Restriction on molecular fluxionality by substitution: A case study for the 1,10‐dicyanobullvalene
We show herein that 1,10‐dicyano substitution restricts the paragon fluxionality of bullvalene to just 14 isomers which isomerize along a single cycle. The restricted fluxionality of 1,10‐dicyanobullvalene (DCB) is investigated by means of: (i) Bonding analyses of the isomer structures using the ada...
Saved in:
Published in | Journal of computational chemistry Vol. 45; no. 24; pp. 2080 - 2090 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
15.09.2024
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We show herein that 1,10‐dicyano substitution restricts the paragon fluxionality of bullvalene to just 14 isomers which isomerize along a single cycle. The restricted fluxionality of 1,10‐dicyanobullvalene (DCB) is investigated by means of: (i) Bonding analyses of the isomer structures using the adaptive natural density partitioning (AdNDP). (ii) Quantum dynamical simulations of the isomerizations along the cyclic intrinsic reaction coordinate of the potential energy surface (PES). The PES possesses 14 equivalent potential wells supporting 14 isomers which are separated by 14 equivalent potential barriers supporting 14 transition states. Accordingly, at low temperatures, DCB appears as a hindered molecular rotor, without any delocalization of the wavefunction in the 14 potential wells, without any nuclear spin isomers, and with completely negligible tunneling. These results are compared and found to differ from those for molecular boron rotors. (iii) Born‐Oppenheimer molecular dynamics (BOMD) simulations of thermally activated isomerizations. (iv) Calculations of the rate constants in the frame of transition state theory (TST) with reasonable agreement achieved with the BOMD results. (v) Simulations of the equilibration dynamics using rate equations for the isomerizations with TST rate coefficients. Accordingly, in the long‐time limit, isomerizations of the 14 isomers, each with Cs symmetry, approach the “14 Cs → C7v” thermally averaged structure. This is a superposition of the 14 equally populated isomer structures with an overall C7v symmetry. By extrapolation, the results for DCB yield working hypotheses for so far un‐explored properties e.g. for the equilibration dynamics of C10H10.
Extensive first‐principles theory investigations indicate that a 1,10‐dicyano substitution restricts the fluxionality of bullvalene C3v C10H10 to 14 isomers of Cs 1,10‐C10H8(CN)2 (a) which isomerize along one isomerization cycle, resulting in a thermally averaged structure with the symmetry of C7v (b). |
---|---|
AbstractList | We show herein that 1,10‐dicyano substitution restricts the paragon fluxionality of bullvalene to just 14 isomers which isomerize along a single cycle. The restricted fluxionality of 1,10‐dicyanobullvalene (DCB) is investigated by means of: (i) Bonding analyses of the isomer structures using the adaptive natural density partitioning (AdNDP). (ii) Quantum dynamical simulations of the isomerizations along the cyclic intrinsic reaction coordinate of the potential energy surface (PES). The PES possesses 14 equivalent potential wells supporting 14 isomers which are separated by 14 equivalent potential barriers supporting 14 transition states. Accordingly, at low temperatures, DCB appears as a hindered molecular rotor, without any delocalization of the wavefunction in the 14 potential wells, without any nuclear spin isomers, and with completely negligible tunneling. These results are compared and found to differ from those for molecular boron rotors. (iii) Born‐Oppenheimer molecular dynamics (BOMD) simulations of thermally activated isomerizations. (iv) Calculations of the rate constants in the frame of transition state theory (TST) with reasonable agreement achieved with the BOMD results. (v) Simulations of the equilibration dynamics using rate equations for the isomerizations with TST rate coefficients. Accordingly, in the long‐time limit, isomerizations of the 14 isomers, each with C
s
symmetry, approach the “14 C
s
→ C
7
v
” thermally averaged structure. This is a superposition of the 14 equally populated isomer structures with an overall C
7
v
symmetry. By extrapolation, the results for DCB yield working hypotheses for so far un‐explored properties e.g. for the equilibration dynamics of C
10
H
10
. We show herein that 1,10-dicyano substitution restricts the paragon fluxionality of bullvalene to just 14 isomers which isomerize along a single cycle. The restricted fluxionality of 1,10-dicyanobullvalene (DCB) is investigated by means of: (i) Bonding analyses of the isomer structures using the adaptive natural density partitioning (AdNDP). (ii) Quantum dynamical simulations of the isomerizations along the cyclic intrinsic reaction coordinate of the potential energy surface (PES). The PES possesses 14 equivalent potential wells supporting 14 isomers which are separated by 14 equivalent potential barriers supporting 14 transition states. Accordingly, at low temperatures, DCB appears as a hindered molecular rotor, without any delocalization of the wavefunction in the 14 potential wells, without any nuclear spin isomers, and with completely negligible tunneling. These results are compared and found to differ from those for molecular boron rotors. (iii) Born-Oppenheimer molecular dynamics (BOMD) simulations of thermally activated isomerizations. (iv) Calculations of the rate constants in the frame of transition state theory (TST) with reasonable agreement achieved with the BOMD results. (v) Simulations of the equilibration dynamics using rate equations for the isomerizations with TST rate coefficients. Accordingly, in the long-time limit, isomerizations of the 14 isomers, each with Cs symmetry, approach the "14 Cs → C7v" thermally averaged structure. This is a superposition of the 14 equally populated isomer structures with an overall C7v symmetry. By extrapolation, the results for DCB yield working hypotheses for so far un-explored properties e.g. for the equilibration dynamics of C10H10.We show herein that 1,10-dicyano substitution restricts the paragon fluxionality of bullvalene to just 14 isomers which isomerize along a single cycle. The restricted fluxionality of 1,10-dicyanobullvalene (DCB) is investigated by means of: (i) Bonding analyses of the isomer structures using the adaptive natural density partitioning (AdNDP). (ii) Quantum dynamical simulations of the isomerizations along the cyclic intrinsic reaction coordinate of the potential energy surface (PES). The PES possesses 14 equivalent potential wells supporting 14 isomers which are separated by 14 equivalent potential barriers supporting 14 transition states. Accordingly, at low temperatures, DCB appears as a hindered molecular rotor, without any delocalization of the wavefunction in the 14 potential wells, without any nuclear spin isomers, and with completely negligible tunneling. These results are compared and found to differ from those for molecular boron rotors. (iii) Born-Oppenheimer molecular dynamics (BOMD) simulations of thermally activated isomerizations. (iv) Calculations of the rate constants in the frame of transition state theory (TST) with reasonable agreement achieved with the BOMD results. (v) Simulations of the equilibration dynamics using rate equations for the isomerizations with TST rate coefficients. Accordingly, in the long-time limit, isomerizations of the 14 isomers, each with Cs symmetry, approach the "14 Cs → C7v" thermally averaged structure. This is a superposition of the 14 equally populated isomer structures with an overall C7v symmetry. By extrapolation, the results for DCB yield working hypotheses for so far un-explored properties e.g. for the equilibration dynamics of C10H10. We show herein that 1,10-dicyano substitution restricts the paragon fluxionality of bullvalene to just 14 isomers which isomerize along a single cycle. The restricted fluxionality of 1,10-dicyanobullvalene (DCB) is investigated by means of: (i) Bonding analyses of the isomer structures using the adaptive natural density partitioning (AdNDP). (ii) Quantum dynamical simulations of the isomerizations along the cyclic intrinsic reaction coordinate of the potential energy surface (PES). The PES possesses 14 equivalent potential wells supporting 14 isomers which are separated by 14 equivalent potential barriers supporting 14 transition states. Accordingly, at low temperatures, DCB appears as a hindered molecular rotor, without any delocalization of the wavefunction in the 14 potential wells, without any nuclear spin isomers, and with completely negligible tunneling. These results are compared and found to differ from those for molecular boron rotors. (iii) Born-Oppenheimer molecular dynamics (BOMD) simulations of thermally activated isomerizations. (iv) Calculations of the rate constants in the frame of transition state theory (TST) with reasonable agreement achieved with the BOMD results. (v) Simulations of the equilibration dynamics using rate equations for the isomerizations with TST rate coefficients. Accordingly, in the long-time limit, isomerizations of the 14 isomers, each with C symmetry, approach the "14 C → C " thermally averaged structure. This is a superposition of the 14 equally populated isomer structures with an overall C symmetry. By extrapolation, the results for DCB yield working hypotheses for so far un-explored properties e.g. for the equilibration dynamics of C H . We show herein that 1,10‐dicyano substitution restricts the paragon fluxionality of bullvalene to just 14 isomers which isomerize along a single cycle. The restricted fluxionality of 1,10‐dicyanobullvalene (DCB) is investigated by means of: (i) Bonding analyses of the isomer structures using the adaptive natural density partitioning (AdNDP). (ii) Quantum dynamical simulations of the isomerizations along the cyclic intrinsic reaction coordinate of the potential energy surface (PES). The PES possesses 14 equivalent potential wells supporting 14 isomers which are separated by 14 equivalent potential barriers supporting 14 transition states. Accordingly, at low temperatures, DCB appears as a hindered molecular rotor, without any delocalization of the wavefunction in the 14 potential wells, without any nuclear spin isomers, and with completely negligible tunneling. These results are compared and found to differ from those for molecular boron rotors. (iii) Born‐Oppenheimer molecular dynamics (BOMD) simulations of thermally activated isomerizations. (iv) Calculations of the rate constants in the frame of transition state theory (TST) with reasonable agreement achieved with the BOMD results. (v) Simulations of the equilibration dynamics using rate equations for the isomerizations with TST rate coefficients. Accordingly, in the long‐time limit, isomerizations of the 14 isomers, each with Cs symmetry, approach the “14 Cs → C7v” thermally averaged structure. This is a superposition of the 14 equally populated isomer structures with an overall C7v symmetry. By extrapolation, the results for DCB yield working hypotheses for so far un‐explored properties e.g. for the equilibration dynamics of C10H10. We show herein that 1,10‐dicyano substitution restricts the paragon fluxionality of bullvalene to just 14 isomers which isomerize along a single cycle. The restricted fluxionality of 1,10‐dicyanobullvalene (DCB) is investigated by means of: (i) Bonding analyses of the isomer structures using the adaptive natural density partitioning (AdNDP). (ii) Quantum dynamical simulations of the isomerizations along the cyclic intrinsic reaction coordinate of the potential energy surface (PES). The PES possesses 14 equivalent potential wells supporting 14 isomers which are separated by 14 equivalent potential barriers supporting 14 transition states. Accordingly, at low temperatures, DCB appears as a hindered molecular rotor, without any delocalization of the wavefunction in the 14 potential wells, without any nuclear spin isomers, and with completely negligible tunneling. These results are compared and found to differ from those for molecular boron rotors. (iii) Born‐Oppenheimer molecular dynamics (BOMD) simulations of thermally activated isomerizations. (iv) Calculations of the rate constants in the frame of transition state theory (TST) with reasonable agreement achieved with the BOMD results. (v) Simulations of the equilibration dynamics using rate equations for the isomerizations with TST rate coefficients. Accordingly, in the long‐time limit, isomerizations of the 14 isomers, each with Cs symmetry, approach the “14 Cs → C7v” thermally averaged structure. This is a superposition of the 14 equally populated isomer structures with an overall C7v symmetry. By extrapolation, the results for DCB yield working hypotheses for so far un‐explored properties e.g. for the equilibration dynamics of C10H10. Extensive first‐principles theory investigations indicate that a 1,10‐dicyano substitution restricts the fluxionality of bullvalene C3v C10H10 to 14 isomers of Cs 1,10‐C10H8(CN)2 (a) which isomerize along one isomerization cycle, resulting in a thermally averaged structure with the symmetry of C7v (b). |
Author | Man, Yuan Gao, Cai‐Yue Li, Si‐Dian Yang, Yonggang Yang, Hongjuan Pei, Bin‐Bin |
Author_xml | – sequence: 1 givenname: Bin‐Bin surname: Pei fullname: Pei, Bin‐Bin organization: Shanxi University – sequence: 2 givenname: Hongjuan surname: Yang fullname: Yang, Hongjuan organization: Shanxi University – sequence: 3 givenname: Cai‐Yue surname: Gao fullname: Gao, Cai‐Yue organization: Shanxi University – sequence: 4 givenname: Yuan surname: Man fullname: Man, Yuan organization: Shanxi University – sequence: 5 givenname: Yonggang surname: Yang fullname: Yang, Yonggang email: ygyang@sxu.edu.cn organization: Shanxi University – sequence: 6 givenname: Si‐Dian orcidid: 0000-0001-5666-0591 surname: Li fullname: Li, Si‐Dian email: lisidian@sxu.edu.cn organization: Shanxi University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38742401$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kd1KHTEUhYNY9Gi98AVKoDcWOppMMpPEOznYPwRBWuhdyCQZmkPOxObHdu58hD5jn6Q5PccbaWHDhs23Fqy9jsD-FCYLwClG5xih9mKl9XnLCBN7YIGR6BvB2dd9sEBYtA3vO3wIjlJaIYRI19MDcEg4oy1FeAHMnU05Op1dmGCddfBWF68iHH35WY_KuzzDYYapDCm7XDbkJbyCWiULUy5mhmOIMH-zEL_F6PfjL-P0rKYwFO8flLeTfQlejMone7Lbx-DLu-vPyw_Nze37j8urm0aTjohGG2610ZRaNPa6Juu46M3AGRcDHRVmrFVMI94LpQRtdWd035OBKWRoW2OSY3C29b2P4XupweTaJW29V5MNJUmCOsopJgRV9PUzdBVKrGk3FMeIcIFFpV7tqDKsrZH30a1VnOXT_ypwsQV0DClFO0rtstq8KEflvMRIbhqStSH5t6GqePNM8WT6L3bn_sN5O_8flJ-Wy63iD3RZoAY |
CitedBy_id | crossref_primary_10_1360_TB_2024_1082 |
Cites_doi | 10.1080/00268976.2018.1473651 10.1021/ja00953a045 10.1002/anie.201104465 10.1039/D0RA08821H 10.1021/ja00057a038 10.1039/C6NR09074E 10.1038/s41598-019-53488-5 10.1063/1.5048358 10.1016/S0040-4020(01)99207-5 10.1021/ja020741v 10.1021/ja00816a037 10.1063/1.438955 10.1039/D1CP02980K 10.1039/C9CP00379G 10.1002/chem.19960020416 10.1016/j.chemphys.2022.111659 10.1002/anie.196507521 10.1002/hlca.19740570518 10.1002/jcc.25782 10.1021/ed078p924 10.1039/C5CP03982G 10.1021/jo048268m 10.1002/cber.19640971126 10.1021/jp110365g 10.1039/b804083d 10.1021/ol100879t 10.1021/acs.jpca.5b11295 10.1002/wcms.82 10.1016/j.cpc.2004.12.014 10.1002/cber.19640971125 10.1063/1.478522 10.1002/jcc.25728 10.1063/1.443164 |
ContentType | Journal Article |
Copyright | 2024 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2024 Wiley Periodicals LLC. |
DBID | AAYXX CITATION NPM JQ2 7X8 |
DOI | 10.1002/jcc.27379 |
DatabaseName | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1096-987X |
EndPage | 2090 |
ExternalDocumentID | 38742401 10_1002_jcc_27379 JCC27379 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22373061; 21973057 – fundername: 111 Project funderid: D18001 – fundername: Hundred Talents Program of Shanxi Province – fundername: 111 Project grantid: D18001 – fundername: National Natural Science Foundation of China grantid: 22373061 – fundername: National Natural Science Foundation of China grantid: 21973057 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 36B 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS ESX F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RWK RX1 RYL SUPJJ TN5 UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YQT ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGYGG CITATION NPM AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 7X8 |
ID | FETCH-LOGICAL-c3539-cd8ecdc44e0f6c1005896db8789b4fa1772a7c0869aa942c5dc663b7a0d428653 |
IEDL.DBID | DR2 |
ISSN | 0192-8651 1096-987X |
IngestDate | Fri Jul 11 01:51:56 EDT 2025 Fri Jul 25 18:59:35 EDT 2025 Thu Apr 03 07:08:07 EDT 2025 Thu Apr 24 23:10:25 EDT 2025 Tue Jul 01 02:05:07 EDT 2025 Wed Jan 22 17:18:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | restriction fluxionality equilibration 1,10‐dicyanobullvalene bullvalene |
Language | English |
License | 2024 Wiley Periodicals LLC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3539-cd8ecdc44e0f6c1005896db8789b4fa1772a7c0869aa942c5dc663b7a0d428653 |
Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5666-0591 |
PMID | 38742401 |
PQID | 3081038919 |
PQPubID | 48816 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3054841330 proquest_journals_3081038919 pubmed_primary_38742401 crossref_citationtrail_10_1002_jcc_27379 crossref_primary_10_1002_jcc_27379 wiley_primary_10_1002_jcc_27379_JCC27379 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 15, 2024 |
PublicationDateYYYYMMDD | 2024-09-15 |
PublicationDate_xml | – month: 09 year: 2024 text: September 15, 2024 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: New York |
PublicationTitle | Journal of computational chemistry |
PublicationTitleAlternate | J Comput Chem |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2010; 12 2011; 115 1974; 57 2019; 9 2015; 17 2021; 23 1974; 96 2018; 149 1982; 76 2008; 10 2017; 9 2016; 120 2022; 562 2012; 2 2019; 40 2021; 11 2018; 116 2005; 167 1980; 72 2019; 21 2002; 124 2011; 50 1965; 4 1987 1965 1999; 110 1964; 97 2017 2016 2005; 70 2001; 78 1996; 2 1966; 88 1993; 115 1963; 19 e_1_2_8_28_1 Peters B. (e_1_2_8_35_1) 2017 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 Laidler K. (e_1_2_8_34_1) 1987 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 Frisch M. J. (e_1_2_8_29_1) 2016 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 Heilbronner E. (e_1_2_8_38_1) 1965 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 97 start-page: 3140 year: 1964 publication-title: Chem. Ber. – volume: 23 year: 2021 publication-title: Phys. Chem. Chem. Phys. – volume: 2 start-page: 458 year: 1996 publication-title: Chem. A: Eur. J. Dermatol. – volume: 120 start-page: 3142 year: 2016 publication-title: J. Phys. Chem. A – volume: 110 start-page: 6158 year: 1999 publication-title: J. Chem. Phys. – year: 1987 – volume: 40 start-page: 966 year: 2019 publication-title: J. Comput. Chem. – volume: 50 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 70 start-page: 2627 year: 2005 publication-title: J. Org. Chem. – volume: 115 start-page: 5476 year: 2011 publication-title: J. Phys. Chem. B – volume: 40 start-page: 1227 year: 2019 publication-title: J. Comput. Chem. – volume: 11 start-page: 3613 year: 2021 publication-title: RSC Adv. – volume: 76 start-page: 1910 year: 1982 publication-title: J. Chem. Phys. – volume: 78 start-page: 924 year: 2001 publication-title: Chem. Educ. – volume: 9 year: 2019 publication-title: Sci. Rep. – year: 2016 – volume: 116 start-page: 2538 year: 2018 publication-title: Mol. Phys. – volume: 96 start-page: 2887 year: 1974 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 5207 year: 2008 publication-title: Phys. Chem. Chem. Phys. – volume: 72 start-page: 650 year: 1980 publication-title: J. Chem. Phys. – volume: 115 start-page: 1490 year: 1993 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 2798 year: 2010 publication-title: Org. Lett. – volume: 167 start-page: 103 year: 2005 publication-title: Comput. Phys. Commun. – volume: 21 start-page: 9590 year: 2019 publication-title: Phys. Chem. Chem. Phys. – volume: 149 year: 2018 publication-title: J. Chem. Phys. – volume: 562 year: 2022 publication-title: Chem. Phys. – year: 1965 – volume: 4 start-page: 752 year: 1965 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 97 start-page: 3150 year: 1964 publication-title: Chem. Ber. – volume: 57 start-page: 1415 year: 1974 publication-title: Helv. Chim. Acta – volume: 124 start-page: 13770 year: 2002 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 242 year: 2012 publication-title: WIREs Comput. Mol. Sci. – volume: 17 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 19 start-page: 715 year: 1963 publication-title: Tetrahedron – year: 2017 – volume: 9 start-page: 1443 year: 2017 publication-title: Nanoscale – volume: 88 start-page: 183 year: 1966 publication-title: J. Am. Chem. Soc. – ident: e_1_2_8_11_1 doi: 10.1080/00268976.2018.1473651 – ident: e_1_2_8_15_1 doi: 10.1021/ja00953a045 – ident: e_1_2_8_23_1 doi: 10.1002/anie.201104465 – volume-title: Reaction Rate Theory and Rare Events year: 2017 ident: e_1_2_8_35_1 – ident: e_1_2_8_14_1 doi: 10.1039/D0RA08821H – ident: e_1_2_8_17_1 doi: 10.1021/ja00057a038 – ident: e_1_2_8_7_1 doi: 10.1039/C6NR09074E – ident: e_1_2_8_10_1 doi: 10.1038/s41598-019-53488-5 – ident: e_1_2_8_12_1 doi: 10.1063/1.5048358 – ident: e_1_2_8_2_1 doi: 10.1016/S0040-4020(01)99207-5 – ident: e_1_2_8_19_1 doi: 10.1021/ja020741v – ident: e_1_2_8_16_1 doi: 10.1021/ja00816a037 – volume-title: Revision A.03 year: 2016 ident: e_1_2_8_29_1 – ident: e_1_2_8_27_1 doi: 10.1063/1.438955 – ident: e_1_2_8_13_1 doi: 10.1039/D1CP02980K – ident: e_1_2_8_32_1 doi: 10.1039/C9CP00379G – ident: e_1_2_8_18_1 doi: 10.1002/chem.19960020416 – ident: e_1_2_8_36_1 doi: 10.1016/j.chemphys.2022.111659 – ident: e_1_2_8_37_1 doi: 10.1002/anie.196507521 – ident: e_1_2_8_5_1 doi: 10.1002/hlca.19740570518 – ident: e_1_2_8_9_1 doi: 10.1002/jcc.25782 – volume-title: Das HMO‐Modell und seine Anwendungen year: 1965 ident: e_1_2_8_38_1 – ident: e_1_2_8_6_1 doi: 10.1021/ed078p924 – ident: e_1_2_8_24_1 doi: 10.1039/C5CP03982G – ident: e_1_2_8_20_1 doi: 10.1021/jo048268m – ident: e_1_2_8_4_1 doi: 10.1002/cber.19640971126 – ident: e_1_2_8_22_1 doi: 10.1021/jp110365g – ident: e_1_2_8_31_1 doi: 10.1039/b804083d – ident: e_1_2_8_21_1 doi: 10.1021/ol100879t – ident: e_1_2_8_25_1 doi: 10.1021/acs.jpca.5b11295 – ident: e_1_2_8_30_1 doi: 10.1002/wcms.82 – ident: e_1_2_8_33_1 doi: 10.1016/j.cpc.2004.12.014 – ident: e_1_2_8_3_1 doi: 10.1002/cber.19640971125 – ident: e_1_2_8_26_1 doi: 10.1063/1.478522 – volume-title: Chemical Kinetics year: 1987 ident: e_1_2_8_34_1 – ident: e_1_2_8_8_1 doi: 10.1002/jcc.25728 – ident: e_1_2_8_28_1 doi: 10.1063/1.443164 |
SSID | ssj0003564 |
Score | 2.4493437 |
Snippet | We show herein that 1,10‐dicyano substitution restricts the paragon fluxionality of bullvalene to just 14 isomers which isomerize along a single cycle. The... We show herein that 1,10-dicyano substitution restricts the paragon fluxionality of bullvalene to just 14 isomers which isomerize along a single cycle. The... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2080 |
SubjectTerms | 1,10‐dicyanobullvalene Balancing bullvalene equilibration Equivalence fluxionality Isomers Low temperature Molecular dynamics Nuclear spin Potential energy Rate constants restriction Simulation Smart structures Substitution reactions Symmetry Wave functions |
Title | Restriction on molecular fluxionality by substitution: A case study for the 1,10‐dicyanobullvalene |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.27379 https://www.ncbi.nlm.nih.gov/pubmed/38742401 https://www.proquest.com/docview/3081038919 https://www.proquest.com/docview/3054841330 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LF734fqwvonjwYNekTZtWT7K4iKCHRWEPQsmroK5dcXdBPfkT_I3-EifpQ3yBCD2EJqVpZjLzpcl8g9AOBx9IIqE8buw2IzeJJyLGPaozprM40bFLyXJ2Hp1cstNe2GugwyoWpuCHqH-42Znh7LWd4EIO9z9IQ2-UaoHv5TZ4z57VsoCo-0EdFYQFdRQgGC-OQlqxChF_v37ysy_6BjA_41XncDoz6KrqanHO5LY1HsmWev7C4vjPb5lF0yUQxUeF5syhhsnn0WS7yv-2gHTX2JweLu4Bw3VXJdLFWX_8eF0ieCyf8BCMjztxADcP8BFW4Bmx463FAIkxQExM9yh5e3nV1-pJ5AMJ617QcDCzi-iyc3zRPvHKnAyeCkKQptKxUVoxZkgWKeqyEkZaxiBzyTJBAawLrmCdlAiRMF-FWgGmkVwQzWwQbLCEJvJBblYQJiZQhGeMSCYYlJIMtCkQgsdgaIQfN9FuJZ1UlYTlNm9GPy2olv0Uhi11w9ZE23XT-4Kl46dG65WI03KiDtMAIJHlGKRQvVVXw0jbfRORm8HYtoFlHTj7gDTRcqEa9VuCmDMARRQ66wT8--vT03bbFVb_3nQNTfkAouz5FBquo4nRw9hsAAgayU2n7e92uQLW |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH9i7MAuY59QxjaDOOywFCdx4gRxqapVXVc4oFbqBUWO7UiFLkXQSMBpfwJ_I3_Jnp2PijGkaVIOVvwiO37Pfj9__R7AHkcfSEMhHa7NNiPXsSNCxh1XZUxlUawiG5Ll6Djsj9lgEkxW4LC-C1PyQzQLbqZn2PHadHCzIL2_ZA09k7KNzpfHz-C5iehtJ1QnS_IoPyjJoxDDOBHm17xC1NtvPn3ojR5BzIeI1bqc3jqc1pUtT5qct4tF2pa3f_A4_u_fvIKXFRYlndJ4XsOKzt_AWrcOAfcW1Ik2YT3s1QeCz886li7JZsX1tALxJL0hVzj-2EMH-PKAdIhE50gsdS1BVEwQZRL3q0vvf92pqbwR-TzFeqGR40j7Dsa9b6Nu36nCMjjSD1ChUkVaKsmYplkoXRuYMFRphGpPWSZcxOuCS5wqxULEzJOBkghrUi6oYuYerP8eVvN5rjeBUO1LyjNGUyYYpuIMDcoXgkc41ggvasGXWj2JrDjLTeiMWVKyLXsJNltim60Fu43oRUnU8Teh7VrHSdVXrxIfUZGhGXQxe6fJxpY2Wyci1_PCyODMDv29T1uwUdpGU4ofcYa4yMXKWg0_XXwy6HZtYuvfRT_DWn90NEyG349_fIAXHmIqc1zFDbZhdXFZ6I-IiRbpJ2v6vwGVOgbx |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BlUovbSkFtqXFVBw4kMVOnNiBE1pY8WhRhUDigBQ5tiNRaBaVXQk49Sf0N_aXdOw8EC-pQsrBiieK4xnPfI7tbwCWBMZAmigdCOuWGYVNA5VwETBTcFPI1EifkuXbfrJ9xHeP4-MxWG_OwlT8EO0PNzcyvL92A_zCFKu3pKE_tO5i7BXpOLzgCZXOpDcPbrmjorjijkIIE8gkZg2tEA1X20fvBqMHCPMuYPURp_8GTpq2VhtNzrqjYd7VN_doHJ_5MW_hdY1EyUZlOlMwZst3MNlrEsBNgzmwLqmHP_hA8PrZZNIlxfno6rSG8CS_JpfoffyWA7y5RjaIxtBIPHEtQUxMEGMStsLo399_zKm-VuUgx4kvmjj62fdw1N867G0HdVKGQEcxqlMbabXRnFtaJJr5tISJySUqPeeFYojWldA4UUqVSnmoY6MR1ORCUcPdKdhoBibKQWnngFAbaSoKTnOuOJbSAs0pUkpI9DQqlB1YbrST6Zqx3CXOOM8qruUww27LfLd14EsrelHRdDwmNN-oOKtH6mUWISZyJIMMqxfbauxpt3CiSjsYORmc12G0j2gHZivTaN8SScERFTFsrFfw06_Pdns9X_jw_6IL8PL7Zj_7urO_9xFehQio3F4VFs_DxPDXyH5CQDTMP3vD_wecpwWp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Restriction+on+molecular+fluxionality+by+substitution%3A+A+case+study+for+the+1%2C10-dicyanobullvalene&rft.jtitle=Journal+of+computational+chemistry&rft.au=Pei%2C+Bin-Bin&rft.au=Yang%2C+Hongjuan&rft.au=Gao%2C+Cai-Yue&rft.au=Man%2C+Yuan&rft.date=2024-09-15&rft.issn=1096-987X&rft.eissn=1096-987X&rft.volume=45&rft.issue=24&rft.spage=2080&rft_id=info:doi/10.1002%2Fjcc.27379&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon |