Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity
Development of reliable and eco-friendly process for synthesis of metal oxide nanoparticles is an important step in the field of application of nanotechnology. Titanium dioxide (TiO2 NPs) nanoparticles were synthesized using the bacteria Aeromonas hydrophila. The synthesized particles were subjected...
Saved in:
Published in | Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy Vol. 107; pp. 82 - 89 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
15.04.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Development of reliable and eco-friendly process for synthesis of metal oxide nanoparticles is an important step in the field of application of nanotechnology. Titanium dioxide (TiO2 NPs) nanoparticles were synthesized using the bacteria Aeromonas hydrophila. The synthesized particles were subjected to characterization by FTIR, XRD, FESEM and AFM. Non-contact mode AFM images of the TiO2 NPs find the topological appearance and the size. The range was found to be 28–54 and the individual particle size was 40.50nm. [Display omitted] .
► Aeromonas hydrophila mediated biosynthesis of TiO2 NPs was achieved. ► Glycyl-l-proline plays an important role as a capping and stabilizing agent. ► XRD confirmed the crystalline nanoparticles of 40.50nm in size. ► FESEM analysis showed smooth in shape, spherical and uneven. ► TiO2 NPs exposed great inhibition zone in S. aureus (33mm) and S. pyogenes (31mm).
Nanosized materials have been an important subject in basic and applied sciences. A novel, low-cost, green and reproducible bacteria, Aeromonas hydrophila mediated biosynthesis of titanium dioxide nanoparticles (TiO2 NPs) was reported. The resulting nanoparticles were characterized by FTIR, XRD, AFM and FESEM with EDX. FTIR showed characteristic bands (1643 and 3430cm−1) finds the role of carboxyl group OH stretching amine NH stretch in the formation of TiO2 NPs. The XRD spectrum confirmed that the synthesized TiO2 NPs were in the form of nanocrystals, as evidenced by the peaks at 2θ values of 27.47°, 31.77°, 36.11°, 41.25°, 54.39°, 56.64° and 69.54° were identified as 110, 100, 101, 111, 211, 220 and 301 reflections, respectively. The crystallite sizes were calculated using Scherrer’s formula applied to the major intense peaks and found to be the size of 40.50nm. The morphological characterization was analyzed by FESEM and the analysis showed the NPs smooth shaped, spherical and uneven. GC–MS analysis showed the main compounds found in A. hydrophila were uric acid (2.95%), glycyl-l-glutamic acid (6.90%), glycyl-l-proline (74.41%) and l-Leucyl-d-leucine (15.74%). The potential glycyl-l-proline could have played an important role as a capping agent. A possible mechanism for the biosynthesis of TiO2 NPs has been proposed. The antibacterial activity of the synthesized TiO2 NPs was assessed by well diffusion method toward A. hydrophila, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis and showed effective inhibitory activity against S. aureus (33mm) and S. pyogenes (31mm). |
---|---|
AbstractList | Development of reliable and eco-friendly process for synthesis of metal oxide nanoparticles is an important step in the field of application of nanotechnology. Titanium dioxide (TiO2 NPs) nanoparticles were synthesized using the bacteria Aeromonas hydrophila. The synthesized particles were subjected to characterization by FTIR, XRD, FESEM and AFM. Non-contact mode AFM images of the TiO2 NPs find the topological appearance and the size. The range was found to be 28–54 and the individual particle size was 40.50nm. [Display omitted] .
► Aeromonas hydrophila mediated biosynthesis of TiO2 NPs was achieved. ► Glycyl-l-proline plays an important role as a capping and stabilizing agent. ► XRD confirmed the crystalline nanoparticles of 40.50nm in size. ► FESEM analysis showed smooth in shape, spherical and uneven. ► TiO2 NPs exposed great inhibition zone in S. aureus (33mm) and S. pyogenes (31mm).
Nanosized materials have been an important subject in basic and applied sciences. A novel, low-cost, green and reproducible bacteria, Aeromonas hydrophila mediated biosynthesis of titanium dioxide nanoparticles (TiO2 NPs) was reported. The resulting nanoparticles were characterized by FTIR, XRD, AFM and FESEM with EDX. FTIR showed characteristic bands (1643 and 3430cm−1) finds the role of carboxyl group OH stretching amine NH stretch in the formation of TiO2 NPs. The XRD spectrum confirmed that the synthesized TiO2 NPs were in the form of nanocrystals, as evidenced by the peaks at 2θ values of 27.47°, 31.77°, 36.11°, 41.25°, 54.39°, 56.64° and 69.54° were identified as 110, 100, 101, 111, 211, 220 and 301 reflections, respectively. The crystallite sizes were calculated using Scherrer’s formula applied to the major intense peaks and found to be the size of 40.50nm. The morphological characterization was analyzed by FESEM and the analysis showed the NPs smooth shaped, spherical and uneven. GC–MS analysis showed the main compounds found in A. hydrophila were uric acid (2.95%), glycyl-l-glutamic acid (6.90%), glycyl-l-proline (74.41%) and l-Leucyl-d-leucine (15.74%). The potential glycyl-l-proline could have played an important role as a capping agent. A possible mechanism for the biosynthesis of TiO2 NPs has been proposed. The antibacterial activity of the synthesized TiO2 NPs was assessed by well diffusion method toward A. hydrophila, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis and showed effective inhibitory activity against S. aureus (33mm) and S. pyogenes (31mm). Nanosized materials have been an important subject in basic and applied sciences. A novel, low-cost, green and reproducible bacteria, Aeromonas hydrophila mediated biosynthesis of titanium dioxide nanoparticles (TiO2 NPs) was reported. The resulting nanoparticles were characterized by FTIR, XRD, AFM and FESEM with EDX. FTIR showed characteristic bands (1643 and 3430 cm(-1)) finds the role of carboxyl group OH stretching amine NH stretch in the formation of TiO2 NPs. The XRD spectrum confirmed that the synthesized TiO2 NPs were in the form of nanocrystals, as evidenced by the peaks at 2θ values of 27.47°, 31.77°, 36.11°, 41.25°, 54.39°, 56.64° and 69.54° were identified as 110, 100, 101, 111, 211, 220 and 301 reflections, respectively. The crystallite sizes were calculated using Scherrer's formula applied to the major intense peaks and found to be the size of 40.50 nm. The morphological characterization was analyzed by FESEM and the analysis showed the NPs smooth shaped, spherical and uneven. GC-MS analysis showed the main compounds found in A. hydrophila were uric acid (2.95%), glycyl-L-glutamic acid (6.90%), glycyl-L-proline (74.41%) and L-Leucyl-D-leucine (15.74%). The potential glycyl-L-proline could have played an important role as a capping agent. A possible mechanism for the biosynthesis of TiO2 NPs has been proposed. The antibacterial activity of the synthesized TiO2 NPs was assessed by well diffusion method toward A. hydrophila, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis and showed effective inhibitory activity against S. aureus (33 mm) and S. pyogenes (31 mm). |
Author | Rahuman, Abdul Abdul Kim, Se-Kwon Roopan, Selvaraj Mohana Kirthi, Arivarasan Vishnu Iyappan, Moorthy Venkatesan, Jayachandran Siva, Chinnadurai Jayaseelan, Chidambaram |
Author_xml | – sequence: 1 givenname: Chidambaram surname: Jayaseelan fullname: Jayaseelan, Chidambaram organization: Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Vellore 632 509, Tamil Nadu, India – sequence: 2 givenname: Abdul Abdul surname: Rahuman fullname: Rahuman, Abdul Abdul email: abdulrahuman6@hotmail.com organization: Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Vellore 632 509, Tamil Nadu, India – sequence: 3 givenname: Selvaraj Mohana surname: Roopan fullname: Roopan, Selvaraj Mohana email: mohanaroopan.s@gmail.com, mohanaroopan.s@vit.ac.in organization: Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India – sequence: 4 givenname: Arivarasan Vishnu surname: Kirthi fullname: Kirthi, Arivarasan Vishnu organization: Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Vellore 632 509, Tamil Nadu, India – sequence: 5 givenname: Jayachandran surname: Venkatesan fullname: Venkatesan, Jayachandran organization: Department of Chemistry, Pukyong National University, Busan 608 737, Republic of Korea – sequence: 6 givenname: Se-Kwon surname: Kim fullname: Kim, Se-Kwon organization: Department of Chemistry, Pukyong National University, Busan 608 737, Republic of Korea – sequence: 7 givenname: Moorthy surname: Iyappan fullname: Iyappan, Moorthy organization: Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Vellore 632 509, Tamil Nadu, India – sequence: 8 givenname: Chinnadurai surname: Siva fullname: Siva, Chinnadurai organization: Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Vellore 632 509, Tamil Nadu, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23416912$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtKBDEQRYMojq8PcCP5gR7z6EcaVyq-YMCNrkN1Oj1TQ0_SJFEYv94MoxsXQsEtijqXqntKDp13lpBLzuac8fp6PY8Ac8G4mOdiSh6QE64aWciqag5zL1Vd8FJUM3Ia45oxxpVgx2QmZMnrlosT4u7Qj36JBkYK0xQ8mBVNnsatSysb8cvSN3wV1IHzE4SEZrSRfkR0S3prg994B5Gutn3w0wpHoOB6iilmTdiBSTbgztok_MS0PSdHA4zRXvzoGXl_fHi7fy4Wr08v97eLwshKpoIPipeqLftBMGgFsL5k9aDU0DEFNeTzzSAaDt1QttDkUSdNVbdlKVhnOuDyjFztfaePbmN7PQXcQNjq38fzQrNfMMHHGOygDSZI6F0KgKPmTO8i1mudI9a7iHWuHHEm-R_y1_w_5mbP2PzzJ9qgo0HrjO0xWJN07_Ef-hsiqpWu |
CitedBy_id | crossref_primary_10_1002_fsn3_1934 crossref_primary_10_1002_col_22334 crossref_primary_10_1002_jctb_5681 crossref_primary_10_1007_s10854_015_3774_9 crossref_primary_10_1007_s00436_015_4838_8 crossref_primary_10_1016_j_inoche_2021_108505 crossref_primary_10_37871_jbres1180 crossref_primary_10_1155_2022_7011539 crossref_primary_10_1038_s41598_020_78266_6 crossref_primary_10_15406_jmen_2020_08_00283 crossref_primary_10_1007_s13204_023_02859_6 crossref_primary_10_1016_j_jksus_2022_101869 crossref_primary_10_1088_2053_1591_aab91b crossref_primary_10_1007_s10924_020_01919_0 crossref_primary_10_1016_j_jhazmat_2014_08_073 crossref_primary_10_3390_ijms26062492 crossref_primary_10_3390_microorganisms10101982 crossref_primary_10_3390_applnano3010005 crossref_primary_10_1021_acs_jafc_3c04096 crossref_primary_10_1515_ntrev_2023_0126 crossref_primary_10_1590_1678_4324_2021190750 crossref_primary_10_3389_fchem_2021_613343 crossref_primary_10_1155_2021_6626313 crossref_primary_10_4028_www_scientific_net_MSF_979_175 crossref_primary_10_1016_S2222_1808_14_60658_7 crossref_primary_10_1186_s12934_014_0090_7 crossref_primary_10_1007_s10904_021_02076_0 crossref_primary_10_1007_s10311_017_0618_2 crossref_primary_10_1016_j_jphotobiol_2016_12_012 crossref_primary_10_1039_C4RA06790H crossref_primary_10_3390_coatings11111374 crossref_primary_10_3103_S0891416821010067 crossref_primary_10_1155_2023_2409642 crossref_primary_10_1039_C8EN00799C crossref_primary_10_1007_s10904_023_02960_x crossref_primary_10_1186_s12934_024_02609_5 crossref_primary_10_3389_fnano_2021_739286 crossref_primary_10_1016_j_jksus_2022_101896 crossref_primary_10_1080_17518253_2018_1538430 crossref_primary_10_1080_21691401_2018_1454932 crossref_primary_10_1007_s11356_023_27437_9 crossref_primary_10_13005_ojc_340622 crossref_primary_10_1007_s42452_019_0931_4 crossref_primary_10_1016_j_inoche_2021_108968 crossref_primary_10_1016_j_bcab_2019_101131 crossref_primary_10_1155_2021_8171786 crossref_primary_10_1080_24701556_2020_1732419 crossref_primary_10_1016_j_ejmech_2016_08_001 crossref_primary_10_1111_1751_7915_14549 crossref_primary_10_1016_j_jece_2021_105389 crossref_primary_10_3390_nano10061110 crossref_primary_10_1007_s11243_023_00535_w crossref_primary_10_1007_s13399_021_01990_0 crossref_primary_10_1016_j_jes_2018_06_010 crossref_primary_10_1016_j_molliq_2016_06_079 crossref_primary_10_1016_j_apsusc_2015_03_082 crossref_primary_10_1007_s10876_016_1136_2 crossref_primary_10_2147_IJN_S452085 crossref_primary_10_1016_j_rechem_2023_101170 crossref_primary_10_1016_j_jphotobiol_2019_111667 crossref_primary_10_3390_plants10081730 crossref_primary_10_3390_polym15051196 crossref_primary_10_1016_j_chphi_2023_100293 crossref_primary_10_2174_1389201022666210521102307 crossref_primary_10_1007_s13204_020_01630_5 crossref_primary_10_1007_s11051_014_2681_y crossref_primary_10_1016_j_ceramint_2020_08_201 crossref_primary_10_1016_j_ijfoodmicro_2017_03_018 crossref_primary_10_1007_s13399_024_05881_y crossref_primary_10_1016_j_jece_2023_111512 crossref_primary_10_1016_j_molstruc_2024_140293 crossref_primary_10_1016_j_jscs_2024_101917 crossref_primary_10_1016_j_inoche_2023_111017 crossref_primary_10_1016_j_mimet_2018_12_008 crossref_primary_10_1080_19443994_2014_968216 crossref_primary_10_1016_j_aspen_2016_10_001 crossref_primary_10_1002_jobm_202300221 crossref_primary_10_15171_bi_2018_10 crossref_primary_10_1016_j_ejps_2021_106010 crossref_primary_10_1039_D2NJ05795F crossref_primary_10_1016_j_inoche_2024_113858 crossref_primary_10_1080_03067319_2020_1857750 crossref_primary_10_3390_nano13101604 crossref_primary_10_1088_2053_1591_ab0690 crossref_primary_10_4103_bbrj_bbrj_164_21 crossref_primary_10_1002_cbf_3744 crossref_primary_10_1007_s12649_025_02909_w crossref_primary_10_1016_j_jphotobiol_2016_05_005 crossref_primary_10_3390_pharmaceutics16091214 crossref_primary_10_1515_gps_2024_0134 crossref_primary_10_3389_fmicb_2023_1270245 crossref_primary_10_1016_j_hydromet_2020_105415 crossref_primary_10_1016_j_rechem_2023_101007 crossref_primary_10_3390_ma16134670 crossref_primary_10_1515_gps_2022_0005 crossref_primary_10_1016_j_fbr_2021_07_003 crossref_primary_10_3390_polym14071444 crossref_primary_10_1021_acsomega_0c00213 crossref_primary_10_1007_s11756_024_01827_x crossref_primary_10_1016_j_trac_2023_117454 crossref_primary_10_1186_s12934_023_02093_3 crossref_primary_10_1002_wnan_1592 crossref_primary_10_3390_s22134669 crossref_primary_10_1016_j_chemosphere_2023_140125 crossref_primary_10_1093_burnst_tkae069 crossref_primary_10_3390_reactions5010007 crossref_primary_10_3389_fbioe_2023_1323249 crossref_primary_10_1515_gps_2022_0011 crossref_primary_10_2174_1872210517666230901114421 crossref_primary_10_1080_17425247_2024_2399710 crossref_primary_10_1038_s41570_020_00221_w crossref_primary_10_52679_978_81_952885_8_8_10 crossref_primary_10_3389_fmicb_2020_01680 crossref_primary_10_1007_s12011_023_03876_w crossref_primary_10_3390_polym14091827 crossref_primary_10_1007_s12011_020_02138_3 crossref_primary_10_1016_j_saa_2014_12_066 crossref_primary_10_1016_j_enmm_2021_100485 crossref_primary_10_1088_2043_6262_acf2ed crossref_primary_10_1007_s10876_022_02276_9 crossref_primary_10_1016_j_foodcont_2024_110470 crossref_primary_10_1007_s12010_023_04839_6 crossref_primary_10_1016_j_inoche_2021_108529 crossref_primary_10_1016_j_matpr_2022_05_178 crossref_primary_10_1016_j_ceramint_2020_08_255 crossref_primary_10_1016_j_jafr_2022_100361 crossref_primary_10_1007_s10924_023_02897_9 crossref_primary_10_1016_j_jiec_2021_04_010 crossref_primary_10_3390_s22114200 crossref_primary_10_1007_s00339_020_03975_8 crossref_primary_10_3390_pr10020338 crossref_primary_10_1016_j_inoche_2023_111221 crossref_primary_10_1016_j_ceramint_2021_03_301 crossref_primary_10_1515_gps_2020_0045 crossref_primary_10_1016_j_jphotobiol_2016_05_019 crossref_primary_10_1016_j_sciaf_2019_e00203 crossref_primary_10_1016_j_ceramint_2024_09_213 crossref_primary_10_1080_10643389_2019_1705103 crossref_primary_10_1039_D0NR08106J crossref_primary_10_3390_ijms251910519 crossref_primary_10_3390_nano8070500 crossref_primary_10_1007_s00344_021_10391_6 crossref_primary_10_1016_j_porgcoat_2015_03_014 crossref_primary_10_31178_rbbs_2021_4_1_1 crossref_primary_10_1051_epjconf_20159202056 crossref_primary_10_1016_j_mtsust_2024_100857 crossref_primary_10_1016_j_msec_2017_04_020 crossref_primary_10_1007_s00253_015_7190_0 crossref_primary_10_1002_jemt_24625 crossref_primary_10_1186_s12951_016_0184_y crossref_primary_10_1016_j_mssp_2021_105923 crossref_primary_10_1016_j_jphotobiol_2015_12_010 crossref_primary_10_3390_met5020934 crossref_primary_10_1007_s11356_017_0252_3 crossref_primary_10_7124_bc_000A98 crossref_primary_10_1016_j_ijfoodmicro_2019_108375 crossref_primary_10_1016_j_foodchem_2020_126782 crossref_primary_10_1080_10495398_2020_1842751 crossref_primary_10_3389_fmats_2020_00213 crossref_primary_10_4103_JVBD_JVBD_175_23 crossref_primary_10_14233_ajchem_2023_27287 |
Cites_doi | 10.1016/S0045-6535(02)00168-6 10.1111/j.1574-6968.2007.01012.x 10.2217/fmb.11.78 10.1080/10934520600966177 10.1166/jnn.2010.2225 10.1016/j.porgcoat.2011.11.005 10.1007/s12010-007-8006-1 10.1016/j.colsurfb.2009.02.007 10.1016/j.jcis.2009.08.024 10.1007/s13204-011-0031-2 10.1016/j.matlet.2007.10.049 10.1016/S1004-9541(06)60046-3 10.1016/S0045-6535(03)00362-X 10.1016/S0167-5729(02)00100-0 10.1081/AL-120018244 10.1186/1423-0127-16-7 10.1016/j.matlet.2011.10.038 10.1016/j.tox.2005.05.007 10.1039/b503008k 10.1016/j.jphotochem.2005.12.028 10.1016/j.saa.2012.01.006 10.1016/j.nano.2008.09.004 10.1016/j.matlet.2011.05.077 10.1128/AEM.65.9.4094-4098.1999 10.1016/S0920-5861(02)00037-8 10.1002/(SICI)1521-4095(200003)12:6<407::AID-ADMA407>3.0.CO;2-O 10.1016/j.actbio.2009.05.010 10.1016/j.jcis.2005.01.097 10.1016/j.jdent.2011.05.006 10.1007/s11051-007-9275-x 10.1016/j.hydromet.2006.03.019 10.1128/AEM.71.1.270-275.2005 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. Copyright © 2013 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: Copyright © 2013 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM |
DOI | 10.1016/j.saa.2012.12.083 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1873-3557 |
EndPage | 89 |
ExternalDocumentID | 23416912 10_1016_j_saa_2012_12_083 S1386142513000024 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABXDB ABYKQ ACDAQ ACRLP ADBBV ADECG ADEZE AEBSH AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCB SDF SDG SDP SES SPC SPCBC SSK SSZ T5K WH7 XPP ZMT ~G- 1RT 53G 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ M36 R2- SEW SSH UHS CGR CUY CVF ECM EIF NPM |
ID | FETCH-LOGICAL-c353t-1f814894df20a92a0d406f88fb08a6a234cf271abf49a78a6b3c5694420bcba13 |
IEDL.DBID | .~1 |
ISSN | 1386-1425 |
IngestDate | Mon Jul 21 05:48:51 EDT 2025 Thu Apr 24 23:08:56 EDT 2025 Tue Jul 01 01:48:27 EDT 2025 Fri Feb 23 02:27:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Glycyl-l-proline Aeromonas hydrophila Antibacterial activity GC–MS Titanium dioxide nanoparticles FTIR |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2013 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-1f814894df20a92a0d406f88fb08a6a234cf271abf49a78a6b3c5694420bcba13 |
PMID | 23416912 |
PageCount | 8 |
ParticipantIDs | pubmed_primary_23416912 crossref_citationtrail_10_1016_j_saa_2012_12_083 crossref_primary_10_1016_j_saa_2012_12_083 elsevier_sciencedirect_doi_10_1016_j_saa_2012_12_083 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-04-15 |
PublicationDateYYYYMMDD | 2013-04-15 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy |
PublicationTitleAlternate | Spectrochim Acta A Mol Biomol Spectrosc |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Yuan, Ding, Xu, Deng, Guo (b0100) 2010; 10 Selvakumar, Viveka, Prakash, Jasminebeaula, Uloganathan (b0175) 2012; 3 Sundrarajan, Gowri (b0070) 2011 Clinical and Laboratory Standards Institute, Wayne (Penn), CLSI, 1997, pp. M27. Gurr, Wang, Chen, Jan (b0020) 2005; 213 Jeng, Swanson (b0195) 2006; 4 Kangwansupamonkon, Lauruengtana, Surassmo, Ruktanonchai (b0125) 2009; 5 Bansal, Rautaray, Barred, Ahire, Sanyal, Ahmad (b0075) 2005; 15 Park, Kim, Yoo, Yang, Hong, Moon, Choi, Lee (b0170) 2005; 47 Cheng, Sun, Chu, Tseng, Ho, Wang, Chung, Chen, Tsai, Lin, Yu, Chang (b0115) 2009; 16 Centi, Ciambelli, Perathoner, Russo (b0030) 2002; 75 Diebold (b0165) 2003; 48 Tolles, Rath (b0045) 2003; 85 Allahverdiyev, Abamor, Bagirova, Rafailovich (b0090) 2011; 6 Jha, Prasad, Kulkarni (b0065) 2009; 71 Jayaseelan, Rahuman, Vishnu Kirthi, Marimuthu, Santhoshkumar, Bagavan, Gaurav, Karthik, Bhaskara Rao (b0140) 2012; 90 Mohanpuria, Rana, Yadav (b0005) 2008; 10 Fu, Li, Sun, Lu, He, Deng, Wang, Huang (b0055) 2006; 14 Maness, Smolinski, Blake, Huang, Wolfrum, Jacoby (b0120) 1999; 65 Liu, Cheng, Dang, Ma, Chen, Park, Kim (b0080) 2011 Inbaneson, Ravikumar, Manikandan (b0180) 2011; 1 Xing, Li, Zhang, Xu, Che, Li, Bai, Li (b0215) 2012; 73 Kuhn, Chaberny, Masholder, Stickler, Benz, Sonntag, Erdinger (b0210) 2003; 53 Gerhardt, Jell, Boccaccini (b0050) 2007; 95 Ashkarran (b0015) 2011; 4 Elsaka, Hamouda, Swain (b0095) 2011; 39 Cho, Chung, Choi, Yoon (b0185) 2005; 71 Lyon, Thill, Rose, Alvarez (b0200) 2007 Jones, Ray, Ranjit, Manna (b0205) 2008; 279 Joerger, Klaus, Granqvist (b0040) 2000; 12 Nadtochenko, Denisov, Sarkisov, Gumy, Pulgarin, Kiwi (b0190) 2006; 181 Gericke, Pinches (b0010) 2006 Marciano, Lima-Oliveira, Da-Silva, Diniz, Corat, Trava-Airoldi (b0105) 2009; 340 Levine, Fernando, Lang, Essader, Wong (b0025) 2003; 36 Zhang, Li, Wang, Sun, Lu, He (b0060) 2007; 143 Necula, Fratila-Apachitei, Zaat, Apachitei, Duszczyk (b0110) 2009; 5 Moroni, Borrini, Calamai, Dei (b0155) 2005; 286 Pirkanniemi, Sillanpaa (b0035) 2002; 48 Roy, Parveen, Koppalkar, Prasad, Biomat (b0085) 2010; 1 Prasad, Jha (b0130) 2009; 1 Kirthi, Rahuman, Rajakumar, Marimuthu, Santhoshkumar, Jayaseelan, Elango, Zahir, Kamaraj, Bagavan (b0135) 2011; 65 Rajakumar, Rahuman, Priyamvada, Gopiesh Khanna, Kishore Kumar, Sujine (b0150) 2012; 68 Wang, Zhao, Yang (b0160) 2008; 62 Nadtochenko (10.1016/j.saa.2012.12.083_b0190) 2006; 181 Kangwansupamonkon (10.1016/j.saa.2012.12.083_b0125) 2009; 5 Cheng (10.1016/j.saa.2012.12.083_b0115) 2009; 16 Kirthi (10.1016/j.saa.2012.12.083_b0135) 2011; 65 Lyon (10.1016/j.saa.2012.12.083_b0200) 2007 Park (10.1016/j.saa.2012.12.083_b0170) 2005; 47 Jeng (10.1016/j.saa.2012.12.083_b0195) 2006; 4 Tolles (10.1016/j.saa.2012.12.083_b0045) 2003; 85 Necula (10.1016/j.saa.2012.12.083_b0110) 2009; 5 10.1016/j.saa.2012.12.083_b0145 Gerhardt (10.1016/j.saa.2012.12.083_b0050) 2007; 95 Zhang (10.1016/j.saa.2012.12.083_b0060) 2007; 143 Selvakumar (10.1016/j.saa.2012.12.083_b0175) 2012; 3 Gurr (10.1016/j.saa.2012.12.083_b0020) 2005; 213 Elsaka (10.1016/j.saa.2012.12.083_b0095) 2011; 39 Joerger (10.1016/j.saa.2012.12.083_b0040) 2000; 12 Moroni (10.1016/j.saa.2012.12.083_b0155) 2005; 286 Diebold (10.1016/j.saa.2012.12.083_b0165) 2003; 48 Fu (10.1016/j.saa.2012.12.083_b0055) 2006; 14 Yuan (10.1016/j.saa.2012.12.083_b0100) 2010; 10 Levine (10.1016/j.saa.2012.12.083_b0025) 2003; 36 Bansal (10.1016/j.saa.2012.12.083_b0075) 2005; 15 Jones (10.1016/j.saa.2012.12.083_b0205) 2008; 279 Jha (10.1016/j.saa.2012.12.083_b0065) 2009; 71 Marciano (10.1016/j.saa.2012.12.083_b0105) 2009; 340 Pirkanniemi (10.1016/j.saa.2012.12.083_b0035) 2002; 48 Cho (10.1016/j.saa.2012.12.083_b0185) 2005; 71 Inbaneson (10.1016/j.saa.2012.12.083_b0180) 2011; 1 Gericke (10.1016/j.saa.2012.12.083_b0010) 2006 Maness (10.1016/j.saa.2012.12.083_b0120) 1999; 65 Xing (10.1016/j.saa.2012.12.083_b0215) 2012; 73 Centi (10.1016/j.saa.2012.12.083_b0030) 2002; 75 Rajakumar (10.1016/j.saa.2012.12.083_b0150) 2012; 68 Wang (10.1016/j.saa.2012.12.083_b0160) 2008; 62 Liu (10.1016/j.saa.2012.12.083_b0080) 2011 Prasad (10.1016/j.saa.2012.12.083_b0130) 2009; 1 Mohanpuria (10.1016/j.saa.2012.12.083_b0005) 2008; 10 Jayaseelan (10.1016/j.saa.2012.12.083_b0140) 2012; 90 Ashkarran (10.1016/j.saa.2012.12.083_b0015) 2011; 4 Sundrarajan (10.1016/j.saa.2012.12.083_b0070) 2011 Roy (10.1016/j.saa.2012.12.083_b0085) 2010; 1 Allahverdiyev (10.1016/j.saa.2012.12.083_b0090) 2011; 6 Kuhn (10.1016/j.saa.2012.12.083_b0210) 2003; 53 |
References_xml | – volume: 16 start-page: 7 year: 2009 ident: b0115 publication-title: J. Biomed. Sci. – volume: 10 start-page: 4868 year: 2010 ident: b0100 publication-title: J. Nanosci. Nanotechnol. – volume: 286 start-page: 543 year: 2005 ident: b0155 publication-title: J. Colloid Interface Sci. – volume: 143 start-page: 54 year: 2007 ident: b0060 publication-title: Appl. Biochem. Biotechnol. – volume: 4 start-page: 2699 year: 2006 ident: b0195 article-title: Toxicity of metal oxide nanoparticles in mammalian cells publication-title: J. Environ. Sci. Health A: Tox. Hazard. Subst. Environ. Eng. – volume: 95 start-page: 69 year: 2007 ident: b0050 publication-title: J. Mater. Sci. Mater. Med. – volume: 65 start-page: 4094 year: 1999 ident: b0120 publication-title: Appl. Environ. Microbiol. – start-page: 447 year: 2011 ident: b0070 publication-title: Chalcogenide Lett. – volume: 39 start-page: 589 year: 2011 ident: b0095 publication-title: J. Dent. – volume: 47 start-page: 884 year: 2005 ident: b0170 publication-title: J. Korean Phys. Soc. – volume: 65 start-page: 2745 year: 2011 ident: b0135 publication-title: Mater. Lett. – volume: 181 start-page: 401 year: 2006 ident: b0190 publication-title: J. Photochem. Photobiol. A – volume: 4 start-page: 1 year: 2011 ident: b0015 publication-title: J. Theor. Appl. Phys. – volume: 3 start-page: 188 year: 2012 ident: b0175 publication-title: Int. J. Pharm. Bio. Sci. – volume: 15 start-page: 2583 year: 2005 ident: b0075 publication-title: J. Mater. Chem. – volume: 340 start-page: 87 year: 2009 ident: b0105 publication-title: J. Colloid Interface Sci. – volume: 62 start-page: 1930 year: 2008 ident: b0160 publication-title: Mater. Lett. – volume: 12 start-page: 407 year: 2000 ident: b0040 publication-title: Adv. Mater. – year: 2007 ident: b0200 article-title: Nanotechnology: Applications and Impacts of Nanomaterials – volume: 48 start-page: 53 year: 2003 ident: b0165 article-title: The surface science of titanium dioxide publication-title: Surface Sci. Rep. – volume: 5 start-page: 240 year: 2009 ident: b0125 publication-title: Nanomedicine – start-page: 132 year: 2006 ident: b0010 article-title: Biological synthesis of metal nanoparticles publication-title: Hydrometallurgy – volume: 68 start-page: 115 year: 2012 ident: b0150 publication-title: Mater. Lett. – volume: 71 start-page: 226 year: 2009 ident: b0065 publication-title: Colloids Surf. B – volume: 6 start-page: 933 year: 2011 ident: b0090 publication-title: Future Microbiol. – volume: 10 start-page: 507 year: 2008 ident: b0005 publication-title: J. Nanopart. Res. – volume: 90 start-page: 78 year: 2012 ident: b0140 publication-title: Spectrochim. Acta A – volume: 73 start-page: 219 year: 2012 ident: b0215 publication-title: Prog. Organ. Coat. – year: 2011 ident: b0080 publication-title: J. Mater. Sci. Mater. Med. – volume: 213 start-page: 66 year: 2005 ident: b0020 publication-title: Toxicology – volume: 1 start-page: 37 year: 2010 ident: b0085 publication-title: Nanobiotechnol – volume: 1 start-page: 129 year: 2009 ident: b0130 publication-title: Nat. Sci. – volume: 75 start-page: 3 year: 2002 ident: b0030 article-title: Environmental catalysis: trends and outlook publication-title: Catal. Today – volume: 1 start-page: 231 year: 2011 ident: b0180 publication-title: Appl. Nanosci. – volume: 71 start-page: 270 year: 2005 ident: b0185 publication-title: Appl. Environ. Microbiol. – volume: 14 start-page: 114 year: 2006 ident: b0055 publication-title: Chin. J. Chem. Eng. – volume: 5 start-page: 3573 year: 2009 ident: b0110 publication-title: Acta Biomater. – volume: 36 start-page: 563 year: 2003 ident: b0025 publication-title: Anal. Lett. – volume: 48 start-page: 1047 year: 2002 ident: b0035 article-title: Heterogeneous water phase catalysis as an environmental application: a review publication-title: Chemosphere – volume: 85 start-page: 1746 year: 2003 ident: b0045 publication-title: Curr. Sci. – volume: 53 start-page: 71 year: 2003 ident: b0210 publication-title: Chemosphere – reference: Clinical and Laboratory Standards Institute, Wayne (Penn), CLSI, 1997, pp. M27. – volume: 279 start-page: 71 year: 2008 ident: b0205 publication-title: FEMS Microbiol. Lett. – volume: 48 start-page: 1047 year: 2002 ident: 10.1016/j.saa.2012.12.083_b0035 article-title: Heterogeneous water phase catalysis as an environmental application: a review publication-title: Chemosphere doi: 10.1016/S0045-6535(02)00168-6 – volume: 279 start-page: 71 year: 2008 ident: 10.1016/j.saa.2012.12.083_b0205 publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2007.01012.x – volume: 6 start-page: 933 year: 2011 ident: 10.1016/j.saa.2012.12.083_b0090 publication-title: Future Microbiol. doi: 10.2217/fmb.11.78 – ident: 10.1016/j.saa.2012.12.083_b0145 – volume: 4 start-page: 2699 issue: 1 year: 2006 ident: 10.1016/j.saa.2012.12.083_b0195 article-title: Toxicity of metal oxide nanoparticles in mammalian cells publication-title: J. Environ. Sci. Health A: Tox. Hazard. Subst. Environ. Eng. doi: 10.1080/10934520600966177 – volume: 10 start-page: 4868 year: 2010 ident: 10.1016/j.saa.2012.12.083_b0100 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2010.2225 – volume: 1 start-page: 129 year: 2009 ident: 10.1016/j.saa.2012.12.083_b0130 publication-title: Nat. Sci. – volume: 73 start-page: 219 year: 2012 ident: 10.1016/j.saa.2012.12.083_b0215 publication-title: Prog. Organ. Coat. doi: 10.1016/j.porgcoat.2011.11.005 – volume: 143 start-page: 54 year: 2007 ident: 10.1016/j.saa.2012.12.083_b0060 publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-007-8006-1 – volume: 71 start-page: 226 year: 2009 ident: 10.1016/j.saa.2012.12.083_b0065 publication-title: Colloids Surf. B doi: 10.1016/j.colsurfb.2009.02.007 – volume: 340 start-page: 87 year: 2009 ident: 10.1016/j.saa.2012.12.083_b0105 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2009.08.024 – volume: 1 start-page: 37 year: 2010 ident: 10.1016/j.saa.2012.12.083_b0085 publication-title: Nanobiotechnol – volume: 1 start-page: 231 year: 2011 ident: 10.1016/j.saa.2012.12.083_b0180 publication-title: Appl. Nanosci. doi: 10.1007/s13204-011-0031-2 – volume: 62 start-page: 1930 year: 2008 ident: 10.1016/j.saa.2012.12.083_b0160 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2007.10.049 – volume: 47 start-page: 884 year: 2005 ident: 10.1016/j.saa.2012.12.083_b0170 publication-title: J. Korean Phys. Soc. – volume: 14 start-page: 114 year: 2006 ident: 10.1016/j.saa.2012.12.083_b0055 publication-title: Chin. J. Chem. Eng. doi: 10.1016/S1004-9541(06)60046-3 – volume: 53 start-page: 71 year: 2003 ident: 10.1016/j.saa.2012.12.083_b0210 publication-title: Chemosphere doi: 10.1016/S0045-6535(03)00362-X – volume: 48 start-page: 53 year: 2003 ident: 10.1016/j.saa.2012.12.083_b0165 article-title: The surface science of titanium dioxide publication-title: Surface Sci. Rep. doi: 10.1016/S0167-5729(02)00100-0 – volume: 36 start-page: 563 year: 2003 ident: 10.1016/j.saa.2012.12.083_b0025 publication-title: Anal. Lett. doi: 10.1081/AL-120018244 – year: 2011 ident: 10.1016/j.saa.2012.12.083_b0080 publication-title: J. Mater. Sci. Mater. Med. – volume: 16 start-page: 7 year: 2009 ident: 10.1016/j.saa.2012.12.083_b0115 publication-title: J. Biomed. Sci. doi: 10.1186/1423-0127-16-7 – volume: 68 start-page: 115 year: 2012 ident: 10.1016/j.saa.2012.12.083_b0150 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2011.10.038 – year: 2007 ident: 10.1016/j.saa.2012.12.083_b0200 – volume: 213 start-page: 66 year: 2005 ident: 10.1016/j.saa.2012.12.083_b0020 publication-title: Toxicology doi: 10.1016/j.tox.2005.05.007 – volume: 15 start-page: 2583 year: 2005 ident: 10.1016/j.saa.2012.12.083_b0075 publication-title: J. Mater. Chem. doi: 10.1039/b503008k – volume: 181 start-page: 401 year: 2006 ident: 10.1016/j.saa.2012.12.083_b0190 publication-title: J. Photochem. Photobiol. A doi: 10.1016/j.jphotochem.2005.12.028 – volume: 4 start-page: 1 year: 2011 ident: 10.1016/j.saa.2012.12.083_b0015 publication-title: J. Theor. Appl. Phys. – volume: 90 start-page: 78 year: 2012 ident: 10.1016/j.saa.2012.12.083_b0140 publication-title: Spectrochim. Acta A doi: 10.1016/j.saa.2012.01.006 – start-page: 447 year: 2011 ident: 10.1016/j.saa.2012.12.083_b0070 publication-title: Chalcogenide Lett. – volume: 5 start-page: 240 year: 2009 ident: 10.1016/j.saa.2012.12.083_b0125 publication-title: Nanomedicine doi: 10.1016/j.nano.2008.09.004 – volume: 85 start-page: 1746 year: 2003 ident: 10.1016/j.saa.2012.12.083_b0045 publication-title: Curr. Sci. – volume: 3 start-page: 188 year: 2012 ident: 10.1016/j.saa.2012.12.083_b0175 publication-title: Int. J. Pharm. Bio. Sci. – volume: 65 start-page: 2745 year: 2011 ident: 10.1016/j.saa.2012.12.083_b0135 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2011.05.077 – volume: 65 start-page: 4094 year: 1999 ident: 10.1016/j.saa.2012.12.083_b0120 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.65.9.4094-4098.1999 – volume: 75 start-page: 3 year: 2002 ident: 10.1016/j.saa.2012.12.083_b0030 article-title: Environmental catalysis: trends and outlook publication-title: Catal. Today doi: 10.1016/S0920-5861(02)00037-8 – volume: 12 start-page: 407 year: 2000 ident: 10.1016/j.saa.2012.12.083_b0040 publication-title: Adv. Mater. doi: 10.1002/(SICI)1521-4095(200003)12:6<407::AID-ADMA407>3.0.CO;2-O – volume: 5 start-page: 3573 year: 2009 ident: 10.1016/j.saa.2012.12.083_b0110 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.05.010 – volume: 95 start-page: 69 year: 2007 ident: 10.1016/j.saa.2012.12.083_b0050 publication-title: J. Mater. Sci. Mater. Med. – volume: 286 start-page: 543 year: 2005 ident: 10.1016/j.saa.2012.12.083_b0155 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2005.01.097 – volume: 39 start-page: 589 year: 2011 ident: 10.1016/j.saa.2012.12.083_b0095 publication-title: J. Dent. doi: 10.1016/j.jdent.2011.05.006 – volume: 10 start-page: 507 year: 2008 ident: 10.1016/j.saa.2012.12.083_b0005 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-007-9275-x – start-page: 132 year: 2006 ident: 10.1016/j.saa.2012.12.083_b0010 article-title: Biological synthesis of metal nanoparticles publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2006.03.019 – volume: 71 start-page: 270 year: 2005 ident: 10.1016/j.saa.2012.12.083_b0185 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.71.1.270-275.2005 |
SSID | ssj0001820 ssib047304432 |
Score | 2.449761 |
Snippet | Development of reliable and eco-friendly process for synthesis of metal oxide nanoparticles is an important step in the field of application of nanotechnology.... Nanosized materials have been an important subject in basic and applied sciences. A novel, low-cost, green and reproducible bacteria, Aeromonas hydrophila... |
SourceID | pubmed crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 82 |
SubjectTerms | Aeromonas hydrophila Aeromonas hydrophila - chemistry Aeromonas hydrophila - metabolism Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - metabolism Anti-Bacterial Agents - pharmacology Antibacterial activity Bacteria - drug effects Bacterial Infections - drug therapy Dipeptides - chemistry Dipeptides - metabolism FTIR GC–MS Glycyl-l-proline Green Chemistry Technology - methods Humans Nanoparticles - chemistry Nanoparticles - ultrastructure Spectroscopy, Fourier Transform Infrared Titanium - chemistry Titanium - metabolism Titanium - pharmacology Titanium dioxide nanoparticles X-Ray Diffraction |
Title | Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity |
URI | https://dx.doi.org/10.1016/j.saa.2012.12.083 https://www.ncbi.nlm.nih.gov/pubmed/23416912 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA-iiF5E5_sxcvAk1KVJ2qXHMZSpOAUVdit5amVkw9bDPPi3m_Qx9TJBKJSGJG2_fP0e7a-_D4BTFSFiEJYBMkIH1Bj3zMUxDRDimjEivVJ5tMUwHjzR61E0WgL95l8YD6usbX9l00trXbd0aml2plnWeQgJc77F-WfijS72nKCUdr2Wn39-wzw8QXmZdLE48L2bL5slxivnnnooxOUbQUb-8E0_HM_lJtioI0bYqy5qCyxp2wJr_aZQWwuslihOmW8DW1WW9HKHDVk4LCYwn1kX5-XZh4aP2R2GlluXK9eQOOih78-wpz0wz_IcvszU22T6ko055FbBrMjdvshExevsp5ZVyYkd8HR58dgfBHVBhUCSiBRBaJjLfhKqDEY8wRwp584NY0YgxmOOCZUGd0MuDE141zUJIqM4oRQjIQUPyS5YthOr9wFkUmMq424olaICU45NhBWWSZxoqhA6AKgRZSprtnFf9GKcNrCy19RJP_XST93mpH8AzuZDphXVxqLOtFmf9Je-pM4VLBq2V63l_Azupj1fED7834RHYB2XBTJoEEbHYLl4e9cnLkwpRLvUwzZY6V3dDIbuaHh_-wVs_Oe2 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH-CTohd0MbHBozNh52QQh3bSZ0jqqjKVsqBInGL_AmZkFuRcCiH_e2z8wHjUiSkSJEs20me7ff8kl9-P4CfOsHUYqIibKWJmLV-zaUpizAWhnOqwqQKaItpOr5mv26SmzUYdv_CBFhl6_sbn15767ak31qzvyiK_lVMuY8tPj7T4HQJW4cPzC_fIGNw8vcF5xEYyuusi6dRqN592qxBXqUI3EMxqV8JcvpGcPov8ow-wVa7ZUSnzV19hjXjtmFz2Cm1bcNGDeNU5Q64RloyGB51bOGomqNy6fxGryyeDJoVlwQ54Xyy3GLiUMC-36JTE5B5TpTobqkf5ou74l4g4TQqqtKfq0I2xM6ha9VoTuzC9ehsNhxHraJCpGhCqyi23Kc_GdOWYJERgbWP55ZzKzEXqSCUKUsGsZCWZWLgiyRVSZoxRrBUUsR0D3pu7sxXQFwZwlQ6iJXWTBImiE2IJipLM8M0xvuAO1PmqqUbD6oX93mHK_uTe-vnwfq5P7z19-H4ucmi4dpYVZl145O_mjC5jwWrmn1pxvL5Cv6hA2EQOXhfhz9gczy7mOST8-nvQ_hIarUMFsXJN-hVD4_myO9ZKvm9npP_AFhU6Dg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biological+approach+to+synthesize+TiO2+nanoparticles+using+Aeromonas+hydrophila+and+its+antibacterial+activity&rft.jtitle=Spectrochimica+acta.+Part+A%2C+Molecular+and+biomolecular+spectroscopy&rft.au=Jayaseelan%2C+Chidambaram&rft.au=Rahuman%2C+Abdul+Abdul&rft.au=Roopan%2C+Selvaraj+Mohana&rft.au=Kirthi%2C+Arivarasan+Vishnu&rft.date=2013-04-15&rft.pub=Elsevier+B.V&rft.issn=1386-1425&rft.volume=107&rft.spage=82&rft.epage=89&rft_id=info:doi/10.1016%2Fj.saa.2012.12.083&rft.externalDocID=S1386142513000024 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-1425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-1425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-1425&client=summon |