Damage detection with image processing: a comparative study

Large structures, such as bridges, highways, etc., need to be inspected to evaluate their actual physical and functional condition, to predict future conditions, and to help decision makers allocating maintenance and rehabilitation resources. The assessment of civil infrastructure condition is carri...

Full description

Saved in:
Bibliographic Details
Published inEarthquake Engineering and Engineering Vibration Vol. 22; no. 2; pp. 333 - 345
Main Authors Crognale, Marianna, De Iuliis, Melissa, Rinaldi, Cecilia, Gattulli, Vincenzo
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2023
Springer Nature B.V
Department of Structural and Geotechnical Engineering,Sapienza University of Rome,via Eudossiana 18,Rome 00167,Italy
Subjects
Online AccessGet full text
ISSN1671-3664
1993-503X
DOI10.1007/s11803-023-2172-1

Cover

Abstract Large structures, such as bridges, highways, etc., need to be inspected to evaluate their actual physical and functional condition, to predict future conditions, and to help decision makers allocating maintenance and rehabilitation resources. The assessment of civil infrastructure condition is carried out through information obtained by inspection and/or monitoring operations. Traditional techniques in structural health monitoring (SHM) involve visual inspection related to inspection standards that can be time-consuming data collection, expensive, labor intensive, and dangerous. To address these limitations, machine vision-based inspection procedures have increasingly been investigated within the research community. In this context, this paper proposes and compares four different computer vision procedures to identify damage by image processing: Otsu method thresholding, Markov random fields segmentation, RGB color detection technique, and K-means clustering algorithm. The first method is based on segmentation by thresholding that returns a binary image from a grayscale image. The Markov random fields technique uses a probabilistic approach to assign labels to model the spatial dependencies in image pixels. The RGB technique uses color detection to evaluate the defect extensions. Finally, K-means algorithm is based on Euclidean distance for clustering of the images. The benefits and limitations of each technique are discussed, and the challenges of using the techniques are highlighted. To show the effectiveness of the described techniques in damage detection of civil infrastructures, a case study is presented. Results show that various types of corrosion and cracks can be detected by image processing techniques making the proposed techniques a suitable tool for the prediction of the damage evolution in civil infrastructures.
AbstractList Large structures,such as bridges,highways,etc.,need to be inspected to evaluate their actual physical and functional condition,to predict future conditions,and to help decision makers allocating maintenance and rehabilitation resources.The assessment of civil infrastructure condition is carried out through information obtained by inspection and/or monitoring operations.Traditional techniques in structural health monitoring(SHM)involve visual inspection related to inspection standards that can be time-consuming data collection,expensive,labor intensive,and dangerous.To address these limitations,machine vision-based inspection procedures have increasingly been investigated within the research community.In this context,this paper proposes and compares four different computer vision procedures to identify damage by image processing:Otsu method thresholding,Markov random fields segmentation,RGB color detection technique,and K-means clustering algorithm.The first method is based on segmentation by thresholding that returns a binary image from a grayscale image.The Markov random fields technique uses a probabilistic approach to assign labels to model the spatial dependencies in image pixels.The RGB technique uses color detection to evaluate the defect extensions.Finally,K-means algorithm is based on Euclidean distance for clustering of the images.The benefits and limitations of each technique are discussed,and the challenges of using the techniques are highlighted.To show the effectiveness of the described techniques in damage detection of civil infrastructures,a case study is presented.Results show that various types of corrosion and cracks can be detected by image processing techniques making the proposed techniques a suitable tool for the prediction of the damage evolution in civil infrastructures.
Author Crognale, Marianna
Rinaldi, Cecilia
Gattulli, Vincenzo
De Iuliis, Melissa
AuthorAffiliation Department of Structural and Geotechnical Engineering,Sapienza University of Rome,via Eudossiana 18,Rome 00167,Italy
AuthorAffiliation_xml – name: Department of Structural and Geotechnical Engineering,Sapienza University of Rome,via Eudossiana 18,Rome 00167,Italy
Author_xml – sequence: 1
  givenname: Marianna
  surname: Crognale
  fullname: Crognale, Marianna
  email: marianna.crognale@uniroma1.it
  organization: Department of Structural and Geotechnical Engineering, Sapienza University of Rome
– sequence: 2
  givenname: Melissa
  surname: De Iuliis
  fullname: De Iuliis, Melissa
  organization: Department of Structural and Geotechnical Engineering, Sapienza University of Rome
– sequence: 3
  givenname: Cecilia
  surname: Rinaldi
  fullname: Rinaldi, Cecilia
  organization: Department of Structural and Geotechnical Engineering, Sapienza University of Rome
– sequence: 4
  givenname: Vincenzo
  surname: Gattulli
  fullname: Gattulli, Vincenzo
  organization: Department of Structural and Geotechnical Engineering, Sapienza University of Rome
BookMark eNp9kF1LwzAUhoNMcJv-AO8K3lrNSdok1SuZnzDwRsG7kCZp7djamWSO7debWWEg6FUO4XnOxztCg7ZrLUKngC8AY37pAQSmKSY0JcBJCgdoCEVB0xzTt0GsGYeUMpYdoZH3M4xZRigboutbtVC1TYwNVoema5N1E96T5vtz6TptvW_a-ipRie4WS-VUaD5t4sPKbI7RYaXm3p78vGP0en_3MnlMp88PT5ObaappTkMKmDOVY2y1qBilWVUKYrQpi0qAsiUjrDBQUSaMAMqrTBcZFIYDJbnQIEo6Rud937VqK9XWctatXBsnSrOt9abWWyMtiadjgnEW8bMej-t_rKwPe54IzIADyUSkeE9p13nvbCV1E9QugeBUM5eA5S5Y2QcrY3e5C1ZCNOGXuXQxL7f51yG94yPb1tbtd_pb-gJLCIr_
CitedBy_id crossref_primary_10_3390_constrmater4010005
crossref_primary_10_1007_s11803_024_2253_9
crossref_primary_10_1016_j_autcon_2025_106116
crossref_primary_10_3390_ma16247512
crossref_primary_10_7498_aps_73_20241265
crossref_primary_10_1007_s11760_024_03795_w
crossref_primary_10_1007_s12145_024_01379_3
crossref_primary_10_1016_j_measurement_2023_113902
crossref_primary_10_1080_15583058_2025_2481255
crossref_primary_10_3390_buildings13081922
crossref_primary_10_1016_j_oceaneng_2024_119600
crossref_primary_10_1016_j_prostr_2024_09_120
crossref_primary_10_1080_10298436_2024_2339997
crossref_primary_10_3390_s24082435
crossref_primary_10_1007_s44290_025_00164_5
crossref_primary_10_1080_1448837X_2024_2421043
Cites_doi 10.1201/9780429279119-442
10.5120/16779-6360
10.1016/j.corsci.2004.05.007
10.3141/1827-04
10.1201/9781420079517
10.1109/ACCESS.2021.3088292
10.1002/9781118443118
10.1007/s13349-015-0146-3
10.1007/s13349-020-00395-3
10.1109/ACCESS.2020.2989028
10.1111/mice.12500
10.1109/TSMC.1979.4310076
10.1016/0968-090X(93)90002-W
10.3151/jact.18.493
10.2316/P.2010.679-079
10.1111/j.1467-8667.2010.00674.x
10.1016/j.autcon.2018.11.028
10.1016/j.autcon.2021.103634
10.1109/ICCV.2017.322
10.1109/ISPA.2019.8868619
10.1002/stc.2381
10.3846/13923730.2014.890665
10.1177/1475921721989407
10.1109/TPAMI.2016.2577031
10.3390/ICEM18-05387
10.1007/978-3-030-91877-4_94
10.1061/(ASCE)0733-9399(1997)123:9(897)
10.1016/j.aei.2015.01.008
10.13176/11.167
10.1111/j.1467-8667.2004.00341.x
10.1016/j.procs.2018.07.115
10.1111/mice.12141
10.1111/mice.12042
10.1201/b17063-96
10.1016/j.autcon.2019.102973
10.1007/978-3-030-01234-2_49
10.3390/s111009628
10.1016/j.conbuildmat.2020.119096
10.1061/(ASCE)IS.1943-555X.0000237
10.3390/s20216205
10.3182/20070903-3-FR-2921.00027
10.1111/mice.12263
10.1109/ACCESS.2020.2988796
ContentType Journal Article
Copyright Institute of Engineering Mechanics, China Earthquake Administration 2023
Institute of Engineering Mechanics, China Earthquake Administration 2023.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Institute of Engineering Mechanics, China Earthquake Administration 2023
– notice: Institute of Engineering Mechanics, China Earthquake Administration 2023.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
7ST
7TG
7TN
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s11803-023-2172-1
DatabaseName CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1993-503X
EndPage 345
ExternalDocumentID dzgcygczd_e202302004
10_1007_s11803_023_2172_1
GroupedDBID -5B
-5G
-BR
-EM
-SA
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
29G
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VR
5VS
6NX
7XC
88I
8FE
8FG
8FH
8TC
8UJ
92E
92I
92Q
93N
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
CAG
CAJEA
CCEZO
CCPQU
CCVFK
CHBEP
COF
CS3
CSCUP
CW9
D1K
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
K6-
KOV
L6V
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P9P
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PTHSS
PYCSY
Q--
Q2X
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCL
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TCJ
TGP
TSG
TUC
TUS
U1G
U2A
U5K
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z7Z
ZMTXR
ZY4
~A9
AAYXX
ABAKF
ABDBE
ABFSG
ACAOD
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7ST
7TG
7TN
8FD
ABRTQ
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
4A8
PMFND
PSX
ID FETCH-LOGICAL-c353t-1076a500ec8f6334fb82dcdb9f81aeb6269d1f368d8137f4c9419d713258c18b3
IEDL.DBID AGYKE
ISSN 1671-3664
IngestDate Thu May 29 04:11:17 EDT 2025
Wed Sep 10 13:40:59 EDT 2025
Tue Jul 01 03:59:43 EDT 2025
Thu Apr 24 22:52:01 EDT 2025
Fri Feb 21 02:41:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords image processing
damage detection
structural health monitoring analysis
image classification
civil infrastructure inspection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-1076a500ec8f6334fb82dcdb9f81aeb6269d1f368d8137f4c9419d713258c18b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2806171248
PQPubID 54346
PageCount 13
ParticipantIDs wanfang_journals_dzgcygczd_e202302004
proquest_journals_2806171248
crossref_citationtrail_10_1007_s11803_023_2172_1
crossref_primary_10_1007_s11803_023_2172_1
springer_journals_10_1007_s11803_023_2172_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationTitle Earthquake Engineering and Engineering Vibration
PublicationTitleAbbrev Earthq. Eng. Eng. Vib
PublicationTitle_FL Earthquake Engineering and Engineering Vibration
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Department of Structural and Geotechnical Engineering,Sapienza University of Rome,via Eudossiana 18,Rome 00167,Italy
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Department of Structural and Geotechnical Engineering,Sapienza University of Rome,via Eudossiana 18,Rome 00167,Italy
References RenSHeKGirshickRSunJFaster R-CNN: Towards Real-Time Object Detection with Region Proposal NetworksIEEE Transactions on Advances in Neural Information Processing Systems Machine Intelligence201739611371149
ZhangCChangCCJamshidiMConcrete Bridge Surface Damage Detection Using a Single-Stage DetectorComputer-Aided Civil and Infrastructure Engineering202035438940910.1111/mice.12500
KochCGeorgievaKKasireddyVAkinciBFieguthPA Review on Computer Vision Based Defect Detection and Condition Assessment of Concrete and Asphalt Civil InfrastructureAdvanced Engineering Informatics201529219621010.1016/j.aei.2015.01.008
PotenzaFFedericiFLepidiMGattulliVGraziosiFColarietiALong-Term Structural Monitoring of the Damaged Basilica S. Maria di Collemaggio Through a Low-Cost Wireless Sensor NetworkJournal of Civil Structural Health Monitoring20155565567610.1007/s13349-015-0146-3
Chen LC, Zhu Y, Papandreou G, Schroff F and Adam H (2018), “Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation,” Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818.
ChoKYKimSMorphological Analysis and Classification of Types of Surface Corrosion Damage by Digital Image ProcessingCorrosion Science200547111510.1016/j.corsci.2004.05.007
YeumCMDykeSJVision-Based Automated Crack Detection for Bridge InspectionComputer-Aided Civil and Infrastructure Engineering2015301075977010.1111/mice.12141
SilvaLASanchez San BlasHPeral GarcíaDSales MendesAVillarubia GonzálezGAn Architectural Multi-Agent System for a Pavement Monitoring System with Pothole Recognition in UAV ImagesSensors20202021620510.3390/s20216205
FengXXiaoLLiWPeiLSunZMaZShenHJuHPavement Crack Detection and Segmentation Method Based on Improved Deep Learning Fusion ModelMathematical Problems in Engineering202020201122
HuYZhaoCXA Novel LBP Based Methods for Pavement Crack DetectionJournal of Pattern Recognition Research20105114014710.13176/11.167
Nguyen TS, Begot S, Duculty F, Bardet JC and Avila M (2010), “Pavement Cracking Detection Using an Anisotropy Measurement,” Proceedings of 11th IASTED International Conference on Computer Graphics and Imaging (CGIM), pp. 80–87.
ParkSEEemSHJeonHConcrete Crack Detection and Quantification Using Deep Learning and Structured LightConstruction and Building Materials202025211909610.1016/j.conbuildmat.2020.119096
Attard L, Debono CJ, Valentino G, Di Castro M, Masi A and Scibile L (2019), “Automatic Crack Detection Using Mask R-CNN,” Proceeding of 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA), IEEE, pp. 152–157.
ZalamaEGómez-García-BermejoJMedinaRLlamasJRoad Crack Detection Using Visual Features Extracted by Gabor FiltersComputer-Aided Civil and Infrastructure Engineering201429534235810.1111/mice.12042
DengWMouYKashiwaTEscaleraSNagaiKNakayamaKMatsuoYPrendingerHVision Based Pixel-Level Bridge Structural Damage Detection Using a Link ASPP NetworkAutomation in Construction202011010297310.1016/j.autcon.2019.102973
SunYYangYYaoGWeiFWongMAutonomous Crack and Bughole Setection for Concrete Surface Image Based on Deep LearningIEEE Access20219857098572010.1109/ACCESS.2021.3088292
KaraaslanEBagciUCatbasFNAttention-Guided Analysis of Infrastructure Damage with Semi-Supervised Deep LearningAutomation in Construction202112510363410.1016/j.autcon.2021.103634
KasekoMSRitchieSGA Neural Network-Based Methodology for Pavement Crack Detection and ClassificationTransportation Research Part C: Emerging Technologies19931427529110.1016/0968-090X(93)90002-W
Arthur D, Vassilvitskii S (2007), “K-means++: The Advantages of Careful Seeding,” Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, 7–9 January, 2007, New Orleans, pp. 1027–1035.
YingLSalariEBeamlet Transform-Based Technique for Pavement Crack Detection and ClassificationComputer-Aided Civil and Infrastructure Engineering201025857258010.1111/j.1467-8667.2010.00674.x
KimBChoSImage-Based Concrete Crack Assessment Using Mask and Region-Based Convolutional Neural NetworkStructural Control and Health Monitoring2019268e238110.1002/stc.2381
QidwaiUChenCHDigital Image Processing: An Algorithmic Approach with MATLAB2009UKChapman and Hall/CRC10.1201/9781420079517
BurneySATariqHK-Means Cluster Analysis for Image SegmentationInternational Journal of Computer Applications20149641810.5120/16779-6360
CrognaleMGattulliVIvorraSPotenzaFAn Integrated Vibration-Image Procedure for Damage Identification in Steel TrussesProceedings of the XI International Conference on Structural Dynamic, EURODYN, 23–25 November, 20202020110111026
Long J, Shelhamer E and Darrell T, “Fully Convolutional Networks for Semantic Segmentation,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440.
SolomonCBreckonTFundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab2011USAJohn Wiley & Sons
HousnerGBergmanLACaugheyTKChassiakosAGClausROMasriSFSkeltonRESoongTSpencerBYaoJTStructural Control: Past, Present, and FutureJournal of Engineering Mechanics1997123989797110.1061/(ASCE)0733-9399(1997)123:9(897)
ChaYJChoiWBüyüköztürkODeep Learning-Based Crack Damage Detection Using Convolutional Neural NetworksComputer-Aided Civil and Infrastructure Engineering201732536137810.1111/mice.12263
Domaneschi M, Cimellaro G, De Iuliis M and Marano G (2021), “Laboratory Investigation of Digital Image Correlation Techniques for Structural Assessment,” Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations, CRC Press, pp. 3260–3266.
Lin (2022), “Image Segmentation Based on Markov Random Fields,” https://www.mathworks.com/matlabcentral/fileexchange/33592-image-segmentation-based-on-markov-random-fields.
He K, Gkioxari G, Dollar P and Girshick R (2017), “Mask R-CNN,” Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969.
PotenzaFRinaldiCOttavianoEGattulliVA Robotics and Computer-Aided Procedure for Defect Evaluation in Bridge InspectionJournal of Civil Structural Health Monitoring202010347148410.1007/s13349-020-00395-3
Lohade DM and Chopade P (2016), “Real Time Metal Inspection for Surface and Dimensional Defect Detection Using Image Processing Techniques,” Proceedings of 3rd International Conference on Electrical, Electronics, Engineering Trends, Communication, Optimization and Sciences (EEECOS-2016), pp. 873–877.
RanjanRGulatiTCondition Assessment of Metallic Objects Using Edge DetectionInt. J. Adv. Res. Comput. Sci. Softw. Eng201445253258
TanakaNUematsuKA Crack Detection Method in Road Surface Images Using MorphologyMVA1998981719
SilvaWRLDLucenaDSDConcrete Cracks Detection Based on Deep Learning Image ClassificationProceedings of the Eighteenth International Conference of Experimental Mechanics, MDPI20182848910.3390/ICEM18-05387
KatoZZerubiaJMarkov Random Fields in Image SegmentationFoundations and Trends in Signal Processing201251–21155
YamaneTChunPJCrack Detection from a Concrete Surface Image Based on Semantic Segmentation Using Deep LearningJournal of Advanced Concrete Technology202018949350410.3151/jact.18.493
GavilánMBalconesDMarcosOLlorcaDFSoteloMAParraIOcañaMAlisedaPYarzaPAmírolaAAdaptive Road Crack Detection System by Pavement ClassificationSensors201111109628965710.3390/s111009628
SinagaKPYangMSUnsupervised K-Means Clustering AlgorithmIEEE Access20208807168072710.1109/ACCESS.2020.2988796
LeeBJLeeHDPosition-Invariant Neural Network for Digital Pavement Crack AnalysisComputer-Aided Civil and Infrastructure Engineering200419210511810.1111/j.1467-8667.2004.00341.x
LeeSKalosNBridge Inspection Practices Using Non-Destructive Testing MethodsJournal of Civil Engineering and Management201521565466510.3846/13923730.2014.890665
JáureguiDVWhiteKRImplementation of Virtual Reality in Routine Bridge InspectionTransportation Research Record200318271293510.3141/1827-04
FarhangSHRezaifarOSharbatdarMKAhmady FardAEvaluation of Different Methods of Machine Vision in Health Monitoring and Damage Detection of StructuresJournal of Rehabilitation in Civil Engineering20219493132
BondadaVPratiharDKKumarCSDetection and Quantitative Assessment of Corrosion on Pipelines Through Image AnalysisProcedia Computer Science201813380481110.1016/j.procs.2018.07.115
Hallermann N and Morgenthal G (2014), “Visual Inspection Strategies for Large Bridges Using Unmanned Aerial Vehicles (UAV),” Proc. of 7th IABMAS, International Conference on Bridge Maintenance, Safety and Management, pp. 661–667.
Kazemi Majd F, Fallahi N and Gattulli V (2021), “Detection of Corrosion Defects in Steel Bridges by Machine Vision,” Proceedings of International Conference of the European Association on Quality Control of Bridges and Structures, Springer, pp. 830–834.
MathavanSRahmanMKamalKUse of a Self-Organizing Map for Crack Detection in Highly Textured Pavement ImagesJournal of Infrastructure Systems201521311110.1061/(ASCE)IS.1943-555X.0000237
Jin LimHHwangSKimHSohnHSteel Bridge Corrosion Inspection with Combined Vision and Thermographic ImagesStructural Health Monitoring20212063424343510.1177/1475921721989407
Oliveira H and Correia PL (2010), “Automatic Crack Detection on Road Imagery Using Anisotropic Diffusion and Region Linkage,” Proceedings of 2010 18th European Signal Processing Conference, IEEE, pp. 274–278.
DungCVAutonomous Concrete Crack Detection Using Deep Fully Convolutional Neural NetworkAutomation in Construction201999525810.1016/j.autcon.2018.11.028
OtsuNA Threshold Selection Method from Gray-Level HistogramsIEEE Transactions on Systems, Man, and Cybernetics197991626610.1109/TSMC.1979.4310076
BauerJSünderhaufNProtzelPComparing Several Implementations of Two Recently Published Feature DetectorsIFAC Proceedings Volumes2007401514314810.3182/20070903-3-FR-2921.00027
LeiXLiuCLiLWangGAutomated Pavement Distress Detection and Deterioration Analysis Using Street View MapIEEE Access20208761637617210.1109/ACCESS.2020.2989028
FarrarCRWordenKStructural Health Monitoring: A Machine Learning Perspective2012USAJohn Wiley & Sons10.1002/9781118443118
2172_CR17
S Mathavan (2172_CR35) 2015; 21
2172_CR18
Y Hu (2172_CR20) 2010; 5
C Koch (2172_CR28) 2015; 29
Y Sun (2172_CR49) 2021; 9
2172_CR11
SE Park (2172_CR39) 2020; 252
2172_CR7
CR Farrar (2172_CR14) 2012
KP Sinaga (2172_CR47) 2020; 8
N Tanaka (2172_CR50) 1998; 98
SH Farhang (2172_CR13) 2021; 9
SA Burney (2172_CR5) 2014; 96
H Jin Lim (2172_CR22) 2021; 20
2172_CR26
C Solomon (2172_CR48) 2011
N Otsu (2172_CR38) 1979; 9
S Ren (2172_CR44) 2017; 39
LA Silva (2172_CR45) 2020; 20
S Lee (2172_CR30) 2015; 21
G Housner (2172_CR19) 1997; 123
E Zalama (2172_CR54) 2014; 29
MS Kaseko (2172_CR24) 1993; 1
X Lei (2172_CR31) 2020; 8
DV Jáuregui (2172_CR21) 2003; 1827
2172_CR37
KY Cho (2172_CR8) 2005; 47
2172_CR32
2172_CR36
2172_CR33
Z Kato (2172_CR25) 2012; 5
2172_CR34
F Potenza (2172_CR41) 2020; 10
CV Dung (2172_CR12) 2019; 99
R Ranjan (2172_CR43) 2014; 4
L Ying (2172_CR53) 2010; 25
WRLD Silva (2172_CR46) 2018; 2
E Karaaslan (2172_CR23) 2021; 125
T Yamane (2172_CR51) 2020; 18
X Feng (2172_CR15) 2020; 2020
M Crognale (2172_CR9) 2020; 1
M Gavilán (2172_CR16) 2011; 11
V Bondada (2172_CR4) 2018; 133
F Potenza (2172_CR40) 2015; 5
2172_CR2
YJ Cha (2172_CR6) 2017; 32
2172_CR1
W Deng (2172_CR10) 2020; 110
BJ Lee (2172_CR29) 2004; 19
U Qidwai (2172_CR42) 2009
CM Yeum (2172_CR52) 2015; 30
C Zhang (2172_CR55) 2020; 35
B Kim (2172_CR27) 2019; 26
J Bauer (2172_CR3) 2007; 40
References_xml – reference: BondadaVPratiharDKKumarCSDetection and Quantitative Assessment of Corrosion on Pipelines Through Image AnalysisProcedia Computer Science201813380481110.1016/j.procs.2018.07.115
– reference: ZhangCChangCCJamshidiMConcrete Bridge Surface Damage Detection Using a Single-Stage DetectorComputer-Aided Civil and Infrastructure Engineering202035438940910.1111/mice.12500
– reference: LeeSKalosNBridge Inspection Practices Using Non-Destructive Testing MethodsJournal of Civil Engineering and Management201521565466510.3846/13923730.2014.890665
– reference: SilvaLASanchez San BlasHPeral GarcíaDSales MendesAVillarubia GonzálezGAn Architectural Multi-Agent System for a Pavement Monitoring System with Pothole Recognition in UAV ImagesSensors20202021620510.3390/s20216205
– reference: PotenzaFRinaldiCOttavianoEGattulliVA Robotics and Computer-Aided Procedure for Defect Evaluation in Bridge InspectionJournal of Civil Structural Health Monitoring202010347148410.1007/s13349-020-00395-3
– reference: FarrarCRWordenKStructural Health Monitoring: A Machine Learning Perspective2012USAJohn Wiley & Sons10.1002/9781118443118
– reference: QidwaiUChenCHDigital Image Processing: An Algorithmic Approach with MATLAB2009UKChapman and Hall/CRC10.1201/9781420079517
– reference: FengXXiaoLLiWPeiLSunZMaZShenHJuHPavement Crack Detection and Segmentation Method Based on Improved Deep Learning Fusion ModelMathematical Problems in Engineering202020201122
– reference: ChaYJChoiWBüyüköztürkODeep Learning-Based Crack Damage Detection Using Convolutional Neural NetworksComputer-Aided Civil and Infrastructure Engineering201732536137810.1111/mice.12263
– reference: KochCGeorgievaKKasireddyVAkinciBFieguthPA Review on Computer Vision Based Defect Detection and Condition Assessment of Concrete and Asphalt Civil InfrastructureAdvanced Engineering Informatics201529219621010.1016/j.aei.2015.01.008
– reference: PotenzaFFedericiFLepidiMGattulliVGraziosiFColarietiALong-Term Structural Monitoring of the Damaged Basilica S. Maria di Collemaggio Through a Low-Cost Wireless Sensor NetworkJournal of Civil Structural Health Monitoring20155565567610.1007/s13349-015-0146-3
– reference: SilvaWRLDLucenaDSDConcrete Cracks Detection Based on Deep Learning Image ClassificationProceedings of the Eighteenth International Conference of Experimental Mechanics, MDPI20182848910.3390/ICEM18-05387
– reference: Oliveira H and Correia PL (2010), “Automatic Crack Detection on Road Imagery Using Anisotropic Diffusion and Region Linkage,” Proceedings of 2010 18th European Signal Processing Conference, IEEE, pp. 274–278.
– reference: ChoKYKimSMorphological Analysis and Classification of Types of Surface Corrosion Damage by Digital Image ProcessingCorrosion Science200547111510.1016/j.corsci.2004.05.007
– reference: Lin (2022), “Image Segmentation Based on Markov Random Fields,” https://www.mathworks.com/matlabcentral/fileexchange/33592-image-segmentation-based-on-markov-random-fields.
– reference: LeeBJLeeHDPosition-Invariant Neural Network for Digital Pavement Crack AnalysisComputer-Aided Civil and Infrastructure Engineering200419210511810.1111/j.1467-8667.2004.00341.x
– reference: YingLSalariEBeamlet Transform-Based Technique for Pavement Crack Detection and ClassificationComputer-Aided Civil and Infrastructure Engineering201025857258010.1111/j.1467-8667.2010.00674.x
– reference: Domaneschi M, Cimellaro G, De Iuliis M and Marano G (2021), “Laboratory Investigation of Digital Image Correlation Techniques for Structural Assessment,” Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations, CRC Press, pp. 3260–3266.
– reference: KasekoMSRitchieSGA Neural Network-Based Methodology for Pavement Crack Detection and ClassificationTransportation Research Part C: Emerging Technologies19931427529110.1016/0968-090X(93)90002-W
– reference: SunYYangYYaoGWeiFWongMAutonomous Crack and Bughole Setection for Concrete Surface Image Based on Deep LearningIEEE Access20219857098572010.1109/ACCESS.2021.3088292
– reference: MathavanSRahmanMKamalKUse of a Self-Organizing Map for Crack Detection in Highly Textured Pavement ImagesJournal of Infrastructure Systems201521311110.1061/(ASCE)IS.1943-555X.0000237
– reference: Attard L, Debono CJ, Valentino G, Di Castro M, Masi A and Scibile L (2019), “Automatic Crack Detection Using Mask R-CNN,” Proceeding of 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA), IEEE, pp. 152–157.
– reference: Hallermann N and Morgenthal G (2014), “Visual Inspection Strategies for Large Bridges Using Unmanned Aerial Vehicles (UAV),” Proc. of 7th IABMAS, International Conference on Bridge Maintenance, Safety and Management, pp. 661–667.
– reference: SolomonCBreckonTFundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab2011USAJohn Wiley & Sons
– reference: KaraaslanEBagciUCatbasFNAttention-Guided Analysis of Infrastructure Damage with Semi-Supervised Deep LearningAutomation in Construction202112510363410.1016/j.autcon.2021.103634
– reference: CrognaleMGattulliVIvorraSPotenzaFAn Integrated Vibration-Image Procedure for Damage Identification in Steel TrussesProceedings of the XI International Conference on Structural Dynamic, EURODYN, 23–25 November, 20202020110111026
– reference: Kazemi Majd F, Fallahi N and Gattulli V (2021), “Detection of Corrosion Defects in Steel Bridges by Machine Vision,” Proceedings of International Conference of the European Association on Quality Control of Bridges and Structures, Springer, pp. 830–834.
– reference: He K, Gkioxari G, Dollar P and Girshick R (2017), “Mask R-CNN,” Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969.
– reference: SinagaKPYangMSUnsupervised K-Means Clustering AlgorithmIEEE Access20208807168072710.1109/ACCESS.2020.2988796
– reference: HuYZhaoCXA Novel LBP Based Methods for Pavement Crack DetectionJournal of Pattern Recognition Research20105114014710.13176/11.167
– reference: ParkSEEemSHJeonHConcrete Crack Detection and Quantification Using Deep Learning and Structured LightConstruction and Building Materials202025211909610.1016/j.conbuildmat.2020.119096
– reference: YamaneTChunPJCrack Detection from a Concrete Surface Image Based on Semantic Segmentation Using Deep LearningJournal of Advanced Concrete Technology202018949350410.3151/jact.18.493
– reference: OtsuNA Threshold Selection Method from Gray-Level HistogramsIEEE Transactions on Systems, Man, and Cybernetics197991626610.1109/TSMC.1979.4310076
– reference: RanjanRGulatiTCondition Assessment of Metallic Objects Using Edge DetectionInt. J. Adv. Res. Comput. Sci. Softw. Eng201445253258
– reference: FarhangSHRezaifarOSharbatdarMKAhmady FardAEvaluation of Different Methods of Machine Vision in Health Monitoring and Damage Detection of StructuresJournal of Rehabilitation in Civil Engineering20219493132
– reference: Jin LimHHwangSKimHSohnHSteel Bridge Corrosion Inspection with Combined Vision and Thermographic ImagesStructural Health Monitoring20212063424343510.1177/1475921721989407
– reference: Arthur D, Vassilvitskii S (2007), “K-means++: The Advantages of Careful Seeding,” Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, 7–9 January, 2007, New Orleans, pp. 1027–1035.
– reference: Lohade DM and Chopade P (2016), “Real Time Metal Inspection for Surface and Dimensional Defect Detection Using Image Processing Techniques,” Proceedings of 3rd International Conference on Electrical, Electronics, Engineering Trends, Communication, Optimization and Sciences (EEECOS-2016), pp. 873–877.
– reference: TanakaNUematsuKA Crack Detection Method in Road Surface Images Using MorphologyMVA1998981719
– reference: Long J, Shelhamer E and Darrell T, “Fully Convolutional Networks for Semantic Segmentation,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440.
– reference: DungCVAutonomous Concrete Crack Detection Using Deep Fully Convolutional Neural NetworkAutomation in Construction201999525810.1016/j.autcon.2018.11.028
– reference: Nguyen TS, Begot S, Duculty F, Bardet JC and Avila M (2010), “Pavement Cracking Detection Using an Anisotropy Measurement,” Proceedings of 11th IASTED International Conference on Computer Graphics and Imaging (CGIM), pp. 80–87.
– reference: DengWMouYKashiwaTEscaleraSNagaiKNakayamaKMatsuoYPrendingerHVision Based Pixel-Level Bridge Structural Damage Detection Using a Link ASPP NetworkAutomation in Construction202011010297310.1016/j.autcon.2019.102973
– reference: BauerJSünderhaufNProtzelPComparing Several Implementations of Two Recently Published Feature DetectorsIFAC Proceedings Volumes2007401514314810.3182/20070903-3-FR-2921.00027
– reference: YeumCMDykeSJVision-Based Automated Crack Detection for Bridge InspectionComputer-Aided Civil and Infrastructure Engineering2015301075977010.1111/mice.12141
– reference: BurneySATariqHK-Means Cluster Analysis for Image SegmentationInternational Journal of Computer Applications20149641810.5120/16779-6360
– reference: RenSHeKGirshickRSunJFaster R-CNN: Towards Real-Time Object Detection with Region Proposal NetworksIEEE Transactions on Advances in Neural Information Processing Systems Machine Intelligence201739611371149
– reference: KimBChoSImage-Based Concrete Crack Assessment Using Mask and Region-Based Convolutional Neural NetworkStructural Control and Health Monitoring2019268e238110.1002/stc.2381
– reference: LeiXLiuCLiLWangGAutomated Pavement Distress Detection and Deterioration Analysis Using Street View MapIEEE Access20208761637617210.1109/ACCESS.2020.2989028
– reference: Chen LC, Zhu Y, Papandreou G, Schroff F and Adam H (2018), “Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation,” Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818.
– reference: HousnerGBergmanLACaugheyTKChassiakosAGClausROMasriSFSkeltonRESoongTSpencerBYaoJTStructural Control: Past, Present, and FutureJournal of Engineering Mechanics1997123989797110.1061/(ASCE)0733-9399(1997)123:9(897)
– reference: ZalamaEGómez-García-BermejoJMedinaRLlamasJRoad Crack Detection Using Visual Features Extracted by Gabor FiltersComputer-Aided Civil and Infrastructure Engineering201429534235810.1111/mice.12042
– reference: GavilánMBalconesDMarcosOLlorcaDFSoteloMAParraIOcañaMAlisedaPYarzaPAmírolaAAdaptive Road Crack Detection System by Pavement ClassificationSensors201111109628965710.3390/s111009628
– reference: KatoZZerubiaJMarkov Random Fields in Image SegmentationFoundations and Trends in Signal Processing201251–21155
– reference: JáureguiDVWhiteKRImplementation of Virtual Reality in Routine Bridge InspectionTransportation Research Record200318271293510.3141/1827-04
– ident: 2172_CR11
  doi: 10.1201/9780429279119-442
– volume: 96
  start-page: 1
  issue: 4
  year: 2014
  ident: 2172_CR5
  publication-title: International Journal of Computer Applications
  doi: 10.5120/16779-6360
– volume: 4
  start-page: 253
  issue: 5
  year: 2014
  ident: 2172_CR43
  publication-title: Int. J. Adv. Res. Comput. Sci. Softw. Eng
– volume: 47
  start-page: 1
  issue: 1
  year: 2005
  ident: 2172_CR8
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2004.05.007
– ident: 2172_CR32
– volume: 1827
  start-page: 29
  issue: 1
  year: 2003
  ident: 2172_CR21
  publication-title: Transportation Research Record
  doi: 10.3141/1827-04
– volume-title: Digital Image Processing: An Algorithmic Approach with MATLAB
  year: 2009
  ident: 2172_CR42
  doi: 10.1201/9781420079517
– volume: 9
  start-page: 85709
  year: 2021
  ident: 2172_CR49
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3088292
– volume-title: Structural Health Monitoring: A Machine Learning Perspective
  year: 2012
  ident: 2172_CR14
  doi: 10.1002/9781118443118
– volume: 5
  start-page: 655
  issue: 5
  year: 2015
  ident: 2172_CR40
  publication-title: Journal of Civil Structural Health Monitoring
  doi: 10.1007/s13349-015-0146-3
– volume: 10
  start-page: 471
  issue: 3
  year: 2020
  ident: 2172_CR41
  publication-title: Journal of Civil Structural Health Monitoring
  doi: 10.1007/s13349-020-00395-3
– volume: 8
  start-page: 76163
  year: 2020
  ident: 2172_CR31
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2989028
– volume: 35
  start-page: 389
  issue: 4
  year: 2020
  ident: 2172_CR55
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/mice.12500
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  ident: 2172_CR38
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMC.1979.4310076
– volume: 1
  start-page: 275
  issue: 4
  year: 1993
  ident: 2172_CR24
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/0968-090X(93)90002-W
– volume: 18
  start-page: 493
  issue: 9
  year: 2020
  ident: 2172_CR51
  publication-title: Journal of Advanced Concrete Technology
  doi: 10.3151/jact.18.493
– ident: 2172_CR36
  doi: 10.2316/P.2010.679-079
– volume: 25
  start-page: 572
  issue: 8
  year: 2010
  ident: 2172_CR53
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/j.1467-8667.2010.00674.x
– volume: 99
  start-page: 52
  year: 2019
  ident: 2172_CR12
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2018.11.028
– volume: 125
  start-page: 103634
  year: 2021
  ident: 2172_CR23
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2021.103634
– volume: 5
  start-page: 1
  issue: 1–2
  year: 2012
  ident: 2172_CR25
  publication-title: Foundations and Trends in Signal Processing
– ident: 2172_CR18
  doi: 10.1109/ICCV.2017.322
– volume: 1
  start-page: 1011
  year: 2020
  ident: 2172_CR9
  publication-title: Proceedings of the XI International Conference on Structural Dynamic, EURODYN, 23–25 November, 2020
– ident: 2172_CR2
  doi: 10.1109/ISPA.2019.8868619
– volume: 26
  start-page: e2381
  issue: 8
  year: 2019
  ident: 2172_CR27
  publication-title: Structural Control and Health Monitoring
  doi: 10.1002/stc.2381
– volume: 21
  start-page: 654
  issue: 5
  year: 2015
  ident: 2172_CR30
  publication-title: Journal of Civil Engineering and Management
  doi: 10.3846/13923730.2014.890665
– volume: 20
  start-page: 3424
  issue: 6
  year: 2021
  ident: 2172_CR22
  publication-title: Structural Health Monitoring
  doi: 10.1177/1475921721989407
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: 2172_CR44
  publication-title: IEEE Transactions on Advances in Neural Information Processing Systems Machine Intelligence
  doi: 10.1109/TPAMI.2016.2577031
– volume: 2
  start-page: 489
  issue: 8
  year: 2018
  ident: 2172_CR46
  publication-title: Proceedings of the Eighteenth International Conference of Experimental Mechanics, MDPI
  doi: 10.3390/ICEM18-05387
– ident: 2172_CR1
– volume: 98
  start-page: 17
  year: 1998
  ident: 2172_CR50
  publication-title: MVA
– ident: 2172_CR26
  doi: 10.1007/978-3-030-91877-4_94
– ident: 2172_CR34
– volume: 123
  start-page: 897
  issue: 9
  year: 1997
  ident: 2172_CR19
  publication-title: Journal of Engineering Mechanics
  doi: 10.1061/(ASCE)0733-9399(1997)123:9(897)
– volume: 29
  start-page: 196
  issue: 2
  year: 2015
  ident: 2172_CR28
  publication-title: Advanced Engineering Informatics
  doi: 10.1016/j.aei.2015.01.008
– volume: 5
  start-page: 140
  issue: 1
  year: 2010
  ident: 2172_CR20
  publication-title: Journal of Pattern Recognition Research
  doi: 10.13176/11.167
– ident: 2172_CR37
– volume: 9
  start-page: 93
  issue: 4
  year: 2021
  ident: 2172_CR13
  publication-title: Journal of Rehabilitation in Civil Engineering
– volume: 19
  start-page: 105
  issue: 2
  year: 2004
  ident: 2172_CR29
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/j.1467-8667.2004.00341.x
– volume: 133
  start-page: 804
  year: 2018
  ident: 2172_CR4
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2018.07.115
– volume: 30
  start-page: 759
  issue: 10
  year: 2015
  ident: 2172_CR52
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/mice.12141
– volume: 29
  start-page: 342
  issue: 5
  year: 2014
  ident: 2172_CR54
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/mice.12042
– ident: 2172_CR17
  doi: 10.1201/b17063-96
– ident: 2172_CR33
– volume: 110
  start-page: 102973
  year: 2020
  ident: 2172_CR10
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2019.102973
– ident: 2172_CR7
  doi: 10.1007/978-3-030-01234-2_49
– volume: 11
  start-page: 9628
  issue: 10
  year: 2011
  ident: 2172_CR16
  publication-title: Sensors
  doi: 10.3390/s111009628
– volume: 252
  start-page: 119096
  year: 2020
  ident: 2172_CR39
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2020.119096
– volume: 21
  start-page: 1
  issue: 3
  year: 2015
  ident: 2172_CR35
  publication-title: Journal of Infrastructure Systems
  doi: 10.1061/(ASCE)IS.1943-555X.0000237
– volume: 2020
  start-page: 1
  issue: 1
  year: 2020
  ident: 2172_CR15
  publication-title: Mathematical Problems in Engineering
– volume: 20
  start-page: 6205
  issue: 21
  year: 2020
  ident: 2172_CR45
  publication-title: Sensors
  doi: 10.3390/s20216205
– volume: 40
  start-page: 143
  issue: 15
  year: 2007
  ident: 2172_CR3
  publication-title: IFAC Proceedings Volumes
  doi: 10.3182/20070903-3-FR-2921.00027
– volume-title: Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab
  year: 2011
  ident: 2172_CR48
– volume: 32
  start-page: 361
  issue: 5
  year: 2017
  ident: 2172_CR6
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/mice.12263
– volume: 8
  start-page: 80716
  year: 2020
  ident: 2172_CR47
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2988796
SSID ssj0064236
Score 2.3958929
Snippet Large structures, such as bridges, highways, etc., need to be inspected to evaluate their actual physical and functional condition, to predict future...
Large structures,such as bridges,highways,etc.,need to be inspected to evaluate their actual physical and functional condition,to predict future conditions,and...
SourceID wanfang
proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 333
SubjectTerms Algorithms
Bridges
Civil Engineering
Cluster analysis
Clustering
Color
Colour
Comparative analysis
Comparative studies
Computer vision
Computer Vision Empowering Earthquake Engineering and Engineering Vibration
Control
Corrosion
Damage detection
Data collection
Detection
Dynamical Systems
Earth and Environmental Science
Earth Sciences
Euclidean geometry
Evaluation
Fields
Fields (mathematics)
Geotechnical Engineering & Applied Earth Sciences
Image processing
Image segmentation
Inspection
Labour
Machine vision
Procedures
Rehabilitation
Roads & highways
Spatial dependencies
Special Section: Computer Vision Empowering Earthquake Engineering and Engineering Vibration
Structural health monitoring
Vector quantization
Vibration
Visual inspection
Title Damage detection with image processing: a comparative study
URI https://link.springer.com/article/10.1007/s11803-023-2172-1
https://www.proquest.com/docview/2806171248
https://d.wanfangdata.com.cn/periodical/dzgcygczd-e202302004
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu8CBN2IwUA9wAQU1TZqmcJp4TSA4MQlOVV6dEFAm1h3YryfpYwWEkLimidXaqWPH9meAfWOHcWw4koQpRHnqI0kFRiIKNdb2DKLUFQrf3rH-gF4_hA9VHfe4znavQ5KFpm6K3TB3uT8BQa6pErIuTzvEPOYtaPeuHm8uagVsLeqiMyBmEUaEMVoHM38j8v04amzMWVi0KObJUpENv5w7l8twX79xmW7yfDzJ5bGa_gBz_OcnrcBSZYd6vXLjrMKcydZg8Qs64TqcnotXq208bfIiXyvz3KWt91QMjsoCAzvxxBOeajDEvQKwdgMGlxf3Z31U9VpAioQkt9o4Yq45glE8ZYTQVPJAKy3jlGNhpHV7Yo1TwrjmmEQpVTHFsbYebhByhbkkm9DK3jKzBZ4Wxjp1MtJYhFT4ocTaSon4KpZRYJjqgF-zPFEVELnrh_GSNBDKji-J5Uvi-JLgDhzOloxKFI6_JndrOSbVDzlOXAAZR9aY4R04qoXRPP6D2EEl_mayng7Vx1BNdWJc83nfKZrtf1HdgQW3sswA6kIrf5-YXWvc5HKv2sx7MD8Iep_QbO5R
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hMgADb0ShQAZYQEZx7TgOTBWv8pyKBJPlVyoEBARhoL8eOw8CCCGxOs4puXPukbv7DmDTumWcWI4UYRpRnoZIUYmRjCODjbNBlPpG4csr1r-mZzfRTdXH_VpXu9cpyUJTN81umPvany5BfqgSciHPOHUheNiC8d7J7flRrYCdR11MBsQsxogwRutk5m9Evpujxsf8TIsWzTxZKrPhF7tzPAOD-onLcpP73bdc7erRDzDHf77SLExXfmjQKw_OHIzZbB6mvqATLsD-oXx02iYwNi_qtbLA_7QN7orF57LBwG3cC2SgGwzxoACsXYTr46PBQR9VsxaQJhHJnTaOmR-OYDVPGSE0VbxrtFFJyrG0yoU9icEpYdxwTOKU6sTx3rgItxtxjbkiS9DKnjK7DIGR1gV1KjZYRlSGkcKGJ5yEOlFx1zLdhrBmudAVELmfh_EgGghlzxfh-CI8XwRuw_bnLc8lCsdfmzu1HEX1Qb4Kn0DGsXNmeBt2amE0l_8gtlWJv9lsRkP9PtQjI6wfPh96RbPyL6obMNEfXF6Ii9Or81WY9FTKaqAOtPKXN7vmHJ1crVcH-wNZE_BF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yQfQgfuJ0ag96UcKaJk1TPQ3nmF_Dg4PdQr46BK3D1YP76036sU6Qgdc0fYeX9H30vff7AXBm7DKKDYMSUwUJS3woiUBQRKFG2vogQtyg8NOA9ofkfhSOSp7TadXtXpUki5kGh9KUZu2JTtr14Btirg8owNARLEGb_qxaa4zcRR8GncoU29g65whENEIQU0qqsuZfIn47pjranBdI87GeNBHpeMED9bbAZhk6ep3irLfBikl3wMYCoOAuuO6Kd2sgPG2yvMUq9dx_Vu81X5wUMwF245UnPFXDfns5xuweGPZuX276sKRHgAqHOLMGNKKOz8AollCMSSJZoJWWccKQMNJmKrFGCaZMM4SjhKiYoFjbpDQImUJM4n3QSD9ScwA8LYzNw2SkkQiJ8EOJNIsZ9lUso8BQ1QR-pRuuSuxwR2HxxmvUY6dObtXJnTo5aoKL-SuTAjhj2eZWpXBefkNT7mq-KLLxB2uCy-oQ6sdLhJ2X51Rv1rOx-h6rmebG8cX7zjYc_kvqKVh77vb4493g4QisOyFF_04LNLLPL3NsQ5NMnuTX7weTBNfL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Damage+detection+with+image+processing%3Aa+comparative+study&rft.jtitle=%E5%9C%B0%E9%9C%87%E5%B7%A5%E7%A8%8B%E4%B8%8E%E5%B7%A5%E7%A8%8B%E6%8C%AF%E5%8A%A8%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Marianna+Crognale&rft.au=Melissa+De+Iuliis&rft.au=Cecilia+Rinaldi&rft.au=Vincenzo+Gattulli&rft.date=2023-04-01&rft.pub=Department+of+Structural+and+Geotechnical+Engineering%2CSapienza+University+of+Rome%2Cvia+Eudossiana+18%2CRome+00167%2CItaly&rft.issn=1671-3664&rft.volume=22&rft.issue=2&rft.spage=333&rft.epage=345&rft_id=info:doi/10.1007%2Fs11803-023-2172-1&rft.externalDocID=dzgcygczd_e202302004
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdzgcygczd-e%2Fdzgcygczd-e.jpg