kensler, Ravichandran, Isakson, Wamhoff, Leitinger (b0020) 2010; 107
C. Ma, Q. Ouyang, Z. Huang, X. Chen, Y. Lin, W. Hu, L. Lin L, Toll-Like Receptor 9 Inactivation Alleviated Atherosclerotic Progression and Inhibited Macrophage Polarized to M1 Phenotype in ApoE-/- Mice, Dis Markers. 2015 (2015) 9. http://dx.doi.org/10.1155/2015/909572.
Villa-Bellosta, Hamczyk, Andrés (b0075) 2016; 310
Zhang, Liu, Qiao, Zhang, Liu, Dong, Dai, Ni, Luan, Guan, Lu (b0110) 2018; 22
Chinetti-Gbaguidi, Baron, Bouhlel, Vanhoutte, Copin, Sebti, Derudas, Mayi, Bories, Tailleux, Haulon, Zawadzki, Jude, Staels (b0030) 2011; 108
Mallat, Gojova, Marchiol-Fournigault, Esposito, Kamaté, Merval, Fradelizi, Tedgui (b0060) 2001; 89
Lu, Zhang, Geng, Peng, Jayaraman, Chen, Xu, Yang, Li, Zheng, Shen, Wang, Liu, Wang, Zheng, Qi, Si, He, Liu, Lira, Sikora, Li, Xiong (b0180) 2015; 6
Shioi, Ikari (b0080) 2018; 25
Bisgaard, Mogensen, Rosendahl, Cucak, Nielsen, Rasmussen, Pedersen (b0055) 2016; 6
Boyle, Harrington, Piper, Elderfield, Stark, Landis, Haskard (b0015) 2009; 174
Rahman, Vengrenyuk, Ramsey, Vila, Girgis, Liu, Gusarova, Gromada, Weinstock, Moore, Loke, Fisher (b0070) 2017; 127
McAlpine, Huang, Emdin, Banko, Beriault, Shi, WerstucK (b0155) 2015; 35
Miao, Shen, Whiteman, Xin, Shen, Xin, Moore, Zhu (b0175) 2016; 25
Xu, Li, Wu, Shen, Ma, Qian, Ge (b0165) 2017; 37
Yin (10.1016/j.cca.2019.10.034_b0150) 2015; 35
Gleissner (10.1016/j.cca.2019.10.034_b0090) 2010; 184
10.1016/j.cca.2019.10.034_b0190
10.1016/j.cca.2019.10.034_b0050
Lu (10.1016/j.cca.2019.10.034_b0180) 2015; 6
10.1016/j.cca.2019.10.034_b0170
Taguchi (10.1016/j.cca.2019.10.034_b0195) 2018; 25
Villa-Bellosta (10.1016/j.cca.2019.10.034_b0075) 2016; 310
10.1016/j.cca.2019.10.034_b0010
Zhou (10.1016/j.cca.2019.10.034_b0105) 2015; 36
Mallat (10.1016/j.cca.2019.10.034_b0060) 2001; 89
Finn (10.1016/j.cca.2019.10.034_b0040) 2012; 59
Chinetti-Gbaguidi (10.1016/j.cca.2019.10.034_b0035) 2017; 121
Chinetti-Gbaguidi (10.1016/j.cca.2019.10.034_b0030) 2011; 108
Li (10.1016/j.cca.2019.10.034_b0140) 2019; 30
Kadl (10.1016/j.cca.2019.10.034_b0020) 2010; 107
Guo (10.1016/j.cca.2019.10.034_b0115) 2018; 9
Erbel (10.1016/j.cca.2019.10.034_b0045) 2015; 186
Zhang (10.1016/j.cca.2019.10.034_b0110) 2018; 22
Miao (10.1016/j.cca.2019.10.034_b0175) 2016; 25
Zhang (10.1016/j.cca.2019.10.034_b0160) 2018; 9
Bruen (10.1016/j.cca.2019.10.034_b0125) 2017; 16
10.1016/j.cca.2019.10.034_b0005
Li (10.1016/j.cca.2019.10.034_b0100) 2018; 55
Zhou (10.1016/j.cca.2019.10.034_b0135) 2017; 15
McAlpine (10.1016/j.cca.2019.10.034_b0155) 2015; 35
Shioi (10.1016/j.cca.2019.10.034_b0080) 2018; 25
Boyle (10.1016/j.cca.2019.10.034_b0085) 2012; 110
Xu (10.1016/j.cca.2019.10.034_b0165) 2017; 37
Brenner (10.1016/j.cca.2019.10.034_b0120) 2015; 199
Van den Bossche (10.1016/j.cca.2019.10.034_b0185) 2016; 17
Wan (10.1016/j.cca.2019.10.034_b0130) 2013; 33
Boyle (10.1016/j.cca.2019.10.034_b0015) 2009; 174
Tajbakhsh (10.1016/j.cca.2019.10.034_b0065) 2018; 188
Rinne (10.1016/j.cca.2019.10.034_b0145) 2018; 38
Stöger (10.1016/j.cca.2019.10.034_b0025) 2012; 225
Erbel (10.1016/j.cca.2019.10.034_b0095) 2015; 21
Rahman (10.1016/j.cca.2019.10.034_b0070) 2017; 127
Bisgaard (10.1016/j.cca.2019.10.034_b0055) 2016; 6
References_xml – reference: H. Winkels, E. hinger, M. Vassallo, K. Buscher, H.Q. Dinh, K. Kobiyama, A.A.J. Hamers, C. Cochain, E. Vafadarnejad, A.E. Saliba, A. Zernecke, A.B. Pramod, A.K. Ghosh, N. Anto Michel, N. Hoppe, I. Hilgendorf, A. Zirlik, C.C. Hedrick, K. Ley, D. Wolf, Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry, Circ. Res. 122 (2018) 1675–1688. https://doi.org/10.1161/CIRCRESAHA.117.312513.
– volume: 15
  start-page: E358
  year: 2017
  ident: b0135
  article-title: Asperlin Inhibits LPS-evoked foam cell formation and prevents atherosclerosis in ApoE−/−Mice
  publication-title: Mar. Drugs
– volume: 21
  start-page: 255
  year: 2015
  end-page: 265
  ident: b0095
  article-title: CXCL4-induced plaque macrophages can be specifically identified by co-expression of MMP7+S100A8+ in vitro and in vivo
  publication-title: Innate Immun.
– volume: 25
  start-page: 294
  year: 2018
  end-page: 303
  ident: b0080
  article-title: Plaque calcification during atherosclerosis progression and regression
  publication-title: J. Atheroscler. Thromb.
– volume: 9
  start-page: 464
  year: 2018
  ident: b0115
  article-title: Ginsenoside Rg3 mitigates atherosclerosis progression in Diabetic apoE–/– Mice by Skewing Macrophages to the M2 Phenotype
  publication-title: Front. Pharmacol.
– reference: P.J. Murray, J.E. Allen, S.K. Biswas, E.A. Fisher, D.W. Gilroy, S. Goerdt, S. Gordon, J.A. Hamilton, L.B. Ivashkiv, T. Lawrence, M. Locati, A. Mantovani, F.O. Martinez, J.L. Mege, D.M. Mosser, G. Natoli, J.P. Saeij, J.L. Schultze, K.A. Shirey, A. Sica, J. Suttles, I. Udalova, J.A. van Ginderachter, S.N. Vogel, T.A. Wynn, Macrophage activation and polarization: nomenclature and experimental guidelines, Immunity. 41 (2014) 14–20. https://doi.org/10.1016/j.immuni.2014.06.008.
– volume: 30
  start-page: 339
  year: 2019
  end-page: 351
  ident: b0140
  article-title: Kallistatin inhibits atherosclerotic inflammation by regulating macrophage polarization
  publication-title: Hum. Gene Ther.
– volume: 188
  start-page: 12
  year: 2018
  end-page: 25
  ident: b0065
  article-title: Efferocytosis in atherosclerotic lesions: malfunctioning regulatory pathways and control mechanisms
  publication-title: Pharmacol. Ther.
– volume: 89
  start-page: 930
  year: 2001
  end-page: 934
  ident: b0060
  article-title: Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice
  publication-title: Circ. Res.
– volume: 127
  start-page: 2904
  year: 2017
  end-page: 2915
  ident: b0070
  article-title: Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression
  publication-title: J. Clin. Invest.
– volume: 110
  start-page: 20
  year: 2012
  end-page: 33
  ident: b0085
  article-title: Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection
  publication-title: Circ. Res.
– volume: 37
  start-page: 226
  year: 2017
  end-page: 236
  ident: b0165
  article-title: Role of KCa3.1 channels in macrophage polarization and its relevance in atherosclerotic plaque instability
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 225
  start-page: 461
  year: 2012
  end-page: 468
  ident: b0025
  article-title: Distribution of macrophage polarization markers in human atherosclerosis
  publication-title: Atherosclerosis
– volume: 25
  start-page: 268
  year: 2016
  end-page: 281
  ident: b0175
  article-title: Hydrogen sulfide mitigates myocardial infarction via promotion of mitochondrial biogenesis-Dependent M2 polarization of macrophages
  publication-title: Antioxid. Redox Signal.
– volume: 17
  start-page: 684
  year: 2016
  end-page: 696
  ident: b0185
  article-title: Mitochondrial dysfunction prevents repolarization of inflammatory macrophages
  publication-title: Cell Rep.
– volume: 55
  start-page: 120
  year: 2018
  end-page: 127
  ident: b0100
  article-title: Crocin alleviates coronary atherosclerosis via inhibiting lipid synthesis and inducing M2 macrophage polarization
  publication-title: Int. Immunopharmacol.
– volume: 59
  start-page: 166
  year: 2012
  end-page: 177
  ident: b0040
  article-title: Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques
  publication-title: J. Am. Coll. Cardiol.
– volume: 6
  start-page: 35234
  year: 2016
  ident: b0055
  article-title: Bone marrow-derived and peritoneal macrophages have different inflammatory response to oxLDL and M1/M2 marker expression - implications for atherosclerosis research
  publication-title: Sci. Rep.
– volume: 121
  start-page: 19
  year: 2017
  end-page: 30
  ident: b0035
  article-title: Human alternative macrophages populate calcified areas of atherosclerotic lesions and display impaired RANKL-Induced Osteoclastic Bone Resorption Activity
  publication-title: Circ. Res.
– volume: 108
  start-page: 985
  year: 2011
  end-page: 995
  ident: b0030
  article-title: Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways
  publication-title: Circ. Res.
– volume: 36
  start-page: 631
  year: 2015
  end-page: 641
  ident: b0105
  article-title: Curcumin modulates macrophage polarization through the Inhibition of the Toll-Like Receptor 4 Expression and its Signaling Pathways
  publication-title: Cell Physiol. Biochem.
– volume: 174
  start-page: 1097
  year: 2009
  end-page: 1108
  ident: b0015
  article-title: Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype
  publication-title: Am. J. Pathol.
– reference: A. Kadl, A.K. Meher, P.R. Sharma, M.Y. Lee, A.C. Doran, S.R. Johnstone, M.R. Elliott, F. Gruber, J. Han, W. Chen, T. Kensler, K.S. Ravichandran, B.E. Isakson, B.R. Wamhoff, Leitinger. N, Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2, Circ Res. 107 (2010) 737–746. https://doi: 10.1161/CIRCRESAHA.109.215715.
– volume: 22
  start-page: 409
  year: 2018
  end-page: 416
  ident: b0110
  article-title: Ginsenoside Rb1 enhances atherosclerotic plaque stability by skewing macrophages to the M2 phenotype
  publication-title: J. Cell. Mol. Med.
– volume: 9
  start-page: 878
  year: 2018
  ident: b0160
  article-title: Human Gingiva-Derived Mesenchymal stem cells modulate monocytes/macrophages and alleviate Atherosclerosis
  publication-title: Front. Immunol.
– reference: L.E. Otterbein, F.H. Bach, I. Alam, M. Soares, T.L.H.M. Wysk, R.J. Davis, R.A. Flavell, A.M. Choi, Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway, Nat Med. 6 (2000) 422–428. https://doi.org/10.1038/74680.
– volume: 35
  start-page: 2432
  year: 2015
  end-page: 2442
  ident: b0150
  article-title: Vitamin D protects against atherosclerosis via regulation of cholesterol efflux and macrophage polarization in hypercholesterolemic Swine
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 107
  start-page: 737
  year: 2010
  end-page: 746
  ident: b0020
  article-title: Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2
  publication-title: Circ. Res.
– volume: 16
  start-page: 143
  year: 2017
  ident: b0125
  article-title: Liraglutide dictates macrophage phenotype in apolipoprotein E null mice during early atherosclerosis
  publication-title: Cardiovasc. Diabetol.
– reference: C. Ma, Q. Ouyang, Z. Huang, X. Chen, Y. Lin, W. Hu, L. Lin L, Toll-Like Receptor 9 Inactivation Alleviated Atherosclerotic Progression and Inhibited Macrophage Polarized to M1 Phenotype in ApoE-/- Mice, Dis Markers. 2015 (2015) 9. http://dx.doi.org/10.1155/2015/909572.
– volume: 33
  start-page: 2470
  year: 2013
  end-page: 2480
  ident: b0130
  article-title: 5'-AMP-activated protein kinase-activating transcription factor 1 cascade modulates human monocyte-derived macrophages to atheroprotective functions in response to heme or metformin
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 184
  start-page: 4810
  year: 2010
  end-page: 4818
  ident: b0090
  article-title: CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages
  publication-title: J Immunol.
– volume: 38
  start-page: 2562
  year: 2018
  end-page: 2575
  ident: b0145
  article-title: Palmitoylethanolamide promotes a proresolving macrophage phenotype and attenuates atherosclerotic plaque formation
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 6
  start-page: 6676
  year: 2015
  ident: b0180
  article-title: Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization
  publication-title: Nat. Commun.
– volume: 25
  start-page: 1266
  year: 2018
  end-page: 1274
  ident: b0195
  article-title: Biomimetic carbon monoxide delivery based on hemoglobin vesicles ameliorates acute pancreatitis in mice via the regulation of macrophage and neutrophil activity
  publication-title: Drug Deliv.
– volume: 35
  start-page: 1113
  year: 2015
  end-page: 1122
  ident: b0155
  article-title: Deletion of Myeloid GSK3α attenuates atherosclerosis and promotes an M2 macrophage phenotype
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 310
  start-page: C788
  year: 2016
  end-page: C799
  ident: b0075
  article-title: Alternatively activated macrophages exhibit an anticalcifying activity dependent on extracellular ATP/pyrophosphate metabolism
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 186
  start-page: 219
  year: 2015
  end-page: 225
  ident: b0045
  article-title: Prevalence of M4 macrophages within human coronary atherosclerotic plaques is associated with features of plaque instability
  publication-title: Int. J. Cardiol.
– volume: 199
  start-page: 163
  year: 2015
  end-page: 169
  ident: b0120
  article-title: DPP-4 inhibition ameliorates atherosclerosis by priming monocytes into M2 macrophages
  publication-title: Int. J. Cardiol.
– volume: 35
  start-page: 2432
  year: 2015
  ident: 10.1016/j.cca.2019.10.034_b0150
  article-title: Vitamin D protects against atherosclerosis via regulation of cholesterol efflux and macrophage polarization in hypercholesterolemic Swine
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.115.306132
– volume: 9
  start-page: 464
  year: 2018
  ident: 10.1016/j.cca.2019.10.034_b0115
  article-title: Ginsenoside Rg3 mitigates atherosclerosis progression in Diabetic apoE–/– Mice by Skewing Macrophages to the M2 Phenotype
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.00464
– volume: 25
  start-page: 268
  year: 2016
  ident: 10.1016/j.cca.2019.10.034_b0175
  article-title: Hydrogen sulfide mitigates myocardial infarction via promotion of mitochondrial biogenesis-Dependent M2 polarization of macrophages
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2015.6577
– volume: 36
  start-page: 631
  year: 2015
  ident: 10.1016/j.cca.2019.10.034_b0105
  article-title: Curcumin modulates macrophage polarization through the Inhibition of the Toll-Like Receptor 4 Expression and its Signaling Pathways
  publication-title: Cell Physiol. Biochem.
  doi: 10.1159/000430126
– volume: 25
  start-page: 294
  year: 2018
  ident: 10.1016/j.cca.2019.10.034_b0080
  article-title: Plaque calcification during atherosclerosis progression and regression
  publication-title: J. Atheroscler. Thromb.
  doi: 10.5551/jat.RV17020
– volume: 186
  start-page: 219
  year: 2015
  ident: 10.1016/j.cca.2019.10.034_b0045
  article-title: Prevalence of M4 macrophages within human coronary atherosclerotic plaques is associated with features of plaque instability
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2015.03.151
– volume: 35
  start-page: 1113
  year: 2015
  ident: 10.1016/j.cca.2019.10.034_b0155
  article-title: Deletion of Myeloid GSK3α attenuates atherosclerosis and promotes an M2 macrophage phenotype
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.115.305438
– volume: 55
  start-page: 120
  year: 2018
  ident: 10.1016/j.cca.2019.10.034_b0100
  article-title: Crocin alleviates coronary atherosclerosis via inhibiting lipid synthesis and inducing M2 macrophage polarization
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2017.11.037
– volume: 6
  start-page: 6676
  year: 2015
  ident: 10.1016/j.cca.2019.10.034_b0180
  article-title: Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7676
– volume: 174
  start-page: 1097
  year: 2009
  ident: 10.1016/j.cca.2019.10.034_b0015
  article-title: Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2009.080431
– volume: 16
  start-page: 143
  year: 2017
  ident: 10.1016/j.cca.2019.10.034_b0125
  article-title: Liraglutide dictates macrophage phenotype in apolipoprotein E null mice during early atherosclerosis
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-017-0626-3
– volume: 59
  start-page: 166
  year: 2012
  ident: 10.1016/j.cca.2019.10.034_b0040
  article-title: Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2011.10.852
– volume: 107
  start-page: 737
  year: 2010
  ident: 10.1016/j.cca.2019.10.034_b0020
  article-title: Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.109.215715
– volume: 38
  start-page: 2562
  year: 2018
  ident: 10.1016/j.cca.2019.10.034_b0145
  article-title: Palmitoylethanolamide promotes a proresolving macrophage phenotype and attenuates atherosclerotic plaque formation
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.118.311185
– volume: 6
  start-page: 35234
  year: 2016
  ident: 10.1016/j.cca.2019.10.034_b0055
  article-title: Bone marrow-derived and peritoneal macrophages have different inflammatory response to oxLDL and M1/M2 marker expression - implications for atherosclerosis research
  publication-title: Sci. Rep.
  doi: 10.1038/srep35234
– ident: 10.1016/j.cca.2019.10.034_b0005
  doi: 10.1161/CIRCRESAHA.117.312513
– ident: 10.1016/j.cca.2019.10.034_b0190
  doi: 10.1038/74680
– volume: 30
  start-page: 339
  year: 2019
  ident: 10.1016/j.cca.2019.10.034_b0140
  article-title: Kallistatin inhibits atherosclerotic inflammation by regulating macrophage polarization
  publication-title: Hum. Gene Ther.
  doi: 10.1089/hum.2018.084
– volume: 25
  start-page: 1266
  year: 2018
  ident: 10.1016/j.cca.2019.10.034_b0195
  article-title: Biomimetic carbon monoxide delivery based on hemoglobin vesicles ameliorates acute pancreatitis in mice via the regulation of macrophage and neutrophil activity
  publication-title: Drug Deliv.
  doi: 10.1080/10717544.2018.1477860
– volume: 188
  start-page: 12
  year: 2018
  ident: 10.1016/j.cca.2019.10.034_b0065
  article-title: Efferocytosis in atherosclerotic lesions: malfunctioning regulatory pathways and control mechanisms
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2018.02.003
– volume: 310
  start-page: C788
  year: 2016
  ident: 10.1016/j.cca.2019.10.034_b0075
  article-title: Alternatively activated macrophages exhibit an anticalcifying activity dependent on extracellular ATP/pyrophosphate metabolism
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00370.2015
– volume: 199
  start-page: 163
  year: 2015
  ident: 10.1016/j.cca.2019.10.034_b0120
  article-title: DPP-4 inhibition ameliorates atherosclerosis by priming monocytes into M2 macrophages
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2015.07.044
– ident: 10.1016/j.cca.2019.10.034_b0050
  doi: 10.1161/CIRCRESAHA.109.215715
– volume: 21
  start-page: 255
  year: 2015
  ident: 10.1016/j.cca.2019.10.034_b0095
  article-title: CXCL4-induced plaque macrophages can be specifically identified by co-expression of MMP7+S100A8+ in vitro and in vivo
  publication-title: Innate Immun.
  doi: 10.1177/1753425914526461
– ident: 10.1016/j.cca.2019.10.034_b0170
  doi: 10.1155/2015/909572
– volume: 33
  start-page: 2470
  year: 2013
  ident: 10.1016/j.cca.2019.10.034_b0130
  article-title: 5'-AMP-activated protein kinase-activating transcription factor 1 cascade modulates human monocyte-derived macrophages to atheroprotective functions in response to heme or metformin
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.113.300986
– volume: 15
  start-page: E358
  year: 2017
  ident: 10.1016/j.cca.2019.10.034_b0135
  article-title: Asperlin Inhibits LPS-evoked foam cell formation and prevents atherosclerosis in ApoE−/−Mice
  publication-title: Mar. Drugs
  doi: 10.3390/md15110358
– ident: 10.1016/j.cca.2019.10.034_b0010
  doi: 10.1016/j.immuni.2014.06.008
– volume: 9
  start-page: 878
  year: 2018
  ident: 10.1016/j.cca.2019.10.034_b0160
  article-title: Human Gingiva-Derived Mesenchymal stem cells modulate monocytes/macrophages and alleviate Atherosclerosis
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.00878
– volume: 89
  start-page: 930
  year: 2001
  ident: 10.1016/j.cca.2019.10.034_b0060
  article-title: Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice
  publication-title: Circ. Res.
  doi: 10.1161/hh2201.099415
– volume: 22
  start-page: 409
  year: 2018
  ident: 10.1016/j.cca.2019.10.034_b0110
  article-title: Ginsenoside Rb1 enhances atherosclerotic plaque stability by skewing macrophages to the M2 phenotype
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/jcmm.13329
– volume: 127
  start-page: 2904
  year: 2017
  ident: 10.1016/j.cca.2019.10.034_b0070
  article-title: Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI75005
– volume: 37
  start-page: 226
  year: 2017
  ident: 10.1016/j.cca.2019.10.034_b0165
  article-title: Role of KCa3.1 channels in macrophage polarization and its relevance in atherosclerotic plaque instability
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.116.308461
– volume: 225
  start-page: 461
  year: 2012
  ident: 10.1016/j.cca.2019.10.034_b0025
  article-title: Distribution of macrophage polarization markers in human atherosclerosis
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2012.09.013
– volume: 17
  start-page: 684
  year: 2016
  ident: 10.1016/j.cca.2019.10.034_b0185
  article-title: Mitochondrial dysfunction prevents repolarization of inflammatory macrophages
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.09.008
– volume: 184
  start-page: 4810
  year: 2010
  ident: 10.1016/j.cca.2019.10.034_b0090
  article-title: CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages
  publication-title: J Immunol.
  doi: 10.4049/jimmunol.0901368
– volume: 121
  start-page: 19
  year: 2017
  ident: 10.1016/j.cca.2019.10.034_b0035
  article-title: Human alternative macrophages populate calcified areas of atherosclerotic lesions and display impaired RANKL-Induced Osteoclastic Bone Resorption Activity
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.116.310262
– volume: 110
  start-page: 20
  year: 2012
  ident: 10.1016/j.cca.2019.10.034_b0085
  article-title: Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.111.247577
– volume: 108
  start-page: 985
  year: 2011
  ident: 10.1016/j.cca.2019.10.034_b0030
  article-title: Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.110.233775
SSID ssj0004061
Score 2.6247604
SecondaryResourceType review_article
Snippet •Effects of macrophages on atherosclerosis are related to macrophage polarization.•Different macrophage phenotypes have different effects on the plaque...
Atherosclerosis is a chronic inflammatory response that increases the risk of cardiovascular diseases. An in-depth study of the pathogenesis of atherosclerosis...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 142
SubjectTerms Atherosclerosis
Macrophage polarization
Phenotype
Title Macrophage polarization in atherosclerosis
URI https://dx.doi.org/10.1016/j.cca.2019.10.034
https://www.ncbi.nlm.nih.gov/pubmed/31730809
https://www.proquest.com/docview/2315103981
Volume 501
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEB7EQttLae3LPiSFnoRo4u4m7lGkYlv0VMFb2CS7NKVEqXrtb-9MsrH0oIdeQlh2k2Fmmf2GmZ0P4FHxOEg4hiXKM4HLRcxchQK7TAQ65qkKwoK9YTINxjP-MhfzGgyruzBUVml9f-nTC29tR7pWm91lltEdX4_ID32CIPhGPUE5D2mXd75_yzzowKrY1Gh2ldksarxQfKrukh0q8GJ819m0C3sWZ9DoFE4seHQGpXxnUNN5A46GFWdbAw4nNlV-Du2JInaud_QXzpLiV3vh0slyp0B9ixV-A5_Z6gJmo6e34di1xAhuwgRbuwzjCNMPWZpKTxg_SFTAhecpLqThKaX6kn6aGj_m0kh0xj1hUuYrZkysTaAUu4R6vsj1NTjMyCThrG-okV4oQunrWGmENTEjHnLZBK9SSZTYruFEXvEZVeVhHxFqMSIt0hBqsQnt7ZJl2TJj32Re6Tn6Y_cIXfq-ZQ-VTSJUMSU5VK4Xm1WEeJWaBKKlm3BVGmsrBWIlhghZ3vzvp7dw3KNou6jZvoP6-muj7xGSrONWsedacDB4fh1PfwBbAt1L
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gJOLFKL7wWRNPJJWWfcAeCZGAPE6aeNtsHxsxphCB_-9M2WI8yMFL02y67e5MM_tN5vEBPBgeyZijW2ICK30uIuYbXLDPhEwjnhjZztkbJlM5eOXPb-KtBL2iFobSKp3t39j03Fq7kaaTZnMxm1GNb0DkhyFBELzje1Ch7lSiDJXucDSY_pRHBjIsCNVoQhHczNO8cAeU4KUeKceL8b-Op7_gZ34M9Y_g0OFHr7tZ4jGU0qwG1V5B21aD_YmLlp9AY2KIoOsdTYa3IBfW1Vx6s8zLgd98ie_A62x5Cq_9p5fewHfcCH7MBFv5DF0J22mzJFGBsKGMjeQiCAwXyvKEon1xJ0lsGHFlFdrjlrAJCw2zNkqtNIadQTmbZ-kFeMyqOOasY6mXXlu0VZhGJkVkEzGiIld1CAqR6Ng1Dif-ik9dZIh9aJSiJinSEEqxDo3tlMWma8auh3khZ_1L9Rqt-q5p94VONIqY4hwmS-frpUbISn0CUdN1ON8oa7sKhEsMQbK6_N9H76A6eJmM9Xg4HV3BQYuc7zyF-xrKq691eoMIZRXduj_wGwP43_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Macrophage+polarization+in+atherosclerosis&rft.jtitle=Clinica+chimica+acta&rft.au=Yang%2C+Sai&rft.au=Yuan%2C+Hou-Qin&rft.au=Hao%2C+Ya-Meng&rft.au=Ren%2C+Zhong&rft.date=2020-02-01&rft.issn=0009-8981&rft.volume=501&rft.spage=142&rft.epage=146&rft_id=info:doi/10.1016%2Fj.cca.2019.10.034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cca_2019_10_034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-8981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-8981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-8981&client=summon