Signal quality and power spectrum analysis of remote ultra long‐term subcutaneous EEG

Objective Ultra long‐term subcutaneous electroencephalography (sqEEG) monitoring is a new modality with great potential for both health and disease, including epileptic seizure detection and forecasting. However, little is known about the long‐term quality and consistency of the sqEEG signal, which...

Full description

Saved in:
Bibliographic Details
Published inEpilepsia (Copenhagen) Vol. 62; no. 8; pp. 1820 - 1828
Main Authors Viana, Pedro F., Remvig, Line S., Duun‐Henriksen, Jonas, Glasstetter, Martin, Dümpelmann, Matthias, Nurse, Ewan S., Martins, Isabel P., Schulze‐Bonhage, Andreas, Freestone, Dean R., Brinkmann, Benjamin H., Kjaer, Troels W., Richardson, Mark P.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective Ultra long‐term subcutaneous electroencephalography (sqEEG) monitoring is a new modality with great potential for both health and disease, including epileptic seizure detection and forecasting. However, little is known about the long‐term quality and consistency of the sqEEG signal, which is the objective of this study. Methods The largest multicenter cohort of sqEEG was analyzed, including 14 patients with epilepsy and 12 healthy subjects, implanted with a sqEEG device (24/7 EEG™ SubQ), and recorded from 23 to 230 days (median 42 days), with a median data capture rate of 75% (17.9 hours/day). Median power spectral density plots of each subject were examined for physiological peaks, including at diurnal and nocturnal periods. Long‐term temporal trends in signal impedance and power spectral features were investigated with subject‐specific linear regression models and group‐level linear mixed‐effects models. Results sqEEG spectrograms showed an approximate 1/f power distribution. Diurnal peaks in the alpha range (8‐13Hz) and nocturnal peaks in the sigma range (12‐16Hz) were seen in the majority of subjects. Signal impedances remained low, and frequency band powers were highly stable throughout the recording periods. Significance The spectral characteristics of minimally invasive, ultra long‐term sqEEG are similar to scalp EEG, whereas the signal is highly stationary. Our findings reinforce the suitability of this system for chronic implantation on diverse clinical applications, from seizure detection and forecasting to brain‐computer interfaces.
AbstractList Objective Ultra long‐term subcutaneous electroencephalography (sqEEG) monitoring is a new modality with great potential for both health and disease, including epileptic seizure detection and forecasting. However, little is known about the long‐term quality and consistency of the sqEEG signal, which is the objective of this study. Methods The largest multicenter cohort of sqEEG was analyzed, including 14 patients with epilepsy and 12 healthy subjects, implanted with a sqEEG device (24/7 EEG™ SubQ), and recorded from 23 to 230 days (median 42 days), with a median data capture rate of 75% (17.9 hours/day). Median power spectral density plots of each subject were examined for physiological peaks, including at diurnal and nocturnal periods. Long‐term temporal trends in signal impedance and power spectral features were investigated with subject‐specific linear regression models and group‐level linear mixed‐effects models. Results sqEEG spectrograms showed an approximate 1/f power distribution. Diurnal peaks in the alpha range (8‐13Hz) and nocturnal peaks in the sigma range (12‐16Hz) were seen in the majority of subjects. Signal impedances remained low, and frequency band powers were highly stable throughout the recording periods. Significance The spectral characteristics of minimally invasive, ultra long‐term sqEEG are similar to scalp EEG, whereas the signal is highly stationary. Our findings reinforce the suitability of this system for chronic implantation on diverse clinical applications, from seizure detection and forecasting to brain‐computer interfaces.
Ultra long-term subcutaneous electroencephalography (sqEEG) monitoring is a new modality with great potential for both health and disease, including epileptic seizure detection and forecasting. However, little is known about the long-term quality and consistency of the sqEEG signal, which is the objective of this study.OBJECTIVEUltra long-term subcutaneous electroencephalography (sqEEG) monitoring is a new modality with great potential for both health and disease, including epileptic seizure detection and forecasting. However, little is known about the long-term quality and consistency of the sqEEG signal, which is the objective of this study.The largest multicenter cohort of sqEEG was analyzed, including 14 patients with epilepsy and 12 healthy subjects, implanted with a sqEEG device (24/7 EEG™ SubQ), and recorded from 23 to 230 days (median 42 days), with a median data capture rate of 75% (17.9 hours/day). Median power spectral density plots of each subject were examined for physiological peaks, including at diurnal and nocturnal periods. Long-term temporal trends in signal impedance and power spectral features were investigated with subject-specific linear regression models and group-level linear mixed-effects models.METHODSThe largest multicenter cohort of sqEEG was analyzed, including 14 patients with epilepsy and 12 healthy subjects, implanted with a sqEEG device (24/7 EEG™ SubQ), and recorded from 23 to 230 days (median 42 days), with a median data capture rate of 75% (17.9 hours/day). Median power spectral density plots of each subject were examined for physiological peaks, including at diurnal and nocturnal periods. Long-term temporal trends in signal impedance and power spectral features were investigated with subject-specific linear regression models and group-level linear mixed-effects models.sqEEG spectrograms showed an approximate 1/f power distribution. Diurnal peaks in the alpha range (8-13Hz) and nocturnal peaks in the sigma range (12-16Hz) were seen in the majority of subjects. Signal impedances remained low, and frequency band powers were highly stable throughout the recording periods.RESULTSsqEEG spectrograms showed an approximate 1/f power distribution. Diurnal peaks in the alpha range (8-13Hz) and nocturnal peaks in the sigma range (12-16Hz) were seen in the majority of subjects. Signal impedances remained low, and frequency band powers were highly stable throughout the recording periods.The spectral characteristics of minimally invasive, ultra long-term sqEEG are similar to scalp EEG, whereas the signal is highly stationary. Our findings reinforce the suitability of this system for chronic implantation on diverse clinical applications, from seizure detection and forecasting to brain-computer interfaces.SIGNIFICANCEThe spectral characteristics of minimally invasive, ultra long-term sqEEG are similar to scalp EEG, whereas the signal is highly stationary. Our findings reinforce the suitability of this system for chronic implantation on diverse clinical applications, from seizure detection and forecasting to brain-computer interfaces.
Ultra long-term subcutaneous electroencephalography (sqEEG) monitoring is a new modality with great potential for both health and disease, including epileptic seizure detection and forecasting. However, little is known about the long-term quality and consistency of the sqEEG signal, which is the objective of this study. The largest multicenter cohort of sqEEG was analyzed, including 14 patients with epilepsy and 12 healthy subjects, implanted with a sqEEG device (24/7 EEG SubQ), and recorded from 23 to 230 days (median 42 days), with a median data capture rate of 75% (17.9 hours/day). Median power spectral density plots of each subject were examined for physiological peaks, including at diurnal and nocturnal periods. Long-term temporal trends in signal impedance and power spectral features were investigated with subject-specific linear regression models and group-level linear mixed-effects models. sqEEG spectrograms showed an approximate 1/f power distribution. Diurnal peaks in the alpha range (8-13Hz) and nocturnal peaks in the sigma range (12-16Hz) were seen in the majority of subjects. Signal impedances remained low, and frequency band powers were highly stable throughout the recording periods. The spectral characteristics of minimally invasive, ultra long-term sqEEG are similar to scalp EEG, whereas the signal is highly stationary. Our findings reinforce the suitability of this system for chronic implantation on diverse clinical applications, from seizure detection and forecasting to brain-computer interfaces.
ObjectiveUltra long‐term subcutaneous electroencephalography (sqEEG) monitoring is a new modality with great potential for both health and disease, including epileptic seizure detection and forecasting. However, little is known about the long‐term quality and consistency of the sqEEG signal, which is the objective of this study.MethodsThe largest multicenter cohort of sqEEG was analyzed, including 14 patients with epilepsy and 12 healthy subjects, implanted with a sqEEG device (24/7 EEG™ SubQ), and recorded from 23 to 230 days (median 42 days), with a median data capture rate of 75% (17.9 hours/day). Median power spectral density plots of each subject were examined for physiological peaks, including at diurnal and nocturnal periods. Long‐term temporal trends in signal impedance and power spectral features were investigated with subject‐specific linear regression models and group‐level linear mixed‐effects models.ResultssqEEG spectrograms showed an approximate 1/f power distribution. Diurnal peaks in the alpha range (8‐13Hz) and nocturnal peaks in the sigma range (12‐16Hz) were seen in the majority of subjects. Signal impedances remained low, and frequency band powers were highly stable throughout the recording periods.SignificanceThe spectral characteristics of minimally invasive, ultra long‐term sqEEG are similar to scalp EEG, whereas the signal is highly stationary. Our findings reinforce the suitability of this system for chronic implantation on diverse clinical applications, from seizure detection and forecasting to brain‐computer interfaces.
Author Martins, Isabel P.
Brinkmann, Benjamin H.
Remvig, Line S.
Duun‐Henriksen, Jonas
Glasstetter, Martin
Dümpelmann, Matthias
Schulze‐Bonhage, Andreas
Nurse, Ewan S.
Freestone, Dean R.
Kjaer, Troels W.
Viana, Pedro F.
Richardson, Mark P.
Author_xml – sequence: 1
  givenname: Pedro F.
  orcidid: 0000-0003-0861-8705
  surname: Viana
  fullname: Viana, Pedro F.
  email: pedro.viana@kcl.ac.uk
  organization: University of Lisbon
– sequence: 2
  givenname: Line S.
  surname: Remvig
  fullname: Remvig, Line S.
  organization: UNEEG medical A/S
– sequence: 3
  givenname: Jonas
  orcidid: 0000-0003-1558-8225
  surname: Duun‐Henriksen
  fullname: Duun‐Henriksen, Jonas
  organization: UNEEG medical A/S
– sequence: 4
  givenname: Martin
  surname: Glasstetter
  fullname: Glasstetter, Martin
  organization: University Medical Center Freiburg
– sequence: 5
  givenname: Matthias
  orcidid: 0000-0002-1476-7777
  surname: Dümpelmann
  fullname: Dümpelmann, Matthias
  organization: University Medical Center Freiburg
– sequence: 6
  givenname: Ewan S.
  orcidid: 0000-0001-8981-0074
  surname: Nurse
  fullname: Nurse, Ewan S.
  organization: University of Melbourne
– sequence: 7
  givenname: Isabel P.
  surname: Martins
  fullname: Martins, Isabel P.
  organization: University of Lisbon
– sequence: 8
  givenname: Andreas
  orcidid: 0000-0003-2382-0506
  surname: Schulze‐Bonhage
  fullname: Schulze‐Bonhage, Andreas
  organization: University Medical Center Freiburg
– sequence: 9
  givenname: Dean R.
  surname: Freestone
  fullname: Freestone, Dean R.
  organization: University of Melbourne
– sequence: 10
  givenname: Benjamin H.
  orcidid: 0000-0002-2392-8608
  surname: Brinkmann
  fullname: Brinkmann, Benjamin H.
  organization: Mayo Clinic
– sequence: 11
  givenname: Troels W.
  orcidid: 0000-0002-2105-6199
  surname: Kjaer
  fullname: Kjaer, Troels W.
  organization: University of Copenhagen
– sequence: 12
  givenname: Mark P.
  surname: Richardson
  fullname: Richardson, Mark P.
  organization: King’s College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34250608$$D View this record in MEDLINE/PubMed
BookMark eNp1kU9LHDEYxoNYdLUe-gVKoJd6WE12ZjLJschWhYUWtHgMmcwbiWQmY_4ge-tH8DP6SRp314vYXF4Iv-d5_zxHaH_0IyD0hZIzWt45TPaMMsHEHprRZsHnlLJ2H80IodVcNJwcoqMYHwghLWurA3RY1YuGMMJn6O7G3o_K4cesnE1rrMYeT_4JAo4T6BTyUL6UW0cbsTc4wOAT4OxSUNj58f7l73OCMOCYO52TGsHniJfLy8_ok1EuwsmuHqM_P5e3F1fz1a_L64sfq7mumkqU4RrSa044Ua2p-w4oGKaANsJoVRmuOes7LgQVTd3XAvrOKAqUC77ojCgWx-j71ncK_jFDTHKwUYNz21HkojRgVVsxWtBv79AHn0NZbkNxwmrStoX6uqNyN0Avp2AHFdby7WQFON8COvgYAxipbVLJ-rHcxDpJiXwNRZZQ5CaUojh9p3gz_YjduT9ZB-v_g3L5-3qr-AfPOJwy
CitedBy_id crossref_primary_10_1088_1741_2552_ac72c1
crossref_primary_10_1111_epi_17548
crossref_primary_10_3389_fneur_2021_740743
crossref_primary_10_1016_j_yebeh_2023_109557
crossref_primary_10_1111_epi_17265
crossref_primary_10_3389_fvets_2024_1419792
crossref_primary_10_1016_j_sleh_2024_08_007
crossref_primary_10_1038_s41573_024_00981_w
crossref_primary_10_1177_15357597231197093
crossref_primary_10_3390_jcm14030863
crossref_primary_10_1016_j_clinph_2022_07_504
crossref_primary_10_1016_j_seizure_2023_05_007
crossref_primary_10_1111_epi_18384
crossref_primary_10_3389_fvets_2022_1014269
crossref_primary_10_1055_a_2318_5754
crossref_primary_10_1192_bjo_2024_825
crossref_primary_10_1016_j_jnrt_2024_100138
crossref_primary_10_1007_s13246_023_01340_6
crossref_primary_10_3389_fneur_2021_718329
crossref_primary_10_1002_epi4_12844
crossref_primary_10_1016_j_clinph_2022_03_006
crossref_primary_10_1016_j_clinph_2022_07_003
crossref_primary_10_1111_epi_17252
crossref_primary_10_1111_epi_18121
crossref_primary_10_1016_j_yebeh_2023_109486
crossref_primary_10_1111_jsr_14197
crossref_primary_10_3389_frsle_2024_1496923
crossref_primary_10_1016_j_fmre_2024_04_011
crossref_primary_10_1039_D1SD00020A
crossref_primary_10_3389_fsurg_2023_1304343
crossref_primary_10_3389_fneur_2021_713794
crossref_primary_10_3389_fnins_2024_1401068
crossref_primary_10_3389_fneur_2024_1425490
Cites_doi 10.3390/s18010029
10.1016/S1474-4422(20)30396-3
10.1002/acn3.710
10.3390/s19061365
10.1152/jn.00320.2018
10.1155/2015/341208
10.1186/s12938-019-0725-3
10.1177/0333102419877660
10.1016/S1388-2457(99)00122-4
10.1016/j.brs.2013.02.001
10.1002/acn3.51261
10.1109/TBME.2017.2768442
10.1016/j.biopsycho.2008.11.002
10.1523/JNEUROSCI.2332-14.2015
10.1016/j.clinph.2005.07.019
10.1016/0301-0511(91)90008-5
10.1016/S1474-4422(13)70075-9
10.1016/j.yebeh.2020.107514
10.1177/1550059416652055
10.1038/s41467-020-15908-3
10.1038/s41467-017-02577-y
10.1016/j.psychres.2018.08.051
10.1586/17434440.2014.947274
10.1016/j.nicl.2015.08.014
10.1016/j.eplepsyres.2019.02.003
10.1088/1741-2552/aa7f40
10.1088/1741-2552/aaf12e
10.1016/j.clinph.2017.09.115
10.1111/epi.16360
10.1016/j.clinph.2019.06.234
10.1093/sleep/zsaa230
10.1016/S1059-1311(98)90006-1
10.1093/brain/aww019
10.1016/j.clinph.2018.03.037
10.1136/jnnp.51.6.875
10.1038/s41593-020-00744-x
10.1111/epi.16630
10.1002/acn3.51032
10.1109/JTEHM.2018.2869398
ContentType Journal Article
Copyright 2021 International League Against Epilepsy
2021 International League Against Epilepsy.
Copyright © 2021 International League Against Epilepsy
Copyright_xml – notice: 2021 International League Against Epilepsy
– notice: 2021 International League Against Epilepsy.
– notice: Copyright © 2021 International League Against Epilepsy
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
DOI 10.1111/epi.16969
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1528-1167
EndPage 1828
ExternalDocumentID 34250608
10_1111_epi_16969
EPI16969
Genre article
Research Support, Non-U.S. Gov't
Multicenter Study
Journal Article
GrantInformation_xml – fundername: European Commission
  funderid: 115902
– fundername: NIHR Biomedical Research Centre, Royal Marsden NHS Foundation Trust/Institute of Cancer Research
– fundername: MRC Centre for Neurodevelopmental Disorders
  funderid: MR/ N026063/1
– fundername: Epilepsy Foundation
– fundername: Department of Health
– fundername: Medical Research Council
  grantid: MR/N026063/1
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29G
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAGKA
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIVO
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FUBAC
FYBCS
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TR2
UB1
V8K
V9Y
VH1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
YFH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~WT
AAFWJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
ID FETCH-LOGICAL-c3539-9550dc8080a7f4dbe1ef6ae159fca3f8c86db8991954d49edbfa1e18982bf9353
IEDL.DBID DR2
ISSN 0013-9580
1528-1167
IngestDate Fri Jul 11 01:15:55 EDT 2025
Wed Aug 13 08:00:36 EDT 2025
Mon Jul 21 06:03:05 EDT 2025
Tue Jul 01 03:17:57 EDT 2025
Thu Apr 24 23:07:16 EDT 2025
Wed Jan 22 16:28:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords power spectrum
long-term EEG monitoring
seizure detection
subcutaneous EEG
seizure forecasting
Language English
License 2021 International League Against Epilepsy.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3539-9550dc8080a7f4dbe1ef6ae159fca3f8c86db8991954d49edbfa1e18982bf9353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8981-0074
0000-0002-2392-8608
0000-0003-2382-0506
0000-0002-2105-6199
0000-0003-0861-8705
0000-0003-1558-8225
0000-0002-1476-7777
PMID 34250608
PQID 2558064077
PQPubID 1066359
PageCount 9
ParticipantIDs proquest_miscellaneous_2550637361
proquest_journals_2558064077
pubmed_primary_34250608
crossref_citationtrail_10_1111_epi_16969
crossref_primary_10_1111_epi_16969
wiley_primary_10_1111_epi_16969_EPI16969
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Epilepsia (Copenhagen)
PublicationTitleAlternate Epilepsia
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 120
2015; 35
2021; 8
2021; 20
2019; 6
2021; 44
2012
2017; 48
2009; 80
2020; 40
1991; 32
2020; 61
2018; 129
2005; 116
2019; 16
2019; 19
2019; 18
1988; 51
2020; 11
2015; 9
2018; 65
2013; 6
2018; 6
2020; 7
2018; 18
2018; 9
2019; 60
2018; 270
2017; 14
2020; 131
2021; 115
2013; 12
2015; 2015
1999; 110
2016; 139
2020; 23
1998; 7
2014; 11
2019; 153
2017; 128
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Nasseri M (e_1_2_8_15_1) 2020; 61
Schomer DL (e_1_2_8_24_1) 2012
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 2015
  start-page: 1
  year: 2015
  end-page: 9
  article-title: EEG signal quality of a subcutaneous recording system compared to standard surface electrodes
  publication-title: Journal of Sensors
– volume: 60
  start-page: 2204
  issue: 11
  year: 2019
  end-page: 14
  article-title: Ultra‐long‐term subcutaneous home monitoring of epilepsy‐490 days of EEG from nine patients
  publication-title: Epilepsia
– volume: 61
  start-page: S25
  issue: Suppl 1
  year: 2020
  end-page: 35
  article-title: Signal quality and patient experience with wearable devices for epilepsy management
  publication-title: Epilepsia
– volume: 11
  start-page: 2172
  issue: 1
  year: 2020
  article-title: Critical slowing down as a biomarker for seizure susceptibility
  publication-title: Nat Commun
– volume: 12
  start-page: 563
  issue: 6
  year: 2013
  end-page: 71
  article-title: Prediction of seizure likelihood with a long‐term, implanted seizure advisory system in patients with drug‐resistant epilepsy: a first‐in‐man study
  publication-title: Lancet Neurol
– volume: 6
  start-page: 718
  issue: 5
  year: 2013
  end-page: 26
  article-title: Long‐term measurement of impedance in chronically implanted depth and subdural electrodes during responsive neurostimulation in humans
  publication-title: Brain Stimul
– volume: 18
  start-page: 29
  issue: 2
  year: 2018
  article-title: Comparison between scalp EEG and behind‐the‐ear EEG for development of a wearable seizure detection system for patients with focal epilepsy
  publication-title: Sensors
– volume: 14
  start-page: 56011
  issue: 5
  year: 2017
  article-title: Intracranial EEG fluctuates over months after implanting electrodes in human brain
  publication-title: J Neural Eng
– volume: 9
  start-page: 88
  issue: 1
  year: 2018
  article-title: Multi‐day rhythms modulate seizure risk in epilepsy
  publication-title: Nat Commun
– volume: 44
  start-page: zsaa230
  issue: 4
  year: 2021
  article-title: Spindles are highly heritable as identified by different spindle detectors
  publication-title: Sleep
– volume: 35
  start-page: 13257
  issue: 38
  year: 2015
  end-page: 65
  article-title: Age‐related changes in 1/f neural electrophysiological noise
  publication-title: J Neurosci
– volume: 51
  start-page: 875
  issue: 6
  year: 1988
  end-page: 7
  article-title: Seasonal variations in the incidence of photoparoxysmal response to stimulation among photosensitive epileptic patients: evidence from repeated EEG recordings
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 8
  start-page: 288
  issue: 1
  year: 2021
  end-page: 93
  article-title: 230 days of ultra long‐term subcutaneous EEG: seizure cycle analysis and comparison to patient diary
  publication-title: Ann Clin Transl Neurol
– volume: 110
  start-page: 1708
  issue: 10
  year: 1999
  end-page: 16
  article-title: Long‐term intra‐individual variability of the background EEG in normals
  publication-title: Clin Neurophysiol
– volume: 129
  start-page: 1410
  issue: 7
  year: 2018
  end-page: 7
  article-title: Temporal stability of posterior EEG alpha over twelve years
  publication-title: Clin Neurophysiol
– volume: 11
  start-page: 563
  issue: 6
  year: 2014
  end-page: 72
  article-title: The RNS System: responsive cortical stimulation for the treatment of refractory partial epilepsy
  publication-title: Expert Rev Med Devices
– volume: 19
  start-page: 1365
  issue: 6
  year: 2019
  article-title: The dry revolution: evaluation of three different EEG dry electrode types in terms of signal spectral features, mental states classification and usability
  publication-title: Sensors
– volume: 32
  start-page: 173
  issue: 2–3
  year: 1991
  end-page: 9
  article-title: P300 seasonal variation
  publication-title: Biol Psychol
– volume: 153
  start-page: 68
  year: 2019
  end-page: 70
  article-title: Brain‐responsive neurostimulation for epilepsy (RNS® System)
  publication-title: Epilepsy Res
– volume: 270
  start-page: 126
  year: 2018
  end-page: 33
  article-title: Seasonal variation of spontaneous blink rate and beta EEG activity
  publication-title: Psychiatry Res
– volume: 128
  start-page: 2454
  issue: 12
  year: 2017
  end-page: 61
  article-title: Ear‐EEG detects ictal and interictal abnormalities in focal and generalized epilepsy – A comparison with scalp EEG monitoring
  publication-title: Clin Neurophysiol
– volume: 23
  start-page: 1655
  issue: 12
  year: 2020
  end-page: 65
  article-title: Parameterizing neural power spectra into periodic and aperiodic components
  publication-title: Nat Neurosci
– volume: 7
  start-page: 667
  issue: 5
  year: 2020
  end-page: 76
  article-title: Heritability of alpha and sensorimotor network changes in temporal lobe epilepsy
  publication-title: Ann Clin Transl Neurol
– volume: 116
  start-page: 2701
  issue: 11
  year: 2005
  end-page: 6
  article-title: Lower frequency variability in the alpha activity in EEG among patients with epilepsy
  publication-title: Clin Neurophysiol
– volume: 20
  start-page: 127
  issue: 2
  year: 2021
  end-page: 35
  article-title: Forecasting seizure risk in adults with focal epilepsy: a development and validation study
  publication-title: Lancet Neurol
– volume: 16
  start-page: 11001
  issue: 1
  year: 2019
  article-title: A comprehensive review of EEG‐based brain–computer interface paradigms
  publication-title: J Neural Eng
– volume: 120
  start-page: 1451
  issue: 3
  year: 2018
  end-page: 60
  article-title: High similarity between EEG from subcutaneous and proximate scalp electrodes in patients with temporal lobe epilepsy
  publication-title: J Neurophysiol
– volume: 139
  start-page: 1066
  issue: Pt 4
  year: 2016
  end-page: 78
  article-title: Interictal spikes and epileptic seizures: their relationship and underlying rhythmicity
  publication-title: Brain
– volume: 18
  start-page: 106
  issue: 1
  year: 2019
  article-title: Automatic sleep stage classification based on subcutaneous EEG in patients with epilepsy
  publication-title: Biomed Eng Online
– volume: 65
  start-page: 344
  issue: 2
  year: 2018
  end-page: 52
  article-title: Consistency of long‐term subdural electrocorticography in humans
  publication-title: IEEE Trans Biomed Eng
– volume: 6
  start-page: 2500112
  year: 2018
  article-title: Integrating brain implants with local and distributed computing devices: a next generation epilepsy management system
  publication-title: IEEE J Transl Eng Health Med
– volume: 9
  start-page: 275
  year: 2015
  end-page: 82
  article-title: EEG resting state analysis of cortical sources in patients with benign epilepsy with centrotemporal spikes
  publication-title: Neuroimage Clin
– volume: 48
  start-page: 200
  issue: 3
  year: 2017
  end-page: 8
  article-title: Slow activity in focal epilepsy during sleep and wakefulness
  publication-title: Clin EEG Neurosci
– volume: 61
  start-page: 1805
  issue: 9
  year: 2020
  end-page: 17
  article-title: A new era in electroencephalographic monitoring? Subscalp devices for ultra–long‐term recordings
  publication-title: Epilepsia
– volume: 115
  start-page: 107514
  year: 2021
  article-title: Effects of perampanel on cognition and quantitative electroencephalography in patients with epilepsy [Internet]
  publication-title: Epilepsy Behav
– volume: 131
  start-page: 285
  issue: 1
  year: 2020
  end-page: 307
  article-title: International Federation of Clinical Neurophysiology (IFCN)–EEG research workgroup: Recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: Applications in clinical research studies
  publication-title: Clin Neurophysiol
– volume: 80
  start-page: 315
  issue: 3
  year: 2009
  end-page: 20
  article-title: Circadian and seasonal variability of resting frontal EEG asymmetry
  publication-title: Biol Psychol
– volume: 7
  start-page: 39
  issue: 1
  year: 1998
  end-page: 42
  article-title: Interictal quantitative EEG in epilepsy
  publication-title: Seizure
– volume: 40
  start-page: 255
  issue: 3
  year: 2020
  end-page: 65
  article-title: Brain state monitoring for the future prediction of migraine attacks
  publication-title: Cephalalgia
– volume: 6
  start-page: 333
  issue: 2
  year: 2019
  end-page: 43
  article-title: Slower alpha rhythm associates with poorer seizure control in epilepsy
  publication-title: Ann Clin Transl Neurol
– start-page: 1296
  year: 2012
– ident: e_1_2_8_11_1
  doi: 10.3390/s18010029
– ident: e_1_2_8_16_1
  doi: 10.1016/S1474-4422(20)30396-3
– ident: e_1_2_8_25_1
  doi: 10.1002/acn3.710
– ident: e_1_2_8_10_1
  doi: 10.3390/s19061365
– ident: e_1_2_8_13_1
  doi: 10.1152/jn.00320.2018
– ident: e_1_2_8_14_1
  doi: 10.1155/2015/341208
– ident: e_1_2_8_23_1
  doi: 10.1186/s12938-019-0725-3
– ident: e_1_2_8_8_1
  doi: 10.1177/0333102419877660
– ident: e_1_2_8_18_1
  doi: 10.1016/S1388-2457(99)00122-4
– start-page: 1296
  volume-title: Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields
  year: 2012
  ident: e_1_2_8_24_1
– ident: e_1_2_8_32_1
  doi: 10.1016/j.brs.2013.02.001
– ident: e_1_2_8_35_1
  doi: 10.1002/acn3.51261
– ident: e_1_2_8_30_1
  doi: 10.1109/TBME.2017.2768442
– ident: e_1_2_8_37_1
  doi: 10.1016/j.biopsycho.2008.11.002
– ident: e_1_2_8_22_1
  doi: 10.1523/JNEUROSCI.2332-14.2015
– ident: e_1_2_8_27_1
  doi: 10.1016/j.clinph.2005.07.019
– ident: e_1_2_8_38_1
  doi: 10.1016/0301-0511(91)90008-5
– ident: e_1_2_8_2_1
  doi: 10.1016/S1474-4422(13)70075-9
– ident: e_1_2_8_28_1
  doi: 10.1016/j.yebeh.2020.107514
– ident: e_1_2_8_42_1
  doi: 10.1177/1550059416652055
– ident: e_1_2_8_17_1
  doi: 10.1038/s41467-020-15908-3
– ident: e_1_2_8_34_1
  doi: 10.1038/s41467-017-02577-y
– ident: e_1_2_8_36_1
  doi: 10.1016/j.psychres.2018.08.051
– ident: e_1_2_8_4_1
  doi: 10.1586/17434440.2014.947274
– ident: e_1_2_8_41_1
  doi: 10.1016/j.nicl.2015.08.014
– ident: e_1_2_8_7_1
  doi: 10.1016/j.eplepsyres.2019.02.003
– ident: e_1_2_8_31_1
  doi: 10.1088/1741-2552/aa7f40
– ident: e_1_2_8_9_1
  doi: 10.1088/1741-2552/aaf12e
– ident: e_1_2_8_12_1
  doi: 10.1016/j.clinph.2017.09.115
– ident: e_1_2_8_6_1
  doi: 10.1111/epi.16360
– ident: e_1_2_8_20_1
  doi: 10.1016/j.clinph.2019.06.234
– ident: e_1_2_8_29_1
  doi: 10.1093/sleep/zsaa230
– ident: e_1_2_8_40_1
  doi: 10.1016/S1059-1311(98)90006-1
– ident: e_1_2_8_33_1
  doi: 10.1093/brain/aww019
– ident: e_1_2_8_19_1
  doi: 10.1016/j.clinph.2018.03.037
– ident: e_1_2_8_39_1
  doi: 10.1136/jnnp.51.6.875
– volume: 61
  start-page: S25
  issue: 1
  year: 2020
  ident: e_1_2_8_15_1
  article-title: Signal quality and patient experience with wearable devices for epilepsy management
  publication-title: Epilepsia
– ident: e_1_2_8_21_1
  doi: 10.1038/s41593-020-00744-x
– ident: e_1_2_8_3_1
  doi: 10.1111/epi.16630
– ident: e_1_2_8_26_1
  doi: 10.1002/acn3.51032
– ident: e_1_2_8_5_1
  doi: 10.1109/JTEHM.2018.2869398
SSID ssj0007673
Score 2.5030887
Snippet Objective Ultra long‐term subcutaneous electroencephalography (sqEEG) monitoring is a new modality with great potential for both health and disease, including...
Ultra long-term subcutaneous electroencephalography (sqEEG) monitoring is a new modality with great potential for both health and disease, including epileptic...
ObjectiveUltra long‐term subcutaneous electroencephalography (sqEEG) monitoring is a new modality with great potential for both health and disease, including...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1820
SubjectTerms Convulsions & seizures
Diurnal
EEG
Electroencephalography
Epilepsy
Epilepsy - diagnosis
Humans
Interfaces
long‐term EEG monitoring
Nocturnal
power spectrum
Regression analysis
seizure detection
seizure forecasting
Seizures
Seizures - diagnosis
Spectrum Analysis
subcutaneous EEG
Subcutaneous Tissue
Title Signal quality and power spectrum analysis of remote ultra long‐term subcutaneous EEG
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fepi.16969
https://www.ncbi.nlm.nih.gov/pubmed/34250608
https://www.proquest.com/docview/2558064077
https://www.proquest.com/docview/2550637361
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPaBeeLQ8tpTKRRy4ZJXEjp2oJ4S2lEpFCKjoASmyHbuqus2udjcHOPUn8Bv5Jcw4DygUqeIWJZPE8XjsbzIznwFeZMoqAqqR8JpHBHgjXPSyKONa2kJ4UwkqTj5-Jw9PxNFpdroG-30tTMsPMfxwI8sI8zUZuDbL34zczc_HiSwkFe9RrhYBog-_qKOU7KLLCY-KLI87ViHK4hnuvL4W_QUwr-PVsOAc3IMvfVPbPJOLcbMyY_vtDxbH__yW-3C3A6LsVTtyHsCaqzfhznEXat-Czx_Pz0igrbr8ynRdsTltqcZCceaiucRTLaEJm3m2cKhzx5rpaqHZdFaf_bj6TrM-WzbGNohA3axZssnkzUM4OZh8en0YdbswRJZnHFWHPkxliX5SKy8q4xLnpXYIg7zV3Oc2l5VBr42o4ypRuMp4nbgkL_LU-AIf8QjW61ntngBTiYuF8yZGCZGmppBOpMoJXxluVZKN4GWvj9J2FOW0U8a07F0V7KgydNQIng-i85aX4yahnV6pZWeayxJ9qDyEL9UI9obLaFQUKWl7g2QQuikukxE8bgfD8BaOs1ws4xwbG1T679eXk_dvw8H27UWfwkZKWTMhxXAH1lGd7hnCnpXZDeP7J2IX_qE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VRQIu5Z8uFDAIJC5ZJbHjJAcOFd2yS7sVglb0FmLHriqW7Gp3I1ROPAIP0lfhJXgSZpwfKD8Slx64RclIduz5-WyPvwF4HMU6JqDqCZtzjwCvh0Ev8iKeS50KqwpBl5PHe3J4IF4eRocrcNrehan5IboNN7IM56_JwGlD-icrN7PjfiBTmTYplTvm5CMu2BbPRls4u0_CcHuw_3zoNTUFPM0jjh1BRF5oIlPMYysKZQJjZW4wqFudc5voRBYK1yBEhFaI1BTK5oEJkjQJlU1djQh0-Beogjgx9W-9_kFWFcvmPDvg2EziNzxGlDfUdfVs9PsN0p5FyC7EbV-Br-3g1Jkt7_vVUvX1p194I_-X0bsKaw3WZpu1cVyDFVNeh4vjJpvgBrx9c3xEAvXF0hOWlwWbUdU45u6fzqsP-KrmbGFTy-YG1dqwarKc52wyLY--ff5CgY0tKqUrBNlmWi3YYPDiJhycy2_dgtVyWpp1YHFgfGGs8lFChKFKpRFhbIQtFNdxEPXgaasAmW5Y2KkYyCRrV2M4MZmbmB486kRnNfXIn4Q2Wi3KGu-zyHCZmLgT2rgHD7vP6DfoMKgeDZJBdBpzGfTgdq19XSscHbkv_QQ763To781ng1cj93Dn30UfwKXh_ng32x3t7dyFyyElCbmMyg1Yxak19xDlLdV9Z1wM3p23Pn4HbkdeGw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qilSxAcpzoAWDQGKTURI7drJgUTEzdCitKqCiuzR-VRVDZjQzESorPqH_wa_wFXwJ184DykNi0wW7UeZKdnxfx_H1uQCPE6GEA6oBswUNHOANMOklQUILrjJmpWbucvLuHt8-YC8Pk8MV-NLehan5IboPbs4zfLx2Dj7T9icnN7OTfsQznjUVlTvm9CPu1xbPxgNU7pM4Hg3fPt8OmpYCgaIJxXkgINfKcSkWwjItTWQsLwzmdKsKalOVci1xC-J40DTLjJa2iEyUZmksbeZbRGC8v8R4mLk-EYPXP7iqBG-OsyOKw6RhQ2Pkyoa6qZ5Pfr8h2vMA2We40VX42q5NXdjyvl8tZV99-oU28j9ZvGtwpUHaZKt2jXVYMeV1WNttagluwLs3J8dOoL5WekqKUpOZ6xlH_O3TefUBH9WMLWRqydygURtSTZbzgkym5fG3z2curZFFJVWFENtMqwUZDl_chIMLea1bsFpOS3MHiIhMyIyVIUqwOJYZNywWhlktqRJR0oOnrf5z1XCwu1Ygk7zdi6Ficq-YHjzqRGc18cifhDZaI8qb2LPIcZOY-vNZ0YOH3d8YNdxRUL0aTgaxqaA86sHt2vi6USiG8ZCHKU7Wm9Dfh8-H-2P_4-6_iz6Atf3BKH813tu5B5djVyHkyyk3YBU1azYR4i3lfe9aBI4u2hy_A-cVXMo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Signal+quality+and+power+spectrum+analysis+of+remote+ultra+long-term+subcutaneous+EEG&rft.jtitle=Epilepsia+%28Copenhagen%29&rft.au=Viana%2C+Pedro+F&rft.au=Remvig%2C+Line+S&rft.au=Duun-Henriksen%2C+Jonas&rft.au=Glasstetter%2C+Martin&rft.date=2021-08-01&rft.eissn=1528-1167&rft.volume=62&rft.issue=8&rft.spage=1820&rft_id=info:doi/10.1111%2Fepi.16969&rft_id=info%3Apmid%2F34250608&rft.externalDocID=34250608
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9580&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9580&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9580&client=summon