Signal quality and power spectrum analysis of remote ultra long‐term subcutaneous EEG
Objective Ultra long‐term subcutaneous electroencephalography (sqEEG) monitoring is a new modality with great potential for both health and disease, including epileptic seizure detection and forecasting. However, little is known about the long‐term quality and consistency of the sqEEG signal, which...
Saved in:
Published in | Epilepsia (Copenhagen) Vol. 62; no. 8; pp. 1820 - 1828 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective
Ultra long‐term subcutaneous electroencephalography (sqEEG) monitoring is a new modality with great potential for both health and disease, including epileptic seizure detection and forecasting. However, little is known about the long‐term quality and consistency of the sqEEG signal, which is the objective of this study.
Methods
The largest multicenter cohort of sqEEG was analyzed, including 14 patients with epilepsy and 12 healthy subjects, implanted with a sqEEG device (24/7 EEG™ SubQ), and recorded from 23 to 230 days (median 42 days), with a median data capture rate of 75% (17.9 hours/day). Median power spectral density plots of each subject were examined for physiological peaks, including at diurnal and nocturnal periods. Long‐term temporal trends in signal impedance and power spectral features were investigated with subject‐specific linear regression models and group‐level linear mixed‐effects models.
Results
sqEEG spectrograms showed an approximate 1/f power distribution. Diurnal peaks in the alpha range (8‐13Hz) and nocturnal peaks in the sigma range (12‐16Hz) were seen in the majority of subjects. Signal impedances remained low, and frequency band powers were highly stable throughout the recording periods.
Significance
The spectral characteristics of minimally invasive, ultra long‐term sqEEG are similar to scalp EEG, whereas the signal is highly stationary. Our findings reinforce the suitability of this system for chronic implantation on diverse clinical applications, from seizure detection and forecasting to brain‐computer interfaces. |
---|---|
AbstractList | Objective
Ultra long‐term subcutaneous electroencephalography (sqEEG) monitoring is a new modality with great potential for both health and disease, including epileptic seizure detection and forecasting. However, little is known about the long‐term quality and consistency of the sqEEG signal, which is the objective of this study.
Methods
The largest multicenter cohort of sqEEG was analyzed, including 14 patients with epilepsy and 12 healthy subjects, implanted with a sqEEG device (24/7 EEG™ SubQ), and recorded from 23 to 230 days (median 42 days), with a median data capture rate of 75% (17.9 hours/day). Median power spectral density plots of each subject were examined for physiological peaks, including at diurnal and nocturnal periods. Long‐term temporal trends in signal impedance and power spectral features were investigated with subject‐specific linear regression models and group‐level linear mixed‐effects models.
Results
sqEEG spectrograms showed an approximate 1/f power distribution. Diurnal peaks in the alpha range (8‐13Hz) and nocturnal peaks in the sigma range (12‐16Hz) were seen in the majority of subjects. Signal impedances remained low, and frequency band powers were highly stable throughout the recording periods.
Significance
The spectral characteristics of minimally invasive, ultra long‐term sqEEG are similar to scalp EEG, whereas the signal is highly stationary. Our findings reinforce the suitability of this system for chronic implantation on diverse clinical applications, from seizure detection and forecasting to brain‐computer interfaces. Ultra long-term subcutaneous electroencephalography (sqEEG) monitoring is a new modality with great potential for both health and disease, including epileptic seizure detection and forecasting. However, little is known about the long-term quality and consistency of the sqEEG signal, which is the objective of this study.OBJECTIVEUltra long-term subcutaneous electroencephalography (sqEEG) monitoring is a new modality with great potential for both health and disease, including epileptic seizure detection and forecasting. However, little is known about the long-term quality and consistency of the sqEEG signal, which is the objective of this study.The largest multicenter cohort of sqEEG was analyzed, including 14 patients with epilepsy and 12 healthy subjects, implanted with a sqEEG device (24/7 EEG™ SubQ), and recorded from 23 to 230 days (median 42 days), with a median data capture rate of 75% (17.9 hours/day). Median power spectral density plots of each subject were examined for physiological peaks, including at diurnal and nocturnal periods. Long-term temporal trends in signal impedance and power spectral features were investigated with subject-specific linear regression models and group-level linear mixed-effects models.METHODSThe largest multicenter cohort of sqEEG was analyzed, including 14 patients with epilepsy and 12 healthy subjects, implanted with a sqEEG device (24/7 EEG™ SubQ), and recorded from 23 to 230 days (median 42 days), with a median data capture rate of 75% (17.9 hours/day). Median power spectral density plots of each subject were examined for physiological peaks, including at diurnal and nocturnal periods. Long-term temporal trends in signal impedance and power spectral features were investigated with subject-specific linear regression models and group-level linear mixed-effects models.sqEEG spectrograms showed an approximate 1/f power distribution. Diurnal peaks in the alpha range (8-13Hz) and nocturnal peaks in the sigma range (12-16Hz) were seen in the majority of subjects. Signal impedances remained low, and frequency band powers were highly stable throughout the recording periods.RESULTSsqEEG spectrograms showed an approximate 1/f power distribution. Diurnal peaks in the alpha range (8-13Hz) and nocturnal peaks in the sigma range (12-16Hz) were seen in the majority of subjects. Signal impedances remained low, and frequency band powers were highly stable throughout the recording periods.The spectral characteristics of minimally invasive, ultra long-term sqEEG are similar to scalp EEG, whereas the signal is highly stationary. Our findings reinforce the suitability of this system for chronic implantation on diverse clinical applications, from seizure detection and forecasting to brain-computer interfaces.SIGNIFICANCEThe spectral characteristics of minimally invasive, ultra long-term sqEEG are similar to scalp EEG, whereas the signal is highly stationary. Our findings reinforce the suitability of this system for chronic implantation on diverse clinical applications, from seizure detection and forecasting to brain-computer interfaces. Ultra long-term subcutaneous electroencephalography (sqEEG) monitoring is a new modality with great potential for both health and disease, including epileptic seizure detection and forecasting. However, little is known about the long-term quality and consistency of the sqEEG signal, which is the objective of this study. The largest multicenter cohort of sqEEG was analyzed, including 14 patients with epilepsy and 12 healthy subjects, implanted with a sqEEG device (24/7 EEG SubQ), and recorded from 23 to 230 days (median 42 days), with a median data capture rate of 75% (17.9 hours/day). Median power spectral density plots of each subject were examined for physiological peaks, including at diurnal and nocturnal periods. Long-term temporal trends in signal impedance and power spectral features were investigated with subject-specific linear regression models and group-level linear mixed-effects models. sqEEG spectrograms showed an approximate 1/f power distribution. Diurnal peaks in the alpha range (8-13Hz) and nocturnal peaks in the sigma range (12-16Hz) were seen in the majority of subjects. Signal impedances remained low, and frequency band powers were highly stable throughout the recording periods. The spectral characteristics of minimally invasive, ultra long-term sqEEG are similar to scalp EEG, whereas the signal is highly stationary. Our findings reinforce the suitability of this system for chronic implantation on diverse clinical applications, from seizure detection and forecasting to brain-computer interfaces. ObjectiveUltra long‐term subcutaneous electroencephalography (sqEEG) monitoring is a new modality with great potential for both health and disease, including epileptic seizure detection and forecasting. However, little is known about the long‐term quality and consistency of the sqEEG signal, which is the objective of this study.MethodsThe largest multicenter cohort of sqEEG was analyzed, including 14 patients with epilepsy and 12 healthy subjects, implanted with a sqEEG device (24/7 EEG™ SubQ), and recorded from 23 to 230 days (median 42 days), with a median data capture rate of 75% (17.9 hours/day). Median power spectral density plots of each subject were examined for physiological peaks, including at diurnal and nocturnal periods. Long‐term temporal trends in signal impedance and power spectral features were investigated with subject‐specific linear regression models and group‐level linear mixed‐effects models.ResultssqEEG spectrograms showed an approximate 1/f power distribution. Diurnal peaks in the alpha range (8‐13Hz) and nocturnal peaks in the sigma range (12‐16Hz) were seen in the majority of subjects. Signal impedances remained low, and frequency band powers were highly stable throughout the recording periods.SignificanceThe spectral characteristics of minimally invasive, ultra long‐term sqEEG are similar to scalp EEG, whereas the signal is highly stationary. Our findings reinforce the suitability of this system for chronic implantation on diverse clinical applications, from seizure detection and forecasting to brain‐computer interfaces. |
Author | Martins, Isabel P. Brinkmann, Benjamin H. Remvig, Line S. Duun‐Henriksen, Jonas Glasstetter, Martin Dümpelmann, Matthias Schulze‐Bonhage, Andreas Nurse, Ewan S. Freestone, Dean R. Kjaer, Troels W. Viana, Pedro F. Richardson, Mark P. |
Author_xml | – sequence: 1 givenname: Pedro F. orcidid: 0000-0003-0861-8705 surname: Viana fullname: Viana, Pedro F. email: pedro.viana@kcl.ac.uk organization: University of Lisbon – sequence: 2 givenname: Line S. surname: Remvig fullname: Remvig, Line S. organization: UNEEG medical A/S – sequence: 3 givenname: Jonas orcidid: 0000-0003-1558-8225 surname: Duun‐Henriksen fullname: Duun‐Henriksen, Jonas organization: UNEEG medical A/S – sequence: 4 givenname: Martin surname: Glasstetter fullname: Glasstetter, Martin organization: University Medical Center Freiburg – sequence: 5 givenname: Matthias orcidid: 0000-0002-1476-7777 surname: Dümpelmann fullname: Dümpelmann, Matthias organization: University Medical Center Freiburg – sequence: 6 givenname: Ewan S. orcidid: 0000-0001-8981-0074 surname: Nurse fullname: Nurse, Ewan S. organization: University of Melbourne – sequence: 7 givenname: Isabel P. surname: Martins fullname: Martins, Isabel P. organization: University of Lisbon – sequence: 8 givenname: Andreas orcidid: 0000-0003-2382-0506 surname: Schulze‐Bonhage fullname: Schulze‐Bonhage, Andreas organization: University Medical Center Freiburg – sequence: 9 givenname: Dean R. surname: Freestone fullname: Freestone, Dean R. organization: University of Melbourne – sequence: 10 givenname: Benjamin H. orcidid: 0000-0002-2392-8608 surname: Brinkmann fullname: Brinkmann, Benjamin H. organization: Mayo Clinic – sequence: 11 givenname: Troels W. orcidid: 0000-0002-2105-6199 surname: Kjaer fullname: Kjaer, Troels W. organization: University of Copenhagen – sequence: 12 givenname: Mark P. surname: Richardson fullname: Richardson, Mark P. organization: King’s College London |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34250608$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU9LHDEYxoNYdLUe-gVKoJd6WE12ZjLJschWhYUWtHgMmcwbiWQmY_4ge-tH8DP6SRp314vYXF4Iv-d5_zxHaH_0IyD0hZIzWt45TPaMMsHEHprRZsHnlLJ2H80IodVcNJwcoqMYHwghLWurA3RY1YuGMMJn6O7G3o_K4cesnE1rrMYeT_4JAo4T6BTyUL6UW0cbsTc4wOAT4OxSUNj58f7l73OCMOCYO52TGsHniJfLy8_ok1EuwsmuHqM_P5e3F1fz1a_L64sfq7mumkqU4RrSa044Ua2p-w4oGKaANsJoVRmuOes7LgQVTd3XAvrOKAqUC77ojCgWx-j71ncK_jFDTHKwUYNz21HkojRgVVsxWtBv79AHn0NZbkNxwmrStoX6uqNyN0Avp2AHFdby7WQFON8COvgYAxipbVLJ-rHcxDpJiXwNRZZQ5CaUojh9p3gz_YjduT9ZB-v_g3L5-3qr-AfPOJwy |
CitedBy_id | crossref_primary_10_1088_1741_2552_ac72c1 crossref_primary_10_1111_epi_17548 crossref_primary_10_3389_fneur_2021_740743 crossref_primary_10_1016_j_yebeh_2023_109557 crossref_primary_10_1111_epi_17265 crossref_primary_10_3389_fvets_2024_1419792 crossref_primary_10_1016_j_sleh_2024_08_007 crossref_primary_10_1038_s41573_024_00981_w crossref_primary_10_1177_15357597231197093 crossref_primary_10_3390_jcm14030863 crossref_primary_10_1016_j_clinph_2022_07_504 crossref_primary_10_1016_j_seizure_2023_05_007 crossref_primary_10_1111_epi_18384 crossref_primary_10_3389_fvets_2022_1014269 crossref_primary_10_1055_a_2318_5754 crossref_primary_10_1192_bjo_2024_825 crossref_primary_10_1016_j_jnrt_2024_100138 crossref_primary_10_1007_s13246_023_01340_6 crossref_primary_10_3389_fneur_2021_718329 crossref_primary_10_1002_epi4_12844 crossref_primary_10_1016_j_clinph_2022_03_006 crossref_primary_10_1016_j_clinph_2022_07_003 crossref_primary_10_1111_epi_17252 crossref_primary_10_1111_epi_18121 crossref_primary_10_1016_j_yebeh_2023_109486 crossref_primary_10_1111_jsr_14197 crossref_primary_10_3389_frsle_2024_1496923 crossref_primary_10_1016_j_fmre_2024_04_011 crossref_primary_10_1039_D1SD00020A crossref_primary_10_3389_fsurg_2023_1304343 crossref_primary_10_3389_fneur_2021_713794 crossref_primary_10_3389_fnins_2024_1401068 crossref_primary_10_3389_fneur_2024_1425490 |
Cites_doi | 10.3390/s18010029 10.1016/S1474-4422(20)30396-3 10.1002/acn3.710 10.3390/s19061365 10.1152/jn.00320.2018 10.1155/2015/341208 10.1186/s12938-019-0725-3 10.1177/0333102419877660 10.1016/S1388-2457(99)00122-4 10.1016/j.brs.2013.02.001 10.1002/acn3.51261 10.1109/TBME.2017.2768442 10.1016/j.biopsycho.2008.11.002 10.1523/JNEUROSCI.2332-14.2015 10.1016/j.clinph.2005.07.019 10.1016/0301-0511(91)90008-5 10.1016/S1474-4422(13)70075-9 10.1016/j.yebeh.2020.107514 10.1177/1550059416652055 10.1038/s41467-020-15908-3 10.1038/s41467-017-02577-y 10.1016/j.psychres.2018.08.051 10.1586/17434440.2014.947274 10.1016/j.nicl.2015.08.014 10.1016/j.eplepsyres.2019.02.003 10.1088/1741-2552/aa7f40 10.1088/1741-2552/aaf12e 10.1016/j.clinph.2017.09.115 10.1111/epi.16360 10.1016/j.clinph.2019.06.234 10.1093/sleep/zsaa230 10.1016/S1059-1311(98)90006-1 10.1093/brain/aww019 10.1016/j.clinph.2018.03.037 10.1136/jnnp.51.6.875 10.1038/s41593-020-00744-x 10.1111/epi.16630 10.1002/acn3.51032 10.1109/JTEHM.2018.2869398 |
ContentType | Journal Article |
Copyright | 2021 International League Against Epilepsy 2021 International League Against Epilepsy. Copyright © 2021 International League Against Epilepsy |
Copyright_xml | – notice: 2021 International League Against Epilepsy – notice: 2021 International League Against Epilepsy. – notice: Copyright © 2021 International League Against Epilepsy |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 |
DOI | 10.1111/epi.16969 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1528-1167 |
EndPage | 1828 |
ExternalDocumentID | 34250608 10_1111_epi_16969 EPI16969 |
Genre | article Research Support, Non-U.S. Gov't Multicenter Study Journal Article |
GrantInformation_xml | – fundername: European Commission funderid: 115902 – fundername: NIHR Biomedical Research Centre, Royal Marsden NHS Foundation Trust/Institute of Cancer Research – fundername: MRC Centre for Neurodevelopmental Disorders funderid: MR/ N026063/1 – fundername: Epilepsy Foundation – fundername: Department of Health – fundername: Medical Research Council grantid: MR/N026063/1 |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 24P 29G 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAGKA AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIVO ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FUBAC FYBCS G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OHT OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TR2 UB1 V8K V9Y VH1 W8V W99 WBKPD WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 YFH YOC YUY ZGI ZXP ZZTAW ~IA ~WT AAFWJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7TK 7X8 |
ID | FETCH-LOGICAL-c3539-9550dc8080a7f4dbe1ef6ae159fca3f8c86db8991954d49edbfa1e18982bf9353 |
IEDL.DBID | DR2 |
ISSN | 0013-9580 1528-1167 |
IngestDate | Fri Jul 11 01:15:55 EDT 2025 Wed Aug 13 08:00:36 EDT 2025 Mon Jul 21 06:03:05 EDT 2025 Tue Jul 01 03:17:57 EDT 2025 Thu Apr 24 23:07:16 EDT 2025 Wed Jan 22 16:28:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | power spectrum long-term EEG monitoring seizure detection subcutaneous EEG seizure forecasting |
Language | English |
License | 2021 International League Against Epilepsy. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3539-9550dc8080a7f4dbe1ef6ae159fca3f8c86db8991954d49edbfa1e18982bf9353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8981-0074 0000-0002-2392-8608 0000-0003-2382-0506 0000-0002-2105-6199 0000-0003-0861-8705 0000-0003-1558-8225 0000-0002-1476-7777 |
PMID | 34250608 |
PQID | 2558064077 |
PQPubID | 1066359 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2550637361 proquest_journals_2558064077 pubmed_primary_34250608 crossref_citationtrail_10_1111_epi_16969 crossref_primary_10_1111_epi_16969 wiley_primary_10_1111_epi_16969_EPI16969 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2021 2021-08-00 20210801 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Epilepsia (Copenhagen) |
PublicationTitleAlternate | Epilepsia |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 120 2015; 35 2021; 8 2021; 20 2019; 6 2021; 44 2012 2017; 48 2009; 80 2020; 40 1991; 32 2020; 61 2018; 129 2005; 116 2019; 16 2019; 19 2019; 18 1988; 51 2020; 11 2015; 9 2018; 65 2013; 6 2018; 6 2020; 7 2018; 18 2018; 9 2019; 60 2018; 270 2017; 14 2020; 131 2021; 115 2013; 12 2015; 2015 1999; 110 2016; 139 2020; 23 1998; 7 2014; 11 2019; 153 2017; 128 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Nasseri M (e_1_2_8_15_1) 2020; 61 Schomer DL (e_1_2_8_24_1) 2012 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 2015 start-page: 1 year: 2015 end-page: 9 article-title: EEG signal quality of a subcutaneous recording system compared to standard surface electrodes publication-title: Journal of Sensors – volume: 60 start-page: 2204 issue: 11 year: 2019 end-page: 14 article-title: Ultra‐long‐term subcutaneous home monitoring of epilepsy‐490 days of EEG from nine patients publication-title: Epilepsia – volume: 61 start-page: S25 issue: Suppl 1 year: 2020 end-page: 35 article-title: Signal quality and patient experience with wearable devices for epilepsy management publication-title: Epilepsia – volume: 11 start-page: 2172 issue: 1 year: 2020 article-title: Critical slowing down as a biomarker for seizure susceptibility publication-title: Nat Commun – volume: 12 start-page: 563 issue: 6 year: 2013 end-page: 71 article-title: Prediction of seizure likelihood with a long‐term, implanted seizure advisory system in patients with drug‐resistant epilepsy: a first‐in‐man study publication-title: Lancet Neurol – volume: 6 start-page: 718 issue: 5 year: 2013 end-page: 26 article-title: Long‐term measurement of impedance in chronically implanted depth and subdural electrodes during responsive neurostimulation in humans publication-title: Brain Stimul – volume: 18 start-page: 29 issue: 2 year: 2018 article-title: Comparison between scalp EEG and behind‐the‐ear EEG for development of a wearable seizure detection system for patients with focal epilepsy publication-title: Sensors – volume: 14 start-page: 56011 issue: 5 year: 2017 article-title: Intracranial EEG fluctuates over months after implanting electrodes in human brain publication-title: J Neural Eng – volume: 9 start-page: 88 issue: 1 year: 2018 article-title: Multi‐day rhythms modulate seizure risk in epilepsy publication-title: Nat Commun – volume: 44 start-page: zsaa230 issue: 4 year: 2021 article-title: Spindles are highly heritable as identified by different spindle detectors publication-title: Sleep – volume: 35 start-page: 13257 issue: 38 year: 2015 end-page: 65 article-title: Age‐related changes in 1/f neural electrophysiological noise publication-title: J Neurosci – volume: 51 start-page: 875 issue: 6 year: 1988 end-page: 7 article-title: Seasonal variations in the incidence of photoparoxysmal response to stimulation among photosensitive epileptic patients: evidence from repeated EEG recordings publication-title: J Neurol Neurosurg Psychiatry – volume: 8 start-page: 288 issue: 1 year: 2021 end-page: 93 article-title: 230 days of ultra long‐term subcutaneous EEG: seizure cycle analysis and comparison to patient diary publication-title: Ann Clin Transl Neurol – volume: 110 start-page: 1708 issue: 10 year: 1999 end-page: 16 article-title: Long‐term intra‐individual variability of the background EEG in normals publication-title: Clin Neurophysiol – volume: 129 start-page: 1410 issue: 7 year: 2018 end-page: 7 article-title: Temporal stability of posterior EEG alpha over twelve years publication-title: Clin Neurophysiol – volume: 11 start-page: 563 issue: 6 year: 2014 end-page: 72 article-title: The RNS System: responsive cortical stimulation for the treatment of refractory partial epilepsy publication-title: Expert Rev Med Devices – volume: 19 start-page: 1365 issue: 6 year: 2019 article-title: The dry revolution: evaluation of three different EEG dry electrode types in terms of signal spectral features, mental states classification and usability publication-title: Sensors – volume: 32 start-page: 173 issue: 2–3 year: 1991 end-page: 9 article-title: P300 seasonal variation publication-title: Biol Psychol – volume: 153 start-page: 68 year: 2019 end-page: 70 article-title: Brain‐responsive neurostimulation for epilepsy (RNS® System) publication-title: Epilepsy Res – volume: 270 start-page: 126 year: 2018 end-page: 33 article-title: Seasonal variation of spontaneous blink rate and beta EEG activity publication-title: Psychiatry Res – volume: 128 start-page: 2454 issue: 12 year: 2017 end-page: 61 article-title: Ear‐EEG detects ictal and interictal abnormalities in focal and generalized epilepsy – A comparison with scalp EEG monitoring publication-title: Clin Neurophysiol – volume: 23 start-page: 1655 issue: 12 year: 2020 end-page: 65 article-title: Parameterizing neural power spectra into periodic and aperiodic components publication-title: Nat Neurosci – volume: 7 start-page: 667 issue: 5 year: 2020 end-page: 76 article-title: Heritability of alpha and sensorimotor network changes in temporal lobe epilepsy publication-title: Ann Clin Transl Neurol – volume: 116 start-page: 2701 issue: 11 year: 2005 end-page: 6 article-title: Lower frequency variability in the alpha activity in EEG among patients with epilepsy publication-title: Clin Neurophysiol – volume: 20 start-page: 127 issue: 2 year: 2021 end-page: 35 article-title: Forecasting seizure risk in adults with focal epilepsy: a development and validation study publication-title: Lancet Neurol – volume: 16 start-page: 11001 issue: 1 year: 2019 article-title: A comprehensive review of EEG‐based brain–computer interface paradigms publication-title: J Neural Eng – volume: 120 start-page: 1451 issue: 3 year: 2018 end-page: 60 article-title: High similarity between EEG from subcutaneous and proximate scalp electrodes in patients with temporal lobe epilepsy publication-title: J Neurophysiol – volume: 139 start-page: 1066 issue: Pt 4 year: 2016 end-page: 78 article-title: Interictal spikes and epileptic seizures: their relationship and underlying rhythmicity publication-title: Brain – volume: 18 start-page: 106 issue: 1 year: 2019 article-title: Automatic sleep stage classification based on subcutaneous EEG in patients with epilepsy publication-title: Biomed Eng Online – volume: 65 start-page: 344 issue: 2 year: 2018 end-page: 52 article-title: Consistency of long‐term subdural electrocorticography in humans publication-title: IEEE Trans Biomed Eng – volume: 6 start-page: 2500112 year: 2018 article-title: Integrating brain implants with local and distributed computing devices: a next generation epilepsy management system publication-title: IEEE J Transl Eng Health Med – volume: 9 start-page: 275 year: 2015 end-page: 82 article-title: EEG resting state analysis of cortical sources in patients with benign epilepsy with centrotemporal spikes publication-title: Neuroimage Clin – volume: 48 start-page: 200 issue: 3 year: 2017 end-page: 8 article-title: Slow activity in focal epilepsy during sleep and wakefulness publication-title: Clin EEG Neurosci – volume: 61 start-page: 1805 issue: 9 year: 2020 end-page: 17 article-title: A new era in electroencephalographic monitoring? Subscalp devices for ultra–long‐term recordings publication-title: Epilepsia – volume: 115 start-page: 107514 year: 2021 article-title: Effects of perampanel on cognition and quantitative electroencephalography in patients with epilepsy [Internet] publication-title: Epilepsy Behav – volume: 131 start-page: 285 issue: 1 year: 2020 end-page: 307 article-title: International Federation of Clinical Neurophysiology (IFCN)–EEG research workgroup: Recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: Applications in clinical research studies publication-title: Clin Neurophysiol – volume: 80 start-page: 315 issue: 3 year: 2009 end-page: 20 article-title: Circadian and seasonal variability of resting frontal EEG asymmetry publication-title: Biol Psychol – volume: 7 start-page: 39 issue: 1 year: 1998 end-page: 42 article-title: Interictal quantitative EEG in epilepsy publication-title: Seizure – volume: 40 start-page: 255 issue: 3 year: 2020 end-page: 65 article-title: Brain state monitoring for the future prediction of migraine attacks publication-title: Cephalalgia – volume: 6 start-page: 333 issue: 2 year: 2019 end-page: 43 article-title: Slower alpha rhythm associates with poorer seizure control in epilepsy publication-title: Ann Clin Transl Neurol – start-page: 1296 year: 2012 – ident: e_1_2_8_11_1 doi: 10.3390/s18010029 – ident: e_1_2_8_16_1 doi: 10.1016/S1474-4422(20)30396-3 – ident: e_1_2_8_25_1 doi: 10.1002/acn3.710 – ident: e_1_2_8_10_1 doi: 10.3390/s19061365 – ident: e_1_2_8_13_1 doi: 10.1152/jn.00320.2018 – ident: e_1_2_8_14_1 doi: 10.1155/2015/341208 – ident: e_1_2_8_23_1 doi: 10.1186/s12938-019-0725-3 – ident: e_1_2_8_8_1 doi: 10.1177/0333102419877660 – ident: e_1_2_8_18_1 doi: 10.1016/S1388-2457(99)00122-4 – start-page: 1296 volume-title: Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields year: 2012 ident: e_1_2_8_24_1 – ident: e_1_2_8_32_1 doi: 10.1016/j.brs.2013.02.001 – ident: e_1_2_8_35_1 doi: 10.1002/acn3.51261 – ident: e_1_2_8_30_1 doi: 10.1109/TBME.2017.2768442 – ident: e_1_2_8_37_1 doi: 10.1016/j.biopsycho.2008.11.002 – ident: e_1_2_8_22_1 doi: 10.1523/JNEUROSCI.2332-14.2015 – ident: e_1_2_8_27_1 doi: 10.1016/j.clinph.2005.07.019 – ident: e_1_2_8_38_1 doi: 10.1016/0301-0511(91)90008-5 – ident: e_1_2_8_2_1 doi: 10.1016/S1474-4422(13)70075-9 – ident: e_1_2_8_28_1 doi: 10.1016/j.yebeh.2020.107514 – ident: e_1_2_8_42_1 doi: 10.1177/1550059416652055 – ident: e_1_2_8_17_1 doi: 10.1038/s41467-020-15908-3 – ident: e_1_2_8_34_1 doi: 10.1038/s41467-017-02577-y – ident: e_1_2_8_36_1 doi: 10.1016/j.psychres.2018.08.051 – ident: e_1_2_8_4_1 doi: 10.1586/17434440.2014.947274 – ident: e_1_2_8_41_1 doi: 10.1016/j.nicl.2015.08.014 – ident: e_1_2_8_7_1 doi: 10.1016/j.eplepsyres.2019.02.003 – ident: e_1_2_8_31_1 doi: 10.1088/1741-2552/aa7f40 – ident: e_1_2_8_9_1 doi: 10.1088/1741-2552/aaf12e – ident: e_1_2_8_12_1 doi: 10.1016/j.clinph.2017.09.115 – ident: e_1_2_8_6_1 doi: 10.1111/epi.16360 – ident: e_1_2_8_20_1 doi: 10.1016/j.clinph.2019.06.234 – ident: e_1_2_8_29_1 doi: 10.1093/sleep/zsaa230 – ident: e_1_2_8_40_1 doi: 10.1016/S1059-1311(98)90006-1 – ident: e_1_2_8_33_1 doi: 10.1093/brain/aww019 – ident: e_1_2_8_19_1 doi: 10.1016/j.clinph.2018.03.037 – ident: e_1_2_8_39_1 doi: 10.1136/jnnp.51.6.875 – volume: 61 start-page: S25 issue: 1 year: 2020 ident: e_1_2_8_15_1 article-title: Signal quality and patient experience with wearable devices for epilepsy management publication-title: Epilepsia – ident: e_1_2_8_21_1 doi: 10.1038/s41593-020-00744-x – ident: e_1_2_8_3_1 doi: 10.1111/epi.16630 – ident: e_1_2_8_26_1 doi: 10.1002/acn3.51032 – ident: e_1_2_8_5_1 doi: 10.1109/JTEHM.2018.2869398 |
SSID | ssj0007673 |
Score | 2.5030887 |
Snippet | Objective
Ultra long‐term subcutaneous electroencephalography (sqEEG) monitoring is a new modality with great potential for both health and disease, including... Ultra long-term subcutaneous electroencephalography (sqEEG) monitoring is a new modality with great potential for both health and disease, including epileptic... ObjectiveUltra long‐term subcutaneous electroencephalography (sqEEG) monitoring is a new modality with great potential for both health and disease, including... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1820 |
SubjectTerms | Convulsions & seizures Diurnal EEG Electroencephalography Epilepsy Epilepsy - diagnosis Humans Interfaces long‐term EEG monitoring Nocturnal power spectrum Regression analysis seizure detection seizure forecasting Seizures Seizures - diagnosis Spectrum Analysis subcutaneous EEG Subcutaneous Tissue |
Title | Signal quality and power spectrum analysis of remote ultra long‐term subcutaneous EEG |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fepi.16969 https://www.ncbi.nlm.nih.gov/pubmed/34250608 https://www.proquest.com/docview/2558064077 https://www.proquest.com/docview/2550637361 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPaBeeLQ8tpTKRRy4ZJXEjp2oJ4S2lEpFCKjoASmyHbuqus2udjcHOPUn8Bv5Jcw4DygUqeIWJZPE8XjsbzIznwFeZMoqAqqR8JpHBHgjXPSyKONa2kJ4UwkqTj5-Jw9PxNFpdroG-30tTMsPMfxwI8sI8zUZuDbL34zczc_HiSwkFe9RrhYBog-_qKOU7KLLCY-KLI87ViHK4hnuvL4W_QUwr-PVsOAc3IMvfVPbPJOLcbMyY_vtDxbH__yW-3C3A6LsVTtyHsCaqzfhznEXat-Czx_Pz0igrbr8ynRdsTltqcZCceaiucRTLaEJm3m2cKhzx5rpaqHZdFaf_bj6TrM-WzbGNohA3axZssnkzUM4OZh8en0YdbswRJZnHFWHPkxliX5SKy8q4xLnpXYIg7zV3Oc2l5VBr42o4ypRuMp4nbgkL_LU-AIf8QjW61ntngBTiYuF8yZGCZGmppBOpMoJXxluVZKN4GWvj9J2FOW0U8a07F0V7KgydNQIng-i85aX4yahnV6pZWeayxJ9qDyEL9UI9obLaFQUKWl7g2QQuikukxE8bgfD8BaOs1ws4xwbG1T679eXk_dvw8H27UWfwkZKWTMhxXAH1lGd7hnCnpXZDeP7J2IX_qE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VRQIu5Z8uFDAIJC5ZJbHjJAcOFd2yS7sVglb0FmLHriqW7Gp3I1ROPAIP0lfhJXgSZpwfKD8Slx64RclIduz5-WyPvwF4HMU6JqDqCZtzjwCvh0Ev8iKeS50KqwpBl5PHe3J4IF4eRocrcNrehan5IboNN7IM56_JwGlD-icrN7PjfiBTmTYplTvm5CMu2BbPRls4u0_CcHuw_3zoNTUFPM0jjh1BRF5oIlPMYysKZQJjZW4wqFudc5voRBYK1yBEhFaI1BTK5oEJkjQJlU1djQh0-Beogjgx9W-9_kFWFcvmPDvg2EziNzxGlDfUdfVs9PsN0p5FyC7EbV-Br-3g1Jkt7_vVUvX1p194I_-X0bsKaw3WZpu1cVyDFVNeh4vjJpvgBrx9c3xEAvXF0hOWlwWbUdU45u6fzqsP-KrmbGFTy-YG1dqwarKc52wyLY--ff5CgY0tKqUrBNlmWi3YYPDiJhycy2_dgtVyWpp1YHFgfGGs8lFChKFKpRFhbIQtFNdxEPXgaasAmW5Y2KkYyCRrV2M4MZmbmB486kRnNfXIn4Q2Wi3KGu-zyHCZmLgT2rgHD7vP6DfoMKgeDZJBdBpzGfTgdq19XSscHbkv_QQ763To781ng1cj93Dn30UfwKXh_ng32x3t7dyFyyElCbmMyg1Yxak19xDlLdV9Z1wM3p23Pn4HbkdeGw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qilSxAcpzoAWDQGKTURI7drJgUTEzdCitKqCiuzR-VRVDZjQzESorPqH_wa_wFXwJ184DykNi0wW7UeZKdnxfx_H1uQCPE6GEA6oBswUNHOANMOklQUILrjJmpWbucvLuHt8-YC8Pk8MV-NLehan5IboPbs4zfLx2Dj7T9icnN7OTfsQznjUVlTvm9CPu1xbPxgNU7pM4Hg3fPt8OmpYCgaIJxXkgINfKcSkWwjItTWQsLwzmdKsKalOVci1xC-J40DTLjJa2iEyUZmksbeZbRGC8v8R4mLk-EYPXP7iqBG-OsyOKw6RhQ2Pkyoa6qZ5Pfr8h2vMA2We40VX42q5NXdjyvl8tZV99-oU28j9ZvGtwpUHaZKt2jXVYMeV1WNttagluwLs3J8dOoL5WekqKUpOZ6xlH_O3TefUBH9WMLWRqydygURtSTZbzgkym5fG3z2curZFFJVWFENtMqwUZDl_chIMLea1bsFpOS3MHiIhMyIyVIUqwOJYZNywWhlktqRJR0oOnrf5z1XCwu1Ygk7zdi6Ficq-YHjzqRGc18cifhDZaI8qb2LPIcZOY-vNZ0YOH3d8YNdxRUL0aTgaxqaA86sHt2vi6USiG8ZCHKU7Wm9Dfh8-H-2P_4-6_iz6Atf3BKH813tu5B5djVyHkyyk3YBU1azYR4i3lfe9aBI4u2hy_A-cVXMo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Signal+quality+and+power+spectrum+analysis+of+remote+ultra+long-term+subcutaneous+EEG&rft.jtitle=Epilepsia+%28Copenhagen%29&rft.au=Viana%2C+Pedro+F&rft.au=Remvig%2C+Line+S&rft.au=Duun-Henriksen%2C+Jonas&rft.au=Glasstetter%2C+Martin&rft.date=2021-08-01&rft.eissn=1528-1167&rft.volume=62&rft.issue=8&rft.spage=1820&rft_id=info:doi/10.1111%2Fepi.16969&rft_id=info%3Apmid%2F34250608&rft.externalDocID=34250608 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9580&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9580&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9580&client=summon |