Damage detection with image processing: a comparative study
Large structures, such as bridges, highways, etc., need to be inspected to evaluate their actual physical and functional condition, to predict future conditions, and to help decision makers allocating maintenance and rehabilitation resources. The assessment of civil infrastructure condition is carri...
Saved in:
Published in | Earthquake Engineering and Engineering Vibration Vol. 22; no. 2; pp. 333 - 345 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2023
Springer Nature B.V Department of Structural and Geotechnical Engineering,Sapienza University of Rome,via Eudossiana 18,Rome 00167,Italy |
Subjects | |
Online Access | Get full text |
ISSN | 1671-3664 1993-503X |
DOI | 10.1007/s11803-023-2172-1 |
Cover
Abstract | Large structures, such as bridges, highways, etc., need to be inspected to evaluate their actual physical and functional condition, to predict future conditions, and to help decision makers allocating maintenance and rehabilitation resources. The assessment of civil infrastructure condition is carried out through information obtained by inspection and/or monitoring operations. Traditional techniques in structural health monitoring (SHM) involve visual inspection related to inspection standards that can be time-consuming data collection, expensive, labor intensive, and dangerous. To address these limitations, machine vision-based inspection procedures have increasingly been investigated within the research community. In this context, this paper proposes and compares four different computer vision procedures to identify damage by image processing: Otsu method thresholding, Markov random fields segmentation, RGB color detection technique, and K-means clustering algorithm. The first method is based on segmentation by thresholding that returns a binary image from a grayscale image. The Markov random fields technique uses a probabilistic approach to assign labels to model the spatial dependencies in image pixels. The RGB technique uses color detection to evaluate the defect extensions. Finally, K-means algorithm is based on Euclidean distance for clustering of the images. The benefits and limitations of each technique are discussed, and the challenges of using the techniques are highlighted. To show the effectiveness of the described techniques in damage detection of civil infrastructures, a case study is presented. Results show that various types of corrosion and cracks can be detected by image processing techniques making the proposed techniques a suitable tool for the prediction of the damage evolution in civil infrastructures. |
---|---|
AbstractList | Large structures,such as bridges,highways,etc.,need to be inspected to evaluate their actual physical and functional condition,to predict future conditions,and to help decision makers allocating maintenance and rehabilitation resources.The assessment of civil infrastructure condition is carried out through information obtained by inspection and/or monitoring operations.Traditional techniques in structural health monitoring(SHM)involve visual inspection related to inspection standards that can be time-consuming data collection,expensive,labor intensive,and dangerous.To address these limitations,machine vision-based inspection procedures have increasingly been investigated within the research community.In this context,this paper proposes and compares four different computer vision procedures to identify damage by image processing:Otsu method thresholding,Markov random fields segmentation,RGB color detection technique,and K-means clustering algorithm.The first method is based on segmentation by thresholding that returns a binary image from a grayscale image.The Markov random fields technique uses a probabilistic approach to assign labels to model the spatial dependencies in image pixels.The RGB technique uses color detection to evaluate the defect extensions.Finally,K-means algorithm is based on Euclidean distance for clustering of the images.The benefits and limitations of each technique are discussed,and the challenges of using the techniques are highlighted.To show the effectiveness of the described techniques in damage detection of civil infrastructures,a case study is presented.Results show that various types of corrosion and cracks can be detected by image processing techniques making the proposed techniques a suitable tool for the prediction of the damage evolution in civil infrastructures. |
Author | Crognale, Marianna Rinaldi, Cecilia Gattulli, Vincenzo De Iuliis, Melissa |
AuthorAffiliation | Department of Structural and Geotechnical Engineering,Sapienza University of Rome,via Eudossiana 18,Rome 00167,Italy |
AuthorAffiliation_xml | – name: Department of Structural and Geotechnical Engineering,Sapienza University of Rome,via Eudossiana 18,Rome 00167,Italy |
Author_xml | – sequence: 1 givenname: Marianna surname: Crognale fullname: Crognale, Marianna email: marianna.crognale@uniroma1.it organization: Department of Structural and Geotechnical Engineering, Sapienza University of Rome – sequence: 2 givenname: Melissa surname: De Iuliis fullname: De Iuliis, Melissa organization: Department of Structural and Geotechnical Engineering, Sapienza University of Rome – sequence: 3 givenname: Cecilia surname: Rinaldi fullname: Rinaldi, Cecilia organization: Department of Structural and Geotechnical Engineering, Sapienza University of Rome – sequence: 4 givenname: Vincenzo surname: Gattulli fullname: Gattulli, Vincenzo organization: Department of Structural and Geotechnical Engineering, Sapienza University of Rome |
BookMark | eNp9kF1LwzAUhoNMcJv-AO8K3lrNSdok1SuZnzDwRsG7kCZp7djamWSO7debWWEg6FUO4XnOxztCg7ZrLUKngC8AY37pAQSmKSY0JcBJCgdoCEVB0xzTt0GsGYeUMpYdoZH3M4xZRigboutbtVC1TYwNVoema5N1E96T5vtz6TptvW_a-ipRie4WS-VUaD5t4sPKbI7RYaXm3p78vGP0en_3MnlMp88PT5ObaappTkMKmDOVY2y1qBilWVUKYrQpi0qAsiUjrDBQUSaMAMqrTBcZFIYDJbnQIEo6Rud937VqK9XWctatXBsnSrOt9abWWyMtiadjgnEW8bMej-t_rKwPe54IzIADyUSkeE9p13nvbCV1E9QugeBUM5eA5S5Y2QcrY3e5C1ZCNOGXuXQxL7f51yG94yPb1tbtd_pb-gJLCIr_ |
CitedBy_id | crossref_primary_10_3390_constrmater4010005 crossref_primary_10_1007_s11803_024_2253_9 crossref_primary_10_1016_j_autcon_2025_106116 crossref_primary_10_3390_ma16247512 crossref_primary_10_7498_aps_73_20241265 crossref_primary_10_1007_s11760_024_03795_w crossref_primary_10_1007_s12145_024_01379_3 crossref_primary_10_1016_j_measurement_2023_113902 crossref_primary_10_1080_15583058_2025_2481255 crossref_primary_10_3390_buildings13081922 crossref_primary_10_1016_j_oceaneng_2024_119600 crossref_primary_10_1016_j_prostr_2024_09_120 crossref_primary_10_1080_10298436_2024_2339997 crossref_primary_10_3390_s24082435 crossref_primary_10_1007_s44290_025_00164_5 crossref_primary_10_1080_1448837X_2024_2421043 |
Cites_doi | 10.1201/9780429279119-442 10.5120/16779-6360 10.1016/j.corsci.2004.05.007 10.3141/1827-04 10.1201/9781420079517 10.1109/ACCESS.2021.3088292 10.1002/9781118443118 10.1007/s13349-015-0146-3 10.1007/s13349-020-00395-3 10.1109/ACCESS.2020.2989028 10.1111/mice.12500 10.1109/TSMC.1979.4310076 10.1016/0968-090X(93)90002-W 10.3151/jact.18.493 10.2316/P.2010.679-079 10.1111/j.1467-8667.2010.00674.x 10.1016/j.autcon.2018.11.028 10.1016/j.autcon.2021.103634 10.1109/ICCV.2017.322 10.1109/ISPA.2019.8868619 10.1002/stc.2381 10.3846/13923730.2014.890665 10.1177/1475921721989407 10.1109/TPAMI.2016.2577031 10.3390/ICEM18-05387 10.1007/978-3-030-91877-4_94 10.1061/(ASCE)0733-9399(1997)123:9(897) 10.1016/j.aei.2015.01.008 10.13176/11.167 10.1111/j.1467-8667.2004.00341.x 10.1016/j.procs.2018.07.115 10.1111/mice.12141 10.1111/mice.12042 10.1201/b17063-96 10.1016/j.autcon.2019.102973 10.1007/978-3-030-01234-2_49 10.3390/s111009628 10.1016/j.conbuildmat.2020.119096 10.1061/(ASCE)IS.1943-555X.0000237 10.3390/s20216205 10.3182/20070903-3-FR-2921.00027 10.1111/mice.12263 10.1109/ACCESS.2020.2988796 |
ContentType | Journal Article |
Copyright | Institute of Engineering Mechanics, China Earthquake Administration 2023 Institute of Engineering Mechanics, China Earthquake Administration 2023. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Institute of Engineering Mechanics, China Earthquake Administration 2023 – notice: Institute of Engineering Mechanics, China Earthquake Administration 2023. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 7ST 7TG 7TN 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s11803-023-2172-1 |
DatabaseName | CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1993-503X |
EndPage | 345 |
ExternalDocumentID | dzgcygczd_e202302004 10_1007_s11803_023_2172_1 |
GroupedDBID | -5B -5G -BR -EM -SA -S~ -Y2 -~C .86 .VR 06D 0R~ 0VY 29G 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VR 5VS 6NX 7XC 88I 8FE 8FG 8FH 8TC 8UJ 92E 92I 92Q 93N 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABDZT ABECU ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ CAG CAJEA CCEZO CCPQU CCVFK CHBEP COF CS3 CSCUP CW9 D1K DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FA0 FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HZ~ I-F IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ K6- KOV L6V LK5 LLZTM M2P M4Y M7R M7S MA- NPVJJ NQJWS NU0 O9- O9J P2P P9P PATMY PCBAR PF0 PQQKQ PROAC PT4 PTHSS PYCSY Q-- Q2X QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCL SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TCJ TGP TSG TUC TUS U1G U2A U5K UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z7Z ZMTXR ZY4 ~A9 AAYXX ABAKF ABDBE ABFSG ACAOD ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7ST 7TG 7TN 8FD ABRTQ C1K F1W FR3 H96 KL. KR7 L.G SOI 4A8 PMFND PSX |
ID | FETCH-LOGICAL-c353t-1076a500ec8f6334fb82dcdb9f81aeb6269d1f368d8137f4c9419d713258c18b3 |
IEDL.DBID | AGYKE |
ISSN | 1671-3664 |
IngestDate | Thu May 29 04:11:17 EDT 2025 Wed Sep 10 13:40:59 EDT 2025 Tue Jul 01 03:59:43 EDT 2025 Thu Apr 24 22:52:01 EDT 2025 Fri Feb 21 02:41:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | image processing damage detection structural health monitoring analysis image classification civil infrastructure inspection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-1076a500ec8f6334fb82dcdb9f81aeb6269d1f368d8137f4c9419d713258c18b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2806171248 |
PQPubID | 54346 |
PageCount | 13 |
ParticipantIDs | wanfang_journals_dzgcygczd_e202302004 proquest_journals_2806171248 crossref_citationtrail_10_1007_s11803_023_2172_1 crossref_primary_10_1007_s11803_023_2172_1 springer_journals_10_1007_s11803_023_2172_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht |
PublicationTitle | Earthquake Engineering and Engineering Vibration |
PublicationTitleAbbrev | Earthq. Eng. Eng. Vib |
PublicationTitle_FL | Earthquake Engineering and Engineering Vibration |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Department of Structural and Geotechnical Engineering,Sapienza University of Rome,via Eudossiana 18,Rome 00167,Italy |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Department of Structural and Geotechnical Engineering,Sapienza University of Rome,via Eudossiana 18,Rome 00167,Italy |
References | RenSHeKGirshickRSunJFaster R-CNN: Towards Real-Time Object Detection with Region Proposal NetworksIEEE Transactions on Advances in Neural Information Processing Systems Machine Intelligence201739611371149 ZhangCChangCCJamshidiMConcrete Bridge Surface Damage Detection Using a Single-Stage DetectorComputer-Aided Civil and Infrastructure Engineering202035438940910.1111/mice.12500 KochCGeorgievaKKasireddyVAkinciBFieguthPA Review on Computer Vision Based Defect Detection and Condition Assessment of Concrete and Asphalt Civil InfrastructureAdvanced Engineering Informatics201529219621010.1016/j.aei.2015.01.008 PotenzaFFedericiFLepidiMGattulliVGraziosiFColarietiALong-Term Structural Monitoring of the Damaged Basilica S. Maria di Collemaggio Through a Low-Cost Wireless Sensor NetworkJournal of Civil Structural Health Monitoring20155565567610.1007/s13349-015-0146-3 Chen LC, Zhu Y, Papandreou G, Schroff F and Adam H (2018), “Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation,” Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818. ChoKYKimSMorphological Analysis and Classification of Types of Surface Corrosion Damage by Digital Image ProcessingCorrosion Science200547111510.1016/j.corsci.2004.05.007 YeumCMDykeSJVision-Based Automated Crack Detection for Bridge InspectionComputer-Aided Civil and Infrastructure Engineering2015301075977010.1111/mice.12141 SilvaLASanchez San BlasHPeral GarcíaDSales MendesAVillarubia GonzálezGAn Architectural Multi-Agent System for a Pavement Monitoring System with Pothole Recognition in UAV ImagesSensors20202021620510.3390/s20216205 FengXXiaoLLiWPeiLSunZMaZShenHJuHPavement Crack Detection and Segmentation Method Based on Improved Deep Learning Fusion ModelMathematical Problems in Engineering202020201122 HuYZhaoCXA Novel LBP Based Methods for Pavement Crack DetectionJournal of Pattern Recognition Research20105114014710.13176/11.167 Nguyen TS, Begot S, Duculty F, Bardet JC and Avila M (2010), “Pavement Cracking Detection Using an Anisotropy Measurement,” Proceedings of 11th IASTED International Conference on Computer Graphics and Imaging (CGIM), pp. 80–87. ParkSEEemSHJeonHConcrete Crack Detection and Quantification Using Deep Learning and Structured LightConstruction and Building Materials202025211909610.1016/j.conbuildmat.2020.119096 Attard L, Debono CJ, Valentino G, Di Castro M, Masi A and Scibile L (2019), “Automatic Crack Detection Using Mask R-CNN,” Proceeding of 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA), IEEE, pp. 152–157. ZalamaEGómez-García-BermejoJMedinaRLlamasJRoad Crack Detection Using Visual Features Extracted by Gabor FiltersComputer-Aided Civil and Infrastructure Engineering201429534235810.1111/mice.12042 DengWMouYKashiwaTEscaleraSNagaiKNakayamaKMatsuoYPrendingerHVision Based Pixel-Level Bridge Structural Damage Detection Using a Link ASPP NetworkAutomation in Construction202011010297310.1016/j.autcon.2019.102973 SunYYangYYaoGWeiFWongMAutonomous Crack and Bughole Setection for Concrete Surface Image Based on Deep LearningIEEE Access20219857098572010.1109/ACCESS.2021.3088292 KaraaslanEBagciUCatbasFNAttention-Guided Analysis of Infrastructure Damage with Semi-Supervised Deep LearningAutomation in Construction202112510363410.1016/j.autcon.2021.103634 KasekoMSRitchieSGA Neural Network-Based Methodology for Pavement Crack Detection and ClassificationTransportation Research Part C: Emerging Technologies19931427529110.1016/0968-090X(93)90002-W Arthur D, Vassilvitskii S (2007), “K-means++: The Advantages of Careful Seeding,” Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, 7–9 January, 2007, New Orleans, pp. 1027–1035. YingLSalariEBeamlet Transform-Based Technique for Pavement Crack Detection and ClassificationComputer-Aided Civil and Infrastructure Engineering201025857258010.1111/j.1467-8667.2010.00674.x KimBChoSImage-Based Concrete Crack Assessment Using Mask and Region-Based Convolutional Neural NetworkStructural Control and Health Monitoring2019268e238110.1002/stc.2381 QidwaiUChenCHDigital Image Processing: An Algorithmic Approach with MATLAB2009UKChapman and Hall/CRC10.1201/9781420079517 BurneySATariqHK-Means Cluster Analysis for Image SegmentationInternational Journal of Computer Applications20149641810.5120/16779-6360 CrognaleMGattulliVIvorraSPotenzaFAn Integrated Vibration-Image Procedure for Damage Identification in Steel TrussesProceedings of the XI International Conference on Structural Dynamic, EURODYN, 23–25 November, 20202020110111026 Long J, Shelhamer E and Darrell T, “Fully Convolutional Networks for Semantic Segmentation,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440. SolomonCBreckonTFundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab2011USAJohn Wiley & Sons HousnerGBergmanLACaugheyTKChassiakosAGClausROMasriSFSkeltonRESoongTSpencerBYaoJTStructural Control: Past, Present, and FutureJournal of Engineering Mechanics1997123989797110.1061/(ASCE)0733-9399(1997)123:9(897) ChaYJChoiWBüyüköztürkODeep Learning-Based Crack Damage Detection Using Convolutional Neural NetworksComputer-Aided Civil and Infrastructure Engineering201732536137810.1111/mice.12263 Domaneschi M, Cimellaro G, De Iuliis M and Marano G (2021), “Laboratory Investigation of Digital Image Correlation Techniques for Structural Assessment,” Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations, CRC Press, pp. 3260–3266. Lin (2022), “Image Segmentation Based on Markov Random Fields,” https://www.mathworks.com/matlabcentral/fileexchange/33592-image-segmentation-based-on-markov-random-fields. He K, Gkioxari G, Dollar P and Girshick R (2017), “Mask R-CNN,” Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969. PotenzaFRinaldiCOttavianoEGattulliVA Robotics and Computer-Aided Procedure for Defect Evaluation in Bridge InspectionJournal of Civil Structural Health Monitoring202010347148410.1007/s13349-020-00395-3 Lohade DM and Chopade P (2016), “Real Time Metal Inspection for Surface and Dimensional Defect Detection Using Image Processing Techniques,” Proceedings of 3rd International Conference on Electrical, Electronics, Engineering Trends, Communication, Optimization and Sciences (EEECOS-2016), pp. 873–877. RanjanRGulatiTCondition Assessment of Metallic Objects Using Edge DetectionInt. J. Adv. Res. Comput. Sci. Softw. Eng201445253258 TanakaNUematsuKA Crack Detection Method in Road Surface Images Using MorphologyMVA1998981719 SilvaWRLDLucenaDSDConcrete Cracks Detection Based on Deep Learning Image ClassificationProceedings of the Eighteenth International Conference of Experimental Mechanics, MDPI20182848910.3390/ICEM18-05387 KatoZZerubiaJMarkov Random Fields in Image SegmentationFoundations and Trends in Signal Processing201251–21155 YamaneTChunPJCrack Detection from a Concrete Surface Image Based on Semantic Segmentation Using Deep LearningJournal of Advanced Concrete Technology202018949350410.3151/jact.18.493 GavilánMBalconesDMarcosOLlorcaDFSoteloMAParraIOcañaMAlisedaPYarzaPAmírolaAAdaptive Road Crack Detection System by Pavement ClassificationSensors201111109628965710.3390/s111009628 SinagaKPYangMSUnsupervised K-Means Clustering AlgorithmIEEE Access20208807168072710.1109/ACCESS.2020.2988796 LeeBJLeeHDPosition-Invariant Neural Network for Digital Pavement Crack AnalysisComputer-Aided Civil and Infrastructure Engineering200419210511810.1111/j.1467-8667.2004.00341.x LeeSKalosNBridge Inspection Practices Using Non-Destructive Testing MethodsJournal of Civil Engineering and Management201521565466510.3846/13923730.2014.890665 JáureguiDVWhiteKRImplementation of Virtual Reality in Routine Bridge InspectionTransportation Research Record200318271293510.3141/1827-04 FarhangSHRezaifarOSharbatdarMKAhmady FardAEvaluation of Different Methods of Machine Vision in Health Monitoring and Damage Detection of StructuresJournal of Rehabilitation in Civil Engineering20219493132 BondadaVPratiharDKKumarCSDetection and Quantitative Assessment of Corrosion on Pipelines Through Image AnalysisProcedia Computer Science201813380481110.1016/j.procs.2018.07.115 Hallermann N and Morgenthal G (2014), “Visual Inspection Strategies for Large Bridges Using Unmanned Aerial Vehicles (UAV),” Proc. of 7th IABMAS, International Conference on Bridge Maintenance, Safety and Management, pp. 661–667. Kazemi Majd F, Fallahi N and Gattulli V (2021), “Detection of Corrosion Defects in Steel Bridges by Machine Vision,” Proceedings of International Conference of the European Association on Quality Control of Bridges and Structures, Springer, pp. 830–834. MathavanSRahmanMKamalKUse of a Self-Organizing Map for Crack Detection in Highly Textured Pavement ImagesJournal of Infrastructure Systems201521311110.1061/(ASCE)IS.1943-555X.0000237 Jin LimHHwangSKimHSohnHSteel Bridge Corrosion Inspection with Combined Vision and Thermographic ImagesStructural Health Monitoring20212063424343510.1177/1475921721989407 Oliveira H and Correia PL (2010), “Automatic Crack Detection on Road Imagery Using Anisotropic Diffusion and Region Linkage,” Proceedings of 2010 18th European Signal Processing Conference, IEEE, pp. 274–278. DungCVAutonomous Concrete Crack Detection Using Deep Fully Convolutional Neural NetworkAutomation in Construction201999525810.1016/j.autcon.2018.11.028 OtsuNA Threshold Selection Method from Gray-Level HistogramsIEEE Transactions on Systems, Man, and Cybernetics197991626610.1109/TSMC.1979.4310076 BauerJSünderhaufNProtzelPComparing Several Implementations of Two Recently Published Feature DetectorsIFAC Proceedings Volumes2007401514314810.3182/20070903-3-FR-2921.00027 LeiXLiuCLiLWangGAutomated Pavement Distress Detection and Deterioration Analysis Using Street View MapIEEE Access20208761637617210.1109/ACCESS.2020.2989028 FarrarCRWordenKStructural Health Monitoring: A Machine Learning Perspective2012USAJohn Wiley & Sons10.1002/9781118443118 2172_CR17 S Mathavan (2172_CR35) 2015; 21 2172_CR18 Y Hu (2172_CR20) 2010; 5 C Koch (2172_CR28) 2015; 29 Y Sun (2172_CR49) 2021; 9 2172_CR11 SE Park (2172_CR39) 2020; 252 2172_CR7 CR Farrar (2172_CR14) 2012 KP Sinaga (2172_CR47) 2020; 8 N Tanaka (2172_CR50) 1998; 98 SH Farhang (2172_CR13) 2021; 9 SA Burney (2172_CR5) 2014; 96 H Jin Lim (2172_CR22) 2021; 20 2172_CR26 C Solomon (2172_CR48) 2011 N Otsu (2172_CR38) 1979; 9 S Ren (2172_CR44) 2017; 39 LA Silva (2172_CR45) 2020; 20 S Lee (2172_CR30) 2015; 21 G Housner (2172_CR19) 1997; 123 E Zalama (2172_CR54) 2014; 29 MS Kaseko (2172_CR24) 1993; 1 X Lei (2172_CR31) 2020; 8 DV Jáuregui (2172_CR21) 2003; 1827 2172_CR37 KY Cho (2172_CR8) 2005; 47 2172_CR32 2172_CR36 2172_CR33 Z Kato (2172_CR25) 2012; 5 2172_CR34 F Potenza (2172_CR41) 2020; 10 CV Dung (2172_CR12) 2019; 99 R Ranjan (2172_CR43) 2014; 4 L Ying (2172_CR53) 2010; 25 WRLD Silva (2172_CR46) 2018; 2 E Karaaslan (2172_CR23) 2021; 125 T Yamane (2172_CR51) 2020; 18 X Feng (2172_CR15) 2020; 2020 M Crognale (2172_CR9) 2020; 1 M Gavilán (2172_CR16) 2011; 11 V Bondada (2172_CR4) 2018; 133 F Potenza (2172_CR40) 2015; 5 2172_CR2 YJ Cha (2172_CR6) 2017; 32 2172_CR1 W Deng (2172_CR10) 2020; 110 BJ Lee (2172_CR29) 2004; 19 U Qidwai (2172_CR42) 2009 CM Yeum (2172_CR52) 2015; 30 C Zhang (2172_CR55) 2020; 35 B Kim (2172_CR27) 2019; 26 J Bauer (2172_CR3) 2007; 40 |
References_xml | – reference: BondadaVPratiharDKKumarCSDetection and Quantitative Assessment of Corrosion on Pipelines Through Image AnalysisProcedia Computer Science201813380481110.1016/j.procs.2018.07.115 – reference: ZhangCChangCCJamshidiMConcrete Bridge Surface Damage Detection Using a Single-Stage DetectorComputer-Aided Civil and Infrastructure Engineering202035438940910.1111/mice.12500 – reference: LeeSKalosNBridge Inspection Practices Using Non-Destructive Testing MethodsJournal of Civil Engineering and Management201521565466510.3846/13923730.2014.890665 – reference: SilvaLASanchez San BlasHPeral GarcíaDSales MendesAVillarubia GonzálezGAn Architectural Multi-Agent System for a Pavement Monitoring System with Pothole Recognition in UAV ImagesSensors20202021620510.3390/s20216205 – reference: PotenzaFRinaldiCOttavianoEGattulliVA Robotics and Computer-Aided Procedure for Defect Evaluation in Bridge InspectionJournal of Civil Structural Health Monitoring202010347148410.1007/s13349-020-00395-3 – reference: FarrarCRWordenKStructural Health Monitoring: A Machine Learning Perspective2012USAJohn Wiley & Sons10.1002/9781118443118 – reference: QidwaiUChenCHDigital Image Processing: An Algorithmic Approach with MATLAB2009UKChapman and Hall/CRC10.1201/9781420079517 – reference: FengXXiaoLLiWPeiLSunZMaZShenHJuHPavement Crack Detection and Segmentation Method Based on Improved Deep Learning Fusion ModelMathematical Problems in Engineering202020201122 – reference: ChaYJChoiWBüyüköztürkODeep Learning-Based Crack Damage Detection Using Convolutional Neural NetworksComputer-Aided Civil and Infrastructure Engineering201732536137810.1111/mice.12263 – reference: KochCGeorgievaKKasireddyVAkinciBFieguthPA Review on Computer Vision Based Defect Detection and Condition Assessment of Concrete and Asphalt Civil InfrastructureAdvanced Engineering Informatics201529219621010.1016/j.aei.2015.01.008 – reference: PotenzaFFedericiFLepidiMGattulliVGraziosiFColarietiALong-Term Structural Monitoring of the Damaged Basilica S. Maria di Collemaggio Through a Low-Cost Wireless Sensor NetworkJournal of Civil Structural Health Monitoring20155565567610.1007/s13349-015-0146-3 – reference: SilvaWRLDLucenaDSDConcrete Cracks Detection Based on Deep Learning Image ClassificationProceedings of the Eighteenth International Conference of Experimental Mechanics, MDPI20182848910.3390/ICEM18-05387 – reference: Oliveira H and Correia PL (2010), “Automatic Crack Detection on Road Imagery Using Anisotropic Diffusion and Region Linkage,” Proceedings of 2010 18th European Signal Processing Conference, IEEE, pp. 274–278. – reference: ChoKYKimSMorphological Analysis and Classification of Types of Surface Corrosion Damage by Digital Image ProcessingCorrosion Science200547111510.1016/j.corsci.2004.05.007 – reference: Lin (2022), “Image Segmentation Based on Markov Random Fields,” https://www.mathworks.com/matlabcentral/fileexchange/33592-image-segmentation-based-on-markov-random-fields. – reference: LeeBJLeeHDPosition-Invariant Neural Network for Digital Pavement Crack AnalysisComputer-Aided Civil and Infrastructure Engineering200419210511810.1111/j.1467-8667.2004.00341.x – reference: YingLSalariEBeamlet Transform-Based Technique for Pavement Crack Detection and ClassificationComputer-Aided Civil and Infrastructure Engineering201025857258010.1111/j.1467-8667.2010.00674.x – reference: Domaneschi M, Cimellaro G, De Iuliis M and Marano G (2021), “Laboratory Investigation of Digital Image Correlation Techniques for Structural Assessment,” Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations, CRC Press, pp. 3260–3266. – reference: KasekoMSRitchieSGA Neural Network-Based Methodology for Pavement Crack Detection and ClassificationTransportation Research Part C: Emerging Technologies19931427529110.1016/0968-090X(93)90002-W – reference: SunYYangYYaoGWeiFWongMAutonomous Crack and Bughole Setection for Concrete Surface Image Based on Deep LearningIEEE Access20219857098572010.1109/ACCESS.2021.3088292 – reference: MathavanSRahmanMKamalKUse of a Self-Organizing Map for Crack Detection in Highly Textured Pavement ImagesJournal of Infrastructure Systems201521311110.1061/(ASCE)IS.1943-555X.0000237 – reference: Attard L, Debono CJ, Valentino G, Di Castro M, Masi A and Scibile L (2019), “Automatic Crack Detection Using Mask R-CNN,” Proceeding of 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA), IEEE, pp. 152–157. – reference: Hallermann N and Morgenthal G (2014), “Visual Inspection Strategies for Large Bridges Using Unmanned Aerial Vehicles (UAV),” Proc. of 7th IABMAS, International Conference on Bridge Maintenance, Safety and Management, pp. 661–667. – reference: SolomonCBreckonTFundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab2011USAJohn Wiley & Sons – reference: KaraaslanEBagciUCatbasFNAttention-Guided Analysis of Infrastructure Damage with Semi-Supervised Deep LearningAutomation in Construction202112510363410.1016/j.autcon.2021.103634 – reference: CrognaleMGattulliVIvorraSPotenzaFAn Integrated Vibration-Image Procedure for Damage Identification in Steel TrussesProceedings of the XI International Conference on Structural Dynamic, EURODYN, 23–25 November, 20202020110111026 – reference: Kazemi Majd F, Fallahi N and Gattulli V (2021), “Detection of Corrosion Defects in Steel Bridges by Machine Vision,” Proceedings of International Conference of the European Association on Quality Control of Bridges and Structures, Springer, pp. 830–834. – reference: He K, Gkioxari G, Dollar P and Girshick R (2017), “Mask R-CNN,” Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969. – reference: SinagaKPYangMSUnsupervised K-Means Clustering AlgorithmIEEE Access20208807168072710.1109/ACCESS.2020.2988796 – reference: HuYZhaoCXA Novel LBP Based Methods for Pavement Crack DetectionJournal of Pattern Recognition Research20105114014710.13176/11.167 – reference: ParkSEEemSHJeonHConcrete Crack Detection and Quantification Using Deep Learning and Structured LightConstruction and Building Materials202025211909610.1016/j.conbuildmat.2020.119096 – reference: YamaneTChunPJCrack Detection from a Concrete Surface Image Based on Semantic Segmentation Using Deep LearningJournal of Advanced Concrete Technology202018949350410.3151/jact.18.493 – reference: OtsuNA Threshold Selection Method from Gray-Level HistogramsIEEE Transactions on Systems, Man, and Cybernetics197991626610.1109/TSMC.1979.4310076 – reference: RanjanRGulatiTCondition Assessment of Metallic Objects Using Edge DetectionInt. J. Adv. Res. Comput. Sci. Softw. Eng201445253258 – reference: FarhangSHRezaifarOSharbatdarMKAhmady FardAEvaluation of Different Methods of Machine Vision in Health Monitoring and Damage Detection of StructuresJournal of Rehabilitation in Civil Engineering20219493132 – reference: Jin LimHHwangSKimHSohnHSteel Bridge Corrosion Inspection with Combined Vision and Thermographic ImagesStructural Health Monitoring20212063424343510.1177/1475921721989407 – reference: Arthur D, Vassilvitskii S (2007), “K-means++: The Advantages of Careful Seeding,” Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, 7–9 January, 2007, New Orleans, pp. 1027–1035. – reference: Lohade DM and Chopade P (2016), “Real Time Metal Inspection for Surface and Dimensional Defect Detection Using Image Processing Techniques,” Proceedings of 3rd International Conference on Electrical, Electronics, Engineering Trends, Communication, Optimization and Sciences (EEECOS-2016), pp. 873–877. – reference: TanakaNUematsuKA Crack Detection Method in Road Surface Images Using MorphologyMVA1998981719 – reference: Long J, Shelhamer E and Darrell T, “Fully Convolutional Networks for Semantic Segmentation,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440. – reference: DungCVAutonomous Concrete Crack Detection Using Deep Fully Convolutional Neural NetworkAutomation in Construction201999525810.1016/j.autcon.2018.11.028 – reference: Nguyen TS, Begot S, Duculty F, Bardet JC and Avila M (2010), “Pavement Cracking Detection Using an Anisotropy Measurement,” Proceedings of 11th IASTED International Conference on Computer Graphics and Imaging (CGIM), pp. 80–87. – reference: DengWMouYKashiwaTEscaleraSNagaiKNakayamaKMatsuoYPrendingerHVision Based Pixel-Level Bridge Structural Damage Detection Using a Link ASPP NetworkAutomation in Construction202011010297310.1016/j.autcon.2019.102973 – reference: BauerJSünderhaufNProtzelPComparing Several Implementations of Two Recently Published Feature DetectorsIFAC Proceedings Volumes2007401514314810.3182/20070903-3-FR-2921.00027 – reference: YeumCMDykeSJVision-Based Automated Crack Detection for Bridge InspectionComputer-Aided Civil and Infrastructure Engineering2015301075977010.1111/mice.12141 – reference: BurneySATariqHK-Means Cluster Analysis for Image SegmentationInternational Journal of Computer Applications20149641810.5120/16779-6360 – reference: RenSHeKGirshickRSunJFaster R-CNN: Towards Real-Time Object Detection with Region Proposal NetworksIEEE Transactions on Advances in Neural Information Processing Systems Machine Intelligence201739611371149 – reference: KimBChoSImage-Based Concrete Crack Assessment Using Mask and Region-Based Convolutional Neural NetworkStructural Control and Health Monitoring2019268e238110.1002/stc.2381 – reference: LeiXLiuCLiLWangGAutomated Pavement Distress Detection and Deterioration Analysis Using Street View MapIEEE Access20208761637617210.1109/ACCESS.2020.2989028 – reference: Chen LC, Zhu Y, Papandreou G, Schroff F and Adam H (2018), “Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation,” Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818. – reference: HousnerGBergmanLACaugheyTKChassiakosAGClausROMasriSFSkeltonRESoongTSpencerBYaoJTStructural Control: Past, Present, and FutureJournal of Engineering Mechanics1997123989797110.1061/(ASCE)0733-9399(1997)123:9(897) – reference: ZalamaEGómez-García-BermejoJMedinaRLlamasJRoad Crack Detection Using Visual Features Extracted by Gabor FiltersComputer-Aided Civil and Infrastructure Engineering201429534235810.1111/mice.12042 – reference: GavilánMBalconesDMarcosOLlorcaDFSoteloMAParraIOcañaMAlisedaPYarzaPAmírolaAAdaptive Road Crack Detection System by Pavement ClassificationSensors201111109628965710.3390/s111009628 – reference: KatoZZerubiaJMarkov Random Fields in Image SegmentationFoundations and Trends in Signal Processing201251–21155 – reference: JáureguiDVWhiteKRImplementation of Virtual Reality in Routine Bridge InspectionTransportation Research Record200318271293510.3141/1827-04 – ident: 2172_CR11 doi: 10.1201/9780429279119-442 – volume: 96 start-page: 1 issue: 4 year: 2014 ident: 2172_CR5 publication-title: International Journal of Computer Applications doi: 10.5120/16779-6360 – volume: 4 start-page: 253 issue: 5 year: 2014 ident: 2172_CR43 publication-title: Int. J. Adv. Res. Comput. Sci. Softw. Eng – volume: 47 start-page: 1 issue: 1 year: 2005 ident: 2172_CR8 publication-title: Corrosion Science doi: 10.1016/j.corsci.2004.05.007 – ident: 2172_CR32 – volume: 1827 start-page: 29 issue: 1 year: 2003 ident: 2172_CR21 publication-title: Transportation Research Record doi: 10.3141/1827-04 – volume-title: Digital Image Processing: An Algorithmic Approach with MATLAB year: 2009 ident: 2172_CR42 doi: 10.1201/9781420079517 – volume: 9 start-page: 85709 year: 2021 ident: 2172_CR49 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3088292 – volume-title: Structural Health Monitoring: A Machine Learning Perspective year: 2012 ident: 2172_CR14 doi: 10.1002/9781118443118 – volume: 5 start-page: 655 issue: 5 year: 2015 ident: 2172_CR40 publication-title: Journal of Civil Structural Health Monitoring doi: 10.1007/s13349-015-0146-3 – volume: 10 start-page: 471 issue: 3 year: 2020 ident: 2172_CR41 publication-title: Journal of Civil Structural Health Monitoring doi: 10.1007/s13349-020-00395-3 – volume: 8 start-page: 76163 year: 2020 ident: 2172_CR31 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2989028 – volume: 35 start-page: 389 issue: 4 year: 2020 ident: 2172_CR55 publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12500 – volume: 9 start-page: 62 issue: 1 year: 1979 ident: 2172_CR38 publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMC.1979.4310076 – volume: 1 start-page: 275 issue: 4 year: 1993 ident: 2172_CR24 publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/0968-090X(93)90002-W – volume: 18 start-page: 493 issue: 9 year: 2020 ident: 2172_CR51 publication-title: Journal of Advanced Concrete Technology doi: 10.3151/jact.18.493 – ident: 2172_CR36 doi: 10.2316/P.2010.679-079 – volume: 25 start-page: 572 issue: 8 year: 2010 ident: 2172_CR53 publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/j.1467-8667.2010.00674.x – volume: 99 start-page: 52 year: 2019 ident: 2172_CR12 publication-title: Automation in Construction doi: 10.1016/j.autcon.2018.11.028 – volume: 125 start-page: 103634 year: 2021 ident: 2172_CR23 publication-title: Automation in Construction doi: 10.1016/j.autcon.2021.103634 – volume: 5 start-page: 1 issue: 1–2 year: 2012 ident: 2172_CR25 publication-title: Foundations and Trends in Signal Processing – ident: 2172_CR18 doi: 10.1109/ICCV.2017.322 – volume: 1 start-page: 1011 year: 2020 ident: 2172_CR9 publication-title: Proceedings of the XI International Conference on Structural Dynamic, EURODYN, 23–25 November, 2020 – ident: 2172_CR2 doi: 10.1109/ISPA.2019.8868619 – volume: 26 start-page: e2381 issue: 8 year: 2019 ident: 2172_CR27 publication-title: Structural Control and Health Monitoring doi: 10.1002/stc.2381 – volume: 21 start-page: 654 issue: 5 year: 2015 ident: 2172_CR30 publication-title: Journal of Civil Engineering and Management doi: 10.3846/13923730.2014.890665 – volume: 20 start-page: 3424 issue: 6 year: 2021 ident: 2172_CR22 publication-title: Structural Health Monitoring doi: 10.1177/1475921721989407 – volume: 39 start-page: 1137 issue: 6 year: 2017 ident: 2172_CR44 publication-title: IEEE Transactions on Advances in Neural Information Processing Systems Machine Intelligence doi: 10.1109/TPAMI.2016.2577031 – volume: 2 start-page: 489 issue: 8 year: 2018 ident: 2172_CR46 publication-title: Proceedings of the Eighteenth International Conference of Experimental Mechanics, MDPI doi: 10.3390/ICEM18-05387 – ident: 2172_CR1 – volume: 98 start-page: 17 year: 1998 ident: 2172_CR50 publication-title: MVA – ident: 2172_CR26 doi: 10.1007/978-3-030-91877-4_94 – ident: 2172_CR34 – volume: 123 start-page: 897 issue: 9 year: 1997 ident: 2172_CR19 publication-title: Journal of Engineering Mechanics doi: 10.1061/(ASCE)0733-9399(1997)123:9(897) – volume: 29 start-page: 196 issue: 2 year: 2015 ident: 2172_CR28 publication-title: Advanced Engineering Informatics doi: 10.1016/j.aei.2015.01.008 – volume: 5 start-page: 140 issue: 1 year: 2010 ident: 2172_CR20 publication-title: Journal of Pattern Recognition Research doi: 10.13176/11.167 – ident: 2172_CR37 – volume: 9 start-page: 93 issue: 4 year: 2021 ident: 2172_CR13 publication-title: Journal of Rehabilitation in Civil Engineering – volume: 19 start-page: 105 issue: 2 year: 2004 ident: 2172_CR29 publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/j.1467-8667.2004.00341.x – volume: 133 start-page: 804 year: 2018 ident: 2172_CR4 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2018.07.115 – volume: 30 start-page: 759 issue: 10 year: 2015 ident: 2172_CR52 publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12141 – volume: 29 start-page: 342 issue: 5 year: 2014 ident: 2172_CR54 publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12042 – ident: 2172_CR17 doi: 10.1201/b17063-96 – ident: 2172_CR33 – volume: 110 start-page: 102973 year: 2020 ident: 2172_CR10 publication-title: Automation in Construction doi: 10.1016/j.autcon.2019.102973 – ident: 2172_CR7 doi: 10.1007/978-3-030-01234-2_49 – volume: 11 start-page: 9628 issue: 10 year: 2011 ident: 2172_CR16 publication-title: Sensors doi: 10.3390/s111009628 – volume: 252 start-page: 119096 year: 2020 ident: 2172_CR39 publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2020.119096 – volume: 21 start-page: 1 issue: 3 year: 2015 ident: 2172_CR35 publication-title: Journal of Infrastructure Systems doi: 10.1061/(ASCE)IS.1943-555X.0000237 – volume: 2020 start-page: 1 issue: 1 year: 2020 ident: 2172_CR15 publication-title: Mathematical Problems in Engineering – volume: 20 start-page: 6205 issue: 21 year: 2020 ident: 2172_CR45 publication-title: Sensors doi: 10.3390/s20216205 – volume: 40 start-page: 143 issue: 15 year: 2007 ident: 2172_CR3 publication-title: IFAC Proceedings Volumes doi: 10.3182/20070903-3-FR-2921.00027 – volume-title: Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab year: 2011 ident: 2172_CR48 – volume: 32 start-page: 361 issue: 5 year: 2017 ident: 2172_CR6 publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12263 – volume: 8 start-page: 80716 year: 2020 ident: 2172_CR47 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2988796 |
SSID | ssj0064236 |
Score | 2.3958929 |
Snippet | Large structures, such as bridges, highways, etc., need to be inspected to evaluate their actual physical and functional condition, to predict future... Large structures,such as bridges,highways,etc.,need to be inspected to evaluate their actual physical and functional condition,to predict future conditions,and... |
SourceID | wanfang proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 333 |
SubjectTerms | Algorithms Bridges Civil Engineering Cluster analysis Clustering Color Colour Comparative analysis Comparative studies Computer vision Computer Vision Empowering Earthquake Engineering and Engineering Vibration Control Corrosion Damage detection Data collection Detection Dynamical Systems Earth and Environmental Science Earth Sciences Euclidean geometry Evaluation Fields Fields (mathematics) Geotechnical Engineering & Applied Earth Sciences Image processing Image segmentation Inspection Labour Machine vision Procedures Rehabilitation Roads & highways Spatial dependencies Special Section: Computer Vision Empowering Earthquake Engineering and Engineering Vibration Structural health monitoring Vector quantization Vibration Visual inspection |
Title | Damage detection with image processing: a comparative study |
URI | https://link.springer.com/article/10.1007/s11803-023-2172-1 https://www.proquest.com/docview/2806171248 https://d.wanfangdata.com.cn/periodical/dzgcygczd-e202302004 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu8CBN2IwUA9wAQU1TZqmcJp4TSA4MQlOVV6dEFAm1h3YryfpYwWEkLimidXaqWPH9meAfWOHcWw4koQpRHnqI0kFRiIKNdb2DKLUFQrf3rH-gF4_hA9VHfe4znavQ5KFpm6K3TB3uT8BQa6pErIuTzvEPOYtaPeuHm8uagVsLeqiMyBmEUaEMVoHM38j8v04amzMWVi0KObJUpENv5w7l8twX79xmW7yfDzJ5bGa_gBz_OcnrcBSZYd6vXLjrMKcydZg8Qs64TqcnotXq208bfIiXyvz3KWt91QMjsoCAzvxxBOeajDEvQKwdgMGlxf3Z31U9VpAioQkt9o4Yq45glE8ZYTQVPJAKy3jlGNhpHV7Yo1TwrjmmEQpVTHFsbYebhByhbkkm9DK3jKzBZ4Wxjp1MtJYhFT4ocTaSon4KpZRYJjqgF-zPFEVELnrh_GSNBDKji-J5Uvi-JLgDhzOloxKFI6_JndrOSbVDzlOXAAZR9aY4R04qoXRPP6D2EEl_mayng7Vx1BNdWJc83nfKZrtf1HdgQW3sswA6kIrf5-YXWvc5HKv2sx7MD8Iep_QbO5R |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hMgADb0ShQAZYQEZx7TgOTBWv8pyKBJPlVyoEBARhoL8eOw8CCCGxOs4puXPukbv7DmDTumWcWI4UYRpRnoZIUYmRjCODjbNBlPpG4csr1r-mZzfRTdXH_VpXu9cpyUJTN81umPvany5BfqgSciHPOHUheNiC8d7J7flRrYCdR11MBsQsxogwRutk5m9Evpujxsf8TIsWzTxZKrPhF7tzPAOD-onLcpP73bdc7erRDzDHf77SLExXfmjQKw_OHIzZbB6mvqATLsD-oXx02iYwNi_qtbLA_7QN7orF57LBwG3cC2SgGwzxoACsXYTr46PBQR9VsxaQJhHJnTaOmR-OYDVPGSE0VbxrtFFJyrG0yoU9icEpYdxwTOKU6sTx3rgItxtxjbkiS9DKnjK7DIGR1gV1KjZYRlSGkcKGJ5yEOlFx1zLdhrBmudAVELmfh_EgGghlzxfh-CI8XwRuw_bnLc8lCsdfmzu1HEX1Qb4Kn0DGsXNmeBt2amE0l_8gtlWJv9lsRkP9PtQjI6wfPh96RbPyL6obMNEfXF6Ii9Or81WY9FTKaqAOtPKXN7vmHJ1crVcH-wNZE_BF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yQfQgfuJ0ag96UcKaJk1TPQ3nmF_Dg4PdQr46BK3D1YP76036sU6Qgdc0fYeX9H30vff7AXBm7DKKDYMSUwUJS3woiUBQRKFG2vogQtyg8NOA9ofkfhSOSp7TadXtXpUki5kGh9KUZu2JTtr14Btirg8owNARLEGb_qxaa4zcRR8GncoU29g65whENEIQU0qqsuZfIn47pjranBdI87GeNBHpeMED9bbAZhk6ep3irLfBikl3wMYCoOAuuO6Kd2sgPG2yvMUq9dx_Vu81X5wUMwF245UnPFXDfns5xuweGPZuX276sKRHgAqHOLMGNKKOz8AollCMSSJZoJWWccKQMNJmKrFGCaZMM4SjhKiYoFjbpDQImUJM4n3QSD9ScwA8LYzNw2SkkQiJ8EOJNIsZ9lUso8BQ1QR-pRuuSuxwR2HxxmvUY6dObtXJnTo5aoKL-SuTAjhj2eZWpXBefkNT7mq-KLLxB2uCy-oQ6sdLhJ2X51Rv1rOx-h6rmebG8cX7zjYc_kvqKVh77vb4493g4QisOyFF_04LNLLPL3NsQ5NMnuTX7weTBNfL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Damage+detection+with+image+processing%3Aa+comparative+study&rft.jtitle=%E5%9C%B0%E9%9C%87%E5%B7%A5%E7%A8%8B%E4%B8%8E%E5%B7%A5%E7%A8%8B%E6%8C%AF%E5%8A%A8%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Marianna+Crognale&rft.au=Melissa+De+Iuliis&rft.au=Cecilia+Rinaldi&rft.au=Vincenzo+Gattulli&rft.date=2023-04-01&rft.pub=Department+of+Structural+and+Geotechnical+Engineering%2CSapienza+University+of+Rome%2Cvia+Eudossiana+18%2CRome+00167%2CItaly&rft.issn=1671-3664&rft.volume=22&rft.issue=2&rft.spage=333&rft.epage=345&rft_id=info:doi/10.1007%2Fs11803-023-2172-1&rft.externalDocID=dzgcygczd_e202302004 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdzgcygczd-e%2Fdzgcygczd-e.jpg |