Intelligent identification analysis and process design for highly similar categories using Platycerium as an example

This study tackles the challenge of image recognition for datasets with high inter-class similarity, using 18 native Platycerium species as a case study. Due to their substantial visual similarities, initial training with ResNet50 yielded a baseline accuracy of less than 10%. To address this, we con...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 30517 - 12
Main Authors Chen, Li-Wei, Lin, Wei-Lun
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 20.08.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study tackles the challenge of image recognition for datasets with high inter-class similarity, using 18 native Platycerium species as a case study. Due to their substantial visual similarities, initial training with ResNet50 yielded a baseline accuracy of less than 10%. To address this, we conducted a comprehensive analysis using multidimensional confusion matrices to identify seven primary confusion factors, such as image edges, textures, and shapes, and stratified the dataset into processed and unprocessed images optimized for these factors through adjustments in saturation, brightness, and sharpening. A refinement process leveraging confusion matrices and bootstrapping was proposed to address ambiguous classes, significantly improving recognition of highly similar species. Recognition accuracy increased to approximately 60% after applying confusion factor analysis and image optimization, with further gains to over 80% using EfficientNet-b4 and over 90% using EfficientNet-b7. These findings highlight the importance of feature selection and grouped analysis in recognizing highly similar images, offering a robust framework for optimizing recognition accuracy in challenging datasets and providing valuable insights for advancing image recognition technologies.
AbstractList This study tackles the challenge of image recognition for datasets with high inter-class similarity, using 18 native Platycerium species as a case study. Due to their substantial visual similarities, initial training with ResNet50 yielded a baseline accuracy of less than 10%. To address this, we conducted a comprehensive analysis using multidimensional confusion matrices to identify seven primary confusion factors, such as image edges, textures, and shapes, and stratified the dataset into processed and unprocessed images optimized for these factors through adjustments in saturation, brightness, and sharpening. A refinement process leveraging confusion matrices and bootstrapping was proposed to address ambiguous classes, significantly improving recognition of highly similar species. Recognition accuracy increased to approximately 60% after applying confusion factor analysis and image optimization, with further gains to over 80% using EfficientNet-b4 and over 90% using EfficientNet-b7. These findings highlight the importance of feature selection and grouped analysis in recognizing highly similar images, offering a robust framework for optimizing recognition accuracy in challenging datasets and providing valuable insights for advancing image recognition technologies.
Abstract This study tackles the challenge of image recognition for datasets with high inter-class similarity, using 18 native Platycerium species as a case study. Due to their substantial visual similarities, initial training with ResNet50 yielded a baseline accuracy of less than 10%. To address this, we conducted a comprehensive analysis using multidimensional confusion matrices to identify seven primary confusion factors, such as image edges, textures, and shapes, and stratified the dataset into processed and unprocessed images optimized for these factors through adjustments in saturation, brightness, and sharpening. A refinement process leveraging confusion matrices and bootstrapping was proposed to address ambiguous classes, significantly improving recognition of highly similar species. Recognition accuracy increased to approximately 60% after applying confusion factor analysis and image optimization, with further gains to over 80% using EfficientNet-b4 and over 90% using EfficientNet-b7. These findings highlight the importance of feature selection and grouped analysis in recognizing highly similar images, offering a robust framework for optimizing recognition accuracy in challenging datasets and providing valuable insights for advancing image recognition technologies.
ArticleNumber 30517
Author Lin, Wei-Lun
Chen, Li-Wei
Author_xml – sequence: 1
  givenname: Li-Wei
  surname: Chen
  fullname: Chen, Li-Wei
  organization: Communications Engineering, Feng Chia University
– sequence: 2
  givenname: Wei-Lun
  surname: Lin
  fullname: Lin, Wei-Lun
  email: weilunlin@mail.fcu.edu.tw
  organization: Communications Engineering, Feng Chia University
BookMark eNp9kc1u1DAUhS1UREvpC7CyxDrU_7FXCFUURqoEC1hbdnKT8SixBztBzNvXbSqgG7ywr-xzvivf8xqdxRQBobeUvKeE6-siqDS6IUw2lEnCGvMCXTAiZMM4Y2f_1OfoqpQDqUsyI6h5hc4F0VwqRi_QsosLTFMYIS449HUPQ-jcElLELrrpVEKpRY-POXVQCu6hhDHiIWW8D-N-OuES5jC5jKsLxpQDFLyWEEf8bXLLqYMc1hm7BwqG324-TvAGvRzcVODq6bxEP24_fb_50tx9_by7-XjXdFxy0_TEa0GYF_V7zEDHFPPA29YMTCsp-NC2ve8NuJ4I5UAo6oG2Q99K3xrQjl-i3cbtkzvYYw6zyyebXLCPFymP1uUldBNY57uKU3TwigpQ3CvhJGu96Izm1PvK-rCxjqufoe_qpLKbnkGfv8Swt2P6ZSnjSpNWVMK7J0JOP1coiz2kNdcZF8uZoELoVuqqYpuqy6mUDMOfFpTYh-TtlrytydvH5K2pJr6ZShXHEfJf9H9c99Svs6k
Cites_doi 10.1016/B978-0-12-811788-0.00005-6
10.1016/B978-0-12-818366-3.00005-8
10.1109/ICCV.2017.74
10.3115/1073083.1073143
10.1109/ICCV48922.2021.00986
10.1037/0022-3514.67.6.1049
10.1109/CVPR.2009.5206848
10.1109/ACCESS.2020.3005450
10.1109/CVPR.2016.90
10.1002/9781119769231.ch7
10.1186/s40537-019-0197-0
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
5PM
DOA
DOI 10.1038/s41598-025-12502-9
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_abcf7761fb614e63b64a527b4c9831bb
PMC12368074
10_1038_s41598_025_12502_9
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
PUEGO
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
Q9U
5PM
ID FETCH-LOGICAL-c3539-d0b8402b450229ec262be3779f286543f77dbd9ead046ae461be17fd75b79e8a3
IEDL.DBID 7X7
ISSN 2045-2322
IngestDate Wed Aug 27 01:30:00 EDT 2025
Sat Aug 23 05:22:02 EDT 2025
Fri Aug 22 05:10:36 EDT 2025
Wed Aug 27 16:24:36 EDT 2025
Thu Aug 21 01:11:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Image recognition
Confusion category extraction refinement
Deep neural networks
Language English
License Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3539-d0b8402b450229ec262be3779f286543f77dbd9ead046ae461be17fd75b79e8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3241448758?pq-origsite=%requestingapplication%
PMID 40835621
PQID 3241448758
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_abcf7761fb614e63b64a527b4c9831bb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12368074
proquest_journals_3241448758
crossref_primary_10_1038_s41598_025_12502_9
springer_journals_10_1038_s41598_025_12502_9
PublicationCentury 2000
PublicationDate 20250820
PublicationDateYYYYMMDD 2025-08-20
PublicationDate_xml – month: 8
  year: 2025
  text: 20250820
  day: 20
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References M Raghu (12502_CR39) 2021; 34
12502_CR3
SA Pearline (12502_CR9) 2019; 36
12502_CR7
DA Freedman (12502_CR13) 1982; 9
12502_CR6
12502_CR5
12502_CR4
12502_CR32
12502_CR35
12502_CR14
C Shorten (12502_CR23) 2019; 6
DM Webster (12502_CR30) 1994; 67
12502_CR36
12502_CR11
12502_CR33
12502_CR12
12502_CR34
12502_CR17
H Pan (12502_CR1) 2020; 8
12502_CR18
12502_CR15
12502_CR37
12502_CR16
12502_CR38
S Sharma (12502_CR2) 2015; 2
12502_CR19
K Reyes (12502_CR10) 2015; 1391
M Li (12502_CR31) 2020; 150
12502_CR8
12502_CR20
12502_CR21
12502_CR40
12502_CR41
12502_CR24
12502_CR22
12502_CR28
L Ma (12502_CR42) 2022; 202
R Zhang (12502_CR25) 2018; 47
12502_CR29
12502_CR26
12502_CR27
References_xml – ident: 12502_CR6
– ident: 12502_CR8
– ident: 12502_CR17
– ident: 12502_CR19
– ident: 12502_CR27
  doi: 10.1016/B978-0-12-811788-0.00005-6
– volume: 9
  start-page: 1218
  year: 1982
  ident: 12502_CR13
  publication-title: Ann. Stat.
– ident: 12502_CR40
– ident: 12502_CR26
  doi: 10.1016/B978-0-12-818366-3.00005-8
– ident: 12502_CR4
– volume: 202
  year: 2022
  ident: 12502_CR42
  publication-title: Comput. Electron. Agric.
– ident: 12502_CR35
  doi: 10.1109/ICCV.2017.74
– volume: 47
  start-page: 385
  year: 2018
  ident: 12502_CR25
  publication-title: Inf. Control
– ident: 12502_CR34
– ident: 12502_CR32
– ident: 12502_CR36
– ident: 12502_CR29
– ident: 12502_CR38
– ident: 12502_CR15
– volume: 34
  start-page: 12116
  year: 2021
  ident: 12502_CR39
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 12502_CR22
  doi: 10.3115/1073083.1073143
– ident: 12502_CR7
– ident: 12502_CR37
  doi: 10.1109/ICCV48922.2021.00986
– ident: 12502_CR20
– ident: 12502_CR24
– ident: 12502_CR18
– volume: 67
  start-page: 1049
  year: 1994
  ident: 12502_CR30
  publication-title: J. Pers. Soc. Psychol.
  doi: 10.1037/0022-3514.67.6.1049
– ident: 12502_CR21
  doi: 10.1109/CVPR.2009.5206848
– ident: 12502_CR41
– volume: 8
  start-page: 119951
  year: 2020
  ident: 12502_CR1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3005450
– ident: 12502_CR5
– ident: 12502_CR3
– ident: 12502_CR33
– ident: 12502_CR14
  doi: 10.1109/CVPR.2016.90
– volume: 36
  start-page: 1997
  year: 2019
  ident: 12502_CR9
  publication-title: J. Intell. Fuzzy Syst.
– ident: 12502_CR28
– ident: 12502_CR11
  doi: 10.1002/9781119769231.ch7
– volume: 2
  start-page: 2349
  year: 2015
  ident: 12502_CR2
  publication-title: Int. J. Innov. Res. Adv. Eng.
– ident: 12502_CR16
– volume: 1391
  start-page: 467
  year: 2015
  ident: 12502_CR10
  publication-title: Proc. CLEF Work. Notes
– ident: 12502_CR12
– volume: 6
  start-page: 60
  year: 2019
  ident: 12502_CR23
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 150
  year: 2020
  ident: 12502_CR31
  publication-title: Expert Syst. Appl.
SSID ssj0000529419
Score 2.4547212
Snippet This study tackles the challenge of image recognition for datasets with high inter-class similarity, using 18 native Platycerium species as a case study. Due...
Abstract This study tackles the challenge of image recognition for datasets with high inter-class similarity, using 18 native Platycerium species as a case...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 30517
SubjectTerms 639/166
639/166/987
Accuracy
Artificial intelligence
Automation
Confusion category extraction refinement
Datasets
Deep learning
Deep neural networks
Efficiency
Factor analysis
Flowers & plants
Humanities and Social Sciences
Identification
Image processing
Image recognition
Indigenous species
multidisciplinary
Neural networks
Optimization techniques
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS9xAEF7kQPCltFoxrZV98M0GL7ubH_vYiqKC4kMPfFt29oc90FN6Ebz_3plN7moOpC99C0lIsvNNduZjZ75l7FBQdXgTYz7WjcuVl0WubYRcVqWsS-fQy6h3-Oq6Op-oy9vy9s1WX1QT1skDd4Y7tuBijVw7AgaSUEmolC1FDcrpRhYANPtizHtDpjpVb6FVofsumbFsjucYqaibTJQ5xnScBvQgEiXB_kGWuV4jubZQmuLP2Uf2oU8c-Y_ugz-xjTDbZpvdVpKLHdZerLQ1Wz71fQ1QMju3vfAIHnj-1HUGcJ9KNzjmrJwki-8XfD59mCLP5VQjdfdIFJpTVfwdv7m37cKhqz4_cEtP4eHFkqrwZzY5O_11cp73OyrkTpZS534MSOgEKDSA0MGJSkAgycFIDapKoqU9eI3ehbTZBlUVEIo6-rqEWofGyl02mj3Owh7jhbAgIeroLaZUyiPATklVBy0caCgzdrS0rnnqhDNMWvCWjemwMIiFSVgYnbGfBMDqThK9TifQFUzvCuZfrpCx_SV8pv8T5wYTRuSMyMqajDUDSAcvG16ZTX8npW2SpiG1oIx9X6L_98nvj-bL_xjNV7YlyFvHNJPts1H75zl8wwSohYPk66-xUAUP
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VIiQuqHyJ0IJ84AYRG9v58LFdtSpIIA5U6s3y2M6yUrtbdVOJ_ffMOMlWqeDALUocx_EbxzPxm2eAD5LZ4U3b5jPT-FwHVeTGtZirqlR16T1ZGecOf_tenV_or5fl5R7IMRcmkfaTpGX6TI_ssM8bmmg4GUyWOU3JNIrNI3jM0u1s1fNqvvuvwitXujBDfsxMNX-5dTIHJan-iX_5kB35YIk0zTxnB_BscBnFcd_I57AXVy_gSb-J5PYldF92qpqdWIaB_ZM6XLhBcoQOgrjpcwJESKQNQd6qYLHiq63YLK-XFOEKZkct1hw8C-bDL8SPK9dtPRnp3bVwXIuIvx3rCb-Ci7PTn_PzfNhLIfeqVCYPM6RQTqKmDpAmellJjCw22HJqqlZtXQcMhuyKAmYXdVVgLOo21CXWJjZOvYb91XoV34AopEOFrWmDI2dKB4LWa6XraKRHg2UGH8fetTe9ZIZNS92qsT0WlrCwCQtrMjhhAHYlWe46nVjfLuwAv3XoqYFV0SJ5E7FSWGlXyhq1N40qEDM4GuGzwxjcWHIVKVqkeKzJoJlAOnnY9Mpq-StpbLMoDesEZfBpRP--5n-_zdv_K34ITyXb5Yy_Vkew393exXfk5HT4Pln1HyKZ-ds
  priority: 102
  providerName: Springer Nature
Title Intelligent identification analysis and process design for highly similar categories using Platycerium as an example
URI https://link.springer.com/article/10.1038/s41598-025-12502-9
https://www.proquest.com/docview/3241448758
https://pubmed.ncbi.nlm.nih.gov/PMC12368074
https://doaj.org/article/abcf7761fb614e63b64a527b4c9831bb
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdby2AvY5_UWxf0sLfNNJZky3oaaWjpAitlWyFvQl_OAmmSNS4s__3uZCXFhe7JRjayrN9Jdyfd_UTIJ4bR4XXT5ENVu1x4XuTKNDbnVcll6RxIGeYOf7-sLq7FZFpO04LbJoVV7ubEOFH7lcM18hNQ_GD7g3Vdf13_yfHUKNxdTUdoPCWHSF2GIV1yKvdrLLiLJQqVcmWGvD7ZgL7CnDJW5qDZYTJQPX0Uaft7tubDSMkH26VRC52_JC-S-UhHHd6vyJOwfE2edQdKbt-Q9tueYbOlc58igWLnU5PoR-DG03WXH0B9DOCgYLlSJC5ebOlmfjMHb5dipNRshY40xdj4Gb1amHbrQGDvbqjBWmj4a5Bb-C25Pj_7Nb7I07kKueMlV7kfWnDrmBXQAUwFxypmAxIPNpimKngjpbdegYyB82yCqAobCtl4WVqpQm34O3KwXC3DEaEFM5bbRjXegGElPMDsBBcyKOassmVGPu96V687-gwdt715rTssNGChIxZaZeQUAdi_idTXsWB1O9NpJGljHTSwKhoLlkWouK2EKZm0wqmaF9Zm5HgHn07jcaPvpScjdQ_S3sf6T5bz35FvGwlqkDMoI1926N_X_PjfvP9_Qz6Q5wzlcIgz1TE5aG_vwkcwcFo7iFI8IIej0eTnBK6nZ5dXP6B0XI0HcdHgHxKgASA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAguiKdqKLAHOIHVeHf92ANCFFoltI0q1Eq9LftyiNQmoXEF-VP8Rmb8SJVKcOvNsq21vd_sPLwz3wC84ZQdXpRl3FeFi6UXSaxMaWORpSJPnUMpo9rho1E2OJVfz9KzDfjT1cJQWmWnE2tF7WeO_pHvoOFH3x-96-Lj_GdMXaNod7VrodGIxUFY_sKQbfFh-AXxfcv5_t7J50HcdhWInUiFin3fYlDDrUzRfKngeMZtINq9koo0pSjz3FuvcIYxdDRBZokNSV76PLW5CoUROO4d2JQCQ5kebO7ujY6_rf7q0L6ZTFRbndMXxc4CLSRVsfE0Rl8C1Y9as4B1o4A17_ZmbuaNDdra7u0_hAetw8o-NRL2CDbC9DHcbVpYLp9ANVxxelZs4tvcoxpuZlrCEzzwbN5UJDBfp4ww9JUZUSWfL9licjHB-JpRbtZ4RqE7o2z8MTs-N9XS4RK5umCGRmHhtyE246dweitz_gx609k0bAFLuLHClqr0Bl056VGwnBQyD4o7q2wawbtudvW8IezQ9Ua7KHSDhUYsdI2FVhHsEgCrO4lsuz4xuxzrdu1qYx2-YJaUFn2ZkAmbSZPy3EqnCpFYG8F2B59uNcBCX8trBMUapGsPW78ynfyoGb6JEodYiiJ436F_PfK_v-b5_1_kNdwbnBwd6sPh6OAF3Ockk33Sk9vQqy6vwkt0ryr7qpVpBt9vexn9Bfx8Oc8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIhCXiqdqWmAPcAIr8e7a6z0gBJSooVD1QKXcln2GSG0SGleQv8avY8aPVK4Et96ixNrY-83TO_MNIS8ZVoeXMaZDVbpUeJ6lykSb8iLnMncOpAx7h78eF4en4vMkn2yRP10vDJZVdjaxNtR-4fAd-QAcP8T-EF2Xg9iWRZwcjN4tf6Y4QQpPWrtxGo2IHIX1L0jfVm_HB4D1K8ZGn759PEzbCQOp4zlXqR9aSHCYFTm4MhUcK5gNSMEXsWFT8Cilt17BbkMaaYIoMhsyGb3MrVShNBzWvUVuS3hg1DE5kZv3O3iCJjLV9ukMeTlYga_EfjaWpxBVgCFSPV9YjwzoxbnXqzSvHdXWHnB0n-y0oSt938jaA7IV5g_JnWaY5foRqcYbds-KznxbhVQDT01LfQIfPF02vQnU18UjFKJmiqTJZ2u6mp3PINOmWKU1XWAST7Euf0pPzky1dqAsl-fU4Co0_DbIa_yYnN7Ijj8h2_PFPOwSmjFjuY0qegNBnfAgYk5wIYNiziqbJ-R1t7t62VB36PrInZe6wUIDFrrGQquEfEAANlci7Xb9xeJiqlst1sY6uMEiixaimlBwWwiTM2mFUyXPrE3Ifgefbm3BSl9JbkLKHqS9P-v_Mp_9qLm-kRwH-YoS8qZD_2rlfz_N0__fyAtyF5RHfxkfH-2RewxFcogGc59sVxeX4RnEWZV9Xgs0Jd9vWoP-Agn2PJ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+identification+analysis+and+process+design+for+highly+similar+categories+using+Platycerium+as+an+example&rft.jtitle=Scientific+reports&rft.au=Chen%2C+Li-Wei&rft.au=Lin%2C+Wei-Lun&rft.date=2025-08-20&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=30517&rft_id=info:doi/10.1038%2Fs41598-025-12502-9&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon