Ornithine decarboxylase functions in both autophagy and apoptosis in response to ultraviolet B radiation injury

We present a mechanism for how ornithine decarboxylase (ODC) regulates the crosstalk between autophagy and apoptosis. In cancer cells, low‐intensity ultraviolet B (UVBL) induces autophagy while high‐intensity UVB (UVBH) induces apoptosis. Overexpression of ODC decreases UVBL‐induced autophagy by inh...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 237; no. 4; pp. 2140 - 2154
Main Authors Liu, Yi‐Liang, Hsiao, I‐Hsin, Lin, Yen‐Hung, Lin, Chih‐Li, Jan, Ming‐Shiou, Hung, Hui‐Chih, Liu, Guang‐Yaw
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a mechanism for how ornithine decarboxylase (ODC) regulates the crosstalk between autophagy and apoptosis. In cancer cells, low‐intensity ultraviolet B (UVBL) induces autophagy while high‐intensity UVB (UVBH) induces apoptosis. Overexpression of ODC decreases UVBL‐induced autophagy by inhibiting Atg5‐Atg12 conjugation and suppressing the expression of autophagy markers LC3, Atg7, Atg12, and BECN1 proteins. In contrast, when ODC‐overexpressing cells are exposed to UVBH radiation, the levels of LC3‐II, Atg5‐Atg12 conjugate, BECN1, Atg7, and Atg12 increase, while the apoptosis marker cleaved‐PARP proteins decrease, indicating that ODC overexpression induced UVBH‐induced autophagy but inhibited UVBH‐induced cellular apoptosis. Additionally, when exposed to UVBH radiation, silencing BECN1, Atg5, and Atg12 genes results in a decrease in the level of LC3‐II proteins but an increase in the level of cleaved‐PARP proteins, and apoptotic bodies were significantly increased while autophagosomes were significantly decreased. These findings imply that ODC inhibits apoptosis in cells via the autophagy pathway. The role of Atg12 in ODC‐overexpressing cells exposed to UVBH radiation is investigated using site‐directed mutagenesis. Our results indicate that the Atg12‐D111S mutant has increased cell survival. The Atg12‐ΔG186 mutant impairs autophagy and enhances apoptosis. We demonstrate that when ODC‐overexpressing cells are silenced for the Atg12 protein, autophagy and apoptosis are strongly affected, and ODC‐induced autophagy protects against UVBH‐induced apoptosis via the Atg12 protein. Ornithine decarboxylase (ODC) functions in two distinct ways in response to ultraviolet B (UVB)‐induced injury. ODC inhibits low‐dose UVB‐induced autophagy, whereas it induces autophagy in response to high‐dose UVB but prevents cellular apoptosis. ODC protects cells from apoptosis caused by high‐dose UVB radiation via an autophagic survival mechanism. Through the Atg12 protein, ODC promotes autophagy and inhibits UVB‐induced cellular apoptosis.
AbstractList We present a mechanism for how ornithine decarboxylase (ODC) regulates the crosstalk between autophagy and apoptosis. In cancer cells, low-intensity ultraviolet B (UVB ) induces autophagy while high-intensity UVB (UVB ) induces apoptosis. Overexpression of ODC decreases UVB -induced autophagy by inhibiting Atg5-Atg12 conjugation and suppressing the expression of autophagy markers LC3, Atg7, Atg12, and BECN1 proteins. In contrast, when ODC-overexpressing cells are exposed to UVB radiation, the levels of LC3-II, Atg5-Atg12 conjugate, BECN1, Atg7, and Atg12 increase, while the apoptosis marker cleaved-PARP proteins decrease, indicating that ODC overexpression induced UVB -induced autophagy but inhibited UVB -induced cellular apoptosis. Additionally, when exposed to UVB radiation, silencing BECN1, Atg5, and Atg12 genes results in a decrease in the level of LC3-II proteins but an increase in the level of cleaved-PARP proteins, and apoptotic bodies were significantly increased while autophagosomes were significantly decreased. These findings imply that ODC inhibits apoptosis in cells via the autophagy pathway. The role of Atg12 in ODC-overexpressing cells exposed to UVB radiation is investigated using site-directed mutagenesis. Our results indicate that the Atg12-D111S mutant has increased cell survival. The Atg12-ΔG186 mutant impairs autophagy and enhances apoptosis. We demonstrate that when ODC-overexpressing cells are silenced for the Atg12 protein, autophagy and apoptosis are strongly affected, and ODC-induced autophagy protects against UVB -induced apoptosis via the Atg12 protein.
We present a mechanism for how ornithine decarboxylase (ODC) regulates the crosstalk between autophagy and apoptosis. In cancer cells, low‐intensity ultraviolet B (UVBL) induces autophagy while high‐intensity UVB (UVBH) induces apoptosis. Overexpression of ODC decreases UVBL‐induced autophagy by inhibiting Atg5‐Atg12 conjugation and suppressing the expression of autophagy markers LC3, Atg7, Atg12, and BECN1 proteins. In contrast, when ODC‐overexpressing cells are exposed to UVBH radiation, the levels of LC3‐II, Atg5‐Atg12 conjugate, BECN1, Atg7, and Atg12 increase, while the apoptosis marker cleaved‐PARP proteins decrease, indicating that ODC overexpression induced UVBH‐induced autophagy but inhibited UVBH‐induced cellular apoptosis. Additionally, when exposed to UVBH radiation, silencing BECN1, Atg5, and Atg12 genes results in a decrease in the level of LC3‐II proteins but an increase in the level of cleaved‐PARP proteins, and apoptotic bodies were significantly increased while autophagosomes were significantly decreased. These findings imply that ODC inhibits apoptosis in cells via the autophagy pathway. The role of Atg12 in ODC‐overexpressing cells exposed to UVBH radiation is investigated using site‐directed mutagenesis. Our results indicate that the Atg12‐D111S mutant has increased cell survival. The Atg12‐ΔG186 mutant impairs autophagy and enhances apoptosis. We demonstrate that when ODC‐overexpressing cells are silenced for the Atg12 protein, autophagy and apoptosis are strongly affected, and ODC‐induced autophagy protects against UVBH‐induced apoptosis via the Atg12 protein.
We present a mechanism for how ornithine decarboxylase (ODC) regulates the crosstalk between autophagy and apoptosis. In cancer cells, low‐intensity ultraviolet B (UVB L ) induces autophagy while high‐intensity UVB (UVB H ) induces apoptosis. Overexpression of ODC decreases UVB L ‐induced autophagy by inhibiting Atg5‐Atg12 conjugation and suppressing the expression of autophagy markers LC3, Atg7, Atg12, and BECN1 proteins. In contrast, when ODC‐overexpressing cells are exposed to UVB H radiation, the levels of LC3‐II, Atg5‐Atg12 conjugate, BECN1, Atg7, and Atg12 increase, while the apoptosis marker cleaved‐PARP proteins decrease, indicating that ODC overexpression induced UVB H ‐induced autophagy but inhibited UVB H ‐induced cellular apoptosis. Additionally, when exposed to UVB H radiation, silencing BECN1, Atg5, and Atg12 genes results in a decrease in the level of LC3‐II proteins but an increase in the level of cleaved‐PARP proteins, and apoptotic bodies were significantly increased while autophagosomes were significantly decreased. These findings imply that ODC inhibits apoptosis in cells via the autophagy pathway. The role of Atg12 in ODC‐overexpressing cells exposed to UVB H radiation is investigated using site‐directed mutagenesis. Our results indicate that the Atg12‐D111S mutant has increased cell survival. The Atg12‐ΔG186 mutant impairs autophagy and enhances apoptosis. We demonstrate that when ODC‐overexpressing cells are silenced for the Atg12 protein, autophagy and apoptosis are strongly affected, and ODC‐induced autophagy protects against UVB H ‐induced apoptosis via the Atg12 protein.
We present a mechanism for how ornithine decarboxylase (ODC) regulates the crosstalk between autophagy and apoptosis. In cancer cells, low-intensity ultraviolet B (UVBL ) induces autophagy while high-intensity UVB (UVBH ) induces apoptosis. Overexpression of ODC decreases UVBL -induced autophagy by inhibiting Atg5-Atg12 conjugation and suppressing the expression of autophagy markers LC3, Atg7, Atg12, and BECN1 proteins. In contrast, when ODC-overexpressing cells are exposed to UVBH radiation, the levels of LC3-II, Atg5-Atg12 conjugate, BECN1, Atg7, and Atg12 increase, while the apoptosis marker cleaved-PARP proteins decrease, indicating that ODC overexpression induced UVBH -induced autophagy but inhibited UVBH -induced cellular apoptosis. Additionally, when exposed to UVBH radiation, silencing BECN1, Atg5, and Atg12 genes results in a decrease in the level of LC3-II proteins but an increase in the level of cleaved-PARP proteins, and apoptotic bodies were significantly increased while autophagosomes were significantly decreased. These findings imply that ODC inhibits apoptosis in cells via the autophagy pathway. The role of Atg12 in ODC-overexpressing cells exposed to UVBH radiation is investigated using site-directed mutagenesis. Our results indicate that the Atg12-D111S mutant has increased cell survival. The Atg12-ΔG186 mutant impairs autophagy and enhances apoptosis. We demonstrate that when ODC-overexpressing cells are silenced for the Atg12 protein, autophagy and apoptosis are strongly affected, and ODC-induced autophagy protects against UVBH -induced apoptosis via the Atg12 protein.We present a mechanism for how ornithine decarboxylase (ODC) regulates the crosstalk between autophagy and apoptosis. In cancer cells, low-intensity ultraviolet B (UVBL ) induces autophagy while high-intensity UVB (UVBH ) induces apoptosis. Overexpression of ODC decreases UVBL -induced autophagy by inhibiting Atg5-Atg12 conjugation and suppressing the expression of autophagy markers LC3, Atg7, Atg12, and BECN1 proteins. In contrast, when ODC-overexpressing cells are exposed to UVBH radiation, the levels of LC3-II, Atg5-Atg12 conjugate, BECN1, Atg7, and Atg12 increase, while the apoptosis marker cleaved-PARP proteins decrease, indicating that ODC overexpression induced UVBH -induced autophagy but inhibited UVBH -induced cellular apoptosis. Additionally, when exposed to UVBH radiation, silencing BECN1, Atg5, and Atg12 genes results in a decrease in the level of LC3-II proteins but an increase in the level of cleaved-PARP proteins, and apoptotic bodies were significantly increased while autophagosomes were significantly decreased. These findings imply that ODC inhibits apoptosis in cells via the autophagy pathway. The role of Atg12 in ODC-overexpressing cells exposed to UVBH radiation is investigated using site-directed mutagenesis. Our results indicate that the Atg12-D111S mutant has increased cell survival. The Atg12-ΔG186 mutant impairs autophagy and enhances apoptosis. We demonstrate that when ODC-overexpressing cells are silenced for the Atg12 protein, autophagy and apoptosis are strongly affected, and ODC-induced autophagy protects against UVBH -induced apoptosis via the Atg12 protein.
We present a mechanism for how ornithine decarboxylase (ODC) regulates the crosstalk between autophagy and apoptosis. In cancer cells, low‐intensity ultraviolet B (UVBL) induces autophagy while high‐intensity UVB (UVBH) induces apoptosis. Overexpression of ODC decreases UVBL‐induced autophagy by inhibiting Atg5‐Atg12 conjugation and suppressing the expression of autophagy markers LC3, Atg7, Atg12, and BECN1 proteins. In contrast, when ODC‐overexpressing cells are exposed to UVBH radiation, the levels of LC3‐II, Atg5‐Atg12 conjugate, BECN1, Atg7, and Atg12 increase, while the apoptosis marker cleaved‐PARP proteins decrease, indicating that ODC overexpression induced UVBH‐induced autophagy but inhibited UVBH‐induced cellular apoptosis. Additionally, when exposed to UVBH radiation, silencing BECN1, Atg5, and Atg12 genes results in a decrease in the level of LC3‐II proteins but an increase in the level of cleaved‐PARP proteins, and apoptotic bodies were significantly increased while autophagosomes were significantly decreased. These findings imply that ODC inhibits apoptosis in cells via the autophagy pathway. The role of Atg12 in ODC‐overexpressing cells exposed to UVBH radiation is investigated using site‐directed mutagenesis. Our results indicate that the Atg12‐D111S mutant has increased cell survival. The Atg12‐ΔG186 mutant impairs autophagy and enhances apoptosis. We demonstrate that when ODC‐overexpressing cells are silenced for the Atg12 protein, autophagy and apoptosis are strongly affected, and ODC‐induced autophagy protects against UVBH‐induced apoptosis via the Atg12 protein. Ornithine decarboxylase (ODC) functions in two distinct ways in response to ultraviolet B (UVB)‐induced injury. ODC inhibits low‐dose UVB‐induced autophagy, whereas it induces autophagy in response to high‐dose UVB but prevents cellular apoptosis. ODC protects cells from apoptosis caused by high‐dose UVB radiation via an autophagic survival mechanism. Through the Atg12 protein, ODC promotes autophagy and inhibits UVB‐induced cellular apoptosis.
Author Hsiao, I‐Hsin
Lin, Yen‐Hung
Liu, Yi‐Liang
Hung, Hui‐Chih
Liu, Guang‐Yaw
Jan, Ming‐Shiou
Lin, Chih‐Li
Author_xml – sequence: 1
  givenname: Yi‐Liang
  surname: Liu
  fullname: Liu, Yi‐Liang
  organization: Chung Shan Medical University
– sequence: 2
  givenname: I‐Hsin
  surname: Hsiao
  fullname: Hsiao, I‐Hsin
  organization: National Chung Hsing University (NCHU)
– sequence: 3
  givenname: Yen‐Hung
  surname: Lin
  fullname: Lin, Yen‐Hung
  organization: Chung Shan Medical University
– sequence: 4
  givenname: Chih‐Li
  orcidid: 0000-0003-4553-3727
  surname: Lin
  fullname: Lin, Chih‐Li
  organization: Chung Shan Medical University
– sequence: 5
  givenname: Ming‐Shiou
  surname: Jan
  fullname: Jan, Ming‐Shiou
  organization: Chung Shan Medical University
– sequence: 6
  givenname: Hui‐Chih
  orcidid: 0000-0003-0180-1822
  surname: Hung
  fullname: Hung, Hui‐Chih
  email: hchung@dragon.nchu.edu.tw
  organization: National Chung Hsing University (NCHU)
– sequence: 7
  givenname: Guang‐Yaw
  surname: Liu
  fullname: Liu, Guang‐Yaw
  email: liugy@csmu.edu.tw
  organization: Chung Shan Medical University Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35019151$$D View this record in MEDLINE/PubMed
BookMark eNp90btuFDEUBmALJSKbQMELIEs0UExyzthzK8kqXKJISQH1yLdhvZq1B9sDzNvH2Q0UkUjl4nznl_WfU3LkvDOEvEE4R4DyYqumcwZ1074gK4SuKXhdlUdklWdYdBXHE3Ia4xYAuo6xl-SEVYAdVrgi_jY4mzbWGaqNEkH6P8sooqHD7FSy3kVqHZU-baiYk5824sdChdNUTH5KPtr9PJg4ZWpo8nQeUxC_rB9Nopc0CG3FQ05m2zksr8jxIMZoXj--Z-T7p6tv6y_Fze3nr-uPN4ViFWsLwbhuWQNKy0oII7USArlqEDS2Q1mDBGV4h7WUssGhbRmHAaU2XMoSFGdn5P0hdwr-52xi6nc2KjOOwhk_x76ssSuxbrHL9N0TuvVzcPl3WVUVb1kNkNXbRzXLndH9FOxOhKX_W2UGHw5ABR9jMMM_gtA_nKnPZ-r3Z8r24olVNu1ryt3Z8bmN33Y0y_-j--v13WHjHmG0pRw
CitedBy_id crossref_primary_10_1002_pro_5199
crossref_primary_10_1002_jcp_30861
crossref_primary_10_4103_aja202433
crossref_primary_10_1080_15569527_2023_2208676
crossref_primary_10_1021_acs_jproteome_3c00871
crossref_primary_10_1016_j_freeradbiomed_2024_08_004
crossref_primary_10_1016_j_aquatox_2023_106481
Cites_doi 10.1038/26506
10.1101/gad.2016111
10.1016/s1534-5807(04)00099-1
10.1242/jcs.115865
10.1038/cddis.2013.350
10.1038/379335a0
10.3390/ijms13011209
10.1016/j.molmed.2006.07.007
10.1038/nrc1454
10.1007/pl00000852
10.1158/1940-6207.capr-09-0252
10.4155/tde.12.61
10.1038/nrc1692
10.1016/j.gde.2010.12.008
10.1038/35037710
10.14670/HH-17.897
10.1038/ni.3025
10.1093/emboj/19.21.5720
10.1083/jcb.152.4.657
10.1124/mol.62.6.1400
10.1038/nm.3521
10.1101/cshperspect.a008656
10.1046/j.1523-1747.1998.00319.x
10.1038/cr.2013.168
10.1021/acs.jnatprod.0c00613
10.1016/j.jpba.2021.114129
10.1016/j.lfs.2007.11.022
10.1016/s1046-2023(02)00209-8
10.1016/j.molcel.2011.10.014
10.1016/j.cell.2007.12.018
10.1038/sj.onc.1207232
10.1177/1533033820947489
10.1007/s10495-005-2947-z
10.1038/nrm2239
10.3892/ijo.13.5.993
10.1007/s10495-005-1891-2
10.1016/j.tcb.2015.02.002
10.1042/bse0460004
10.1158/1078-0432.ccr-10-2634
10.1146/annurev-genet-102808-114910
10.1038/nrc3262
10.1017/s1462399409001306
10.3390/nu12123867
ContentType Journal Article
Copyright 2022 Wiley Periodicals LLC
2022 Wiley Periodicals LLC.
Copyright_xml – notice: 2022 Wiley Periodicals LLC
– notice: 2022 Wiley Periodicals LLC.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
DOI 10.1002/jcp.30678
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
Genetics Abstracts
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4652
EndPage 2154
ExternalDocumentID 35019151
10_1002_jcp_30678
JCP30678
Genre article
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  funderid: MOST 108‐2320‐B‐040‐020‐MY3; MOST 109‐2311‐B‐005‐004
– fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 109-2311-B-005-004
– fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 108-2320-B-040-020-MY3
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABIJN
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IH2
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
S10
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UPT
V2E
V8K
VQP
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
X7M
XG1
XJT
XOL
XPP
XSW
XV2
Y6R
YQT
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c3538-a34d8370cdb5aaebdcaa14c710d18f260b0ce4916bbb71f88340f1bde4bb20c43
IEDL.DBID DR2
ISSN 0021-9541
1097-4652
IngestDate Thu Jul 10 18:46:44 EDT 2025
Sat Jul 26 00:49:58 EDT 2025
Thu Apr 03 06:57:59 EDT 2025
Tue Jul 01 03:23:46 EDT 2025
Thu Apr 24 22:58:33 EDT 2025
Wed Jan 22 16:26:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords apoptosis
ornithine decarboxylase
autophagy
ultraviolet B
Atg5
Atg12
Language English
License 2022 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3538-a34d8370cdb5aaebdcaa14c710d18f260b0ce4916bbb71f88340f1bde4bb20c43
Notes Yi‐Liang Liu, I‐Hsin Hsiao, and Yen‐Hung Lin have contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0180-1822
0000-0003-4553-3727
PMID 35019151
PQID 2655483600
PQPubID 1006363
PageCount 15
ParticipantIDs proquest_miscellaneous_2619216819
proquest_journals_2655483600
pubmed_primary_35019151
crossref_primary_10_1002_jcp_30678
crossref_citationtrail_10_1002_jcp_30678
wiley_primary_10_1002_jcp_30678_JCP30678
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2022
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cellular physiology
PublicationTitleAlternate J Cell Physiol
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 17
2009; 46
2013; 4
2009; 43
2006; 12
2021; 201
2013; 24
2020; 83
2004; 4
2009
2004; 6
2020; 12
2011; 17
2012; 125
1998; 111
2012; 13
1985; 45
2013; 5
2012; 12
2020; 19
1998; 395
2014; 20
2000; 407
2002; 28
2015; 25
2000; 19
2012; 3
2001; 152
2002; 62
1993; 53
2005; 5
2007; 8
2014; 15
2011; 44
2005; 10
2011; 21
2011; 25
1996; 379
2010; 3
2008; 132
2008; 82
2001; 58
2003; 22
2001; 10
1998; 13
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_8_1
e_1_2_7_7_1
Fong L. Y. (e_1_2_7_9_1) 2001; 10
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Lima G. (e_1_2_7_23_1) 1985; 45
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Gruijl F. R. (e_1_2_7_12_1) 1993; 53
References_xml – volume: 43
  start-page: 67
  issue: 1
  year: 2009
  end-page: 93
  article-title: Regulation mechanisms and signaling pathways of autophagy
  publication-title: Annual Review of Genetics
– volume: 44
  start-page: 698
  issue: 5
  year: 2011
  end-page: 709
  article-title: The autophagy protein Atg12 associates with antiapoptotic Bcl‐2 family members to promote mitochondrial apoptosis
  publication-title: Molecular Cell
– volume: 13
  start-page: 1209
  issue: 1
  year: 2012
  end-page: 1224
  article-title: Targeting protective autophagy exacerbates UV‐triggered apoptotic cell death
  publication-title: International Journal of Molecular Sciences
– volume: 10
  start-page: 895
  issue: 4
  year: 2005
  end-page: 907
  article-title: Ornithine decarboxylase prevents methotrexate‐induced apoptosis by reducing intracellular reactive oxygen species production
  publication-title: Apoptosis
– volume: 22
  start-page: 8628
  issue: 53
  year: 2003
  end-page: 8633
  article-title: TRAIL and apoptosis induction by TNF‐family death receptors
  publication-title: Oncogene
– volume: 83
  start-page: 2518
  issue: 8
  year: 2020
  end-page: 2527
  article-title: Allicin, a potent new ornithine decarboxylase inhibitor in neuroblastoma cells
  publication-title: Journal of Natural Products
– volume: 12
  start-page: 440
  issue: 9
  year: 2006
  end-page: 450
  article-title: DNA damage‐induced cell death by apoptosis
  publication-title: Trends in Molecular Medicine
– volume: 4
  start-page: 781
  issue: 10
  year: 2004
  end-page: 792
  article-title: Polyamines and cancer: Old molecules, new understanding
  publication-title: Nature Reviews Cancer
– volume: 3
  start-page: 823
  issue: 7
  year: 2012
  end-page: 833
  article-title: ROS‐activated anticancer prodrugs: A new strategy for tumor‐specific damage
  publication-title: Therapeutic Delivery
– volume: 10
  start-page: 569
  issue: 3
  year: 2005
  end-page: 581
  article-title: Ornithine decarboxylase prevents tumor necrosis factor alpha‐induced apoptosis by decreasing intracellular reactive oxygen species
  publication-title: Apoptosis
– volume: 379
  start-page: 335
  issue: 6563
  year: 1996
  end-page: 339
  article-title: Molecular basis of sun‐induced premature skin ageing and retinoid antagonism
  publication-title: Nature
– volume: 46
  start-page: 47
  year: 2009
  end-page: 62
  article-title: Regulation of cellular polyamine levels and cellular proliferation by antizyme and antizyme inhibitor
  publication-title: Essays in Biochemistry
– volume: 19
  start-page: 5720
  issue: 21
  year: 2000
  end-page: 5728
  article-title: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
  publication-title: The EMBO Journal
– volume: 201
  year: 2021
  article-title: Curcumin reverses doxorubicin resistance in colon cancer cells at the metabolic level
  publication-title: Journal of Pharmaceutical and Biomedical Analysis
– volume: 12
  start-page: 401
  issue: 6
  year: 2012
  end-page: 410
  article-title: Deconvoluting the context‐dependent role for autophagy in cancer
  publication-title: Nature Reviews Cancer
– volume: 5
  start-page: 726
  issue: 9
  year: 2005
  end-page: 734
  article-title: The role of autophagy in cancer development and response to therapy
  publication-title: Nature Reviews Cancer
– volume: 15
  start-page: 1152
  issue: 12
  year: 2014
  end-page: 1161
  article-title: Autophagy is essential for effector CD8+ T cell survival and memory formation
  publication-title: Nature Immunology
– volume: 21
  start-page: 113
  issue: 1
  year: 2011
  end-page: 119
  article-title: Autophagy in tumorigenesis and energy metabolism: Friend by day, foe by night
  publication-title: Current Opinion in Genetics & Development
– volume: 25
  start-page: 354
  issue: 6
  year: 2015
  end-page: 363
  article-title: How to control self‐digestion: Transcriptional, post‐transcriptional, and post‐translational regulation of autophagy
  publication-title: Trends in Cell Biology
– volume: 28
  start-page: 55
  issue: 1
  year: 2002
  end-page: 62
  article-title: Measurement of UVB‐Induced DNA damage and its consequences in models of immunosuppression
  publication-title: Methods
– volume: 58
  start-page: 244
  issue: 2
  year: 2001
  end-page: 258
  article-title: Polyamines in cell growth and cell death: Molecular mechanisms and therapeutic applications
  publication-title: Cellular and Molecular Life Sciences
– volume: 45
  start-page: 2466
  issue: 6
  year: 1985
  end-page: 2470
  article-title: Role of polyamines in estradiol‐induced growth of human breast cancer cells
  publication-title: Cancer Research
– volume: 5
  issue: 4
  year: 2013
  article-title: Caspase functions in cell death and disease
  publication-title: Cold Spring Harbor Perspectives in Biology
– volume: 25
  start-page: 717
  issue: 7
  year: 2011
  end-page: 729
  article-title: Pancreatic cancers require autophagy for tumor growth
  publication-title: Genes & Development
– volume: 3
  start-page: 125
  issue: 2
  year: 2010
  end-page: 127
  article-title: Cancer chemoprevention locks onto a new polyamine metabolic target
  publication-title: Cancer Prevention Research
– volume: 152
  start-page: 657
  issue: 4
  year: 2001
  end-page: 668
  article-title: Dissection of autophagosome formation using Apg5‐deficient mouse embryonic stem cells
  publication-title: Journal of Cell Biology
– volume: 132
  start-page: 27
  issue: 1
  year: 2008
  end-page: 42
  article-title: Autophagy in the pathogenesis of disease
  publication-title: Cell
– volume: 395
  start-page: 395
  issue: 6700
  year: 1998
  end-page: 398
  article-title: A protein conjugation system essential for autophagy
  publication-title: Nature
– volume: 13
  start-page: 993
  year: 1998
  end-page: 1006
  article-title: Polyamine metabolism as target for cancer chemoprevention (review)
  publication-title: International Journal of Oncology
– volume: 17
  start-page: 2002
  issue: 897‐908
  year: 2002
  article-title: Autophagy in neurons: A review
  publication-title: Histology & Histopathology
– start-page: 11
  year: 2009
  article-title: The role of autophagy in tumour development and cancer therapy
  publication-title: Expert Reviews in Molecular Medicine
– volume: 24
  start-page: 24
  issue: 1
  year: 2013
  end-page: 41
  article-title: The machinery of macroautophagy
  publication-title: Cell Research
– volume: 62
  start-page: 1400
  issue: 6
  year: 2002
  end-page: 1408
  article-title: c‐Myc exerts a protective function through ornithine decarboxylase against cellular insults
  publication-title: Molecular Pharmacology
– volume: 111
  start-page: 380
  issue: 3
  year: 1998
  end-page: 384
  article-title: Differential Regulation of P53 and Bcl‐2 Expression by Ultraviolet A and B
  publication-title: Journal of Investigative Dermatology
– volume: 10
  start-page: 191
  issue: 3
  year: 2001
  end-page: 199
  article-title: Alpha‐difluoromethylornithine induction of apoptosis: A mechanism which reverses pre‐established cell proliferation and cancer initiation in esophageal carcinogenesis in zinc‐deficient rats
  publication-title: Cancer Epidemiology, Biomarkers & Prevention
– volume: 19
  year: 2020
  article-title: Thymoquinone and difluoromethylornithine (DFMO) synergistically induce apoptosis of human acute T lymphoblastic leukemia jurkat cells through the modulation of epigenetic pathways
  publication-title: Technology in Cancer Research & Treatment
– volume: 6
  start-page: 463
  issue: 4
  year: 2004
  end-page: 477
  article-title: Development by self‐digestion
  publication-title: Developmental Cell
– volume: 407
  start-page: 770
  issue: 6805
  year: 2000
  end-page: 776
  article-title: The biochemistry of apoptosis
  publication-title: Nature
– volume: 17
  start-page: 654
  issue: 4
  year: 2011
  end-page: 666
  article-title: Principles and current strategies for targeting autophagy for cancer treatment
  publication-title: Clinical Cancer Research
– volume: 125
  start-page: 5259
  issue: 22
  year: 2012
  end-page: 5268
  article-title: Life in the balance – a mechanistic view of the crosstalk between autophagy and apoptosis
  publication-title: Journal of Cell Science
– volume: 53
  start-page: 53
  issue: 1
  year: 1993
  end-page: 60
  article-title: Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice
  publication-title: Cancer Research
– volume: 4
  issue: 10
  year: 2013
  article-title: Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment
  publication-title: Cell Death & Disease
– volume: 82
  start-page: 367
  issue: 7–8
  year: 2008
  end-page: 375
  article-title: Curcumin induces apoptosis through an ornithine decarboxylase‐dependent pathway in human promyelocytic leukemia HL‐60 cells
  publication-title: Life Sciences
– volume: 12
  issue: 12
  year: 2020
  article-title: Baicalein, 7,8‐dihydroxyflavone and myricetin as potent inhibitors of human ornithine decarboxylase
  publication-title: Nutrients
– volume: 20
  start-page: 503
  issue: 5
  year: 2014
  end-page: 510
  article-title: Essential role for autophagy in the maintenance of immunological memory against influenza infection
  publication-title: Nature Medicine
– volume: 8
  start-page: 741
  issue: 9
  year: 2007
  end-page: 752
  article-title: Self‐eating and self‐killing: Crosstalk between autophagy and apoptosis
  publication-title: Nature Reviews Molecular Cell Biology
– ident: e_1_2_7_29_1
  doi: 10.1038/26506
– ident: e_1_2_7_45_1
  doi: 10.1101/gad.2016111
– ident: e_1_2_7_20_1
  doi: 10.1016/s1534-5807(04)00099-1
– ident: e_1_2_7_36_1
  doi: 10.1242/jcs.115865
– ident: e_1_2_7_39_1
  doi: 10.1038/cddis.2013.350
– ident: e_1_2_7_8_1
  doi: 10.1038/379335a0
– ident: e_1_2_7_4_1
  doi: 10.3390/ijms13011209
– ident: e_1_2_7_33_1
  doi: 10.1016/j.molmed.2006.07.007
– ident: e_1_2_7_11_1
  doi: 10.1038/nrc1454
– ident: e_1_2_7_40_1
  doi: 10.1007/pl00000852
– ident: e_1_2_7_10_1
  doi: 10.1158/1940-6207.capr-09-0252
– ident: e_1_2_7_32_1
  doi: 10.4155/tde.12.61
– ident: e_1_2_7_18_1
  doi: 10.1038/nrc1692
– ident: e_1_2_7_27_1
  doi: 10.1016/j.gde.2010.12.008
– ident: e_1_2_7_14_1
  doi: 10.1038/35037710
– ident: e_1_2_7_19_1
  doi: 10.14670/HH-17.897
– ident: e_1_2_7_44_1
  doi: 10.1038/ni.3025
– ident: e_1_2_7_16_1
  doi: 10.1093/emboj/19.21.5720
– volume: 45
  start-page: 2466
  issue: 6
  year: 1985
  ident: e_1_2_7_23_1
  article-title: Role of polyamines in estradiol‐induced growth of human breast cancer cells
  publication-title: Cancer Research
– ident: e_1_2_7_30_1
  doi: 10.1083/jcb.152.4.657
– ident: e_1_2_7_31_1
  doi: 10.1124/mol.62.6.1400
– ident: e_1_2_7_5_1
  doi: 10.1038/nm.3521
– volume: 10
  start-page: 191
  issue: 3
  year: 2001
  ident: e_1_2_7_9_1
  article-title: Alpha‐difluoromethylornithine induction of apoptosis: A mechanism which reverses pre‐established cell proliferation and cancer initiation in esophageal carcinogenesis in zinc‐deficient rats
  publication-title: Cancer Epidemiology, Biomarkers & Prevention
– ident: e_1_2_7_28_1
  doi: 10.1101/cshperspect.a008656
– ident: e_1_2_7_42_1
  doi: 10.1046/j.1523-1747.1998.00319.x
– ident: e_1_2_7_6_1
  doi: 10.1038/cr.2013.168
– ident: e_1_2_7_37_1
  doi: 10.1021/acs.jnatprod.0c00613
– ident: e_1_2_7_47_1
  doi: 10.1016/j.jpba.2021.114129
– ident: e_1_2_7_22_1
  doi: 10.1016/j.lfs.2007.11.022
– ident: e_1_2_7_46_1
  doi: 10.1016/s1046-2023(02)00209-8
– ident: e_1_2_7_35_1
  doi: 10.1016/j.molcel.2011.10.014
– ident: e_1_2_7_21_1
  doi: 10.1016/j.cell.2007.12.018
– ident: e_1_2_7_41_1
  doi: 10.1038/sj.onc.1207232
– ident: e_1_2_7_2_1
  doi: 10.1177/1533033820947489
– ident: e_1_2_7_15_1
  doi: 10.1007/s10495-005-2947-z
– ident: e_1_2_7_26_1
  doi: 10.1038/nrm2239
– ident: e_1_2_7_38_1
  doi: 10.3892/ijo.13.5.993
– ident: e_1_2_7_24_1
  doi: 10.1007/s10495-005-1891-2
– ident: e_1_2_7_7_1
  doi: 10.1016/j.tcb.2015.02.002
– ident: e_1_2_7_17_1
  doi: 10.1042/bse0460004
– ident: e_1_2_7_3_1
  doi: 10.1158/1078-0432.ccr-10-2634
– ident: e_1_2_7_13_1
  doi: 10.1146/annurev-genet-102808-114910
– ident: e_1_2_7_43_1
  doi: 10.1038/nrc3262
– ident: e_1_2_7_34_1
  doi: 10.1017/s1462399409001306
– volume: 53
  start-page: 53
  issue: 1
  year: 1993
  ident: e_1_2_7_12_1
  article-title: Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice
  publication-title: Cancer Research
– ident: e_1_2_7_25_1
  doi: 10.3390/nu12123867
SSID ssj0009933
Score 2.4139166
Snippet We present a mechanism for how ornithine decarboxylase (ODC) regulates the crosstalk between autophagy and apoptosis. In cancer cells, low‐intensity...
We present a mechanism for how ornithine decarboxylase (ODC) regulates the crosstalk between autophagy and apoptosis. In cancer cells, low-intensity...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2140
SubjectTerms Apoptosis
Apoptosis - genetics
Atg12
Atg5
Autophagy
Autophagy - genetics
Autophagy-Related Protein 12 - genetics
Autophagy-Related Protein 5 - genetics
Cell survival
Conjugation
Crosstalk
Exposure
Humans
Markers
Mutants
Ornithine decarboxylase
Ornithine Decarboxylase - genetics
Phagosomes
Poly(ADP-ribose) polymerase
Proteins
Radiation
Radiation Injuries
Site-directed mutagenesis
ultraviolet B
Ultraviolet radiation
Ultraviolet Rays
Title Ornithine decarboxylase functions in both autophagy and apoptosis in response to ultraviolet B radiation injury
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.30678
https://www.ncbi.nlm.nih.gov/pubmed/35019151
https://www.proquest.com/docview/2655483600
https://www.proquest.com/docview/2619216819
Volume 237
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS91AEB5EKPhirZf2WJW1iPgS3SR7chJ8UlHEh7aIgg-FsLd4Tw45ycPpr3dmcxFvUJqnQCbZze7M7De7s98CbGUI8qXNMMhJ5MgTJgy8RPLYG2axwIuHoXVsnz-j00txdjW8moH9bi9Mww_RT7iRZTh_TQYu1WTvmTT0TmPATr4W_S_lahEgOn-mjkraY-RdCsJQ-B2rEA_2-jdfjkVvAOZLvOoGnJPP8KerapNncr9bV2pX_33F4vif_7IA8y0QZQeN5nyBGZsvwtJBjkH445RtM5ca6ubcF-FTc2LldAmKXyX6gBsskBmrZamwcoi_LaPx0akwu82Zwu5nsibOAnk9ZTI3TI6LcVVMbt3zsknMtawqWP1QldKlB1TskJVElUDfQbE77O5luDw5vjg69dozGzwdku-UoTDEp6ONGkppldFS-kIjjjF-nGHwpLi2AjGpUmrkZ3EcCp75ylihVMC1CFdgNi9y-w1YHFk_olXVgBshRjhsRnGSZX7MEaRZHQxgp-u9VLeE5nSuxkPaUDEHKTZr6pp1AD960XHD4vGe0FqnAmlryJM0iBBv0UYXPoDN_jGaIK2ryNwWNckQqVyE2GoAXxvV6UuhddsEURVW1inAx8WnZ0e_3c3qv4t-h7mAtmO4TKI1mK3K2q4jSKrUhrOGJ7UDDWk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9UwEB6VIgQX6AL00Za6CCEuaZ3ELy-RuJSK6nWhINRKvVSRt9A1eUqTw-uvZ8ZZqrJIqDlFyiR27Bn7G3v8DcD7DEG-tBk6OYkcecKEgZdIHnvDLBZ48TC0ju3zMBofi72T4ckMfOrOwjT8EP2CG1mGG6_JwGlBevOONfRCo8dOg-0jeEwZvZ1D9eOOPCppE8m7IISh8DteIR5s9q_en43-gJj3EaubcnZewGlX2SbS5HKjrtSGvv2Nx_GhfzMHz1ssyrYa5ZmHGZsvwOJWjn749ZR9YC461C27L8CTJmnldBGKbyUOA2dYIjNWy1Jh7RCCW0ZTpNNidp4zhRrAZE20BfLnlMncMDkpJlVxc-6el01srmVVweqrqpQuQqBin1lJbAn0HRS7wB5_Ccc7X462x16btsHTIQ2fMhSGKHW0UUMprTJaSl9ohDLGjzP0nxTXViAsVUqN_CyOQ8EzXxkrlAq4FuErmM2L3C4BiyPrR7SxGnAjxAhnzihOssyPOeI0q4MBfOy6L9Utpzml1rhKGzbmIMVmTV2zDuBdLzppiDz-JrTS6UDa2vJNGkQIueisCx_Aev8YrZC2VmRui5pkiFcuQng1gNeN7vSl0NZtgsAKK-s04N_Fp3vb393Nm_8XXYOn46OvB-nB7uH-MjwL6HSGCyxagdmqrO0qYqZKvXWm8Qt4PBGE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIhAXHi3QpQUMQohLWifxZhNxKi2rUlCpEJV6qBT5SZ_JKk0O21_PjPOoykNC5BQpk9ixZ-xv7PE3AG8cgnxpHTo5mZwEwsRRkEmeBmOXCrx4HFvP9rmX7ByI3cPx4QK878_CtPwQw4IbWYYfr8nAZ8ZtXJOGnmp02GmsvQW3RcJTUuntb9fcUVmXR97HIIxF2NMK8WhjePXmZPQbwrwJWP2MM30AR31d20CTs_WmVuv66hcax__8mYdwv0OibLNVnUewYIslWN4s0Au_mLO3zMeG-kX3JbjTpqycL0P5tcJB4BgLZMZqWSmsHAJwy2iC9DrMTgqmsP-ZbIi0QP6YM1kYJmflrC4vT_zzqo3MtawuWXNeV9LHB9TsA6uIK4G-g2Kn2N-P4WD68fvWTtAlbQh0TIOnjIUhQh1t1FhKq4yWMhQagYwJU4fek-LaCgSlSqlJ6NI0FtyFylihVMS1iJ_AYlEWdgVYmtgwoW3ViBshJjhvJmnmXJhyRGlWRyN41_derjtGc0qscZ63XMxRjs2a-2YdwetBdNbSePxJaK1Xgbyz5Ms8ShBw0UkXPoJXw2O0QdpYkYUtG5IhVrkEwdUInraqM5RCG7cZwiqsrFeAvxef727t-5tn_y76Eu7ub0_zL5_2Pq_CvYiOZvioojVYrKvGPkfAVKsX3jB-AlgoEDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ornithine+decarboxylase+functions+in+both+autophagy+and+apoptosis+in+response+to+ultraviolet+B+radiation+injury&rft.jtitle=Journal+of+cellular+physiology&rft.au=Liu%2C+Yi%E2%80%90Liang&rft.au=Hsiao%2C+I%E2%80%90Hsin&rft.au=Lin%2C+Yen%E2%80%90Hung&rft.au=Lin%2C+Chih%E2%80%90Li&rft.date=2022-04-01&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=237&rft.issue=4&rft.spage=2140&rft.epage=2154&rft_id=info:doi/10.1002%2Fjcp.30678&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jcp_30678
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon