The ubiquitin-like (UBX)-domain-containing protein Ubx2/ Ubxd8 regulates lipid droplet homeostasis

Lipid droplets (LDs) are central organelles for maintaining lipid homeostasis. However, how cells control the size and number of LDs remains largely unknown. Herein, we report that Ubx2, a UBX-domain-containing protein involved in endoplasmic reticulum (ER)-associated degradation (ERAD), is crucial...

Full description

Saved in:
Bibliographic Details
Published inJournal of cell science Vol. 125; no. Pt 12; p. 2930
Main Authors Wang, Chao-Wen, Lee, Shu-Chuan
Format Journal Article
LanguageEnglish
Published England 15.06.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lipid droplets (LDs) are central organelles for maintaining lipid homeostasis. However, how cells control the size and number of LDs remains largely unknown. Herein, we report that Ubx2, a UBX-domain-containing protein involved in endoplasmic reticulum (ER)-associated degradation (ERAD), is crucial for LD maintenance. Ubx2 redistributes from ER to LDs when LDs start to form and enlarge during diauxic shift and in the stationary phase. ubx2Δ cells contain abnormal number and reduced size of LDs and their triacylglycerol (TAG) is reduced to 50% of the normal level. Deletion of either UBX or UBA domain in Ubx2 has no effect, but deletion of both causes LD phenotypes similar to that in ubx2Δ. The reduced TAG in ubx2Δ is likely due to mislocalization of Lro1, one of the two TAG-synthesizing enzymes in yeast, which moves along the ER and distributes dynamically to the putative LD assembly sites abutting LDs. Thus, Ubx2 is important for the maintenance of cellular TAG homeostasis likely through Lro1. The mammalian Ubxd8 expressed in yeast complements the defect of ubx2Δ, implying a functional conservation for these UBX-domain-containing proteins in lipid homeostasis.
AbstractList Lipid droplets (LDs) are central organelles for maintaining lipid homeostasis. However, how cells control the size and number of LDs remains largely unknown. Herein, we report that Ubx2, a UBX-domain-containing protein involved in endoplasmic reticulum (ER)-associated degradation (ERAD), is crucial for LD maintenance. Ubx2 redistributes from ER to LDs when LDs start to form and enlarge during diauxic shift and in the stationary phase. ubx2Δ cells contain abnormal number and reduced size of LDs and their triacylglycerol (TAG) is reduced to 50% of the normal level. Deletion of either UBX or UBA domain in Ubx2 has no effect, but deletion of both causes LD phenotypes similar to that in ubx2Δ. The reduced TAG in ubx2Δ is likely due to mislocalization of Lro1, one of the two TAG-synthesizing enzymes in yeast, which moves along the ER and distributes dynamically to the putative LD assembly sites abutting LDs. Thus, Ubx2 is important for the maintenance of cellular TAG homeostasis likely through Lro1. The mammalian Ubxd8 expressed in yeast complements the defect of ubx2Δ, implying a functional conservation for these UBX-domain-containing proteins in lipid homeostasis.
Lipid droplets (LDs) are central organelles for maintaining lipid homeostasis. However, how cells control the size and number of LDs remains largely unknown. Herein, we report that Ubx2, a UBX-domain-containing protein involved in endoplasmic reticulum (ER)-associated degradation, is crucial for LD maintenance. Ubx2 redistributes from the ER to LDs when LDs start to form and enlarge during diauxic shift and in the stationary phase. ubx2Δ cells contain abnormal numbers of LDs that are smaller than normal, and their triacylglycerol (TAG) is reduced to 50% of the normal level. Deletion of either the UBX or UBA domain in Ubx2 has no effect, but deletion of both causes LD phenotypes similar to that in ubx2Δ. The reduced level of TAG in ubx2Δ is probably the result of mislocalization of phospholipid:diacylglycerol acyltransferase (Lro1), one of the two TAG-synthesizing enzymes in yeast, which moves along the ER and distributes dynamically to the putative LD assembly sites abutting LDs. Thus, Ubx2 is important for the maintenance of cellular TAG homeostasis probably through Lro1. The mammalian Ubxd8 (also known as FAF2), when expressed in yeast, complements the defect of ubx2Δ, implying a functional conservation for these UBX-domain-containing proteins in lipid homeostasis.
Lipid droplets (LDs) are central organelles for maintaining lipid homeostasis. However, how cells control the size and number of LDs remains largely unknown. Herein, we report that Ubx2, a UBX-domain-containing protein involved in endoplasmic reticulum (ER)-associated degradation, is crucial for LD maintenance. Ubx2 redistributes from the ER to LDs when LDs start to form and enlarge during diauxic shift and in the stationary phase. ubx2Δ cells contain abnormal numbers of LDs that are smaller than normal, and their triacylglycerol (TAG) is reduced to 50% of the normal level. Deletion of either the UBX or UBA domain in Ubx2 has no effect, but deletion of both causes LD phenotypes similar to that in ubx2Δ. The reduced level of TAG in ubx2Δ is probably the result of mislocalization of phospholipid:diacylglycerol acyltransferase (Lro1), one of the two TAG-synthesizing enzymes in yeast, which moves along the ER and distributes dynamically to the putative LD assembly sites abutting LDs. Thus, Ubx2 is important for the maintenance of cellular TAG homeostasis probably through Lro1. The mammalian Ubxd8 (also known as FAF2), when expressed in yeast, complements the defect of ubx2Δ, implying a functional conservation for these UBX-domain-containing proteins in lipid homeostasis.Lipid droplets (LDs) are central organelles for maintaining lipid homeostasis. However, how cells control the size and number of LDs remains largely unknown. Herein, we report that Ubx2, a UBX-domain-containing protein involved in endoplasmic reticulum (ER)-associated degradation, is crucial for LD maintenance. Ubx2 redistributes from the ER to LDs when LDs start to form and enlarge during diauxic shift and in the stationary phase. ubx2Δ cells contain abnormal numbers of LDs that are smaller than normal, and their triacylglycerol (TAG) is reduced to 50% of the normal level. Deletion of either the UBX or UBA domain in Ubx2 has no effect, but deletion of both causes LD phenotypes similar to that in ubx2Δ. The reduced level of TAG in ubx2Δ is probably the result of mislocalization of phospholipid:diacylglycerol acyltransferase (Lro1), one of the two TAG-synthesizing enzymes in yeast, which moves along the ER and distributes dynamically to the putative LD assembly sites abutting LDs. Thus, Ubx2 is important for the maintenance of cellular TAG homeostasis probably through Lro1. The mammalian Ubxd8 (also known as FAF2), when expressed in yeast, complements the defect of ubx2Δ, implying a functional conservation for these UBX-domain-containing proteins in lipid homeostasis.
Author Wang, Chao-Wen
Lee, Shu-Chuan
Author_xml – sequence: 1
  givenname: Chao-Wen
  surname: Wang
  fullname: Wang, Chao-Wen
– sequence: 2
  givenname: Shu-Chuan
  surname: Lee
  fullname: Lee, Shu-Chuan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22454508$$D View this record in MEDLINE/PubMed
BookMark eNptkE1LxDAQhoMouqte_AHSowpd89E2yVEXv2DBywreSppMd7O2TW1S0H9vlnUv4mUGhmdeZp4pOuxcBwhdEDwjNKO3G-1nBGPK8AGakIzzVBLGD9Ekzkgqc8ZO0NT7DcaYU8mP0QmlWZ7lWExQtVxDMlb2c7TBdmljPyC5ert_v06Na1WcaNeF2G23SvrBBbBd8lZ90dttNSIZYDU2KoBPGttbk5jB9Q2EZO1acD4ob_0ZOqpV4-H8t5-i5ePDcv6cLl6fXuZ3i1SznIWUGCJB0UoUBdEai0wWdcW54RhrVdeVwZpnUMR3pFBSUQFFkYHAwmBZF5qdoqtdbDzzcwQfytZ6DU2jOnCjLwlmjORC5Dyil7_oWLVgyn6wrRq-y72WCOAdoAfn_QB1qW1QwUYXg7JNzCq35stovtyZjys3f1b2qf_AP0vFg84
CitedBy_id crossref_primary_10_1016_j_yexcr_2015_11_024
crossref_primary_10_1083_jcb_201305142
crossref_primary_10_1083_jcb_201610013
crossref_primary_10_3389_fcell_2015_00049
crossref_primary_10_1515_hsz_2016_0277
crossref_primary_10_1007_s11515_012_1247_6
crossref_primary_10_1091_mbc_E15_03_0173
crossref_primary_10_1080_15548627_2015_1056969
crossref_primary_10_1371_journal_pgen_1004383
crossref_primary_10_1016_j_bbalip_2014_06_004
crossref_primary_10_1128_mbio_02687_22
crossref_primary_10_1002_1873_3468_14793
crossref_primary_10_1083_jcb_201404115
crossref_primary_10_1016_j_ibmb_2015_06_009
crossref_primary_10_1371_journal_pone_0124630
crossref_primary_10_1016_j_bbalip_2013_07_001
crossref_primary_10_1016_j_febslet_2013_06_002
crossref_primary_10_1007_s00294_020_01090_y
crossref_primary_10_15252_embj_201593106
crossref_primary_10_1016_j_celrep_2013_11_046
crossref_primary_10_1371_journal_pone_0056486
crossref_primary_10_1371_journal_pone_0072453
crossref_primary_10_1016_j_biocel_2017_08_006
crossref_primary_10_1371_journal_pone_0159324
crossref_primary_10_1083_jcb_202201036
crossref_primary_10_1097_MCO_0b013e3283651106
crossref_primary_10_1007_s00018_015_1903_5
crossref_primary_10_7554_eLife_51065
crossref_primary_10_1146_annurev_biochem_062917_012749
crossref_primary_10_3389_fcvm_2022_999044
crossref_primary_10_1007_s10142_013_0318_3
crossref_primary_10_1091_mbc_E14_08_1303
crossref_primary_10_1242_jcs_137737
crossref_primary_10_1128_iai_00130_23
crossref_primary_10_1007_s12035_022_02826_2
crossref_primary_10_1083_jcb_201311051
crossref_primary_10_1091_mbc_e12_12_0907
crossref_primary_10_1091_mbc_e13_11_0634
crossref_primary_10_1146_annurev_nutr_071715_051030
crossref_primary_10_1038_s41586_019_1227_y
crossref_primary_10_1083_jcb_201902072
Cites_doi 10.1074/jbc.M800401200
10.1074/jbc.273.41.26765
10.1016/S0002-9343(98)00213-7
10.1128/JB.184.2.519-524.2002
10.1083/jcb.87.1.180
10.1016/j.plipres.2008.01.001
10.1016/j.cell.2009.11.005
10.1074/jbc.M805768200
10.1074/jbc.M403251200
10.1073/pnas.120067297
10.1083/jcb.152.5.F29
10.1371/journal.pgen.1002201
10.1042/BST20051182
10.1038/ncb1298
10.1194/jlr.R800018-JLR200
10.1083/jcb.200711136
10.1126/science.272.5266.1353
10.1038/sj.embor.7400203
10.1016/S1388-1981(00)00153-0
10.1038/ncb1299
10.1016/S0021-9258(18)64849-5
10.1002/yea.320101105
10.1083/jcb.152.5.1079
10.1073/pnas.1011859107
10.1016/j.biochi.2004.12.010
10.1074/jbc.C000144200
10.1074/jbc.M806108200
10.1016/S0022-2275(20)41129-0
10.1073/pnas.0805371105
10.1016/j.bbalip.2008.10.009
10.1038/nature06928
10.1074/mcp.M600011-MCP200
10.1083/jcb.200210169
10.1073/pnas.0704154104
10.1371/journal.pbio.0060292
10.1074/jbc.M409340200
10.1097/00041433-199804000-00007
10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
10.1016/j.bbamcr.2003.10.018
10.1016/j.tibs.2005.11.004
10.1242/jcs.054700
10.1074/jbc.R800042200
10.1083/jcb.201010111
10.1242/jcs.012013
10.1128/JB.181.20.6441-6448.1999
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1242/jcs.100230
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-9137
ExternalDocumentID 22454508
10_1242_jcs_100230
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
0R~
18M
2WC
34G
39C
3O-
4.4
4R4
53G
5GY
5RE
5VS
85S
AAYXX
ABDNZ
ABPPZ
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADCOW
ADVGF
AEILP
AENEX
AFFNX
AFRAH
AGGIJ
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
F5P
F9R
GX1
H13
HZ~
IH2
INIJC
KQ8
O9-
OK1
P2P
R.V
RCB
RHI
RNS
SJN
TN5
TR2
UPT
W2D
W8F
WH7
WOQ
YQT
ZY4
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c353t-1d19ea2b8661cc08496fb77d700caffbd0c74e695398a9a28e664e808d09f6c3
ISSN 0021-9533
1477-9137
IngestDate Fri Jul 11 01:47:24 EDT 2025
Mon Jul 21 05:26:35 EDT 2025
Tue Jul 01 02:37:50 EDT 2025
Thu Apr 24 23:05:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue Pt 12
Language English
License http://www.biologists.com/user-licence-1-1
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c353t-1d19ea2b8661cc08496fb77d700caffbd0c74e695398a9a28e664e808d09f6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22454508
PQID 1033158857
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1033158857
pubmed_primary_22454508
crossref_citationtrail_10_1242_jcs_100230
crossref_primary_10_1242_jcs_100230
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-06-15
PublicationDateYYYYMMDD 2012-06-15
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of cell science
PublicationTitleAlternate J Cell Sci
PublicationYear 2012
References Adeyo (2021042521513743100_b1) 2011; 192
Fei (2021042521513743100_b12) 2011; 7
Lee (2021042521513743100_b23) 2010; 107
Sorger (2021042521513743100_b35) 2002; 184
van Meer (2021042521513743100_b40) 2001; 152
Athenstaedt (2021042521513743100_b2) 1999; 181
Neuber (2021042521513743100_b27) 2005; 7
Rajakumari (2021042521513743100_b31) 2008; 47
Krauss (2021042521513743100_b20) 1998; 105 Suppl. 1
Beller (2021042521513743100_b4) 2008; 6
Guo (2021042521513743100_b18) 2008; 453
Garbarino (2021042521513743100_b16) 2005; 33
Schuberth (2021042521513743100_b33) 2005; 7
Oelkers (2021042521513743100_b29) 1998; 273
Leber (2021042521513743100_b21) 1994; 10
Fujimoto (2021042521513743100_b15) 2004; 1644
Blanchette–Mackie (2021042521513743100_b5) 1995; 36
Lee (2021042521513743100_b22) 2008; 283
Oelkers (2021042521513743100_b30) 2000; 275
Zehmer (2021042521513743100_b45) 2009; 122
Fujimoto (2021042521513743100_b14) 2001; 152
Fei (2021042521513743100_b11) 2008; 180
Schuberth (2021042521513743100_b34) 2004; 5
Czabany (2021042521513743100_b7) 2008; 283
Römisch (2021042521513743100_b32) 2006; 31
Londos (2021042521513743100_b24) 2005; 87
Szymanski (2021042521513743100_b39) 2007; 104
Yen (2021042521513743100_b43) 2008; 49
Farese (2021042521513743100_b9) 1998; 9
Sorger (2021042521513743100_b36) 2004; 279
Folch (2021042521513743100_b13) 1957; 226
Yang (2021042521513743100_b42) 1996; 272
Dahlqvist (2021042521513743100_b8) 2000; 97
Goodman (2021042521513743100_b17) 2008; 283
Sztalryd (2021042521513743100_b38) 2003; 161
Walther (2021042521513743100_b41) 2009; 1791
Stone (2021042521513743100_b37) 2009; 284
Brasaemle (2021042521513743100_b6) 2004; 279
Longtine (2021042521513743100_b25) 1998; 14
Mueller (2021042521513743100_b26) 2008; 105
Zehmer (2021042521513743100_b44) 2008; 121
Beller (2021042521513743100_b3) 2006; 5
Novikoff (2021042521513743100_b28) 1980; 87
Farese (2021042521513743100_b10) 2009; 139
Jonas (2021042521513743100_b19) 2000; 1529
References_xml – volume: 283
  start-page: 17065
  year: 2008
  ident: 2021042521513743100_b7
  article-title: Structural and biochemical properties of lipid particles from the yeast Saccharomyces cerevisiae.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M800401200
– volume: 273
  start-page: 26765
  year: 1998
  ident: 2021042521513743100_b29
  article-title: Characterization of two human genes encoding acyl coenzyme A:cholesterol acyltransferase-related enzymes.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.41.26765
– volume: 105 Suppl. 1
  start-page: 58S
  year: 1998
  ident: 2021042521513743100_b20
  article-title: Triglycerides and atherogenic lipoproteins: rationale for lipid management.
  publication-title: Am. J. Med.
  doi: 10.1016/S0002-9343(98)00213-7
– volume: 184
  start-page: 519
  year: 2002
  ident: 2021042521513743100_b35
  article-title: Synthesis of triacylglycerols by the acyl-coenzyme A:diacyl-glycerol acyltransferase Dga1p in lipid particles of the yeast Saccharomyces cerevisiae.
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.184.2.519-524.2002
– volume: 87
  start-page: 180
  year: 1980
  ident: 2021042521513743100_b28
  article-title: Organelle relationships in cultured 3T3-L1 preadipocytes.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.87.1.180
– volume: 47
  start-page: 157
  year: 2008
  ident: 2021042521513743100_b31
  article-title: Synthesis and turnover of non-polar lipids in yeast.
  publication-title: Prog. Lipid Res.
  doi: 10.1016/j.plipres.2008.01.001
– volume: 139
  start-page: 855
  year: 2009
  ident: 2021042521513743100_b10
  article-title: Lipid droplets finally get a little R-E-S-P-E-C-T.
  publication-title: Cell
  doi: 10.1016/j.cell.2009.11.005
– volume: 284
  start-page: 5352
  year: 2009
  ident: 2021042521513743100_b37
  article-title: The endoplasmic reticulum enzyme DGAT2 is found in mitochondria-associated membranes and has a mitochondrial targeting signal that promotes its association with mitochondria.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M805768200
– volume: 279
  start-page: 31190
  year: 2004
  ident: 2021042521513743100_b36
  article-title: A yeast strain lacking lipid particles bears a defect in ergosterol formation.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M403251200
– volume: 97
  start-page: 6487
  year: 2000
  ident: 2021042521513743100_b8
  article-title: Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.120067297
– volume: 152
  start-page: F29
  year: 2001
  ident: 2021042521513743100_b40
  article-title: Caveolin, cholesterol, and lipid droplets?
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.152.5.F29
– volume: 7
  start-page: e1002201
  year: 2011
  ident: 2021042521513743100_b12
  article-title: A role for phosphatidic acid in the formation of “supersized” lipid droplets.
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002201
– volume: 33
  start-page: 1182
  year: 2005
  ident: 2021042521513743100_b16
  article-title: Homoeostatic systems for sterols and other lipids.
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST20051182
– volume: 7
  start-page: 993
  year: 2005
  ident: 2021042521513743100_b27
  article-title: Ubx2 links the Cdc48 complex to ER-associated protein degradation.
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1298
– volume: 49
  start-page: 2283
  year: 2008
  ident: 2021042521513743100_b43
  article-title: Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis.
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.R800018-JLR200
– volume: 180
  start-page: 473
  year: 2008
  ident: 2021042521513743100_b11
  article-title: Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200711136
– volume: 272
  start-page: 1353
  year: 1996
  ident: 2021042521513743100_b42
  article-title: Sterol esterification in yeast: a two-gene process.
  publication-title: Science
  doi: 10.1126/science.272.5266.1353
– volume: 5
  start-page: 818
  year: 2004
  ident: 2021042521513743100_b34
  article-title: Shp1 and Ubx2 are adaptors of Cdc48 involved in ubiquitin-dependent protein degradation.
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7400203
– volume: 1529
  start-page: 245
  year: 2000
  ident: 2021042521513743100_b19
  article-title: Lecithin cholesterol acyltransferase.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S1388-1981(00)00153-0
– volume: 7
  start-page: 999
  year: 2005
  ident: 2021042521513743100_b33
  article-title: Membrane-bound Ubx2 recruits Cdc48 to ubiquitin ligases and their substrates to ensure efficient ER-associated protein degradation.
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1299
– volume: 226
  start-page: 497
  year: 1957
  ident: 2021042521513743100_b13
  article-title: A simple method for the isolation and purification of total lipides from animal tissues.
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)64849-5
– volume: 10
  start-page: 1421
  year: 1994
  ident: 2021042521513743100_b21
  article-title: Characterization of lipid particles of the yeast, Saccharomyces cerevisiae.
  publication-title: Yeast
  doi: 10.1002/yea.320101105
– volume: 152
  start-page: 1079
  year: 2001
  ident: 2021042521513743100_b14
  article-title: Caveolin-2 is targeted to lipid droplets, a new “membrane domain” in the cell.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.152.5.1079
– volume: 107
  start-page: 21424
  year: 2010
  ident: 2021042521513743100_b23
  article-title: Identification of Ubxd8 protein as a sensor for unsaturated fatty acids and regulator of triglyceride synthesis.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1011859107
– volume: 87
  start-page: 45
  year: 2005
  ident: 2021042521513743100_b24
  article-title: Role of PAT proteins in lipid metabolism.
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2004.12.010
– volume: 275
  start-page: 15609
  year: 2000
  ident: 2021042521513743100_b30
  article-title: A lecithin cholesterol acyltransferase-like gene mediates diacylglycerol esterification in yeast.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C000144200
– volume: 283
  start-page: 33772
  year: 2008
  ident: 2021042521513743100_b22
  article-title: Unsaturated fatty acids inhibit proteasomal degradation of Insig-1 at a postubiquitination step.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M806108200
– volume: 36
  start-page: 1211
  year: 1995
  ident: 2021042521513743100_b5
  article-title: Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes.
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)41129-0
– volume: 105
  start-page: 12325
  year: 2008
  ident: 2021042521513743100_b26
  article-title: SEL1L nucleates a protein complex required for dislocation of misfolded glycoproteins.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0805371105
– volume: 1791
  start-page: 459
  year: 2009
  ident: 2021042521513743100_b41
  article-title: The life of lipid droplets.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbalip.2008.10.009
– volume: 453
  start-page: 657
  year: 2008
  ident: 2021042521513743100_b18
  article-title: Functional genomic screen reveals genes involved in lipid-droplet formation and utilization.
  publication-title: Nature
  doi: 10.1038/nature06928
– volume: 5
  start-page: 1082
  year: 2006
  ident: 2021042521513743100_b3
  article-title: Characterization of the Drosophila lipid droplet subproteome.
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M600011-MCP200
– volume: 161
  start-page: 1093
  year: 2003
  ident: 2021042521513743100_b38
  article-title: Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200210169
– volume: 104
  start-page: 20890
  year: 2007
  ident: 2021042521513743100_b39
  article-title: The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0704154104
– volume: 6
  start-page: e292
  year: 2008
  ident: 2021042521513743100_b4
  article-title: COPI complex is a regulator of lipid homeostasis.
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060292
– volume: 279
  start-page: 46835
  year: 2004
  ident: 2021042521513743100_b6
  article-title: Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M409340200
– volume: 9
  start-page: 119
  year: 1998
  ident: 2021042521513743100_b9
  article-title: Acyl CoA: cholesterol acyltransferase genes and knockout mice.
  publication-title: Curr. Opin. Lipidol.
  doi: 10.1097/00041433-199804000-00007
– volume: 14
  start-page: 953
  year: 1998
  ident: 2021042521513743100_b25
  article-title: Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae.
  publication-title: Yeast
  doi: 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
– volume: 1644
  start-page: 47
  year: 2004
  ident: 2021042521513743100_b15
  article-title: Identification of major proteins in the lipid droplet-enriched fraction isolated from the human hepatocyte cell line HuH7.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2003.10.018
– volume: 31
  start-page: 24
  year: 2006
  ident: 2021042521513743100_b32
  article-title: Cdc48p is UBX-linked to ER ubiquitin ligases.
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2005.11.004
– volume: 122
  start-page: 3694
  year: 2009
  ident: 2021042521513743100_b45
  article-title: Targeting sequences of UBXD8 and AAM-B reveal that the ER has a direct role in the emergence and regression of lipid droplets.
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.054700
– volume: 283
  start-page: 28005
  year: 2008
  ident: 2021042521513743100_b17
  article-title: The gregarious lipid droplet.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R800042200
– volume: 192
  start-page: 1043
  year: 2011
  ident: 2021042521513743100_b1
  article-title: The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201010111
– volume: 121
  start-page: 1852
  year: 2008
  ident: 2021042521513743100_b44
  article-title: Identification of a novel N-terminal hydrophobic sequence that targets proteins to lipid droplets.
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.012013
– volume: 181
  start-page: 6441
  year: 1999
  ident: 2021042521513743100_b2
  article-title: Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae.
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.181.20.6441-6448.1999
SSID ssj0007297
Score 2.3437788
Snippet Lipid droplets (LDs) are central organelles for maintaining lipid homeostasis. However, how cells control the size and number of LDs remains largely unknown....
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 2930
SubjectTerms Blood Proteins - genetics
Blood Proteins - metabolism
Carrier Proteins - chemistry
Carrier Proteins - genetics
Carrier Proteins - metabolism
Genetic Complementation Test
Homeostasis
Humans
Lipid Metabolism
Membrane Proteins - chemistry
Membrane Proteins - genetics
Membrane Proteins - metabolism
Organelles - genetics
Organelles - metabolism
Protein Structure, Tertiary
Protein Transport
Saccharomyces cerevisiae - chemistry
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Title The ubiquitin-like (UBX)-domain-containing protein Ubx2/ Ubxd8 regulates lipid droplet homeostasis
URI https://www.ncbi.nlm.nih.gov/pubmed/22454508
https://www.proquest.com/docview/1033158857
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgCIkXxG-6AQqCB6bIm9PEif0I1aYJjYFEKvIWObajRnTJaBMJ-Os5x26zsk4avCSVm1rVfdblO_vuO4TeEqK0poHCokwIjjQVmPNS4YIC5DIUEJGZQuFPZ_HJNPqY0WzoVNhXl7TFgfy9ta7kf1CFMcDVVMn-A7LrSWEAPgO-cAWE4XpjjLui-tFVbVXjefW9J4zTDxnE91g15xD1Y5OLbrtA-L0mQ1X70-Kn0UOFm2L-wjaj10t_Xl1UylcLk1Le-rPmXDdAHZfV8hoCa_b8ffcGHfblre-YzESDv-m_832-zjo8mXVuRbrNBpO1EWNbbun8Y2ROfAOr03Kgt4ytnOqYXlo9X1rfJUs7N8ntYcwV_w2EwfhvueylYd2JzYZI9tnn_Hh6epqnR1l6G90ZQ3TQ13hnQ2YPxAt9T53V_3KqtDD34TDzJg-5JrjoSUb6AN13xvXeW6gfolu6foTu2n6hvx4jAYB7m4B77wDu_atgew5sz4B92EPtraH2eqg9B7V3CeonKD0-Sicn2PXIwDKkYYsDFXAtxgUDniUlYRGPyyJJVEKIFGVZKCKTSMechpwJLsZMx3GkGWGK8DKW4VO0Uze1fo48KYBsF6UUYZgYEUimIi5DbRUUKSlGaH9lsFw6_XjTxmSemzgSjJuDcXNr3BF6s372wqqmbH3q9cruOTg1s2pFrZvOfB-GAWWMJiP0zAKyngc4J7B-wnZv8Os9dG9YxS_QTrvo9EsgkW3xql8yfwBg3nKZ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ubiquitin-like+%28UBX%29-domain-containing+protein+Ubx2%2FUbxd8+regulates+lipid+droplet+homeostasis&rft.jtitle=Journal+of+cell+science&rft.au=Wang%2C+Chao-Wen&rft.au=Lee%2C+Shu-Chuan&rft.date=2012-06-15&rft.issn=1477-9137&rft.eissn=1477-9137&rft.volume=125&rft.issue=Pt+12&rft.spage=2930&rft_id=info:doi/10.1242%2Fjcs.100230&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9533&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9533&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9533&client=summon