Restriction on molecular fluxionality by substitution: A case study for the 1,10‐dicyanobullvalene

We show herein that 1,10‐dicyano substitution restricts the paragon fluxionality of bullvalene to just 14 isomers which isomerize along a single cycle. The restricted fluxionality of 1,10‐dicyanobullvalene (DCB) is investigated by means of: (i) Bonding analyses of the isomer structures using the ada...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational chemistry Vol. 45; no. 24; pp. 2080 - 2090
Main Authors Pei, Bin‐Bin, Yang, Hongjuan, Gao, Cai‐Yue, Man, Yuan, Yang, Yonggang, Li, Si‐Dian
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 15.09.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We show herein that 1,10‐dicyano substitution restricts the paragon fluxionality of bullvalene to just 14 isomers which isomerize along a single cycle. The restricted fluxionality of 1,10‐dicyanobullvalene (DCB) is investigated by means of: (i) Bonding analyses of the isomer structures using the adaptive natural density partitioning (AdNDP). (ii) Quantum dynamical simulations of the isomerizations along the cyclic intrinsic reaction coordinate of the potential energy surface (PES). The PES possesses 14 equivalent potential wells supporting 14 isomers which are separated by 14 equivalent potential barriers supporting 14 transition states. Accordingly, at low temperatures, DCB appears as a hindered molecular rotor, without any delocalization of the wavefunction in the 14 potential wells, without any nuclear spin isomers, and with completely negligible tunneling. These results are compared and found to differ from those for molecular boron rotors. (iii) Born‐Oppenheimer molecular dynamics (BOMD) simulations of thermally activated isomerizations. (iv) Calculations of the rate constants in the frame of transition state theory (TST) with reasonable agreement achieved with the BOMD results. (v) Simulations of the equilibration dynamics using rate equations for the isomerizations with TST rate coefficients. Accordingly, in the long‐time limit, isomerizations of the 14 isomers, each with Cs symmetry, approach the “14 Cs → C7v” thermally averaged structure. This is a superposition of the 14 equally populated isomer structures with an overall C7v symmetry. By extrapolation, the results for DCB yield working hypotheses for so far un‐explored properties e.g. for the equilibration dynamics of C10H10. Extensive first‐principles theory investigations indicate that a 1,10‐dicyano substitution restricts the fluxionality of bullvalene C3v C10H10 to 14 isomers of Cs 1,10‐C10H8(CN)2 (a) which isomerize along one isomerization cycle, resulting in a thermally averaged structure with the symmetry of C7v (b).
AbstractList We show herein that 1,10‐dicyano substitution restricts the paragon fluxionality of bullvalene to just 14 isomers which isomerize along a single cycle. The restricted fluxionality of 1,10‐dicyanobullvalene (DCB) is investigated by means of: (i) Bonding analyses of the isomer structures using the adaptive natural density partitioning (AdNDP). (ii) Quantum dynamical simulations of the isomerizations along the cyclic intrinsic reaction coordinate of the potential energy surface (PES). The PES possesses 14 equivalent potential wells supporting 14 isomers which are separated by 14 equivalent potential barriers supporting 14 transition states. Accordingly, at low temperatures, DCB appears as a hindered molecular rotor, without any delocalization of the wavefunction in the 14 potential wells, without any nuclear spin isomers, and with completely negligible tunneling. These results are compared and found to differ from those for molecular boron rotors. (iii) Born‐Oppenheimer molecular dynamics (BOMD) simulations of thermally activated isomerizations. (iv) Calculations of the rate constants in the frame of transition state theory (TST) with reasonable agreement achieved with the BOMD results. (v) Simulations of the equilibration dynamics using rate equations for the isomerizations with TST rate coefficients. Accordingly, in the long‐time limit, isomerizations of the 14 isomers, each with C s symmetry, approach the “14 C s  → C 7 v ” thermally averaged structure. This is a superposition of the 14 equally populated isomer structures with an overall C 7 v symmetry. By extrapolation, the results for DCB yield working hypotheses for so far un‐explored properties e.g. for the equilibration dynamics of C 10 H 10 .
We show herein that 1,10-dicyano substitution restricts the paragon fluxionality of bullvalene to just 14 isomers which isomerize along a single cycle. The restricted fluxionality of 1,10-dicyanobullvalene (DCB) is investigated by means of: (i) Bonding analyses of the isomer structures using the adaptive natural density partitioning (AdNDP). (ii) Quantum dynamical simulations of the isomerizations along the cyclic intrinsic reaction coordinate of the potential energy surface (PES). The PES possesses 14 equivalent potential wells supporting 14 isomers which are separated by 14 equivalent potential barriers supporting 14 transition states. Accordingly, at low temperatures, DCB appears as a hindered molecular rotor, without any delocalization of the wavefunction in the 14 potential wells, without any nuclear spin isomers, and with completely negligible tunneling. These results are compared and found to differ from those for molecular boron rotors. (iii) Born-Oppenheimer molecular dynamics (BOMD) simulations of thermally activated isomerizations. (iv) Calculations of the rate constants in the frame of transition state theory (TST) with reasonable agreement achieved with the BOMD results. (v) Simulations of the equilibration dynamics using rate equations for the isomerizations with TST rate coefficients. Accordingly, in the long-time limit, isomerizations of the 14 isomers, each with Cs symmetry, approach the "14 Cs → C7v" thermally averaged structure. This is a superposition of the 14 equally populated isomer structures with an overall C7v symmetry. By extrapolation, the results for DCB yield working hypotheses for so far un-explored properties e.g. for the equilibration dynamics of C10H10.We show herein that 1,10-dicyano substitution restricts the paragon fluxionality of bullvalene to just 14 isomers which isomerize along a single cycle. The restricted fluxionality of 1,10-dicyanobullvalene (DCB) is investigated by means of: (i) Bonding analyses of the isomer structures using the adaptive natural density partitioning (AdNDP). (ii) Quantum dynamical simulations of the isomerizations along the cyclic intrinsic reaction coordinate of the potential energy surface (PES). The PES possesses 14 equivalent potential wells supporting 14 isomers which are separated by 14 equivalent potential barriers supporting 14 transition states. Accordingly, at low temperatures, DCB appears as a hindered molecular rotor, without any delocalization of the wavefunction in the 14 potential wells, without any nuclear spin isomers, and with completely negligible tunneling. These results are compared and found to differ from those for molecular boron rotors. (iii) Born-Oppenheimer molecular dynamics (BOMD) simulations of thermally activated isomerizations. (iv) Calculations of the rate constants in the frame of transition state theory (TST) with reasonable agreement achieved with the BOMD results. (v) Simulations of the equilibration dynamics using rate equations for the isomerizations with TST rate coefficients. Accordingly, in the long-time limit, isomerizations of the 14 isomers, each with Cs symmetry, approach the "14 Cs → C7v" thermally averaged structure. This is a superposition of the 14 equally populated isomer structures with an overall C7v symmetry. By extrapolation, the results for DCB yield working hypotheses for so far un-explored properties e.g. for the equilibration dynamics of C10H10.
We show herein that 1,10-dicyano substitution restricts the paragon fluxionality of bullvalene to just 14 isomers which isomerize along a single cycle. The restricted fluxionality of 1,10-dicyanobullvalene (DCB) is investigated by means of: (i) Bonding analyses of the isomer structures using the adaptive natural density partitioning (AdNDP). (ii) Quantum dynamical simulations of the isomerizations along the cyclic intrinsic reaction coordinate of the potential energy surface (PES). The PES possesses 14 equivalent potential wells supporting 14 isomers which are separated by 14 equivalent potential barriers supporting 14 transition states. Accordingly, at low temperatures, DCB appears as a hindered molecular rotor, without any delocalization of the wavefunction in the 14 potential wells, without any nuclear spin isomers, and with completely negligible tunneling. These results are compared and found to differ from those for molecular boron rotors. (iii) Born-Oppenheimer molecular dynamics (BOMD) simulations of thermally activated isomerizations. (iv) Calculations of the rate constants in the frame of transition state theory (TST) with reasonable agreement achieved with the BOMD results. (v) Simulations of the equilibration dynamics using rate equations for the isomerizations with TST rate coefficients. Accordingly, in the long-time limit, isomerizations of the 14 isomers, each with C symmetry, approach the "14 C  → C " thermally averaged structure. This is a superposition of the 14 equally populated isomer structures with an overall C symmetry. By extrapolation, the results for DCB yield working hypotheses for so far un-explored properties e.g. for the equilibration dynamics of C H .
We show herein that 1,10‐dicyano substitution restricts the paragon fluxionality of bullvalene to just 14 isomers which isomerize along a single cycle. The restricted fluxionality of 1,10‐dicyanobullvalene (DCB) is investigated by means of: (i) Bonding analyses of the isomer structures using the adaptive natural density partitioning (AdNDP). (ii) Quantum dynamical simulations of the isomerizations along the cyclic intrinsic reaction coordinate of the potential energy surface (PES). The PES possesses 14 equivalent potential wells supporting 14 isomers which are separated by 14 equivalent potential barriers supporting 14 transition states. Accordingly, at low temperatures, DCB appears as a hindered molecular rotor, without any delocalization of the wavefunction in the 14 potential wells, without any nuclear spin isomers, and with completely negligible tunneling. These results are compared and found to differ from those for molecular boron rotors. (iii) Born‐Oppenheimer molecular dynamics (BOMD) simulations of thermally activated isomerizations. (iv) Calculations of the rate constants in the frame of transition state theory (TST) with reasonable agreement achieved with the BOMD results. (v) Simulations of the equilibration dynamics using rate equations for the isomerizations with TST rate coefficients. Accordingly, in the long‐time limit, isomerizations of the 14 isomers, each with Cs symmetry, approach the “14 Cs → C7v” thermally averaged structure. This is a superposition of the 14 equally populated isomer structures with an overall C7v symmetry. By extrapolation, the results for DCB yield working hypotheses for so far un‐explored properties e.g. for the equilibration dynamics of C10H10.
We show herein that 1,10‐dicyano substitution restricts the paragon fluxionality of bullvalene to just 14 isomers which isomerize along a single cycle. The restricted fluxionality of 1,10‐dicyanobullvalene (DCB) is investigated by means of: (i) Bonding analyses of the isomer structures using the adaptive natural density partitioning (AdNDP). (ii) Quantum dynamical simulations of the isomerizations along the cyclic intrinsic reaction coordinate of the potential energy surface (PES). The PES possesses 14 equivalent potential wells supporting 14 isomers which are separated by 14 equivalent potential barriers supporting 14 transition states. Accordingly, at low temperatures, DCB appears as a hindered molecular rotor, without any delocalization of the wavefunction in the 14 potential wells, without any nuclear spin isomers, and with completely negligible tunneling. These results are compared and found to differ from those for molecular boron rotors. (iii) Born‐Oppenheimer molecular dynamics (BOMD) simulations of thermally activated isomerizations. (iv) Calculations of the rate constants in the frame of transition state theory (TST) with reasonable agreement achieved with the BOMD results. (v) Simulations of the equilibration dynamics using rate equations for the isomerizations with TST rate coefficients. Accordingly, in the long‐time limit, isomerizations of the 14 isomers, each with Cs symmetry, approach the “14 Cs → C7v” thermally averaged structure. This is a superposition of the 14 equally populated isomer structures with an overall C7v symmetry. By extrapolation, the results for DCB yield working hypotheses for so far un‐explored properties e.g. for the equilibration dynamics of C10H10. Extensive first‐principles theory investigations indicate that a 1,10‐dicyano substitution restricts the fluxionality of bullvalene C3v C10H10 to 14 isomers of Cs 1,10‐C10H8(CN)2 (a) which isomerize along one isomerization cycle, resulting in a thermally averaged structure with the symmetry of C7v (b).
Author Man, Yuan
Gao, Cai‐Yue
Li, Si‐Dian
Yang, Yonggang
Yang, Hongjuan
Pei, Bin‐Bin
Author_xml – sequence: 1
  givenname: Bin‐Bin
  surname: Pei
  fullname: Pei, Bin‐Bin
  organization: Shanxi University
– sequence: 2
  givenname: Hongjuan
  surname: Yang
  fullname: Yang, Hongjuan
  organization: Shanxi University
– sequence: 3
  givenname: Cai‐Yue
  surname: Gao
  fullname: Gao, Cai‐Yue
  organization: Shanxi University
– sequence: 4
  givenname: Yuan
  surname: Man
  fullname: Man, Yuan
  organization: Shanxi University
– sequence: 5
  givenname: Yonggang
  surname: Yang
  fullname: Yang, Yonggang
  email: ygyang@sxu.edu.cn
  organization: Shanxi University
– sequence: 6
  givenname: Si‐Dian
  orcidid: 0000-0001-5666-0591
  surname: Li
  fullname: Li, Si‐Dian
  email: lisidian@sxu.edu.cn
  organization: Shanxi University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38742401$$D View this record in MEDLINE/PubMed
BookMark eNp1kd1KHTEUhYNY9Gi98AVKoDcWOppMMpPEOznYPwRBWuhdyCQZmkPOxObHdu58hD5jn6Q5PccbaWHDhs23Fqy9jsD-FCYLwClG5xih9mKl9XnLCBN7YIGR6BvB2dd9sEBYtA3vO3wIjlJaIYRI19MDcEg4oy1FeAHMnU05Op1dmGCddfBWF68iHH35WY_KuzzDYYapDCm7XDbkJbyCWiULUy5mhmOIMH-zEL_F6PfjL-P0rKYwFO8flLeTfQlejMone7Lbx-DLu-vPyw_Nze37j8urm0aTjohGG2610ZRaNPa6Juu46M3AGRcDHRVmrFVMI94LpQRtdWd035OBKWRoW2OSY3C29b2P4XupweTaJW29V5MNJUmCOsopJgRV9PUzdBVKrGk3FMeIcIFFpV7tqDKsrZH30a1VnOXT_ypwsQV0DClFO0rtstq8KEflvMRIbhqStSH5t6GqePNM8WT6L3bn_sN5O_8flJ-Wy63iD3RZoAY
CitedBy_id crossref_primary_10_1360_TB_2024_1082
Cites_doi 10.1080/00268976.2018.1473651
10.1021/ja00953a045
10.1002/anie.201104465
10.1039/D0RA08821H
10.1021/ja00057a038
10.1039/C6NR09074E
10.1038/s41598-019-53488-5
10.1063/1.5048358
10.1016/S0040-4020(01)99207-5
10.1021/ja020741v
10.1021/ja00816a037
10.1063/1.438955
10.1039/D1CP02980K
10.1039/C9CP00379G
10.1002/chem.19960020416
10.1016/j.chemphys.2022.111659
10.1002/anie.196507521
10.1002/hlca.19740570518
10.1002/jcc.25782
10.1021/ed078p924
10.1039/C5CP03982G
10.1021/jo048268m
10.1002/cber.19640971126
10.1021/jp110365g
10.1039/b804083d
10.1021/ol100879t
10.1021/acs.jpca.5b11295
10.1002/wcms.82
10.1016/j.cpc.2004.12.014
10.1002/cber.19640971125
10.1063/1.478522
10.1002/jcc.25728
10.1063/1.443164
ContentType Journal Article
Copyright 2024 Wiley Periodicals LLC.
Copyright_xml – notice: 2024 Wiley Periodicals LLC.
DBID AAYXX
CITATION
NPM
JQ2
7X8
DOI 10.1002/jcc.27379
DatabaseName CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
PubMed
ProQuest Computer Science Collection

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-987X
EndPage 2090
ExternalDocumentID 38742401
10_1002_jcc_27379
JCC27379
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22373061; 21973057
– fundername: 111 Project
  funderid: D18001
– fundername: Hundred Talents Program of Shanxi Province
– fundername: 111 Project
  grantid: D18001
– fundername: National Natural Science Foundation of China
  grantid: 22373061
– fundername: National Natural Science Foundation of China
  grantid: 21973057
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
36B
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
ESX
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWK
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YQT
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
7X8
ID FETCH-LOGICAL-c3539-cd8ecdc44e0f6c1005896db8789b4fa1772a7c0869aa942c5dc663b7a0d428653
IEDL.DBID DR2
ISSN 0192-8651
1096-987X
IngestDate Fri Jul 11 01:51:56 EDT 2025
Fri Jul 25 18:59:35 EDT 2025
Thu Apr 03 07:08:07 EDT 2025
Thu Apr 24 23:10:25 EDT 2025
Tue Jul 01 02:05:07 EDT 2025
Wed Jan 22 17:18:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords restriction
fluxionality
equilibration
1,10‐dicyanobullvalene
bullvalene
Language English
License 2024 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3539-cd8ecdc44e0f6c1005896db8789b4fa1772a7c0869aa942c5dc663b7a0d428653
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5666-0591
PMID 38742401
PQID 3081038919
PQPubID 48816
PageCount 11
ParticipantIDs proquest_miscellaneous_3054841330
proquest_journals_3081038919
pubmed_primary_38742401
crossref_citationtrail_10_1002_jcc_27379
crossref_primary_10_1002_jcc_27379
wiley_primary_10_1002_jcc_27379_JCC27379
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 15, 2024
PublicationDateYYYYMMDD 2024-09-15
PublicationDate_xml – month: 09
  year: 2024
  text: September 15, 2024
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: New York
PublicationTitle Journal of computational chemistry
PublicationTitleAlternate J Comput Chem
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2010; 12
2011; 115
1974; 57
2019; 9
2015; 17
2021; 23
1974; 96
2018; 149
1982; 76
2008; 10
2017; 9
2016; 120
2022; 562
2012; 2
2019; 40
2021; 11
2018; 116
2005; 167
1980; 72
2019; 21
2002; 124
2011; 50
1965; 4
1987
1965
1999; 110
1964; 97
2017
2016
2005; 70
2001; 78
1996; 2
1966; 88
1993; 115
1963; 19
e_1_2_8_28_1
Peters B. (e_1_2_8_35_1) 2017
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
Laidler K. (e_1_2_8_34_1) 1987
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
Frisch M. J. (e_1_2_8_29_1) 2016
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
Heilbronner E. (e_1_2_8_38_1) 1965
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 97
  start-page: 3140
  year: 1964
  publication-title: Chem. Ber.
– volume: 23
  year: 2021
  publication-title: Phys. Chem. Chem. Phys.
– volume: 2
  start-page: 458
  year: 1996
  publication-title: Chem. A: Eur. J. Dermatol.
– volume: 120
  start-page: 3142
  year: 2016
  publication-title: J. Phys. Chem. A
– volume: 110
  start-page: 6158
  year: 1999
  publication-title: J. Chem. Phys.
– year: 1987
– volume: 40
  start-page: 966
  year: 2019
  publication-title: J. Comput. Chem.
– volume: 50
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 70
  start-page: 2627
  year: 2005
  publication-title: J. Org. Chem.
– volume: 115
  start-page: 5476
  year: 2011
  publication-title: J. Phys. Chem. B
– volume: 40
  start-page: 1227
  year: 2019
  publication-title: J. Comput. Chem.
– volume: 11
  start-page: 3613
  year: 2021
  publication-title: RSC Adv.
– volume: 76
  start-page: 1910
  year: 1982
  publication-title: J. Chem. Phys.
– volume: 78
  start-page: 924
  year: 2001
  publication-title: Chem. Educ.
– volume: 9
  year: 2019
  publication-title: Sci. Rep.
– year: 2016
– volume: 116
  start-page: 2538
  year: 2018
  publication-title: Mol. Phys.
– volume: 96
  start-page: 2887
  year: 1974
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 5207
  year: 2008
  publication-title: Phys. Chem. Chem. Phys.
– volume: 72
  start-page: 650
  year: 1980
  publication-title: J. Chem. Phys.
– volume: 115
  start-page: 1490
  year: 1993
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 2798
  year: 2010
  publication-title: Org. Lett.
– volume: 167
  start-page: 103
  year: 2005
  publication-title: Comput. Phys. Commun.
– volume: 21
  start-page: 9590
  year: 2019
  publication-title: Phys. Chem. Chem. Phys.
– volume: 149
  year: 2018
  publication-title: J. Chem. Phys.
– volume: 562
  year: 2022
  publication-title: Chem. Phys.
– year: 1965
– volume: 4
  start-page: 752
  year: 1965
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 97
  start-page: 3150
  year: 1964
  publication-title: Chem. Ber.
– volume: 57
  start-page: 1415
  year: 1974
  publication-title: Helv. Chim. Acta
– volume: 124
  start-page: 13770
  year: 2002
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 242
  year: 2012
  publication-title: WIREs Comput. Mol. Sci.
– volume: 17
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 19
  start-page: 715
  year: 1963
  publication-title: Tetrahedron
– year: 2017
– volume: 9
  start-page: 1443
  year: 2017
  publication-title: Nanoscale
– volume: 88
  start-page: 183
  year: 1966
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_8_11_1
  doi: 10.1080/00268976.2018.1473651
– ident: e_1_2_8_15_1
  doi: 10.1021/ja00953a045
– ident: e_1_2_8_23_1
  doi: 10.1002/anie.201104465
– volume-title: Reaction Rate Theory and Rare Events
  year: 2017
  ident: e_1_2_8_35_1
– ident: e_1_2_8_14_1
  doi: 10.1039/D0RA08821H
– ident: e_1_2_8_17_1
  doi: 10.1021/ja00057a038
– ident: e_1_2_8_7_1
  doi: 10.1039/C6NR09074E
– ident: e_1_2_8_10_1
  doi: 10.1038/s41598-019-53488-5
– ident: e_1_2_8_12_1
  doi: 10.1063/1.5048358
– ident: e_1_2_8_2_1
  doi: 10.1016/S0040-4020(01)99207-5
– ident: e_1_2_8_19_1
  doi: 10.1021/ja020741v
– ident: e_1_2_8_16_1
  doi: 10.1021/ja00816a037
– volume-title: Revision A.03
  year: 2016
  ident: e_1_2_8_29_1
– ident: e_1_2_8_27_1
  doi: 10.1063/1.438955
– ident: e_1_2_8_13_1
  doi: 10.1039/D1CP02980K
– ident: e_1_2_8_32_1
  doi: 10.1039/C9CP00379G
– ident: e_1_2_8_18_1
  doi: 10.1002/chem.19960020416
– ident: e_1_2_8_36_1
  doi: 10.1016/j.chemphys.2022.111659
– ident: e_1_2_8_37_1
  doi: 10.1002/anie.196507521
– ident: e_1_2_8_5_1
  doi: 10.1002/hlca.19740570518
– ident: e_1_2_8_9_1
  doi: 10.1002/jcc.25782
– volume-title: Das HMO‐Modell und seine Anwendungen
  year: 1965
  ident: e_1_2_8_38_1
– ident: e_1_2_8_6_1
  doi: 10.1021/ed078p924
– ident: e_1_2_8_24_1
  doi: 10.1039/C5CP03982G
– ident: e_1_2_8_20_1
  doi: 10.1021/jo048268m
– ident: e_1_2_8_4_1
  doi: 10.1002/cber.19640971126
– ident: e_1_2_8_22_1
  doi: 10.1021/jp110365g
– ident: e_1_2_8_31_1
  doi: 10.1039/b804083d
– ident: e_1_2_8_21_1
  doi: 10.1021/ol100879t
– ident: e_1_2_8_25_1
  doi: 10.1021/acs.jpca.5b11295
– ident: e_1_2_8_30_1
  doi: 10.1002/wcms.82
– ident: e_1_2_8_33_1
  doi: 10.1016/j.cpc.2004.12.014
– ident: e_1_2_8_3_1
  doi: 10.1002/cber.19640971125
– ident: e_1_2_8_26_1
  doi: 10.1063/1.478522
– volume-title: Chemical Kinetics
  year: 1987
  ident: e_1_2_8_34_1
– ident: e_1_2_8_8_1
  doi: 10.1002/jcc.25728
– ident: e_1_2_8_28_1
  doi: 10.1063/1.443164
SSID ssj0003564
Score 2.4493437
Snippet We show herein that 1,10‐dicyano substitution restricts the paragon fluxionality of bullvalene to just 14 isomers which isomerize along a single cycle. The...
We show herein that 1,10-dicyano substitution restricts the paragon fluxionality of bullvalene to just 14 isomers which isomerize along a single cycle. The...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2080
SubjectTerms 1,10‐dicyanobullvalene
Balancing
bullvalene
equilibration
Equivalence
fluxionality
Isomers
Low temperature
Molecular dynamics
Nuclear spin
Potential energy
Rate constants
restriction
Simulation
Smart structures
Substitution reactions
Symmetry
Wave functions
Title Restriction on molecular fluxionality by substitution: A case study for the 1,10‐dicyanobullvalene
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.27379
https://www.ncbi.nlm.nih.gov/pubmed/38742401
https://www.proquest.com/docview/3081038919
https://www.proquest.com/docview/3054841330
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LF734fqwvonjwYNekTZtWT7K4iKCHRWEPQsmroK5dcXdBPfkT_I3-EifpQ3yBCD2EJqVpZjLzpcl8g9AOBx9IIqE8buw2IzeJJyLGPaozprM40bFLyXJ2Hp1cstNe2GugwyoWpuCHqH-42Znh7LWd4EIO9z9IQ2-UaoHv5TZ4z57VsoCo-0EdFYQFdRQgGC-OQlqxChF_v37ysy_6BjA_41XncDoz6KrqanHO5LY1HsmWev7C4vjPb5lF0yUQxUeF5syhhsnn0WS7yv-2gHTX2JweLu4Bw3VXJdLFWX_8eF0ieCyf8BCMjztxADcP8BFW4Bmx463FAIkxQExM9yh5e3nV1-pJ5AMJ617QcDCzi-iyc3zRPvHKnAyeCkKQptKxUVoxZkgWKeqyEkZaxiBzyTJBAawLrmCdlAiRMF-FWgGmkVwQzWwQbLCEJvJBblYQJiZQhGeMSCYYlJIMtCkQgsdgaIQfN9FuJZ1UlYTlNm9GPy2olv0Uhi11w9ZE23XT-4Kl46dG65WI03KiDtMAIJHlGKRQvVVXw0jbfRORm8HYtoFlHTj7gDTRcqEa9VuCmDMARRQ66wT8--vT03bbFVb_3nQNTfkAouz5FBquo4nRw9hsAAgayU2n7e92uQLW
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH9i7MAuY59QxjaDOOywFCdx4gRxqapVXVc4oFbqBUWO7UiFLkXQSMBpfwJ_I3_Jnp2PijGkaVIOVvwiO37Pfj9__R7AHkcfSEMhHa7NNiPXsSNCxh1XZUxlUawiG5Ll6Djsj9lgEkxW4LC-C1PyQzQLbqZn2PHadHCzIL2_ZA09k7KNzpfHz-C5iehtJ1QnS_IoPyjJoxDDOBHm17xC1NtvPn3ojR5BzIeI1bqc3jqc1pUtT5qct4tF2pa3f_A4_u_fvIKXFRYlndJ4XsOKzt_AWrcOAfcW1Ik2YT3s1QeCz886li7JZsX1tALxJL0hVzj-2EMH-PKAdIhE50gsdS1BVEwQZRL3q0vvf92pqbwR-TzFeqGR40j7Dsa9b6Nu36nCMjjSD1ChUkVaKsmYplkoXRuYMFRphGpPWSZcxOuCS5wqxULEzJOBkghrUi6oYuYerP8eVvN5rjeBUO1LyjNGUyYYpuIMDcoXgkc41ggvasGXWj2JrDjLTeiMWVKyLXsJNltim60Fu43oRUnU8Teh7VrHSdVXrxIfUZGhGXQxe6fJxpY2Wyci1_PCyODMDv29T1uwUdpGU4ofcYa4yMXKWg0_XXwy6HZtYuvfRT_DWn90NEyG349_fIAXHmIqc1zFDbZhdXFZ6I-IiRbpJ2v6vwGVOgbx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BlUovbSkFtqXFVBw4kMVOnNiBE1pY8WhRhUDigBQ5tiNRaBaVXQk49Sf0N_aXdOw8EC-pQsrBiieK4xnPfI7tbwCWBMZAmigdCOuWGYVNA5VwETBTcFPI1EifkuXbfrJ9xHeP4-MxWG_OwlT8EO0PNzcyvL92A_zCFKu3pKE_tO5i7BXpOLzgCZXOpDcPbrmjorjijkIIE8gkZg2tEA1X20fvBqMHCPMuYPURp_8GTpq2VhtNzrqjYd7VN_doHJ_5MW_hdY1EyUZlOlMwZst3MNlrEsBNgzmwLqmHP_hA8PrZZNIlxfno6rSG8CS_JpfoffyWA7y5RjaIxtBIPHEtQUxMEGMStsLo399_zKm-VuUgx4kvmjj62fdw1N867G0HdVKGQEcxqlMbabXRnFtaJJr5tISJySUqPeeFYojWldA4UUqVSnmoY6MR1ORCUcPdKdhoBibKQWnngFAbaSoKTnOuOJbSAs0pUkpI9DQqlB1YbrST6Zqx3CXOOM8qruUww27LfLd14EsrelHRdDwmNN-oOKtH6mUWISZyJIMMqxfbauxpt3CiSjsYORmc12G0j2gHZivTaN8SScERFTFsrFfw06_Pdns9X_jw_6IL8PL7Zj_7urO_9xFehQio3F4VFs_DxPDXyH5CQDTMP3vD_wecpwWp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Restriction+on+molecular+fluxionality+by+substitution%3A+A+case+study+for+the+1%2C10-dicyanobullvalene&rft.jtitle=Journal+of+computational+chemistry&rft.au=Pei%2C+Bin-Bin&rft.au=Yang%2C+Hongjuan&rft.au=Gao%2C+Cai-Yue&rft.au=Man%2C+Yuan&rft.date=2024-09-15&rft.issn=1096-987X&rft.eissn=1096-987X&rft.volume=45&rft.issue=24&rft.spage=2080&rft_id=info:doi/10.1002%2Fjcc.27379&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon