Unexpected compound reformation in the dense selenium-hydrogen system
The H 2 Se molecule and the van der Waals compound (H 2 Se) 2 H 2 are both unstable upon room temperature compression, dissociating into their constituent elements above 22 GPa. Through a series of high pressure-high temperature diamond anvil cell experiments, we report the unexpected formation of a...
Saved in:
Published in | Communications materials Vol. 6; no. 1; pp. 193 - 7 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The H
2
Se molecule and the van der Waals compound (H
2
Se)
2
H
2
are both unstable upon room temperature compression, dissociating into their constituent elements above 22 GPa. Through a series of high pressure-high temperature diamond anvil cell experiments, we report the unexpected formation of a novel compound, SeH
2
(H
2
)
2
at pressures above 94 GPa. X-ray diffraction reveals the metallic sublattice to adopt a tetragonal (
I
4
1
/
a
m
d
) structure with density functional theory calculations finding a small distortion due to the orientation of H
2
molecules. The structure comprises of a network of zig-zag H-Se chains with quasi-molecular H
2
molecular units hosted in the prismatic Se interstices. Electrical resistance measurements demonstrate that SeH
2
(H
2
)
2
is non-metallic up to pressures of 148 GPa. Investigations into the Te-H system up to pressures of 165 GPa and 2000 K yielded no compound formation. The combined results suggest that the high pressure phase behavior of each chalcogen hydride is unique and more complex than previously thought.
High-pressure studies of chalcogen hydrides reveal complex phase behaviors, challenging existing assumptions about their stability and composition. Here, the authors discover a novel compound, SeH
2
(H
2
)
2
, at pressures above 94 GPa, characterized by a unique tetragonal structure, highlighting the intricate nature of high-pressure chemistry and its implications for material science. |
---|---|
AbstractList | The H
2
Se molecule and the van der Waals compound (H
2
Se)
2
H
2
are both unstable upon room temperature compression, dissociating into their constituent elements above 22 GPa. Through a series of high pressure-high temperature diamond anvil cell experiments, we report the unexpected formation of a novel compound, SeH
2
(H
2
)
2
at pressures above 94 GPa. X-ray diffraction reveals the metallic sublattice to adopt a tetragonal (
I
4
1
/
a
m
d
) structure with density functional theory calculations finding a small distortion due to the orientation of H
2
molecules. The structure comprises of a network of zig-zag H-Se chains with quasi-molecular H
2
molecular units hosted in the prismatic Se interstices. Electrical resistance measurements demonstrate that SeH
2
(H
2
)
2
is non-metallic up to pressures of 148 GPa. Investigations into the Te-H system up to pressures of 165 GPa and 2000 K yielded no compound formation. The combined results suggest that the high pressure phase behavior of each chalcogen hydride is unique and more complex than previously thought.
High-pressure studies of chalcogen hydrides reveal complex phase behaviors, challenging existing assumptions about their stability and composition. Here, the authors discover a novel compound, SeH
2
(H
2
)
2
, at pressures above 94 GPa, characterized by a unique tetragonal structure, highlighting the intricate nature of high-pressure chemistry and its implications for material science. Abstract The H2Se molecule and the van der Waals compound (H2Se)2H2 are both unstable upon room temperature compression, dissociating into their constituent elements above 22 GPa. Through a series of high pressure-high temperature diamond anvil cell experiments, we report the unexpected formation of a novel compound, SeH2(H2)2 at pressures above 94 GPa. X-ray diffraction reveals the metallic sublattice to adopt a tetragonal (I41/a m d) structure with density functional theory calculations finding a small distortion due to the orientation of H2 molecules. The structure comprises of a network of zig-zag H-Se chains with quasi-molecular H2 molecular units hosted in the prismatic Se interstices. Electrical resistance measurements demonstrate that SeH2(H2)2 is non-metallic up to pressures of 148 GPa. Investigations into the Te-H system up to pressures of 165 GPa and 2000 K yielded no compound formation. The combined results suggest that the high pressure phase behavior of each chalcogen hydride is unique and more complex than previously thought. The H2Se molecule and the van der Waals compound (H2Se)2H2 are both unstable upon room temperature compression, dissociating into their constituent elements above 22 GPa. Through a series of high pressure-high temperature diamond anvil cell experiments, we report the unexpected formation of a novel compound, SeH2(H2)2 at pressures above 94 GPa. X-ray diffraction reveals the metallic sublattice to adopt a tetragonal (I41/amd) structure with density functional theory calculations finding a small distortion due to the orientation of H2 molecules. The structure comprises of a network of zig-zag H-Se chains with quasi-molecular H2 molecular units hosted in the prismatic Se interstices. Electrical resistance measurements demonstrate that SeH2(H2)2 is non-metallic up to pressures of 148 GPa. Investigations into the Te-H system up to pressures of 165 GPa and 2000 K yielded no compound formation. The combined results suggest that the high pressure phase behavior of each chalcogen hydride is unique and more complex than previously thought.High-pressure studies of chalcogen hydrides reveal complex phase behaviors, challenging existing assumptions about their stability and composition. Here, the authors discover a novel compound, SeH2(H2)2, at pressures above 94 GPa, characterized by a unique tetragonal structure, highlighting the intricate nature of high-pressure chemistry and its implications for material science. The H 2 Se molecule and the van der Waals compound (H 2 Se) 2 H 2 are both unstable upon room temperature compression, dissociating into their constituent elements above 22 GPa. Through a series of high pressure-high temperature diamond anvil cell experiments, we report the unexpected formation of a novel compound, SeH 2 (H 2 ) 2 at pressures above 94 GPa. X-ray diffraction reveals the metallic sublattice to adopt a tetragonal ( I 4 1 / a m d ) structure with density functional theory calculations finding a small distortion due to the orientation of H 2 molecules. The structure comprises of a network of zig-zag H-Se chains with quasi-molecular H 2 molecular units hosted in the prismatic Se interstices. Electrical resistance measurements demonstrate that SeH 2 (H 2 ) 2 is non-metallic up to pressures of 148 GPa. Investigations into the Te-H system up to pressures of 165 GPa and 2000 K yielded no compound formation. The combined results suggest that the high pressure phase behavior of each chalcogen hydride is unique and more complex than previously thought. |
ArticleNumber | 193 |
Author | Kuzovnikov, Mikhail A. Shuttleworth, Hannah A. Marqueño, Tomas Dalladay-Simpson, Philip Ackland, Graeme J. Peña-Alvarez, Miriam Hu, Huixin Osmond, Israel Gregoryanz, Eugene Howie, Ross T. Yan, Jinwei Gorelli, Federico A. |
Author_xml | – sequence: 1 givenname: Huixin surname: Hu fullname: Hu, Huixin organization: Center for High Pressure Science and Technology Advanced Research – sequence: 2 givenname: Mikhail A. surname: Kuzovnikov fullname: Kuzovnikov, Mikhail A. organization: School of Physics and Astronomy, Centre for Science at Extreme Conditions, University of Edinburgh – sequence: 3 givenname: Hannah A. surname: Shuttleworth fullname: Shuttleworth, Hannah A. organization: School of Physics and Astronomy, Centre for Science at Extreme Conditions, University of Edinburgh – sequence: 4 givenname: Tomas surname: Marqueño fullname: Marqueño, Tomas organization: School of Physics and Astronomy, Centre for Science at Extreme Conditions, University of Edinburgh – sequence: 5 givenname: Jinwei surname: Yan fullname: Yan, Jinwei organization: School of Physics and Astronomy, Centre for Science at Extreme Conditions, University of Edinburgh – sequence: 6 givenname: Israel surname: Osmond fullname: Osmond, Israel organization: School of Physics and Astronomy, Centre for Science at Extreme Conditions, University of Edinburgh – sequence: 7 givenname: Federico A. surname: Gorelli fullname: Gorelli, Federico A. organization: Center for High Pressure Science and Technology Advanced Research, SHARPS (Shanghai Advanced Research in Physical Sciences), CNR-INO, Instituto Nazionale di Ottica – sequence: 8 givenname: Eugene orcidid: 0000-0001-9080-8756 surname: Gregoryanz fullname: Gregoryanz, Eugene organization: School of Physics and Astronomy, Centre for Science at Extreme Conditions, University of Edinburgh, SHARPS (Shanghai Advanced Research in Physical Sciences), Key Laboratory of Materials Physics, Institute of Solid State Physics – sequence: 9 givenname: Philip orcidid: 0000-0002-6213-4472 surname: Dalladay-Simpson fullname: Dalladay-Simpson, Philip organization: Center for High Pressure Science and Technology Advanced Research – sequence: 10 givenname: Graeme J. surname: Ackland fullname: Ackland, Graeme J. organization: School of Physics and Astronomy, Centre for Science at Extreme Conditions, University of Edinburgh – sequence: 11 givenname: Miriam surname: Peña-Alvarez fullname: Peña-Alvarez, Miriam organization: School of Physics and Astronomy, Centre for Science at Extreme Conditions, University of Edinburgh – sequence: 12 givenname: Ross T. orcidid: 0000-0002-7013-8211 surname: Howie fullname: Howie, Ross T. email: ross.howie@ed.ac.uk organization: Center for High Pressure Science and Technology Advanced Research, School of Physics and Astronomy, Centre for Science at Extreme Conditions, University of Edinburgh |
BookMark | eNp9kc1OGzEUhS1EpULKC3Q1Eutp_W_PCiFEWyQkNrC2buybZKKMHewZRN4ew6C2bFjZss_57tU5p-Q4poiEfGf0B6PC_ixScKlbylVLqe26tjsiJ1xr3kopxfF_96_krJQtpVXKmJb0hFw_RHzeox8xND4N-zTF0GRcpTzA2KfY9LEZN9gEjAWbgjuM_TS0m0PIaY2xKYcy4vCNfFnBruDZ-7kgD7-u76_-tLd3v2-uLm9bL5Soe8EyUCMRuVhS5YXRaDoU1oAyQVFrrKU0gOGoPKBaesENWhMEaGaY1WJBbmZuSLB1-9wPkA8uQe_eHlJeO8hj73fosOO-hgMgxUpKZjvwlqNGMMCC1aqyLmbWfloOGDzGMcPuA_TjT-w3bp2eHOPCUCVEJZy_E3J6nLCMbpumHGsArhbCjDZSvc7hs8rnVEqN9u8IRt1rf27uz9VS3Ft_rqsmMZtKFcc15n_oT1wvJnWf3Q |
Cites_doi | 10.1080/08957950412331331682 10.1002/anie.199201871 10.1103/PhysRev.71.809 10.1007/BF00202306 10.1103/PhysRevB.97.064107 10.1021/acs.jpcc.3c02366 10.1107/S0021889895014920 10.1103/PhysRevB.101.174511 10.1063/1.2335683 10.1038/nphys3760 10.1103/PhysRevLett.107.255503 10.1016/0921-4526(93)90108-I 10.1093/nsr/nwz010 10.1007/s00269-022-01207-4 10.1063/1.5004242 10.1080/08957959.2013.831088 10.1103/PhysRevB.95.020104 10.1103/PhysRevLett.116.057002 10.1103/PhysRevLett.128.215702 10.1038/nature14964 10.1524/zkri.220.5.567.65075 10.1063/1.5094646 10.1107/S1600577515005937 10.1103/PhysRevLett.117.075503 10.1103/PhysRevB.102.134109 10.1016/j.ijhydene.2010.01.006 10.1103/PhysRevLett.114.157004 10.1038/nature17175 10.1103/PhysRevLett.108.125501 10.1103/PhysRevLett.106.095503 10.1080/08957959.2015.1059835 10.1103/PhysRevB.70.184109 10.1103/PhysRevB.96.144105 10.1103/PhysRevB.93.174105 10.1038/s41467-021-26664-3 10.1103/PhysRevB.95.140101 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 5PM DOA |
DOI | 10.1038/s43246-025-00899-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2662-4443 |
EndPage | 7 |
ExternalDocumentID | oai_doaj_org_article_e92c038aa43f44189ac82e6ea7a1d865 PMC12370533 10_1038_s43246_025_00899_9 |
GrantInformation_xml | – fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020) grantid: 94889 funderid: 100010661 – fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC) grantid: EP/P022561/1 funderid: 501100000266 |
GroupedDBID | 0R~ AAJSJ AASML ABJCF AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ C6C CCPQU EBLON EBS GROUPED_DOAJ HCIFZ KB. NAO OK1 PDBOC PHGZM PHGZT PIMPY PQGLB SNYQT AAYXX CITATION PUEGO 8FE 8FG ABUWG AZQEC D1I DWQXO PKEHL PQEST PQQKQ PQUKI 5PM |
ID | FETCH-LOGICAL-c3539-9abd074ee23b05c376e79e387a57d50878800da72e5cae5bc327e87d3a6171863 |
IEDL.DBID | AAJSJ |
ISSN | 2662-4443 |
IngestDate | Wed Aug 27 01:30:10 EDT 2025 Wed Aug 27 05:37:57 EDT 2025 Fri Aug 22 05:11:22 EDT 2025 Wed Aug 27 16:38:57 EDT 2025 Fri Aug 22 01:11:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3539-9abd074ee23b05c376e79e387a57d50878800da72e5cae5bc327e87d3a6171863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9080-8756 0000-0002-7013-8211 0000-0002-6213-4472 |
OpenAccessLink | https://www.nature.com/articles/s43246-025-00899-9 |
PQID | 3241767455 |
PQPubID | 5061814 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e92c038aa43f44189ac82e6ea7a1d865 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12370533 proquest_journals_3241767455 crossref_primary_10_1038_s43246_025_00899_9 springer_journals_10_1038_s43246_025_00899_9 |
PublicationCentury | 2000 |
PublicationDate | 2025-12-01 |
PublicationDateYYYYMMDD | 2025-12-01 |
PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Communications materials |
PublicationTitleAbbrev | Commun Mater |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | I Errea (899_CR5) 2015; 114 C Prescher (899_CR34) 2015; 35 AP Drozdov (899_CR1) 2015; 525 M Hanfland (899_CR28) 2011; 106 Y Akahama (899_CR30) 2006; 100 H-P Liermann (899_CR31) 2015; 22 M Einaga (899_CR3) 2016; 12 J-M Joubert (899_CR20) 2010; 35 J Binns (899_CR27) 2017; 96 X Zhong (899_CR14) 2016; 116 D Laniel (899_CR7) 2020; 102 M Merlini (899_CR32) 2013; 33 AP Bartók (899_CR23) 2019; 150 C Hejny (899_CR38) 2004; 70 M Peña-Alvarez (899_CR40) 2021; 12 X Zhang (899_CR17) 2018; 97 R Akashi (899_CR8) 2016; 117 J Rodriguez-Carvajal (899_CR36) 1993; 192 EJ Pace (899_CR11) 2020; 101 W Kraus (899_CR35) 1996; 29 U Ranieri (899_CR39) 2022; 128 O Degtyareva (899_CR18) 2005; 25 SJ Clark (899_CR21) 2005; 220 F Birch (899_CR19) 1947; 71 A Savin (899_CR24) 1992; 31 JA Flores-Livas (899_CR13) 2016; 89 AF Goncharov (899_CR2) 2017; 95 SM Dorfman (899_CR29) 2012; 117 RT Howie (899_CR25) 2012; 108 AF Goncharov (899_CR4) 2016; 93 EJ Pace (899_CR16) 2017; 147 TA Strobel (899_CR10) 2011; 107 B Guigue (899_CR9) 2017; 95 I Errea (899_CR6) 2016; 532 S Zhang (899_CR12) 2015; 5 899_CR15 MC Warren (899_CR37) 1996; 23 Y Yuan (899_CR26) 2019; 6 SR Sutton (899_CR33) 2022; 49 M Marqués (899_CR22) 2023; 127 |
References_xml | – volume: 25 start-page: 17 year: 2005 ident: 899_CR18 publication-title: High. Press. Res. doi: 10.1080/08957950412331331682 – volume: 31 start-page: 187 year: 1992 ident: 899_CR24 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.199201871 – volume: 5 year: 2015 ident: 899_CR12 publication-title: Sci. Rep. – volume: 71 start-page: 809 year: 1947 ident: 899_CR19 publication-title: Phys. Rev. doi: 10.1103/PhysRev.71.809 – volume: 23 start-page: 107 year: 1996 ident: 899_CR37 publication-title: Phys. Chem. Miner. doi: 10.1007/BF00202306 – volume: 97 start-page: 064107 year: 2018 ident: 899_CR17 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.064107 – volume: 127 start-page: 15523 year: 2023 ident: 899_CR22 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.3c02366 – volume: 117 start-page: B08210 year: 2012 ident: 899_CR29 publication-title: J. Geophys. Res. Solid Earth – volume: 29 start-page: 301 year: 1996 ident: 899_CR35 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889895014920 – volume: 101 start-page: 174511 year: 2020 ident: 899_CR11 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.174511 – volume: 100 start-page: 043516 year: 2006 ident: 899_CR30 publication-title: J. Appl. Phys. doi: 10.1063/1.2335683 – volume: 12 start-page: 835 year: 2016 ident: 899_CR3 publication-title: Nat. Phys. doi: 10.1038/nphys3760 – volume: 107 start-page: 255503 year: 2011 ident: 899_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.255503 – volume: 192 start-page: 55 year: 1993 ident: 899_CR36 publication-title: Phys. B doi: 10.1016/0921-4526(93)90108-I – volume: 6 start-page: 524 year: 2019 ident: 899_CR26 publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwz010 – volume: 49 start-page: 32 year: 2022 ident: 899_CR33 publication-title: Phys. Chem. Miner. doi: 10.1007/s00269-022-01207-4 – volume: 147 start-page: 184303 year: 2017 ident: 899_CR16 publication-title: J. Chem. Phys. doi: 10.1063/1.5004242 – volume: 89 year: 2016 ident: 899_CR13 publication-title: Eur. Phys. J. B – volume: 33 start-page: 511 year: 2013 ident: 899_CR32 publication-title: High. Press. Res. doi: 10.1080/08957959.2013.831088 – volume: 95 start-page: 020104 year: 2017 ident: 899_CR9 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.020104 – volume: 116 start-page: 057002 year: 2016 ident: 899_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.057002 – ident: 899_CR15 – volume: 128 start-page: 215702 year: 2022 ident: 899_CR39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.215702 – volume: 525 start-page: 73 year: 2015 ident: 899_CR1 publication-title: Nature doi: 10.1038/nature14964 – volume: 220 start-page: 567 year: 2005 ident: 899_CR21 publication-title: Z. Krist. Cryst. Mater. doi: 10.1524/zkri.220.5.567.65075 – volume: 150 start-page: 161101 year: 2019 ident: 899_CR23 publication-title: J. Chem. Phys. doi: 10.1063/1.5094646 – volume: 22 start-page: 908 year: 2015 ident: 899_CR31 publication-title: J. Synchrotron Radiat. doi: 10.1107/S1600577515005937 – volume: 117 start-page: 075503 year: 2016 ident: 899_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.075503 – volume: 102 start-page: 134109 year: 2020 ident: 899_CR7 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.134109 – volume: 35 start-page: 2104 year: 2010 ident: 899_CR20 publication-title: Int. J. Hydrog. Energ. doi: 10.1016/j.ijhydene.2010.01.006 – volume: 114 start-page: 157004 year: 2015 ident: 899_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.157004 – volume: 532 start-page: 81 year: 2016 ident: 899_CR6 publication-title: Nature doi: 10.1038/nature17175 – volume: 108 start-page: 125501 year: 2012 ident: 899_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.125501 – volume: 106 start-page: 095503 year: 2011 ident: 899_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.095503 – volume: 35 start-page: 223 year: 2015 ident: 899_CR34 publication-title: High. Press. Res. doi: 10.1080/08957959.2015.1059835 – volume: 70 start-page: 184109 year: 2004 ident: 899_CR38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.184109 – volume: 96 start-page: 144105 year: 2017 ident: 899_CR27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.144105 – volume: 93 start-page: 174105 year: 2016 ident: 899_CR4 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.174105 – volume: 12 year: 2021 ident: 899_CR40 publication-title: Nat. Commun. doi: 10.1038/s41467-021-26664-3 – volume: 95 start-page: 140101 year: 2017 ident: 899_CR2 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.140101 |
SSID | ssj0002511640 |
Score | 2.3107502 |
Snippet | The H
2
Se molecule and the van der Waals compound (H
2
Se)
2
H
2
are both unstable upon room temperature compression, dissociating into their constituent... The H 2 Se molecule and the van der Waals compound (H 2 Se) 2 H 2 are both unstable upon room temperature compression, dissociating into their constituent... The H2Se molecule and the van der Waals compound (H2Se)2H2 are both unstable upon room temperature compression, dissociating into their constituent elements... Abstract The H2Se molecule and the van der Waals compound (H2Se)2H2 are both unstable upon room temperature compression, dissociating into their constituent... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 193 |
SubjectTerms | 639/301/119/1002 639/638/440/94 639/766/119/2795 Chemistry and Materials Science Decomposition Density functional theory Diamond anvil cells High pressure High temperature Hydrides Hydrogen Interstices Lasers Materials Science Molecular chains Phase transitions Room temperature Selenium Spectrum analysis Superconductivity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8MgFCZmJy9Go8bpNBy8KVnLj0KParYsJnpyyW6EAs12sDP7cfC_90FbXZcYL14LlPIe5fsI730gdJvmJWW8LIgRRhDAa0UK5wxJbO6yrCy5TUKC88trNpny55mY7Vz1FWLCanng2nBDn1ObMGUMZyVAt8qNVdRn3kiTOpVF9VLAvJ3NVFiDA3HOeNJkyUD74TpIz4V4W0GScNRF8g4SRcH-Dsvcj5HcOyiN-DM-RkcNccQP9QefoANfnaLRtAoS_RZoIw7B4eGOJAw9tRmJeFFhYHgYFpe1x-FipWqxfSfzT7dawszBtY7zGZqOR29PE9JcjEAsEww-3RQOoN97yopEWFgjvMw9U9II6YBxwbY2SZyR1AtrvCgso9Ir6ZgBvpKqjJ2jXrWs_AXCNE9FobhnqXCAZ9CSc6M8mJhD5dL20V1rJP1R61_oeG7NlK5NqsGkOppU5330GOz4XTNoV8cH4FHdeFT_5dE-GrRe0M0PtdbQUxp0hwQUq45nOp11S6rFPApmAzrLkHPcR_etE3_e_PtoLv9jNFfokIZJFyNgBqi3WW39NfCYTXETp-wXtY_vLQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS-wwEB90vbyL-FCxT5_k4E2DbZO06UmesiKCIuKCt5Am6XMPr7vu6sH_3pluqlR4XtumSWcmM79mvgCOsqrJhWxqbpVVHO215rX3lqeu8kXRNNKllOB8c1tcTeT1o3qMB27LGFbZ68ROUfuZozPyUzT8GRWeUeps_sypaxR5V2MLjXXYQBWs9Qg2zse3d_cfpywEoAuZxmyZVOjTJZWgo7hbxVNyefFqYJG6wv0DtPk1VvKLw7SzQ5dbsBkBJPuz4vhPWAvtNownLZXqdwgfGQWJU68khjP1mYls2jJEegyVzDIwarDUTl__8ac3v5ihBLFVPecdmFyOHy6ueGyQwJ1QApdua48QIIRc1KlyqCtCWQWhS6tKj8gLf2_T1NsyD8rZoGon8jLo0guLuCXThdiFUTtrwx6wvMpUrWUQmfJo13CklFYHnQeJDzcugeOeSGa-qoNhOv-10GZFUoMkNR1JTZXAOdHx40mqYd1dmC3-mrglTKhyh8OtlaJBUKYr63C6ItjSZl4XKoGDngsmbqyl-RSDBPSAM4PJhnfa6VNXOButdEm5xwmc9Ez8fPP_v-bX9wvZhx85iVMX43IAo5fFa_iNSOWlPozi-A7UVef3 priority: 102 providerName: ProQuest |
Title | Unexpected compound reformation in the dense selenium-hydrogen system |
URI | https://link.springer.com/article/10.1038/s43246-025-00899-9 https://www.proquest.com/docview/3241767455 https://pubmed.ncbi.nlm.nih.gov/PMC12370533 https://doaj.org/article/e92c038aa43f44189ac82e6ea7a1d865 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB0VetnLCgSr7S5UPnADaxN_JM6xVC1VJRCCrdSb5djO0sOmqxYO_HvGbgIKWg6cIjl27MxMPC_2zDPAWVpUjIuqpEYaSdFfK1o6Z2hiC5dlVSVsEhKcr2-y2ULMl3LZA9bmwsSg_UhpGafpNjrs1zYwx4VwWUmTsFNFiz3oB6p2tO3-aDS_n7-urATQnImkyZBJuPpP444XimT9HYT5Pj7y3SZp9D3TA_jagEYy2g3zEHq-PoLJog70_BYhIwmB4eF8JII9tdmIZFUTRHcEJ5atJ-FQpXr19Jc-PLvNGq2G7Dicj2Exnfwez2hzKAK1XHIcuikdun3vGS8TaXF-8HnhucqNzB2iLfylTRJncualNV6WlrPcq9xxg1glVRn_Bvv1uvbfgbAilaUSnqfSoS_DlkIY5RXzAitXdgDnrZD0vx33hY571lzpnUg1ilRHkepiAJdBjq81A291LFhv_uhGj9oXzGJzYwSvEIipwljsLvMmN6lTmRzASasF3XxMW409pYFzSOJt1dFMp7PunXr1EMmy0TPnId94ABetEt-e_PHb_Phc9Z_whQXzinEuJ7D_uHnyp4hWHssh7Knp1bAxUrxeTm5u77B0nI2HcQXgBWQB6hg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALAgFioYAPcAKriR-JfUCIR5ctfZy6Um_GsZ12D2TLbivUP8VvZCaPVqkEt14TP5KZseez5wXwJre1kKquuNdec9TXhlcxep4FG4uirlXIKMD54LCYzdX3Y328AX-GWBhyqxz2xHajjstAd-TbqPhzSjyj9cezX5yqRpF1dSih0YnFXrr8jUe29Yfdr8jft0JMd46-zHhfVYAHqaXl1lcR9WZKQlaZDrjAUmmTNKXXZUS4gmfCLIu-FEkHn3QVpCiTKaP0qOxzU0gc9w7cVRI1OUWmT79d3ekQXC9U1sfmZNJsrynhHXn5ap6RgY3bkf5rywSMsO1Nz8wb5tlW600fwoMerrJPnXw9go3UPIadeUOFAQKCVUYu6VSZieFMQxwkWzQMcSXDLW2dGJVzahYXP_npZVwtUV5Zlz36CcxvhXBPYbNZNukZMGFzXRmVZK4jalHsqZQ3yYiksHEdJvBuIJI767JuuNZaLo3rSOqQpK4lqbMT-Ex0vGpJGbPbB8vViesXoEtWBOzuvZI1QkBjfcDpiuRLn0dT6AlsDVxw_TJeu2uhm4AZcWY02fhNszht03QjJigp0nkC7wcmXo_87795_v8PeQ33ZkcH-25_93DvBdwXJFqtd80WbJ6vLtJLxEjn1atWMBn8uO2V8BeUGCI0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH4qRUJc0NCG6FbAh93AkMR24hw7RsU6QJNGpd4sx3ZoD6SopQf-e57dpFOq7bBr_OM57zl-n-P3PgN8jfMyYbwsqBZaUPTXkhbWahqZ3KZpWXIT-QTn-4f0dsxHEzHpQNrkwoSg_UBpGZbpJjrsaumZ43y4rKCRP6mi-eWLLXdgF_F2zLuwOxiMfo82f1c8cE55VGfJREz-pYOWJwqE_S2UuR0juXVQGvzP8AMc1MCRDNZDPYSOqz7CzbjyFP0GYSPxweH-jiSCkpqMRDKrCCI8govL0hF_sVI1Wz3T6ZtdzHHmkDWP8ycYD28er29pfTECNUwwHLouLLp-5xJWRMLgGuGy3DGZaZFZRFy4rY0iq7PECaOdKAxLMiczyzTilVim7Ai61bxyx0CSPBaF5I7FwqI_w5aca-lk4jhWLk0PzhslqZc1_4UK59ZMqrVKFapUBZWqvAffvB43NT13dXgwXzyp2pbK5YnB5lpzViIYk7k2KC51OtOxlanoQb-xgqo_qKVCSbHnHRJYLFuWaQlrl1SzaSDMRu-c-ZzjHlw0RvzT87_f5vP_VT-DvV_fh-rux8PPL7Cf-JkWwl760H1drNwJgpfX4rSeqe8jj-m- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unexpected+compound+reformation+in+the+dense+selenium-hydrogen+system&rft.jtitle=Communications+materials&rft.au=Hu%2C+Huixin&rft.au=Kuzovnikov%2C+Mikhail+A.&rft.au=Shuttleworth%2C+Hannah+A.&rft.au=Marque%C3%B1o%2C+Tomas&rft.date=2025-12-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2662-4443&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1038%2Fs43246-025-00899-9&rft.externalDocID=10_1038_s43246_025_00899_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4443&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4443&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4443&client=summon |