Intelligent identification analysis and process design for highly similar categories using Platycerium as an example
This study tackles the challenge of image recognition for datasets with high inter-class similarity, using 18 native Platycerium species as a case study. Due to their substantial visual similarities, initial training with ResNet50 yielded a baseline accuracy of less than 10%. To address this, we con...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 30517 - 12 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
20.08.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study tackles the challenge of image recognition for datasets with high inter-class similarity, using 18 native Platycerium species as a case study. Due to their substantial visual similarities, initial training with ResNet50 yielded a baseline accuracy of less than 10%. To address this, we conducted a comprehensive analysis using multidimensional confusion matrices to identify seven primary confusion factors, such as image edges, textures, and shapes, and stratified the dataset into processed and unprocessed images optimized for these factors through adjustments in saturation, brightness, and sharpening. A refinement process leveraging confusion matrices and bootstrapping was proposed to address ambiguous classes, significantly improving recognition of highly similar species. Recognition accuracy increased to approximately 60% after applying confusion factor analysis and image optimization, with further gains to over 80% using EfficientNet-b4 and over 90% using EfficientNet-b7. These findings highlight the importance of feature selection and grouped analysis in recognizing highly similar images, offering a robust framework for optimizing recognition accuracy in challenging datasets and providing valuable insights for advancing image recognition technologies. |
---|---|
AbstractList | This study tackles the challenge of image recognition for datasets with high inter-class similarity, using 18 native Platycerium species as a case study. Due to their substantial visual similarities, initial training with ResNet50 yielded a baseline accuracy of less than 10%. To address this, we conducted a comprehensive analysis using multidimensional confusion matrices to identify seven primary confusion factors, such as image edges, textures, and shapes, and stratified the dataset into processed and unprocessed images optimized for these factors through adjustments in saturation, brightness, and sharpening. A refinement process leveraging confusion matrices and bootstrapping was proposed to address ambiguous classes, significantly improving recognition of highly similar species. Recognition accuracy increased to approximately 60% after applying confusion factor analysis and image optimization, with further gains to over 80% using EfficientNet-b4 and over 90% using EfficientNet-b7. These findings highlight the importance of feature selection and grouped analysis in recognizing highly similar images, offering a robust framework for optimizing recognition accuracy in challenging datasets and providing valuable insights for advancing image recognition technologies. Abstract This study tackles the challenge of image recognition for datasets with high inter-class similarity, using 18 native Platycerium species as a case study. Due to their substantial visual similarities, initial training with ResNet50 yielded a baseline accuracy of less than 10%. To address this, we conducted a comprehensive analysis using multidimensional confusion matrices to identify seven primary confusion factors, such as image edges, textures, and shapes, and stratified the dataset into processed and unprocessed images optimized for these factors through adjustments in saturation, brightness, and sharpening. A refinement process leveraging confusion matrices and bootstrapping was proposed to address ambiguous classes, significantly improving recognition of highly similar species. Recognition accuracy increased to approximately 60% after applying confusion factor analysis and image optimization, with further gains to over 80% using EfficientNet-b4 and over 90% using EfficientNet-b7. These findings highlight the importance of feature selection and grouped analysis in recognizing highly similar images, offering a robust framework for optimizing recognition accuracy in challenging datasets and providing valuable insights for advancing image recognition technologies. |
ArticleNumber | 30517 |
Author | Lin, Wei-Lun Chen, Li-Wei |
Author_xml | – sequence: 1 givenname: Li-Wei surname: Chen fullname: Chen, Li-Wei organization: Communications Engineering, Feng Chia University – sequence: 2 givenname: Wei-Lun surname: Lin fullname: Lin, Wei-Lun email: weilunlin@mail.fcu.edu.tw organization: Communications Engineering, Feng Chia University |
BookMark | eNp9kc1u1DAUhS1UREvpC7CyxDrU_7FXCFUURqoEC1hbdnKT8SixBztBzNvXbSqgG7ywr-xzvivf8xqdxRQBobeUvKeE6-siqDS6IUw2lEnCGvMCXTAiZMM4Y2f_1OfoqpQDqUsyI6h5hc4F0VwqRi_QsosLTFMYIS449HUPQ-jcElLELrrpVEKpRY-POXVQCu6hhDHiIWW8D-N-OuES5jC5jKsLxpQDFLyWEEf8bXLLqYMc1hm7BwqG324-TvAGvRzcVODq6bxEP24_fb_50tx9_by7-XjXdFxy0_TEa0GYF_V7zEDHFPPA29YMTCsp-NC2ve8NuJ4I5UAo6oG2Q99K3xrQjl-i3cbtkzvYYw6zyyebXLCPFymP1uUldBNY57uKU3TwigpQ3CvhJGu96Izm1PvK-rCxjqufoe_qpLKbnkGfv8Swt2P6ZSnjSpNWVMK7J0JOP1coiz2kNdcZF8uZoELoVuqqYpuqy6mUDMOfFpTYh-TtlrytydvH5K2pJr6ZShXHEfJf9H9c99Svs6k |
Cites_doi | 10.1016/B978-0-12-811788-0.00005-6 10.1016/B978-0-12-818366-3.00005-8 10.1109/ICCV.2017.74 10.3115/1073083.1073143 10.1109/ICCV48922.2021.00986 10.1037/0022-3514.67.6.1049 10.1109/CVPR.2009.5206848 10.1109/ACCESS.2020.3005450 10.1109/CVPR.2016.90 10.1002/9781119769231.ch7 10.1186/s40537-019-0197-0 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 5PM DOA |
DOI | 10.1038/s41598-025-12502-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_abcf7761fb614e63b64a527b4c9831bb PMC12368074 10_1038_s41598_025_12502_9 |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION PUEGO 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI Q9U 5PM |
ID | FETCH-LOGICAL-c3539-d0b8402b450229ec262be3779f286543f77dbd9ead046ae461be17fd75b79e8a3 |
IEDL.DBID | 7X7 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:30:00 EDT 2025 Sat Aug 23 05:22:02 EDT 2025 Fri Aug 22 05:10:36 EDT 2025 Wed Aug 27 16:24:36 EDT 2025 Thu Aug 21 01:11:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Image recognition Confusion category extraction refinement Deep neural networks |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3539-d0b8402b450229ec262be3779f286543f77dbd9ead046ae461be17fd75b79e8a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3241448758?pq-origsite=%requestingapplication% |
PMID | 40835621 |
PQID | 3241448758 |
PQPubID | 2041939 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_abcf7761fb614e63b64a527b4c9831bb pubmedcentral_primary_oai_pubmedcentral_nih_gov_12368074 proquest_journals_3241448758 crossref_primary_10_1038_s41598_025_12502_9 springer_journals_10_1038_s41598_025_12502_9 |
PublicationCentury | 2000 |
PublicationDate | 20250820 |
PublicationDateYYYYMMDD | 2025-08-20 |
PublicationDate_xml | – month: 8 year: 2025 text: 20250820 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | M Raghu (12502_CR39) 2021; 34 12502_CR3 SA Pearline (12502_CR9) 2019; 36 12502_CR7 DA Freedman (12502_CR13) 1982; 9 12502_CR6 12502_CR5 12502_CR4 12502_CR32 12502_CR35 12502_CR14 C Shorten (12502_CR23) 2019; 6 DM Webster (12502_CR30) 1994; 67 12502_CR36 12502_CR11 12502_CR33 12502_CR12 12502_CR34 12502_CR17 H Pan (12502_CR1) 2020; 8 12502_CR18 12502_CR15 12502_CR37 12502_CR16 12502_CR38 S Sharma (12502_CR2) 2015; 2 12502_CR19 K Reyes (12502_CR10) 2015; 1391 M Li (12502_CR31) 2020; 150 12502_CR8 12502_CR20 12502_CR21 12502_CR40 12502_CR41 12502_CR24 12502_CR22 12502_CR28 L Ma (12502_CR42) 2022; 202 R Zhang (12502_CR25) 2018; 47 12502_CR29 12502_CR26 12502_CR27 |
References_xml | – ident: 12502_CR6 – ident: 12502_CR8 – ident: 12502_CR17 – ident: 12502_CR19 – ident: 12502_CR27 doi: 10.1016/B978-0-12-811788-0.00005-6 – volume: 9 start-page: 1218 year: 1982 ident: 12502_CR13 publication-title: Ann. Stat. – ident: 12502_CR40 – ident: 12502_CR26 doi: 10.1016/B978-0-12-818366-3.00005-8 – ident: 12502_CR4 – volume: 202 year: 2022 ident: 12502_CR42 publication-title: Comput. Electron. Agric. – ident: 12502_CR35 doi: 10.1109/ICCV.2017.74 – volume: 47 start-page: 385 year: 2018 ident: 12502_CR25 publication-title: Inf. Control – ident: 12502_CR34 – ident: 12502_CR32 – ident: 12502_CR36 – ident: 12502_CR29 – ident: 12502_CR38 – ident: 12502_CR15 – volume: 34 start-page: 12116 year: 2021 ident: 12502_CR39 publication-title: Adv. Neural Inf. Process. Syst. – ident: 12502_CR22 doi: 10.3115/1073083.1073143 – ident: 12502_CR7 – ident: 12502_CR37 doi: 10.1109/ICCV48922.2021.00986 – ident: 12502_CR20 – ident: 12502_CR24 – ident: 12502_CR18 – volume: 67 start-page: 1049 year: 1994 ident: 12502_CR30 publication-title: J. Pers. Soc. Psychol. doi: 10.1037/0022-3514.67.6.1049 – ident: 12502_CR21 doi: 10.1109/CVPR.2009.5206848 – ident: 12502_CR41 – volume: 8 start-page: 119951 year: 2020 ident: 12502_CR1 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3005450 – ident: 12502_CR5 – ident: 12502_CR3 – ident: 12502_CR33 – ident: 12502_CR14 doi: 10.1109/CVPR.2016.90 – volume: 36 start-page: 1997 year: 2019 ident: 12502_CR9 publication-title: J. Intell. Fuzzy Syst. – ident: 12502_CR28 – ident: 12502_CR11 doi: 10.1002/9781119769231.ch7 – volume: 2 start-page: 2349 year: 2015 ident: 12502_CR2 publication-title: Int. J. Innov. Res. Adv. Eng. – ident: 12502_CR16 – volume: 1391 start-page: 467 year: 2015 ident: 12502_CR10 publication-title: Proc. CLEF Work. Notes – ident: 12502_CR12 – volume: 6 start-page: 60 year: 2019 ident: 12502_CR23 publication-title: J. Big Data doi: 10.1186/s40537-019-0197-0 – volume: 150 year: 2020 ident: 12502_CR31 publication-title: Expert Syst. Appl. |
SSID | ssj0000529419 |
Score | 2.4547212 |
Snippet | This study tackles the challenge of image recognition for datasets with high inter-class similarity, using 18 native Platycerium species as a case study. Due... Abstract This study tackles the challenge of image recognition for datasets with high inter-class similarity, using 18 native Platycerium species as a case... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 30517 |
SubjectTerms | 639/166 639/166/987 Accuracy Artificial intelligence Automation Confusion category extraction refinement Datasets Deep learning Deep neural networks Efficiency Factor analysis Flowers & plants Humanities and Social Sciences Identification Image processing Image recognition Indigenous species multidisciplinary Neural networks Optimization techniques Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS9xAEF7kQPCltFoxrZV98M0GL7ubH_vYiqKC4kMPfFt29oc90FN6Ebz_3plN7moOpC99C0lIsvNNduZjZ75l7FBQdXgTYz7WjcuVl0WubYRcVqWsS-fQy6h3-Oq6Op-oy9vy9s1WX1QT1skDd4Y7tuBijVw7AgaSUEmolC1FDcrpRhYANPtizHtDpjpVb6FVofsumbFsjucYqaibTJQ5xnScBvQgEiXB_kGWuV4jubZQmuLP2Uf2oU8c-Y_ugz-xjTDbZpvdVpKLHdZerLQ1Wz71fQ1QMju3vfAIHnj-1HUGcJ9KNzjmrJwki-8XfD59mCLP5VQjdfdIFJpTVfwdv7m37cKhqz4_cEtP4eHFkqrwZzY5O_11cp73OyrkTpZS534MSOgEKDSA0MGJSkAgycFIDapKoqU9eI3ehbTZBlUVEIo6-rqEWofGyl02mj3Owh7jhbAgIeroLaZUyiPATklVBy0caCgzdrS0rnnqhDNMWvCWjemwMIiFSVgYnbGfBMDqThK9TifQFUzvCuZfrpCx_SV8pv8T5wYTRuSMyMqajDUDSAcvG16ZTX8npW2SpiG1oIx9X6L_98nvj-bL_xjNV7YlyFvHNJPts1H75zl8wwSohYPk66-xUAUP priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VIiQuqHyJ0IJ84AYRG9v58LFdtSpIIA5U6s3y2M6yUrtbdVOJ_ffMOMlWqeDALUocx_EbxzPxm2eAD5LZ4U3b5jPT-FwHVeTGtZirqlR16T1ZGecOf_tenV_or5fl5R7IMRcmkfaTpGX6TI_ssM8bmmg4GUyWOU3JNIrNI3jM0u1s1fNqvvuvwitXujBDfsxMNX-5dTIHJan-iX_5kB35YIk0zTxnB_BscBnFcd_I57AXVy_gSb-J5PYldF92qpqdWIaB_ZM6XLhBcoQOgrjpcwJESKQNQd6qYLHiq63YLK-XFOEKZkct1hw8C-bDL8SPK9dtPRnp3bVwXIuIvx3rCb-Ci7PTn_PzfNhLIfeqVCYPM6RQTqKmDpAmellJjCw22HJqqlZtXQcMhuyKAmYXdVVgLOo21CXWJjZOvYb91XoV34AopEOFrWmDI2dKB4LWa6XraKRHg2UGH8fetTe9ZIZNS92qsT0WlrCwCQtrMjhhAHYlWe46nVjfLuwAv3XoqYFV0SJ5E7FSWGlXyhq1N40qEDM4GuGzwxjcWHIVKVqkeKzJoJlAOnnY9Mpq-StpbLMoDesEZfBpRP--5n-_zdv_K34ITyXb5Yy_Vkew393exXfk5HT4Pln1HyKZ-ds priority: 102 providerName: Springer Nature |
Title | Intelligent identification analysis and process design for highly similar categories using Platycerium as an example |
URI | https://link.springer.com/article/10.1038/s41598-025-12502-9 https://www.proquest.com/docview/3241448758 https://pubmed.ncbi.nlm.nih.gov/PMC12368074 https://doaj.org/article/abcf7761fb614e63b64a527b4c9831bb |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdby2AvY5_UWxf0sLfNNJZky3oaaWjpAitlWyFvQl_OAmmSNS4s__3uZCXFhe7JRjayrN9Jdyfd_UTIJ4bR4XXT5ENVu1x4XuTKNDbnVcll6RxIGeYOf7-sLq7FZFpO04LbJoVV7ubEOFH7lcM18hNQ_GD7g3Vdf13_yfHUKNxdTUdoPCWHSF2GIV1yKvdrLLiLJQqVcmWGvD7ZgL7CnDJW5qDZYTJQPX0Uaft7tubDSMkH26VRC52_JC-S-UhHHd6vyJOwfE2edQdKbt-Q9tueYbOlc58igWLnU5PoR-DG03WXH0B9DOCgYLlSJC5ebOlmfjMHb5dipNRshY40xdj4Gb1amHbrQGDvbqjBWmj4a5Bb-C25Pj_7Nb7I07kKueMlV7kfWnDrmBXQAUwFxypmAxIPNpimKngjpbdegYyB82yCqAobCtl4WVqpQm34O3KwXC3DEaEFM5bbRjXegGElPMDsBBcyKOassmVGPu96V687-gwdt715rTssNGChIxZaZeQUAdi_idTXsWB1O9NpJGljHTSwKhoLlkWouK2EKZm0wqmaF9Zm5HgHn07jcaPvpScjdQ_S3sf6T5bz35FvGwlqkDMoI1926N_X_PjfvP9_Qz6Q5wzlcIgz1TE5aG_vwkcwcFo7iFI8IIej0eTnBK6nZ5dXP6B0XI0HcdHgHxKgASA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAguiKdqKLAHOIHVeHf92ANCFFoltI0q1Eq9LftyiNQmoXEF-VP8Rmb8SJVKcOvNsq21vd_sPLwz3wC84ZQdXpRl3FeFi6UXSaxMaWORpSJPnUMpo9rho1E2OJVfz9KzDfjT1cJQWmWnE2tF7WeO_pHvoOFH3x-96-Lj_GdMXaNod7VrodGIxUFY_sKQbfFh-AXxfcv5_t7J50HcdhWInUiFin3fYlDDrUzRfKngeMZtINq9koo0pSjz3FuvcIYxdDRBZokNSV76PLW5CoUROO4d2JQCQ5kebO7ujY6_rf7q0L6ZTFRbndMXxc4CLSRVsfE0Rl8C1Y9as4B1o4A17_ZmbuaNDdra7u0_hAetw8o-NRL2CDbC9DHcbVpYLp9ANVxxelZs4tvcoxpuZlrCEzzwbN5UJDBfp4ww9JUZUSWfL9licjHB-JpRbtZ4RqE7o2z8MTs-N9XS4RK5umCGRmHhtyE246dweitz_gx609k0bAFLuLHClqr0Bl056VGwnBQyD4o7q2wawbtudvW8IezQ9Ua7KHSDhUYsdI2FVhHsEgCrO4lsuz4xuxzrdu1qYx2-YJaUFn2ZkAmbSZPy3EqnCpFYG8F2B59uNcBCX8trBMUapGsPW78ynfyoGb6JEodYiiJ436F_PfK_v-b5_1_kNdwbnBwd6sPh6OAF3Ockk33Sk9vQqy6vwkt0ryr7qpVpBt9vexn9Bfx8Oc8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIhCXiqdqWmAPcAIr8e7a6z0gBJSooVD1QKXcln2GSG0SGleQv8avY8aPVK4Et96ixNrY-83TO_MNIS8ZVoeXMaZDVbpUeJ6lykSb8iLnMncOpAx7h78eF4en4vMkn2yRP10vDJZVdjaxNtR-4fAd-QAcP8T-EF2Xg9iWRZwcjN4tf6Y4QQpPWrtxGo2IHIX1L0jfVm_HB4D1K8ZGn759PEzbCQOp4zlXqR9aSHCYFTm4MhUcK5gNSMEXsWFT8Cilt17BbkMaaYIoMhsyGb3MrVShNBzWvUVuS3hg1DE5kZv3O3iCJjLV9ukMeTlYga_EfjaWpxBVgCFSPV9YjwzoxbnXqzSvHdXWHnB0n-y0oSt938jaA7IV5g_JnWaY5foRqcYbds-KznxbhVQDT01LfQIfPF02vQnU18UjFKJmiqTJZ2u6mp3PINOmWKU1XWAST7Euf0pPzky1dqAsl-fU4Co0_DbIa_yYnN7Ijj8h2_PFPOwSmjFjuY0qegNBnfAgYk5wIYNiziqbJ-R1t7t62VB36PrInZe6wUIDFrrGQquEfEAANlci7Xb9xeJiqlst1sY6uMEiixaimlBwWwiTM2mFUyXPrE3Ifgefbm3BSl9JbkLKHqS9P-v_Mp_9qLm-kRwH-YoS8qZD_2rlfz_N0__fyAtyF5RHfxkfH-2RewxFcogGc59sVxeX4RnEWZV9Xgs0Jd9vWoP-Agn2PJ8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+identification+analysis+and+process+design+for+highly+similar+categories+using+Platycerium+as+an+example&rft.jtitle=Scientific+reports&rft.au=Chen%2C+Li-Wei&rft.au=Lin%2C+Wei-Lun&rft.date=2025-08-20&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=30517&rft_id=info:doi/10.1038%2Fs41598-025-12502-9&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |