Computed tomography reconstruction using deep image prior and learned reconstruction methods

In this paper we describe an investigation into the application of deep learning methods for low-dose and sparse angle computed tomography using small training datasets. To motivate our work we review some of the existing approaches and obtain quantitative results after training them with different...

Full description

Saved in:
Bibliographic Details
Published inInverse problems Vol. 36; no. 9; pp. 94004 - 94027
Main Authors Baguer, Daniel Otero, Leuschner, Johannes, Schmidt, Maximilian
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper we describe an investigation into the application of deep learning methods for low-dose and sparse angle computed tomography using small training datasets. To motivate our work we review some of the existing approaches and obtain quantitative results after training them with different amounts of data. We find that the learned primal-dual method has an outstanding performance in terms of reconstruction quality and data efficiency. However, in general, end-to-end learned methods have two deficiencies: (a) a lack of classical guarantees in inverse problems and (b) the lack of generalization after training with insufficient data. To overcome these problems, we introduce the deep image prior approach in combination with classical regularization and an initial reconstruction. The proposed methods achieve the best results in the low-data regime in three challenging scenarios.
AbstractList In this paper we describe an investigation into the application of deep learning methods for low-dose and sparse angle computed tomography using small training datasets. To motivate our work we review some of the existing approaches and obtain quantitative results after training them with different amounts of data. We find that the learned primal-dual method has an outstanding performance in terms of reconstruction quality and data efficiency. However, in general, end-to-end learned methods have two deficiencies: (a) a lack of classical guarantees in inverse problems and (b) the lack of generalization after training with insufficient data. To overcome these problems, we introduce the deep image prior approach in combination with classical regularization and an initial reconstruction. The proposed methods achieve the best results in the low-data regime in three challenging scenarios.
Author Schmidt, Maximilian
Baguer, Daniel Otero
Leuschner, Johannes
Author_xml – sequence: 1
  givenname: Daniel Otero
  orcidid: 0000-0001-6550-6043
  surname: Baguer
  fullname: Baguer, Daniel Otero
  email: {otero,jleuschn,schmidt4}@uni-bremen.de
  organization: University of Bremen Center for Industrial Mathematics (ZeTeM), Bibliothekstraße 5, 28359 Bremen, Germany
– sequence: 2
  givenname: Johannes
  orcidid: 0000-0001-7361-9523
  surname: Leuschner
  fullname: Leuschner, Johannes
  organization: University of Bremen Center for Industrial Mathematics (ZeTeM), Bibliothekstraße 5, 28359 Bremen, Germany
– sequence: 3
  givenname: Maximilian
  orcidid: 0000-0001-8710-1389
  surname: Schmidt
  fullname: Schmidt, Maximilian
  organization: University of Bremen Center for Industrial Mathematics (ZeTeM), Bibliothekstraße 5, 28359 Bremen, Germany
BookMark eNp9kD1rwzAQhkVJoUnavaOmTnUjWbJsjyX0CwJd2q0gzrKUKMSSkeQh_742KR1KyXRwvM_x3rNAM-edRuiWkgdKqmpFmaCZ4DlZQQOcFhdo_ruaoTnJhcgKQekVWsS4J4TSipZz9LX2XT8k3eLkO78N0O-OOGjlXUxhUMl6h4do3Ra3WvfYdrDVuA_WBwyuxQcNwY3wH6LTaefbeI0uDRyivvmZS_T5_PSxfs027y9v68dNpljBUkZzYtpGl4zysmkqQUUjOOSKKMgFV0qDYqANr0vKm7ISpAHdCqGBGw51YdgSkdNdFXyMQRs5NuwgHCUlcrIjJxVyUiFPdkZE_EGUTTCVTwHs4Rx4fwKt7-XeD8GNn52L3_0Tt71kQtaS1JwQLvvWsG8TCola
CODEN INPEEY
CitedBy_id crossref_primary_10_1137_20M1376790
crossref_primary_10_3390_jimaging9090170
crossref_primary_10_1109_TGRS_2021_3114101
crossref_primary_10_1109_TAP_2021_3083741
crossref_primary_10_1109_TRPMS_2022_3217517
crossref_primary_10_1038_s41598_021_97226_2
crossref_primary_10_1002_nbm_5145
crossref_primary_10_1109_TCI_2022_3175309
crossref_primary_10_1088_1361_6420_ad35e3
crossref_primary_10_1109_TRPMS_2022_3148373
crossref_primary_10_1088_1361_6420_ad5d0d
crossref_primary_10_1016_j_eswa_2024_125105
crossref_primary_10_1088_1361_6560_ad69f7
crossref_primary_10_3390_s23020563
crossref_primary_10_1088_1361_6420_acb2ed
crossref_primary_10_1109_TPAMI_2022_3204527
crossref_primary_10_1016_j_bspc_2023_105513
crossref_primary_10_1016_j_bspc_2022_103598
crossref_primary_10_1016_j_nima_2023_168690
crossref_primary_10_1088_1361_6420_acce5e
crossref_primary_10_1109_JBHI_2022_3225697
crossref_primary_10_1145_3528223_3530121
crossref_primary_10_1364_OPTICA_470712
crossref_primary_10_1109_JSTSP_2022_3215849
crossref_primary_10_1088_1361_6560_ac7e17
crossref_primary_10_1088_1361_6420_ad7d30
crossref_primary_10_1088_2399_6528_abebcf
crossref_primary_10_1109_TCI_2021_3132190
crossref_primary_10_1016_j_compbiomed_2025_109853
crossref_primary_10_1186_s40658_021_00426_y
crossref_primary_10_1016_j_compmedimag_2025_102530
crossref_primary_10_7498_aps_71_20211761
crossref_primary_10_1007_s12046_023_02107_1
crossref_primary_10_1007_s42979_023_02295_x
crossref_primary_10_1109_TCI_2024_3414320
crossref_primary_10_3390_sym14112248
crossref_primary_10_1007_s42979_023_02210_4
crossref_primary_10_1109_TGRS_2024_3492059
crossref_primary_10_1088_1361_6560_acfdf1
crossref_primary_10_1088_1361_6501_ad7eed
crossref_primary_10_1038_s41597_021_00893_z
crossref_primary_10_3390_e23111481
crossref_primary_10_1002_mp_17379
crossref_primary_10_1002_mp_17413
crossref_primary_10_1007_s11431_023_2629_2
crossref_primary_10_1259_dmfr_20210437
crossref_primary_10_1016_j_media_2025_103454
crossref_primary_10_1016_j_media_2022_102382
crossref_primary_10_1109_TRPMS_2023_3281148
crossref_primary_10_1016_j_ejmp_2024_104491
crossref_primary_10_3390_s24041213
crossref_primary_10_1088_1361_6420_ac9011
crossref_primary_10_1007_s13137_024_00253_0
crossref_primary_10_3390_jimaging7030044
crossref_primary_10_1109_TCI_2024_3458397
crossref_primary_10_1109_TCI_2023_3347916
crossref_primary_10_1088_1361_6420_ac8ac6
crossref_primary_10_1109_ACCESS_2024_3509640
crossref_primary_10_3390_math11143201
crossref_primary_10_1016_j_jappgeo_2022_104645
crossref_primary_10_1109_TMM_2022_3204440
crossref_primary_10_1016_j_engappai_2022_105467
crossref_primary_10_1109_TCI_2024_3365371
crossref_primary_10_1109_TGRS_2021_3116455
crossref_primary_10_1109_TPAMI_2023_3240565
crossref_primary_10_1051_bioconf_202412902012
crossref_primary_10_3389_fcvm_2022_928546
crossref_primary_10_1190_geo2023_0428_1
crossref_primary_10_1016_j_jag_2023_103430
crossref_primary_10_1016_j_engappai_2024_108617
crossref_primary_10_1109_TGRS_2021_3062688
crossref_primary_10_1190_geo2021_0006_1
crossref_primary_10_3390_ma16041654
crossref_primary_10_1088_1361_6420_acb569
crossref_primary_10_1016_j_asoc_2024_111436
crossref_primary_10_1002_appl_202300016
crossref_primary_10_11648_j_ijmi_20251301_12
crossref_primary_10_1371_journal_pone_0304738
crossref_primary_10_1016_j_eswa_2023_120277
crossref_primary_10_1109_TCI_2024_3440063
crossref_primary_10_1016_j_neunet_2024_106740
crossref_primary_10_1038_s41377_023_01181_8
crossref_primary_10_1142_S1752890923500083
crossref_primary_10_3390_en16031387
crossref_primary_10_1109_ACCESS_2024_3382939
crossref_primary_10_1080_10589759_2023_2170374
crossref_primary_10_1109_TIP_2024_3418347
crossref_primary_10_1109_TMI_2021_3095310
crossref_primary_10_1137_21M1445697
crossref_primary_10_1142_S0217732324501815
crossref_primary_10_7717_peerj_cs_1849
crossref_primary_10_1109_ACCESS_2023_3292158
crossref_primary_10_1016_j_cmpb_2022_107167
crossref_primary_10_1038_s41598_023_27627_y
crossref_primary_10_1137_22M1496542
crossref_primary_10_1016_j_asoc_2024_112598
crossref_primary_10_1364_OE_469377
crossref_primary_10_1137_24M1636617
crossref_primary_10_1016_j_csda_2024_107930
crossref_primary_10_3390_jpm14040376
crossref_primary_10_1109_TCI_2022_3233188
crossref_primary_10_1007_s10589_022_00392_w
crossref_primary_10_3934_ammc_2023009
crossref_primary_10_3934_math_2024706
crossref_primary_10_1002_mrm_30114
crossref_primary_10_1109_TAP_2025_3532082
crossref_primary_10_1109_TIP_2021_3125489
crossref_primary_10_1137_23M1582862
crossref_primary_10_1109_TMI_2021_3072568
crossref_primary_10_1088_1361_6420_ac8a91
crossref_primary_10_3390_jimaging10090208
crossref_primary_10_1088_1361_6560_ac4122
crossref_primary_10_1364_BOE_441901
crossref_primary_10_1007_s42967_023_00333_2
crossref_primary_10_1016_j_ejmp_2023_102535
crossref_primary_10_1002_pamm_202100166
crossref_primary_10_1088_1361_6560_acaf47
crossref_primary_10_1364_OPTICA_492666
Cites_doi 10.1148/ryai.2020190007
10.1088/0266-5611/23/3/009
10.1137/1.9780898719284
10.1007/s10851-019-00923-x
10.1109/tmi.2018.2827462
10.1088/1361-6420/ab10ca
10.1109/tmi.2018.2888491
10.1093/biomet/81.3.425
10.1088/1361-6420/ab6d57
10.1088/1361-6420/aa9581
10.1109/tmi.1986.4307775
10.1109/tmi.2020.2964266
10.1109/tmi.2017.2715284
10.1038/nature25988
10.1109/tmi.2018.2832656
10.3390/jimaging4110128
10.1118/1.3528204
10.1109/tmi.2018.2799231
10.1109/tip.2017.2713099
10.1088/1361-6420/aaf14a
10.1073/pnas.1907377117
10.1017/s0962492919000059
10.1109/CVPR.2019.00559
10.1109/tmi.2018.2820382
ContentType Journal Article
Copyright 2020 The Author(s). Published by IOP Publishing Ltd
Copyright_xml – notice: 2020 The Author(s). Published by IOP Publishing Ltd
DBID O3W
TSCCA
AAYXX
CITATION
DOI 10.1088/1361-6420/aba415
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
DocumentTitleAlternate Computed tomography reconstruction using deep image prior and learned reconstruction methods
EISSN 1361-6420
ExternalDocumentID 10_1088_1361_6420_aba415
ipaba415
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft (DFG)
  grantid: GRK 2224/1 pi3
GroupedDBID -~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABHFT
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
KZ1
LAP
LMP
M45
N5L
N9A
O3W
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
TSCCA
UCJ
W28
XPP
ZMT
~02
AAYXX
ADACN
ADEQX
CITATION
ID FETCH-LOGICAL-c353t-120fdbe73147bb8616b64a2c0ca264cceac3aef49714b7860baed66ea4f4a95f3
IEDL.DBID O3W
ISSN 0266-5611
IngestDate Thu Apr 24 22:58:08 EDT 2025
Tue Jul 01 00:41:27 EDT 2025
Thu Jan 07 14:56:20 EST 2021
Wed Aug 21 03:33:31 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-120fdbe73147bb8616b64a2c0ca264cceac3aef49714b7860baed66ea4f4a95f3
Notes IP-102631.R1
ORCID 0000-0001-8710-1389
0000-0001-7361-9523
0000-0001-6550-6043
OpenAccessLink https://iopscience.iop.org/article/10.1088/1361-6420/aba415
PageCount 24
ParticipantIDs crossref_primary_10_1088_1361_6420_aba415
crossref_citationtrail_10_1088_1361_6420_aba415
iop_journals_10_1088_1361_6420_aba415
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Inverse problems
PublicationTitleAbbrev IP
PublicationTitleAlternate Inverse Problems
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Engl (ipaba415bib16) 1996
Pelt (ipaba415bib42) 2018; 4
Leuschner (ipaba415bib33) 2019
Lunz (ipaba415bib37) 2018
Zhu (ipaba415bib49) 2018; 555
Chakrabarty (ipaba415bib10) 2019
Jin (ipaba415bib27) 2019
Gong (ipaba415bib18) 2019; 38
Hofmann (ipaba415bib25) 2007; 23
Cheng (ipaba415bib12) 2019
Jin (ipaba415bib28) 2017; 26
He (ipaba415bib23) 2016
Mataev (ipaba415bib38) 2019
Denker (ipaba415bib13) 2020
Louis (ipaba415bib36) 1989
Chen (ipaba415bib11) 2017; 36
Zuhair Nashed (ipaba415bib39) 1987
Bubba (ipaba415bib8) 2019; 35
Leuschner (ipaba415bib32) 2019
Bora (ipaba415bib7) 2017
Schwab (ipaba415bib46) 2019; 35
Hauptmann (ipaba415bib21) 2018; 37
Antun (ipaba415bib4) 2020
Armato (ipaba415bib5) 2011; 38
Kingma (ipaba415bib29) 2015
Li (ipaba415bib34) 2020
Arridge (ipaba415bib6) 2019; 28
Lempitsky (ipaba415bib31) 2018
Adler (ipaba415bib3) 2018; 37
Radon (ipaba415bib43) 1986; 5
Ronneberger (ipaba415bib45) 2015
Liu (ipaba415bib35) 2019
Gandelsman (ipaba415bib17) 2019
Buzug (ipaba415bib9) 2008
Knoll (ipaba415bib30) 2020; 2
Natterer (ipaba415bib40) 2001
Adler (ipaba415bib2) 2018
Paszke (ipaba415bib41) 2017
Yang (ipaba415bib48) 2018; 37
He (ipaba415bib22) 2020; 39
Donoho (ipaba415bib15) 1994; 81
Hoyer (ipaba415bib26) 2019
Dittmer (ipaba415bib14) 2019; 62
Van Veen (ipaba415bib47) 2018
Rieder (ipaba415bib44) 2003
Adler (ipaba415bib1) 2017; 33
Heckel (ipaba415bib24) 2020
Gottschling (ipaba415bib19) 2020
Gupta (ipaba415bib20) 2018; 37
References_xml – volume: 2
  year: 2020
  ident: ipaba415bib30
  article-title: fastMRI: a publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning
  publication-title: Radiology. Artificial intelligence
  doi: 10.1148/ryai.2020190007
– year: 2019
  ident: ipaba415bib10
  article-title: The spectral bias of the deep image prior
– volume: 23
  start-page: 987
  year: 2007
  ident: ipaba415bib25
  article-title: A convergence rates result for tikhonov regularization in banach spaces with non-smooth operators
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/23/3/009
– year: 2019
  ident: ipaba415bib33
  article-title: Deep inversion validation library
– year: 2001
  ident: ipaba415bib40
  article-title: The mathematics of computerized tomography
  doi: 10.1137/1.9780898719284
– year: 2019
  ident: ipaba415bib26
  article-title: Neural reparameterization improves structural optimization
– volume: 62
  start-page: 456
  year: 2019
  ident: ipaba415bib14
  article-title: Regularization by architecture: a deep prior approach for inverse problems
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-019-00923-x
– start-page: pp 8516
  year: 2018
  ident: ipaba415bib37
  article-title: Adversarial regularizers in inverse problems
– volume: 37
  start-page: 1348
  year: 2018
  ident: ipaba415bib48
  article-title: Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/tmi.2018.2827462
– volume: 35
  year: 2019
  ident: ipaba415bib8
  article-title: Learning the invisible: a hybrid deep learning-shearlet framework for limited angle computed tomography
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/ab10ca
– volume: 38
  start-page: 1655
  year: 2019
  ident: ipaba415bib18
  article-title: PET image reconstruction using deep image prior
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/tmi.2018.2888491
– year: 1996
  ident: ipaba415bib16
– volume: 81
  start-page: 425
  year: 1994
  ident: ipaba415bib15
  article-title: Ideal spatial adaptation by wavelet shrinkage
  publication-title: Biometrika
  doi: 10.1093/biomet/81.3.425
– year: 2020
  ident: ipaba415bib34
  article-title: NETT: Solving inverse problems with deep neural networks
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/ab6d57
– year: 2020
  ident: ipaba415bib13
  article-title: Conditional normalizing flows for low-dose computed tomography image reconstruction
– start-page: pp 7715
  year: 2019
  ident: ipaba415bib35
  article-title: Image restoration using total variation regularized deep image prior
– volume: 33
  year: 2017
  ident: ipaba415bib1
  article-title: Solving ill-posed inverse problems using iterative deep neural networks
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/aa9581
– volume: 5
  start-page: 170
  year: 1986
  ident: ipaba415bib43
  article-title: On the determination of functions from their integral values along certain manifolds
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/tmi.1986.4307775
– year: 2003
  ident: ipaba415bib44
– volume: 39
  start-page: 2076
  year: 2020
  ident: ipaba415bib22
  article-title: Radon inversion via deep learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/tmi.2020.2964266
– volume: 36
  start-page: 2524
  year: 2017
  ident: ipaba415bib11
  article-title: Low-dose CT with a residual encoder-decoder convolutional neural network
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/tmi.2017.2715284
– volume: 555
  start-page: 487
  year: 2018
  ident: ipaba415bib49
  article-title: Image reconstruction by domain-transform manifold learning
  publication-title: Nature
  doi: 10.1038/nature25988
– volume: 37
  start-page: 1440
  year: 2018
  ident: ipaba415bib20
  article-title: CNN-based projected gradient descent for consistent CT image reconstruction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/tmi.2018.2832656
– volume: 4
  start-page: 128
  year: 2018
  ident: ipaba415bib42
  article-title: Improving tomographic reconstruction from limited data using mixed-scale dense convolutional neural networks
  publication-title: J. Imaging
  doi: 10.3390/jimaging4110128
– volume: 38
  start-page: 915
  year: 2011
  ident: ipaba415bib5
  article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans
  publication-title: Med. Phys.
  doi: 10.1118/1.3528204
– start-page: pp 770
  year: 2016
  ident: ipaba415bib23
  article-title: Deep residual learning for image recognition
– year: 2019
  ident: ipaba415bib27
  article-title: Time-dependent deep image prior for dynamic MRI
– year: 2008
  ident: ipaba415bib9
– start-page: pp 11018
  year: 2019
  ident: ipaba415bib17
  article-title: “Double-DIP”: Unsupervised image decomposition via coupled deep-image-priors
– year: 2020
  ident: ipaba415bib24
  article-title: Denoising and regularization via exploiting the structural bias of convolutional generators
– year: 2020
  ident: ipaba415bib19
  article-title: The troublesome kernel: why deep learning for inverse problems is typically unstable
– year: 2017
  ident: ipaba415bib41
  article-title: Automatic differentiation in PyTorch
– volume: 37
  start-page: 1322
  year: 2018
  ident: ipaba415bib3
  article-title: Learned primal-dual reconstruction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/tmi.2018.2799231
– volume: 26
  start-page: 4509
  year: 2017
  ident: ipaba415bib28
  article-title: Deep convolutional neural network for inverse problems in imaging
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/tip.2017.2713099
– start-page: 53
  year: 1987
  ident: ipaba415bib39
  article-title: A new approach to classification and regularization of ill-posed operator equations
– year: 2015
  ident: ipaba415bib29
  article-title: Adam: a method for stochastic optimization
– start-page: 234
  year: 2015
  ident: ipaba415bib45
  article-title: U-Net: convolutional networks for biomedical image segmentation
– year: 2019
  ident: ipaba415bib32
  article-title: The LoDoPaB-CT dataset: a benchmark dataset for low-dose CT reconstruction methods
– year: 2019
  ident: ipaba415bib38
  article-title: DeepRED: deep image prior powered by RED
– year: 2018
  ident: ipaba415bib47
  article-title: Compressed sensing with deep image prior and learned regularization
– volume: 35
  year: 2019
  ident: ipaba415bib46
  article-title: Deep null space learning for inverse problems: convergence analysis and rates
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/aaf14a
– year: 2020
  ident: ipaba415bib4
  article-title: On instabilities of deep learning in image reconstruction and the potential costs of AI
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1907377117
– volume: 28
  start-page: 1
  year: 2019
  ident: ipaba415bib6
  article-title: Solving inverse problems using data-driven models
  publication-title: Acta Numerica
  doi: 10.1017/s0962492919000059
– year: 2019
  ident: ipaba415bib12
  article-title: A bayesian perspective on the deep image prior
  doi: 10.1109/CVPR.2019.00559
– start-page: pp 9446
  year: 2018
  ident: ipaba415bib31
  article-title: Deep image prior
– year: 1989
  ident: ipaba415bib36
– year: 2018
  ident: ipaba415bib2
  article-title: Deep Bayesian inversion
– volume: 37
  start-page: 1382
  year: 2018
  ident: ipaba415bib21
  article-title: Model-based learning for accelerated, limited-view 3-D photoacoustic tomography
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/tmi.2018.2820382
– start-page: pp 537
  year: 2017
  ident: ipaba415bib7
  article-title: Compressed sensing using generative models
SSID ssj0011817
Score 2.606286
Snippet In this paper we describe an investigation into the application of deep learning methods for low-dose and sparse angle computed tomography using small training...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 94004
SubjectTerms computed tomography
deep image prior
deep learning
inverse problems
neural networks
Title Computed tomography reconstruction using deep image prior and learned reconstruction methods
URI https://iopscience.iop.org/article/10.1088/1361-6420/aba415
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9OL3oQP3F-zBz04CEubdIkxZOIYwp-HBzuIIR8VQZuK27_P6ZNLE5keGvhvbT82r6PvpffA-DMGmNphi3CxlpEvY9DOtUKpUJZzQulAmX-wyPrD-j9MBuugKtmL8y0jKb_0h8GouAAYWyIE92EsAT5sBl3lVb1BvM1IpioMq8n8tqUELzr4uEHC0M-SEhijfKvFRZ8Ustf94eL6W2BzRgbwutwJ9tgxU12wMYPxkB_9tDQrM52wVucyWDhfDqO3NOwTnEbWlhYNba_Q-tcCUdjbzxg-TmafkI1sbCeGOGVf2mEodKzPTDo3b7c9FEcl4AMycgcJSkurHacJJRrLVjCNKMqNdgoH_UY400sUa6gOU-o5oJhrZxlzClaUJVnBdkHq5PpxB0A6LjmViQq53lGbS50ZonGnNEi9yEaxW3Q_QZMmsglXo20-JB1TVsIWUEsK4hlgLgNLhqNMvBoLJE9989Axo9ptkTudEFuVErCZC4rSkBMZWmLw3-udATW0yqPrnvHjsGqR9yd-GBjrjugdff03KlfrS_8Q8-b
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60guhBfGJ9dQ968LB2k93sJkdRS317sNiDsOwrUrBtaPv_cZKsRUXEWwI7m_BlMzObmXwfQsfOWscT6gi1zhEOMY6Y2GgSp9oZmWtdU-bfP4huj9_0k37QOa3-hRkXwfWfwWFNFFxDGBri0nbEREQgbaZtbTTEn3bh8kW0lDAhSu2GR_YyLyNA-JL1RxZBIFGIQp3yt1m-xaVFuPaXMNNZR2shP8Tn9d1soAU_2kSrX1gD4ex-TrU63UKvQZfB4dl4GPincbXNnVPD4rK5_Q077ws8GIIDwcVkMJ5gPXK4Uo0A4x8WtbD0dBv1OlfPF10SJBOIZQmbkSimuTNesohLY1IRCSO4ji21GjIfa8HNMu1znsmIG5kKarR3QnjNc66zJGc7qDEaj_wuwl4a6dJIZzJLuMtSkzhmqBQ8zyBN47SJ2p-AKRv4xEtZi3dV1bXTVJUQqxJiVUPcRKdzi6Lm0vhj7Ak8AxVeqOkf41rfxg0KxYTKVEkLSLmCpbH3z5laaPnpsqPurh9u99FKXG6rq1ayA9QA8P0h5B4zc1Strw_6EdKB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computed+tomography+reconstruction+using+deep+image+prior+and+learned+reconstruction+methods&rft.jtitle=Inverse+problems&rft.au=Baguer%2C+Daniel+Otero&rft.au=Leuschner%2C+Johannes&rft.au=Schmidt%2C+Maximilian&rft.date=2020-09-01&rft.issn=0266-5611&rft.eissn=1361-6420&rft.volume=36&rft.issue=9&rft.spage=94004&rft_id=info:doi/10.1088%2F1361-6420%2Faba415&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6420_aba415
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-5611&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-5611&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-5611&client=summon