Emerging insights into molecular mechanisms underlying pyroptosis and functions of inflammasomes in diseases
Pyroptosis is a form of necrotic and inflammatory programmed cell death, which could be characterized by cell swelling, pore formation on plasma membranes, and release of proinflammatory cytokines (IL‐1β and IL‐18). The process of pyroptosis presents as dual effects: protecting multicellular organis...
Saved in:
Published in | Journal of cellular physiology Vol. 235; no. 4; pp. 3207 - 3221 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pyroptosis is a form of necrotic and inflammatory programmed cell death, which could be characterized by cell swelling, pore formation on plasma membranes, and release of proinflammatory cytokines (IL‐1β and IL‐18). The process of pyroptosis presents as dual effects: protecting multicellular organisms from microbial infection and endogenous dangers; leading to pathological inflammation if overactivated. Two pathways have been found to trigger pyroptosis: caspase‐1 mediated inflammasome pathway with the involvement of NLRP1‐, NLRP3‐, NLRC4‐, AIM2‐, pyrin‐inflammasome (canonical inflammasome pathway) and caspase‐4/5/11‐mediated inflammasome pathway (noncanonical inflammasome pathway). Gasdermin D (GSDMD) has been proved to be a substrate of inflammatory caspases (caspase‐1/4/5/11), and the cleaved N‐terminal domain of GSDMD oligomerizes to form cytotoxic pores on the plasma membrane. Here, we mainly reviewed the up to date mechanisms of pyroptosis, and began with the inflammasomes as the activator of caspase‐1/caspase‐11, 4, and 5. We further discussed these inflammasomes functions in diseases, including infectious diseases, sepsis, inflammatory autoimmune diseases, and neuroinflammatory diseases.
We summarized the updated molecular mechanisms implicated in the regulation of inflammasomes which present as the activators of canonical/noncanonical inflammasome pathways of pyroptosis, and these inflammasomes function in relevant infectious, autoinflammatory, and neuroinflammatory diseases. |
---|---|
AbstractList | Pyroptosis is a form of necrotic and inflammatory programmed cell death, which could be characterized by cell swelling, pore formation on plasma membranes, and release of proinflammatory cytokines (IL-1β and IL-18). The process of pyroptosis presents as dual effects: protecting multicellular organisms from microbial infection and endogenous dangers; leading to pathological inflammation if overactivated. Two pathways have been found to trigger pyroptosis: caspase-1 mediated inflammasome pathway with the involvement of NLRP1-, NLRP3-, NLRC4-, AIM2-, pyrin-inflammasome (canonical inflammasome pathway) and caspase-4/5/11-mediated inflammasome pathway (noncanonical inflammasome pathway). Gasdermin D (GSDMD) has been proved to be a substrate of inflammatory caspases (caspase-1/4/5/11), and the cleaved N-terminal domain of GSDMD oligomerizes to form cytotoxic pores on the plasma membrane. Here, we mainly reviewed the up to date mechanisms of pyroptosis, and began with the inflammasomes as the activator of caspase-1/caspase-11, 4, and 5. We further discussed these inflammasomes functions in diseases, including infectious diseases, sepsis, inflammatory autoimmune diseases, and neuroinflammatory diseases.Pyroptosis is a form of necrotic and inflammatory programmed cell death, which could be characterized by cell swelling, pore formation on plasma membranes, and release of proinflammatory cytokines (IL-1β and IL-18). The process of pyroptosis presents as dual effects: protecting multicellular organisms from microbial infection and endogenous dangers; leading to pathological inflammation if overactivated. Two pathways have been found to trigger pyroptosis: caspase-1 mediated inflammasome pathway with the involvement of NLRP1-, NLRP3-, NLRC4-, AIM2-, pyrin-inflammasome (canonical inflammasome pathway) and caspase-4/5/11-mediated inflammasome pathway (noncanonical inflammasome pathway). Gasdermin D (GSDMD) has been proved to be a substrate of inflammatory caspases (caspase-1/4/5/11), and the cleaved N-terminal domain of GSDMD oligomerizes to form cytotoxic pores on the plasma membrane. Here, we mainly reviewed the up to date mechanisms of pyroptosis, and began with the inflammasomes as the activator of caspase-1/caspase-11, 4, and 5. We further discussed these inflammasomes functions in diseases, including infectious diseases, sepsis, inflammatory autoimmune diseases, and neuroinflammatory diseases. Pyroptosis is a form of necrotic and inflammatory programmed cell death, which could be characterized by cell swelling, pore formation on plasma membranes, and release of proinflammatory cytokines (IL‐1β and IL‐18). The process of pyroptosis presents as dual effects: protecting multicellular organisms from microbial infection and endogenous dangers; leading to pathological inflammation if overactivated. Two pathways have been found to trigger pyroptosis: caspase‐1 mediated inflammasome pathway with the involvement of NLRP1‐, NLRP3‐, NLRC4‐, AIM2‐, pyrin‐inflammasome (canonical inflammasome pathway) and caspase‐4/5/11‐mediated inflammasome pathway (noncanonical inflammasome pathway). Gasdermin D (GSDMD) has been proved to be a substrate of inflammatory caspases (caspase‐1/4/5/11), and the cleaved N‐terminal domain of GSDMD oligomerizes to form cytotoxic pores on the plasma membrane. Here, we mainly reviewed the up to date mechanisms of pyroptosis, and began with the inflammasomes as the activator of caspase‐1/caspase‐11, 4, and 5. We further discussed these inflammasomes functions in diseases, including infectious diseases, sepsis, inflammatory autoimmune diseases, and neuroinflammatory diseases. Pyroptosis is a form of necrotic and inflammatory programmed cell death, which could be characterized by cell swelling, pore formation on plasma membranes, and release of proinflammatory cytokines (IL‐1β and IL‐18). The process of pyroptosis presents as dual effects: protecting multicellular organisms from microbial infection and endogenous dangers; leading to pathological inflammation if overactivated. Two pathways have been found to trigger pyroptosis: caspase‐1 mediated inflammasome pathway with the involvement of NLRP1‐, NLRP3‐, NLRC4‐, AIM2‐, pyrin‐inflammasome (canonical inflammasome pathway) and caspase‐4/5/11‐mediated inflammasome pathway (noncanonical inflammasome pathway). Gasdermin D (GSDMD) has been proved to be a substrate of inflammatory caspases (caspase‐1/4/5/11), and the cleaved N‐terminal domain of GSDMD oligomerizes to form cytotoxic pores on the plasma membrane. Here, we mainly reviewed the up to date mechanisms of pyroptosis, and began with the inflammasomes as the activator of caspase‐1/caspase‐11, 4, and 5. We further discussed these inflammasomes functions in diseases, including infectious diseases, sepsis, inflammatory autoimmune diseases, and neuroinflammatory diseases. We summarized the updated molecular mechanisms implicated in the regulation of inflammasomes which present as the activators of canonical/noncanonical inflammasome pathways of pyroptosis, and these inflammasomes function in relevant infectious, autoinflammatory, and neuroinflammatory diseases. |
Author | Hu, Tu Guo, Zimeng Lan, Zhixin Xia, Xiaobo Lu, Fangfang He, Chunrong Xin, Zhaoqi |
Author_xml | – sequence: 1 givenname: Fangfang orcidid: 0000-0002-9214-3046 surname: Lu fullname: Lu, Fangfang organization: Central South University – sequence: 2 givenname: Zhixin surname: Lan fullname: Lan, Zhixin organization: Central South University – sequence: 3 givenname: Zhaoqi surname: Xin fullname: Xin, Zhaoqi organization: Central South University – sequence: 4 givenname: Chunrong surname: He fullname: He, Chunrong organization: Central South University – sequence: 5 givenname: Zimeng surname: Guo fullname: Guo, Zimeng organization: Central South University – sequence: 6 givenname: Xiaobo surname: Xia fullname: Xia, Xiaobo organization: Central South University – sequence: 7 givenname: Tu surname: Hu fullname: Hu, Tu email: hutu1986@csu.edu.cn organization: Central South University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31621910$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctqHDEQRUVwiMdOFvkB0-BNvGhbj35paQbHTjAki2QtNOrqsQY92qpuwvx91J7xxiSbqoI691LUPSMnIQYg5DOj14xSfrMz4zWXvOnekRWjsi2rpuYnZJV3rJR1xU7JGeKOUiqlEB_IqWANZ5LRFXF3HtLWhm1hA9rt04R5mGLhowMzO50KD-ZJB4seizn0kNx-ocd9iuMU0WKhQ18MczCTjQGLOGSDwWnvNUYPi13RWwSNgB_J-0E7hE_Hfk5-f737tX4oH3_cf1vfPpZG1KIrBWsr3TC-aQVng4SOy6qvc9_UbQ9LEawDKg1woanQm7auOkG11lWeORXn5MvBd0zxeQaclLdowDkdIM6ouKBNJXPpMnr5Bt3FOYV8XaaEqBshuMzUxZGaNx56NSbrddqr1z9m4OYAmBQREwzK2EkvH5mStk4xqpakVE5KvSSVFVdvFK-m_2KP7n-sg_3_QfV9_fOg-Asv_aMF |
CitedBy_id | crossref_primary_10_1038_s41374_021_00675_6 crossref_primary_10_1016_j_yexcr_2024_114214 crossref_primary_10_1155_2022_4566851 crossref_primary_10_1186_s12935_022_02627_6 crossref_primary_10_3390_cimb45030134 crossref_primary_10_1016_j_jare_2020_08_004 crossref_primary_10_1016_j_cca_2022_04_011 crossref_primary_10_1002_ctm2_1692 crossref_primary_10_3390_ijms24032821 crossref_primary_10_1002_iid3_817 crossref_primary_10_3390_molecules27185999 crossref_primary_10_1016_j_chemosphere_2023_138817 crossref_primary_10_3389_fimmu_2024_1405376 crossref_primary_10_3389_fmed_2024_1451990 crossref_primary_10_1007_s11033_021_06402_0 crossref_primary_10_1186_s12964_024_01932_z crossref_primary_10_2147_JIR_S445573 crossref_primary_10_1007_s43440_021_00321_4 crossref_primary_10_1007_s10637_023_01373_4 crossref_primary_10_1016_j_bbcan_2020_188453 crossref_primary_10_3389_fphar_2023_1151196 crossref_primary_10_1007_s10792_022_02506_z crossref_primary_10_3390_cells10102562 crossref_primary_10_1021_acsami_1c17382 crossref_primary_10_1007_s10495_023_01823_7 crossref_primary_10_1016_j_clinre_2022_102070 crossref_primary_10_1007_s00011_021_01457_y crossref_primary_10_1021_acsbiomaterials_9b01932 crossref_primary_10_3389_fimmu_2024_1386939 crossref_primary_10_1007_s11064_022_03810_x crossref_primary_10_3390_cells10113023 crossref_primary_10_1016_j_lfs_2019_117138 crossref_primary_10_3390_ijms23052484 crossref_primary_10_1016_j_ijbiomac_2024_135979 crossref_primary_10_1016_j_biopha_2024_116667 crossref_primary_10_1186_s12950_024_00382_1 crossref_primary_10_1111_jop_13290 crossref_primary_10_1080_14767058_2024_2312447 crossref_primary_10_1111_acer_14936 crossref_primary_10_1007_s10565_024_09895_0 crossref_primary_10_1371_journal_ppat_1010718 crossref_primary_10_1016_j_exer_2023_109381 crossref_primary_10_3390_ijms22020561 crossref_primary_10_1128_IAI_00683_20 crossref_primary_10_7717_peerj_16818 crossref_primary_10_1186_s13048_022_01080_3 crossref_primary_10_4103_1673_5374_373676 crossref_primary_10_1111_odi_14648 crossref_primary_10_1007_s11011_025_01589_8 crossref_primary_10_1016_j_neulet_2022_136935 crossref_primary_10_1016_j_jep_2024_118231 crossref_primary_10_1016_j_micpath_2021_104866 crossref_primary_10_1016_j_critrevonc_2023_104249 crossref_primary_10_1186_s40001_024_01890_9 crossref_primary_10_1134_S106235902312018X crossref_primary_10_3390_ijms222111581 crossref_primary_10_1007_s00011_021_01493_8 crossref_primary_10_3389_fendo_2023_1207142 crossref_primary_10_1016_j_cbi_2021_109573 crossref_primary_10_1128_mSystems_00336_21 crossref_primary_10_3390_cells11101717 crossref_primary_10_3390_toxics12120840 crossref_primary_10_1016_j_intimp_2021_107962 crossref_primary_10_1155_2020_4063562 crossref_primary_10_3389_fimmu_2022_823439 crossref_primary_10_1016_j_bbrc_2024_149760 crossref_primary_10_1016_j_neurot_2024_e00359 crossref_primary_10_3390_cells11203271 crossref_primary_10_3390_cells9081808 crossref_primary_10_1002_jbt_23458 crossref_primary_10_1002_advs_202203583 crossref_primary_10_1007_s13105_021_00817_w crossref_primary_10_3389_fimmu_2022_1035709 crossref_primary_10_1016_j_biopha_2024_116129 crossref_primary_10_1007_s10753_023_01901_7 crossref_primary_10_3389_fimmu_2021_763092 crossref_primary_10_3389_fimmu_2023_1155222 crossref_primary_10_1016_j_jpba_2024_116239 crossref_primary_10_1142_S0192415X23500751 crossref_primary_10_1155_2021_9925059 crossref_primary_10_1016_j_chemosphere_2024_142826 crossref_primary_10_1016_j_jare_2024_10_026 crossref_primary_10_1186_s12931_024_02740_2 crossref_primary_10_1007_s11033_024_09329_4 crossref_primary_10_1080_09537104_2022_2156492 crossref_primary_10_3389_fonc_2022_889658 crossref_primary_10_1021_acschemneuro_2c00196 crossref_primary_10_1007_s12035_022_02960_x crossref_primary_10_1016_j_phymed_2021_153687 crossref_primary_10_1186_s12890_023_02456_x crossref_primary_10_3389_fphar_2021_726198 crossref_primary_10_3390_ijms22168773 crossref_primary_10_1016_j_apsb_2021_10_006 crossref_primary_10_1080_17512433_2021_1878024 crossref_primary_10_1096_fj_202100713RR crossref_primary_10_1186_s12974_022_02547_2 crossref_primary_10_1016_j_joim_2023_03_003 crossref_primary_10_2147_JIR_S371536 crossref_primary_10_1021_acs_jafc_3c02441 crossref_primary_10_3390_ijms21134714 crossref_primary_10_1007_s12550_024_00524_7 crossref_primary_10_1186_s10020_024_01020_5 crossref_primary_10_3389_fcell_2021_753660 crossref_primary_10_1007_s11356_023_25254_8 crossref_primary_10_1080_08916934_2024_2312927 crossref_primary_10_1186_s40001_023_01578_6 crossref_primary_10_3390_cells11233758 crossref_primary_10_1016_j_bbcan_2023_189058 crossref_primary_10_1016_j_cyto_2023_156168 crossref_primary_10_3390_molecules27165298 crossref_primary_10_1155_2021_1173324 crossref_primary_10_1016_j_fct_2023_113683 crossref_primary_10_1016_j_heliyon_2024_e24974 crossref_primary_10_1002_dmrr_3841 crossref_primary_10_1002_tox_23861 crossref_primary_10_3389_fimmu_2021_737065 crossref_primary_10_1007_s10067_021_05755_y crossref_primary_10_1096_fj_202300237R crossref_primary_10_1016_j_crimmu_2023_100061 crossref_primary_10_1016_j_intimp_2023_111010 crossref_primary_10_1016_j_neuroscience_2022_04_011 crossref_primary_10_4236_jbm_2022_104011 crossref_primary_10_1111_jcmm_17277 crossref_primary_10_2147_CCID_S492340 crossref_primary_10_2174_0929867328666210910154330 crossref_primary_10_1111_cns_14221 crossref_primary_10_1186_s12989_024_00577_7 crossref_primary_10_1590_fst_45122 crossref_primary_10_3390_ijms21176204 crossref_primary_10_4103_wjsi_wjsi_3_24 crossref_primary_10_3390_md22120540 crossref_primary_10_4196_kjpp_24_240 crossref_primary_10_3389_fimmu_2022_841732 crossref_primary_10_1016_j_intimp_2023_111301 crossref_primary_10_1002_adhm_202401616 crossref_primary_10_1016_j_exer_2024_109812 crossref_primary_10_3389_fcell_2021_634690 crossref_primary_10_3389_fimmu_2023_1074606 crossref_primary_10_3390_ijms232113229 crossref_primary_10_1002_jbt_22951 crossref_primary_10_31857_S0869803123030128 crossref_primary_10_1038_s41419_022_04561_x crossref_primary_10_1186_s12865_021_00463_3 crossref_primary_10_1016_j_molimm_2024_06_007 crossref_primary_10_1038_s41419_024_06992_0 crossref_primary_10_3390_ijms24087333 crossref_primary_10_1186_s13567_020_00829_2 crossref_primary_10_3390_ijms252011025 crossref_primary_10_3390_ijms252011146 crossref_primary_10_1084_jem_20201452 crossref_primary_10_3389_fcvm_2023_1180792 crossref_primary_10_3389_fimmu_2023_1085448 crossref_primary_10_1186_s40478_025_01950_z crossref_primary_10_3389_fimmu_2023_1055788 |
Cites_doi | 10.1002/bies.201200013 10.1074/jbc.M112.378323 10.1038/mi.2013.95 10.1002/JLB.MR0318-124R 10.1002/eji.201545655 10.1073/pnas.1708194114 10.1093/hmg/11.8.961 10.1073/pnas.1201836109 10.1016/j.cell.2016.04.015 10.1016/j.intimp.2018.12.019 10.1111/imr.12283 10.1126/science.1243640 10.1016/j.molcel.2018.11.018 10.1007/s00011-019-01256-6 10.1038/ni.1960 10.1016/j.cmet.2015.09.024 10.1097/ACI.0000000000000396 10.1038/jcbfm.2013.227 10.4049/jimmunol.0901363 10.1038/nri2925 10.1146/annurev.pathol.1.110304.100133 10.1128/IAI.01170-13 10.1084/jem.20141091 10.1111/imm.12787 10.1016/S1097-2765(02)00599-3 10.1074/jbc.M114.553305 10.1136/annrheumdis-2017-211473 10.1038/nature15541 10.1083/jcb.201602089 10.1002/jcp.27909 10.1186/s12882-019-1506-8 10.1038/ni.2474 10.1016/j.mib.2013.04.004 10.1002/eji.201545839 10.1002/jcp.26287 10.1016/j.molcel.2019.01.029 10.1073/pnas.90.21.10198 10.1038/sj.cdd.4401734 10.1371/journal.ppat.1006052 10.3171/2012.9.JNS12815 10.1128/IAI.01003-12 10.1126/science.1236381 10.1038/nature22393 10.1038/nature15632 10.1128/IAI.01032-08 10.1016/j.sbi.2014.08.011 10.1038/nature06246 10.3109/08916934.2011.637532 10.1038/nature13683 10.1086/665457 10.1038/cr.2014.101 10.1038/ncomms4209 10.1126/science.1230751 10.1126/scitranslmed.aaf1471 10.1016/j.tibs.2016.10.004 10.4049/jimmunol.179.2.1274 10.1186/s13024-016-0094-3 10.1016/j.cell.2017.01.008 10.3389/fimmu.2019.01904 10.1002/jlb.60.1.8 10.1186/s13045-019-0755-0 10.1111/imr.12286 10.1016/j.chom.2011.04.008 10.1038/ni.3457 10.1038/jcbfm.2013.236 10.1186/s12974-016-0521-y 10.1007/s11064-013-1115-z 10.1097/00063198-200305000-00011 10.1073/pnas.1601700113 10.1038/nature18629 10.1042/BJ20121198 10.1038/ni.1702 10.1074/jbc.M112.407130 10.1016/j.molcel.2014.02.018 10.1038/nature13157 10.1084/jem.20121960 10.1016/j.immuni.2011.02.006 10.1016/S0966-842X(00)01936-3 10.1016/j.tibs.2016.09.002 10.1073/pnas.1417945112 10.1371/journal.pone.0164662 10.1111/imr.12293 10.1016/j.coi.2015.01.007 10.1136/annrheumdis-2016-210021 10.1001/jama.2016.0287 10.1016/j.clim.2017.10.003 10.1038/nature10394 10.1111/imr.12287 10.1074/jbc.M113.468033 10.1002/eji.201545772 10.1371/journal.ppat.1007240 10.1111/j.1399-0039.2010.01470.x 10.1016/j.cell.2014.04.007 10.1016/j.bbrc.2017.11.156 10.1089/jir.2009.0096 10.1038/nature12940 10.1016/S1074-7613(04)00046-9 10.1038/358167a0 10.1093/hmg/7.10.1581 10.1371/journal.ppat.1003452 10.1186/s13024-016-0088-1 10.1111/nyas.12458 10.1016/j.immuni.2012.02.014 10.1038/nature18590 10.1093/femspd/ftw028 10.1016/j.cell.2016.09.001 10.1016/j.molcel.2007.01.032 10.1016/j.molcel.2007.08.029 10.1038/nature15514 10.1038/nature07710 10.1126/science.1240988 10.1111/imr.12534 10.1016/j.gene.2013.07.082 10.1074/jbc.M806121200 10.1016/j.molcel.2012.11.009 10.1073/pnas.0913087107 10.1152/ajpendo.00296.2016 10.1016/j.cell.2010.01.022 10.1016/j.immuni.2011.02.020 10.1074/jbc.C100250200 10.1038/nature10558 10.1038/nature13449 10.1146/annurev-micro-092412-155725 10.1111/exd.12037 10.1016/j.micinf.2011.12.005 10.1007/s12035-017-0400-2 10.1038/nrmicro2070 10.1073/pnas.1710433114 10.1016/j.cell.2014.02.008 |
ContentType | Journal Article |
Copyright | 2019 Wiley Periodicals, Inc. 2020 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2019 Wiley Periodicals, Inc. – notice: 2020 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 |
DOI | 10.1002/jcp.29268 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4652 |
EndPage | 3221 |
ExternalDocumentID | 31621910 10_1002_jcp_29268 JCP29268 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: 2018M643004 – fundername: College students’ innovative project of CSU funderid: ZY2016698 – fundername: National Natural Science Foundation of China funderid: 81900890 |
GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 36B 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 9M8 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEFU ABEML ABIJN ABJNI ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMB EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IH2 IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ NNB O66 O9- OHT OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RWR RX1 RYL S10 SAMSI SUPJJ SV3 TN5 TWZ UB1 UPT V2E V8K VQP W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ X7M XG1 XJT XOL XPP XSW XV2 Y6R YQT YZZ ZGI ZXP ZZTAW ~IA ~WT AAYXX ADXHL AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c3538-3174a612b7321f9e8294d59e8b57deb57d318e09ce23a03ab754830aaa4ab7203 |
IEDL.DBID | DR2 |
ISSN | 0021-9541 1097-4652 |
IngestDate | Fri Jul 11 00:03:40 EDT 2025 Sat Jul 26 00:58:38 EDT 2025 Thu Apr 03 06:53:43 EDT 2025 Thu Apr 24 23:10:55 EDT 2025 Tue Jul 01 01:32:06 EDT 2025 Wed Jan 22 16:35:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | GSDMD pyroptosis inflammasomes caspases |
Language | English |
License | 2019 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3538-3174a612b7321f9e8294d59e8b57deb57d318e09ce23a03ab754830aaa4ab7203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-9214-3046 |
PMID | 31621910 |
PQID | 2333563329 |
PQPubID | 1006363 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2306493068 proquest_journals_2333563329 pubmed_primary_31621910 crossref_citationtrail_10_1002_jcp_29268 crossref_primary_10_1002_jcp_29268 wiley_primary_10_1002_jcp_29268_JCP29268 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2020 2020-04-00 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Journal of cellular physiology |
PublicationTitleAlternate | J Cell Physiol |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 479 2010; 11 2011; 477 2004; 20 2010; 107 2019; 10 2016b; 74 2015; 265 2019; 12 2002; 10 2002; 11 2014; 24 2017; 152 2014; 29 2012; 14 2017; 277 2013; 9 2014; 1319 2007; 179 2009; 10 2019; 20 2017; 76 2016; 311 1992; 358 1996; 60 2016; 41 2016; 315 2017; 168 2010; 30 2012; 21 2018; 187 2007; 449 2019; 105 2016; 167 2016; 165 2015; 526 2013; 341 2012; 36 2016; 17 2012; 34 2016a; 46 2016; 13 2016; 12 2012; 109 2014; 156 2009; 458 2011; 9 2014; 157 2016; 11 2001; 276 2009; 77 2013; 339 2015; 112 2018; 233 2013; 81 2009; 183 2016; 213 1998; 7 2012; 45 2012; 117 2014; 34 2016; 8 2018; 14 2016; 23 2017; 547 2017; 42 2012; 287 2013; 449 2015; 32 2013; 288 2011; 11 2014; 68 2010; 140 2011; 17 2017; 114 2014; 211 2012; 209 2007; 28 2015; 45 2018; 495 2014; 5 2013; 14 2013; 16 2019; 68 2019; 67 2003; 9 2016; 113 2019; 234 2009; 284 2014; 7 2007; 25 2014; 54 2014; 289 2014; 514 2010; 76 2014; 513 2019; 73 2013; 49 2006; 13 2011; 34 1993; 90 2006; 1 2014; 82 2014; 505 2013; 38 2014; 509 2017; 17 2001; 9 2015; 21 2013; 530 2009; 7 2016; 535 2018; 55 2012; 87 2014; 343 e_1_2_14_114_1 e_1_2_14_73_1 e_1_2_14_96_1 e_1_2_14_110_1 e_1_2_14_31_1 e_1_2_14_50_1 e_1_2_14_92_1 e_1_2_14_35_1 e_1_2_14_12_1 e_1_2_14_54_1 e_1_2_14_77_1 e_1_2_14_16_1 e_1_2_14_58_1 e_1_2_14_6_1 e_1_2_14_121_1 e_1_2_14_107_1 e_1_2_14_125_1 e_1_2_14_103_1 e_1_2_14_85_1 e_1_2_14_129_1 e_1_2_14_2_1 e_1_2_14_20_1 e_1_2_14_62_1 e_1_2_14_81_1 e_1_2_14_24_1 e_1_2_14_43_1 e_1_2_14_66_1 e_1_2_14_28_1 e_1_2_14_89_1 e_1_2_14_47_1 e_1_2_14_119_1 e_1_2_14_132_1 e_1_2_14_115_1 e_1_2_14_72_1 e_1_2_14_95_1 e_1_2_14_111_1 e_1_2_14_30_1 e_1_2_14_53_1 e_1_2_14_91_1 e_1_2_14_11_1 e_1_2_14_34_1 e_1_2_14_57_1 e_1_2_14_15_1 e_1_2_14_38_1 e_1_2_14_76_1 e_1_2_14_99_1 e_1_2_14_120_1 e_1_2_14_7_1 e_1_2_14_108_1 e_1_2_14_124_1 e_1_2_14_104_1 e_1_2_14_84_1 e_1_2_14_128_1 e_1_2_14_100_1 e_1_2_14_42_1 e_1_2_14_80_1 e_1_2_14_3_1 e_1_2_14_61_1 e_1_2_14_23_1 e_1_2_14_46_1 e_1_2_14_65_1 e_1_2_14_27_1 e_1_2_14_88_1 e_1_2_14_69_1 e_1_2_14_131_1 e_1_2_14_116_1 e_1_2_14_94_1 e_1_2_14_75_1 Guo H. (e_1_2_14_39_1) 2015; 21 e_1_2_14_52_1 e_1_2_14_90_1 e_1_2_14_71_1 e_1_2_14_10_1 e_1_2_14_56_1 e_1_2_14_33_1 e_1_2_14_14_1 e_1_2_14_98_1 e_1_2_14_37_1 e_1_2_14_79_1 e_1_2_14_8_1 e_1_2_14_109_1 e_1_2_14_123_1 e_1_2_14_105_1 e_1_2_14_60_1 e_1_2_14_83_1 e_1_2_14_127_1 e_1_2_14_101_1 e_1_2_14_41_1 e_1_2_14_64_1 e_1_2_14_4_1 e_1_2_14_45_1 e_1_2_14_68_1 e_1_2_14_22_1 e_1_2_14_87_1 e_1_2_14_49_1 e_1_2_14_26_1 e_1_2_14_19_1 e_1_2_14_130_1 Vandanmagsar B. (e_1_2_14_112_1) 2011; 17 e_1_2_14_117_1 e_1_2_14_113_1 e_1_2_14_74_1 e_1_2_14_97_1 e_1_2_14_51_1 e_1_2_14_70_1 e_1_2_14_93_1 e_1_2_14_13_1 e_1_2_14_32_1 e_1_2_14_55_1 e_1_2_14_17_1 e_1_2_14_36_1 e_1_2_14_59_1 e_1_2_14_78_1 e_1_2_14_29_1 e_1_2_14_5_1 e_1_2_14_122_1 e_1_2_14_9_1 e_1_2_14_106_1 e_1_2_14_126_1 e_1_2_14_102_1 e_1_2_14_86_1 e_1_2_14_63_1 e_1_2_14_40_1 e_1_2_14_82_1 e_1_2_14_67_1 e_1_2_14_21_1 e_1_2_14_44_1 e_1_2_14_25_1 e_1_2_14_48_1 e_1_2_14_18_1 e_1_2_14_118_1 |
References_xml | – volume: 113 start-page: E4857 issue: 33 year: 2016 end-page: E4866 article-title: Site‐specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 45 start-page: 271 issue: 4 year: 2012 end-page: 278 article-title: Polimorphisms in inflammasome genes are involved in the predisposition to systemic lupus erythematosus publication-title: Autoimmunity – volume: 276 start-page: 28309 issue: 30 year: 2001 end-page: 28313 article-title: Identification of Ipaf, a human caspase‐1‐activating protein related to Apaf‐1 publication-title: Journal of Biological Chemistry – volume: 17 start-page: 914 issue: 8 year: 2016 end-page: 921 article-title: Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS publication-title: Nature Immunology – volume: 284 start-page: 6546 issue: 10 year: 2009 end-page: 6553 article-title: Crystal structure of procaspase‐1 zymogen domain reveals insight into inflammatory caspase autoactivation publication-title: Journal of Biological Chemistry – volume: 11 start-page: 1136 issue: 12 year: 2010 end-page: 1142 article-title: Caspase‐1‐induced pyroptosis is an innate immune effector mechanism against intracellular bacteria publication-title: Nature Immunology – volume: 479 start-page: 117 issue: 7371 year: 2011 end-page: 121 article-title: Non‐canonical inflammasome activation targets caspase‐11 publication-title: Nature – volume: 17 start-page: 398 issue: 6 year: 2017 end-page: 404 article-title: NLRC4 inflammasomopathies publication-title: Current Opinion in Allergy and Clinical Immunology – volume: 165 start-page: 1106 issue: 5 year: 2016 end-page: 1119 article-title: Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase‐11 activation publication-title: Cell – volume: 9 start-page: 221 issue: 3 year: 2003 end-page: 226 article-title: Inhalational anthrax and bioterrorism publication-title: Current Opinion in Pulmonary Medicine – volume: 107 start-page: 3076 issue: 7 year: 2010 end-page: 3080 article-title: Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome publication-title: Proceedings of the National Academy of Sciences – volume: 46 start-page: 269 issue: 2 year: 2016a end-page: 280 article-title: AIM2 inflammasome in infection, cancer, and autoimmunity: Role in DNA sensing, inflammation, and innate immunity publication-title: European Journal of Immunology – volume: 73 start-page: 429 issue: 3 year: 2019 end-page: 445 article-title: The Crohn's disease risk factor IRGM limits NLRP3 inflammasome activation by impeding its assembly and by mediating its selective autophagy publication-title: Molecular Cell – volume: 1319 start-page: 82 year: 2014 end-page: 95 article-title: Mechanism of NLRP3 inflammasome activation publication-title: Annals of the New York Academy of Sciences – volume: 45 start-page: 2918 issue: 10 year: 2015 end-page: 2926 article-title: NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspase‐4 and caspase‐5 publication-title: European Journal of Immunology – volume: 68 start-page: 727 issue: 9 year: 2019 end-page: 738 article-title: Neferine inhibits LPS‐ATP‐induced endothelial cell pyroptosis via regulation of ROS/NLRP3/Caspase‐1 signaling pathway publication-title: Inflammation Research – volume: 526 start-page: 660 issue: 7575 year: 2015 end-page: 665 article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death publication-title: Nature – volume: 87 start-page: 89 issue: 2 year: 2012 end-page: 127 article-title: Understanding secondary injury publication-title: The Quarterly Review of Biology – volume: 11 start-page: 98 issue: 2 year: 2011 end-page: 107 article-title: Type 2 diabetes as an inflammatory disease publication-title: Nature Reviews Immunology – volume: 547 start-page: 99 issue: 7661 year: 2017 end-page: 103 article-title: Chemotherapy drugs induce pyroptosis through caspase‐3 cleavage of a gasdermin publication-title: Nature – volume: 209 start-page: 1969 issue: 11 year: 2012 end-page: 1983 article-title: Extensive evolutionary and functional diversity among mammalian AIM2‐like receptors publication-title: Journal of Experimetnal Medicine – volume: 32 start-page: 78 year: 2015 end-page: 83 article-title: Non‐canonical activation of inflammatory caspases by cytosolic LPS in innate immunity publication-title: Current Opinion in Immunology – volume: 287 start-page: 36617 issue: 43 year: 2012 end-page: 36622 article-title: Non‐transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation publication-title: Journal of Biological Chemistry – volume: 12 issue: 12 year: 2016 article-title: Functional and evolutionary analyses identify proteolysis as a general mechanism for NLRP1 inflammasome activation publication-title: PLOS Pathogens – volume: 5 start-page: 3209 year: 2014 article-title: Activation of the NLRP1b inflammasome independently of ASC‐mediated caspase‐1 autoproteolysis and speck formation publication-title: Nature Communications – volume: 55 start-page: 1364 issue: 2 year: 2018 end-page: 1375 article-title: Estrogen attenuates local inflammasome expression and activation after spinal cord injury publication-title: Molecular Neurobiology – volume: 42 start-page: 245 issue: 4 year: 2017 end-page: 254 article-title: Pyroptosis: Gasdermin‐mediated programmed necrotic cell death publication-title: Trends in Biochemical Sciences – volume: 16 start-page: 319 issue: 3 year: 2013 end-page: 326 article-title: Inflammasome‐mediated pyroptotic and apoptotic cell death, and defense against infection publication-title: Current Opinion in Microbiology – volume: 213 start-page: 617 issue: 6 year: 2016 end-page: 629 article-title: The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation publication-title: Journal of Cell Biology – volume: 513 start-page: 237 issue: 7517 year: 2014 end-page: 241 article-title: Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome publication-title: Nature – volume: 530 start-page: 151 issue: 1 year: 2013 end-page: 154 article-title: Variants of NLRP3 gene are associated with insulin resistance in Chinese Han population with type‐2 diabetes publication-title: Gene – volume: 34 start-page: 621 issue: 4 year: 2014 end-page: 629 article-title: Pyroptotic neuronal cell death mediated by the AIM2 inflammasome publication-title: Journal of Cerebral Blood Flow and Metabolism – volume: 311 start-page: E825 issue: 5 year: 2016 end-page: E835 article-title: Saturated fatty acids activate caspase‐4/5 in human monocytes, triggering IL‐1β and IL‐18 release publication-title: American Journal of Physiology‐Endocrinology and Metabolism – volume: 117 start-page: 1119 issue: 6 year: 2012 end-page: 1125 article-title: Inflammasome proteins in cerebrospinal fluid of brain‐injured patients as biomarkers of functional outcome: Clinical article publication-title: Journal of Neurosurgery – volume: 25 start-page: 713 issue: 5 year: 2007 end-page: 724 article-title: Reconstituted NALP1 inflammasome reveals two‐step mechanism of caspase‐1 activation publication-title: Molecular Cell – volume: 140 start-page: 805 issue: 6 year: 2010 end-page: 820 article-title: Pattern recognition receptors and inflammation publication-title: Cell – volume: 67 start-page: 458 year: 2019 end-page: 464 article-title: The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson's disease publication-title: International Immunopharmacology – volume: 34 start-page: 755 issue: 5 year: 2011 end-page: 768 article-title: Gain‐of‐function pyrin mutations induce NLRP3 protein‐independent interleukin‐1β activation and severe autoinflammation in mice publication-title: Immunity – volume: 30 start-page: 371 issue: 6 year: 2010 end-page: 380 article-title: Interferon‐inducible p200‐family proteins as novel sensors of cytoplasmic DNA: Role in inflammation and autoimmunity publication-title: Journal of Interferon & Cytokine Research – volume: 11 start-page: 28 year: 2016 article-title: MicroRNA‐7 targets Nod‐like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson's disease publication-title: Molecular Neurodegeneration – volume: 156 start-page: 1193 issue: 6 year: 2014 end-page: 1206 article-title: Unified polymerization mechanism for the assembly of ASC‐dependent inflammasomes publication-title: Cell – volume: 10 start-page: 417 issue: 2 year: 2002 end-page: 426 article-title: The Inflammasome publication-title: Molecular Cell – volume: 343 start-page: 428 issue: 6169 year: 2014 end-page: 432 article-title: IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV publication-title: Science – volume: 157 start-page: 1013 issue: 5 year: 2014 end-page: 1022 article-title: Mechanisms and functions of inflammasomes publication-title: Cell – volume: 152 start-page: 207 issue: 2 year: 2017 end-page: 217 article-title: Caspase‐11 non‐canonical inflammasome: A critical sensor of intracellular lipopolysaccharide in macrophage‐mediated inflammatory responses publication-title: Immunology – volume: 287 start-page: 25030 issue: 30 year: 2012 end-page: 25037 article-title: Autolytic proteolysis within the function to find domain (FIIND) is required for NLRP1 inflammasome activity publication-title: Journal of Biological Chemistry – volume: 14 issue: 8 year: 2018 article-title: Dysregulated hemolysin liberates bacterial outer membrane vesicles for cytosolic lipopolysaccharide sensing publication-title: PLOS Pathogens – volume: 167 start-page: 187 issue: 1 year: 2016 end-page: 202 article-title: Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via inflammasome activation publication-title: Cell – volume: 341 start-page: 1250 issue: 6151 year: 2013 end-page: 1253 article-title: Cytoplasmic LPS activates caspase‐11: Implications in TLR4‐independent endotoxic shock publication-title: Science – volume: 21 start-page: 961 issue: 12 year: 2012 end-page: 964 article-title: Strong induction of AIM2 expression in human epidermis in acute and chronic inflammatory skin conditions publication-title: Experimental Dermatology – volume: 112 start-page: 1541 issue: 5 year: 2015 end-page: 1546 article-title: Flagellin‐induced NLRC4 phosphorylation primes the inflammasome for activation by NAIP5 publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 109 start-page: 10480 issue: 26 year: 2012 end-page: 10485 article-title: NLRP3 inflammasome induces chemotactic immune cell migration to the CNS in experimental autoimmune encephalomyelitis publication-title: Proceedings of the National Academy of Sciences – volume: 315 start-page: 801 issue: 8 year: 2016 end-page: 810 article-title: The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis‐3) publication-title: Journal of the American Medical Association – volume: 36 start-page: 561 issue: 4 year: 2012 end-page: 571 article-title: Structures of the HIN domain: DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor publication-title: Immunity – volume: 24 start-page: 1286 issue: 11 year: 2014 end-page: 1287 article-title: Detecting “different”: Pyrin senses modified GTPases publication-title: Cell Research – volume: 114 start-page: 10642 issue: 40 year: 2017 end-page: 10647 article-title: Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 90 start-page: 10198 issue: 21 year: 1993 end-page: 10201 article-title: On the role of macrophages in anthrax publication-title: Proceedings of the National Academy of Sciences – volume: 168 start-page: 544 issue: 3 year: 2017 end-page: 544 article-title: SnapShot: The noncanonical inflammasome publication-title: Cell – volume: 54 start-page: 17 issue: 1 year: 2014 end-page: 29 article-title: Molecular basis for specific recognition of bacterial ligands by NAIP/NLRC4 inflammasomes publication-title: Molecular Cell – volume: 105 start-page: 377 issue: 2 year: 2019 end-page: 399 article-title: Stressing out the mitochondria: Mechanistic insights into NLRP3 inflammasome activation publication-title: Journal of Leukocyte Biology – volume: 13 start-page: 52 issue: 1 year: 2016 article-title: Heme oxygenase‐1 promotes neuron survival through down‐regulation of neuronal NLRP1 expression after spinal cord injury publication-title: Journal of Neuroinflammation – volume: 234 start-page: 7885 issue: 6 year: 2019 end-page: 7892 article-title: What role does pyroptosis play in microbial infection? publication-title: Journal of Cellular Physiology – volume: 265 start-page: 130 issue: 1 year: 2015 end-page: 142 article-title: Pyroptotic cell death defends against intracellular pathogens publication-title: Immunological Reviews – volume: 41 start-page: 1012 issue: 12 year: 2016 end-page: 1021 article-title: Mechanism and regulation of NLRP3 inflammasome activation publication-title: Trends in Biochemical Sciences – volume: 34 start-page: 213 issue: 2 year: 2011 end-page: 223 article-title: Type I interferon inhibits interleukin‐1 production and inflammasome activation publication-title: Immunity – volume: 10 start-page: 1904 year: 2019 article-title: AGER‐mediated lipid peroxidation drives caspase‐11 inflammasome activation in sepsis publication-title: Frontiers in Immunology – volume: 11 issue: 10 year: 2016 article-title: The biophysical characterisation and SAXS analysis of human NLRP1 uncover a new level of complexity of NLR proteins publication-title: PLOS One – volume: 20 start-page: 319 issue: 3 year: 2004 end-page: 325 article-title: NALP3 forms an IL‐1β‐processing inflammasome with increased activity in muckle‐wells autoinflammatory disorder publication-title: Immunity – volume: 339 start-page: 975 issue: 6122 year: 2013 end-page: 978 article-title: Caspase‐11 protects against bacteria that escape the vacuole publication-title: Science – volume: 29 start-page: 17 year: 2014 end-page: 25 article-title: Structural mechanisms in NLR inflammasome signaling publication-title: Current Opinion in Structural Biology – volume: 7 start-page: 775 issue: 4 year: 2014 end-page: 785 article-title: NLRC4 expression in intestinal epithelial cells mediates protection against an enteric pathogen publication-title: Mucosal Immunology – volume: 12 start-page: 64 issue: 1 year: 2019 article-title: Inflammasome inhibitors: Promising therapeutic approaches against cancer publication-title: Journal of Hematology & Oncology – volume: 11 start-page: 961 issue: 8 year: 2002 end-page: 969 article-title: Mutations in CD2BP1 disrupt binding to PTP PEST and are responsible for PAPA syndrome, an autoinflammatory disorder publication-title: Human Molecular Genetics – volume: 526 start-page: 642 issue: 7575 year: 2015 end-page: 643 article-title: Caspase target drives pyroptosis publication-title: Nature – volume: 183 start-page: 787 issue: 2 year: 2009 end-page: 791 article-title: Cutting edge: NF‐κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression publication-title: Journal of Immunology – volume: 289 start-page: 23504 issue: 34 year: 2014 end-page: 23519 article-title: Identification of multifaceted binding modes for pyrin and ASC pyrin domains gives insights into pyrin inflammasome assembly publication-title: Journal of Biological Chemistry – volume: 535 start-page: 111 issue: 7610 year: 2016 end-page: 116 article-title: Pore‐forming activity and structural autoinhibition of the gasdermin family publication-title: Nature – volume: 20 start-page: 319 issue: 1 year: 2019 article-title: Uric acid regulates NLRP3/IL‐1beta signaling pathway and further induces vascular endothelial cells injury in early CKD through ROS activation and K(+) efflux publication-title: BMC Nephrology – volume: 74 start-page: ftw028 issue: 4 year: 2016b article-title: DNA‐sensing inflammasomes: Regulation of bacterial host defense and the gut microbiota publication-title: Pathogens and Disease – volume: 7 start-page: 99 issue: 2 year: 2009 end-page: 109 article-title: Pyroptosis: Host cell death and inflammation publication-title: Nature Reviews Microbiology – volume: 509 start-page: 366 issue: 7500 year: 2014 end-page: 370 article-title: Caspase‐11 activation requires lysis of pathogen‐containing vacuoles by IFN‐induced GTPases publication-title: Nature – volume: 45 start-page: 2927 issue: 10 year: 2015 end-page: 2936 article-title: Caspase‐11 activates a canonical NLRP3 inflammasome by promoting K(+) efflux publication-title: European Journal of Immunology – volume: 495 start-page: 1418 issue: 1 year: 2018 end-page: 1425 article-title: GSDME mediates caspase‐3‐dependent pyroptosis in gastric cancer publication-title: Biochemical and Biophysical Research Communications – volume: 7 start-page: 1581 issue: 10 year: 1998 end-page: 1588 article-title: The hereditary periodic fever syndromes: Molecular analysis of a new family of inflammatory diseases publication-title: Human Molecular Genetics – volume: 9 start-page: 363 issue: 5 year: 2011 end-page: 375 article-title: IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma‐associated herpesvirus infection publication-title: Cell Host & Microbe – volume: 1 start-page: 273 year: 2006 end-page: 296 article-title: KSHV infection and the pathogenesis of Kaposi's sarcoma publication-title: Annual Review of Pathology: Mechanisms of Disease – volume: 358 start-page: 167 issue: 6382 year: 1992 end-page: 169 article-title: Shigella flexneri induces apoptosis in infected macrophages publication-title: Nature – volume: 10 start-page: 266 issue: 3 year: 2009 end-page: 272 article-title: An orthogonal proteomic‐genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome publication-title: Nature Immunology – volume: 265 start-page: 35 issue: 1 year: 2015 end-page: 52 article-title: Initiation and perpetuation of NLRP3 inflammasome activation and assembly publication-title: Immunological Reviews – volume: 13 start-page: 236 issue: 2 year: 2006 end-page: 249 article-title: Cryopyrin and pyrin activate caspase‐1, but not NF‐kappaB, via ASC oligomerization publication-title: Cell Death and Differentiation – volume: 187 start-page: 46 year: 2018 end-page: 49 article-title: Gain‐of‐function variants in NLRP1 protect against the development of diabetic kidney disease: NLRP1 inflammasome role in metabolic stress sensing? publication-title: Clinical Immunology – volume: 60 start-page: 8 issue: 1 year: 1996 end-page: 26 article-title: Endotoxin signal transduction in macrophages publication-title: Journal of Leukocyte Biology – volume: 8 start-page: 332ra45 issue: 332 year: 2016 end-page: 332ra45 article-title: Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation publication-title: Science Translational Medicine – volume: 11 start-page: 23 year: 2016 article-title: The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer's disease publication-title: Molecular Neurodegeneration – volume: 34 start-page: 369 issue: 3 year: 2014 end-page: 375 article-title: Activation and regulation of cellular inflammasomes: Gaps in our knowledge for central nervous system injury publication-title: Journal of Cerebral Blood Flow and Metabolism – volume: 9 start-page: 113 issue: 3 year: 2001 end-page: 114 article-title: Pro‐inflammatory programmed cell death publication-title: Trends in Microbiology – volume: 514 start-page: 187 issue: 7521 year: 2014 end-page: 192 article-title: Inflammatory caspases are innate immune receptors for intracellular LPS publication-title: Nature – volume: 77 start-page: 1262 issue: 3 year: 2009 end-page: 1271 article-title: Anthrax lethal toxin triggers the formation of a membrane‐associated inflammasome complex in murine macrophages publication-title: Infection and Immunity – volume: 82 start-page: 460 issue: 1 year: 2014 end-page: 468 article-title: NLRP1 is an inflammasome sensor for publication-title: Infection and Immunity – volume: 23 start-page: 155 issue: 1 year: 2016 end-page: 164 article-title: IL‐18 production from the NLRP1 inflammasome prevents obesity and metabolic syndrome publication-title: Cell Metabolism – volume: 14 start-page: 52 issue: 1 year: 2013 end-page: 60 article-title: Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome–dependent processing of IL‐1β publication-title: Nature Immunology – volume: 21 start-page: 677 issue: 7 year: 2015 end-page: 687 article-title: Inflammasomes: Mechanism of action, role in disease, and therapeutics publication-title: Nature Medicine (New York, NY, United States) – volume: 73 start-page: 391 issue: 3 year: 2019 end-page: 392 article-title: Inflammasome Inhibition Links IRGM to Innate Immunity publication-title: Molecular Cell – volume: 535 start-page: 153 issue: 7610 year: 2016 end-page: 158 article-title: Inflammasome‐activated gasdermin D causes pyroptosis by forming membrane pores publication-title: Nature – volume: 458 start-page: 509 issue: 7237 year: 2009 end-page: 513 article-title: AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA publication-title: Nature – volume: 76 start-page: 48 issue: 1 year: 2010 end-page: 56 article-title: The genetics of NOD‐like receptors in Crohn's disease publication-title: Tissue Antigens – volume: 477 start-page: 592 issue: 7366 year: 2011 end-page: 595 article-title: Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity publication-title: Nature – volume: 9 issue: 6 year: 2013 article-title: Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor publication-title: PLOS Pathogens – volume: 341 start-page: 172 issue: 6142 year: 2013 end-page: 175 article-title: Crystal structure of NLRC4 reveals its autoinhibition mechanism publication-title: Science – volume: 233 start-page: 5160 issue: 7 year: 2018 end-page: 5169 article-title: Inflammasome: Its role in traumatic brain and spinal cord injury publication-title: Journal of Cellular Physiology – volume: 505 start-page: 509 issue: 7484 year: 2014 end-page: 514 article-title: Cell death by pyroptosis drives CD4 T‐cell depletion in HIV‐1 infection publication-title: Nature – volume: 76 start-page: 2085 issue: 12 year: 2017 end-page: 2094 article-title: A novel pyrin‐associated autoinflammation with neutrophilic dermatosis mutation further defines 14‐3‐3 binding of pyrin and distinction to Familial Mediterranean Fever publication-title: Annals of the Rheumatic Diseases – volume: 288 start-page: 13225 issue: 19 year: 2013 end-page: 13235 article-title: Structure of the absent in melanoma 2 (AIM2) pyrin domain provides insights into the mechanisms of AIM2 autoinhibition and inflammasome assembly publication-title: Journal of Biological Chemistry – volume: 449 start-page: 613 issue: 3 year: 2013 end-page: 621 article-title: The CARD plays a critical role in ASC foci formation and inflammasome signalling publication-title: Biochemical Journal – volume: 49 start-page: 331 issue: 2 year: 2013 end-page: 338 article-title: Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity publication-title: Molecular Cell – volume: 265 start-page: 85 issue: 1 year: 2015 end-page: 102 article-title: The NAIP‐NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus publication-title: Immunological Reviews – volume: 265 start-page: 22 issue: 1 year: 2015 end-page: 34 article-title: The NLRP1 inflammasomes publication-title: Immunological Reviews – volume: 28 start-page: 214 issue: 2 year: 2007 end-page: 227 article-title: Pyrin activates the ASC pyroptosome in response to engagement by autoinflammatory PSTPIP1 mutants publication-title: Molecular Cell – volume: 114 start-page: 13242 issue: 50 year: 2017 end-page: 13247 article-title: Broad detection of bacterial type III secretion system and flagellin proteins by the human NAIP/NLRC4 inflammasome publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 76 start-page: 1191 issue: 7 year: 2017 end-page: 1198 article-title: A new autoinflammatory and autoimmune syndrome associated with NLRP1 mutations: NAIAD (NLRP1‐associated autoinflammation with arthritis and dyskeratosis) publication-title: Annals of the Rheumatic Diseases – volume: 81 start-page: 570 issue: 2 year: 2013 end-page: 579 article-title: Activation of the Nlrp1b inflammasome by reduction of cytosolic ATP publication-title: Infection and Immunity – volume: 17 start-page: 179 issue: 2 year: 2011 end-page: 188 article-title: The NLRP3 inflammasome instigates obesity‐induced inflammation and insulin resistance publication-title: Nature Medicine (New York, NY, United States) – volume: 34 start-page: 589 issue: 7 year: 2012 end-page: 598 article-title: NAIPs: Building an innate immune barrier against bacterial pathogens: NAIPs function as sensors that initiate innate immunity by detection of bacterial proteins in the host cell cytosol publication-title: BioEssays – volume: 526 start-page: 666 issue: 7575 year: 2015 end-page: 671 article-title: Caspase‐11 cleaves gasdermin D for non‐canonical inflammasome signalling publication-title: Nature – volume: 277 start-page: 61 issue: 1 year: 2017 end-page: 75 article-title: Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases publication-title: Immunological Reviews – volume: 179 start-page: 1274 issue: 2 year: 2007 end-page: 1281 article-title: Pyrin levels in human monocytes and monocyte‐derived macrophages regulate IL‐1beta processing and release publication-title: Journal of Immunology – volume: 38 start-page: 2072 issue: 10 year: 2013 end-page: 2083 article-title: Expression of the NLRP3 inflammasome in cerebral cortex after traumatic brain injury in a rat model publication-title: Neurochemical Research – volume: 449 start-page: 819 issue: 7164 year: 2007 end-page: 826 article-title: Recognition of microorganisms and activation of the immune response publication-title: Nature – volume: 211 start-page: 2385 issue: 12 year: 2014 end-page: 2396 article-title: An inherited mutation in NLRC4 causes autoinflammation in human and mice publication-title: Journal of Experimetnal Medicine – volume: 68 start-page: 415 year: 2014 end-page: 438 article-title: Bacterial type III secretion systems: Specialized nanomachines for protein delivery into target cells publication-title: Annual Review of Microbiology – volume: 14 start-page: 392 issue: 5 year: 2012 end-page: 400 article-title: Anthrax and the inflammasome publication-title: Microbes and Infection – ident: e_1_2_14_54_1 doi: 10.1002/bies.201200013 – ident: e_1_2_14_33_1 doi: 10.1074/jbc.M112.378323 – ident: e_1_2_14_83_1 doi: 10.1038/mi.2013.95 – ident: e_1_2_14_120_1 doi: 10.1002/JLB.MR0318-124R – ident: e_1_2_14_7_1 doi: 10.1002/eji.201545655 – ident: e_1_2_14_56_1 doi: 10.1073/pnas.1708194114 – ident: e_1_2_14_116_1 doi: 10.1093/hmg/11.8.961 – ident: e_1_2_14_44_1 doi: 10.1073/pnas.1201836109 – ident: e_1_2_14_111_1 doi: 10.1016/j.cell.2016.04.015 – ident: e_1_2_14_113_1 doi: 10.1016/j.intimp.2018.12.019 – ident: e_1_2_14_18_1 doi: 10.1111/imr.12283 – ident: e_1_2_14_79_1 doi: 10.1126/science.1243640 – ident: e_1_2_14_72_1 doi: 10.1016/j.molcel.2018.11.018 – ident: e_1_2_14_108_1 doi: 10.1007/s00011-019-01256-6 – ident: e_1_2_14_74_1 doi: 10.1038/ni.1960 – ident: e_1_2_14_81_1 doi: 10.1016/j.cmet.2015.09.024 – ident: e_1_2_14_95_1 doi: 10.1097/ACI.0000000000000396 – ident: e_1_2_14_94_1 doi: 10.1038/jcbfm.2013.227 – ident: e_1_2_14_8_1 doi: 10.4049/jimmunol.0901363 – ident: e_1_2_14_27_1 doi: 10.1038/nri2925 – ident: e_1_2_14_35_1 doi: 10.1146/annurev.pathol.1.110304.100133 – ident: e_1_2_14_30_1 doi: 10.1128/IAI.01170-13 – ident: e_1_2_14_52_1 doi: 10.1084/jem.20141091 – ident: e_1_2_14_122_1 doi: 10.1111/imm.12787 – ident: e_1_2_14_68_1 doi: 10.1016/S1097-2765(02)00599-3 – ident: e_1_2_14_110_1 doi: 10.1074/jbc.M114.553305 – ident: e_1_2_14_78_1 doi: 10.1136/annrheumdis-2017-211473 – ident: e_1_2_14_49_1 doi: 10.1038/nature15541 – ident: e_1_2_14_99_1 doi: 10.1083/jcb.201602089 – ident: e_1_2_14_117_1 doi: 10.1002/jcp.27909 – ident: e_1_2_14_123_1 doi: 10.1186/s12882-019-1506-8 – ident: e_1_2_14_76_1 doi: 10.1038/ni.2474 – ident: e_1_2_14_3_1 doi: 10.1016/j.mib.2013.04.004 – ident: e_1_2_14_64_1 doi: 10.1002/eji.201545839 – ident: e_1_2_14_80_1 doi: 10.1002/jcp.26287 – ident: e_1_2_14_82_1 doi: 10.1016/j.molcel.2019.01.029 – ident: e_1_2_14_41_1 doi: 10.1073/pnas.90.21.10198 – ident: e_1_2_14_125_1 doi: 10.1038/sj.cdd.4401734 – ident: e_1_2_14_16_1 doi: 10.1371/journal.ppat.1006052 – ident: e_1_2_14_4_1 doi: 10.3171/2012.9.JNS12815 – ident: e_1_2_14_59_1 doi: 10.1128/IAI.01003-12 – ident: e_1_2_14_43_1 doi: 10.1126/science.1236381 – ident: e_1_2_14_114_1 doi: 10.1038/nature22393 – ident: e_1_2_14_11_1 doi: 10.1038/nature15632 – ident: e_1_2_14_84_1 doi: 10.1128/IAI.01032-08 – ident: e_1_2_14_58_1 doi: 10.1016/j.sbi.2014.08.011 – ident: e_1_2_14_71_1 doi: 10.1038/nature06246 – ident: e_1_2_14_88_1 doi: 10.3109/08916934.2011.637532 – ident: e_1_2_14_102_1 doi: 10.1038/nature13683 – ident: e_1_2_14_10_1 doi: 10.1086/665457 – ident: e_1_2_14_131_1 doi: 10.1038/cr.2014.101 – volume: 21 start-page: 677 issue: 7 year: 2015 ident: e_1_2_14_39_1 article-title: Inflammasomes: Mechanism of action, role in disease, and therapeutics publication-title: Nature Medicine (New York, NY, United States) – ident: e_1_2_14_85_1 doi: 10.1038/ncomms4209 – ident: e_1_2_14_2_1 doi: 10.1126/science.1230751 – ident: e_1_2_14_69_1 doi: 10.1126/scitranslmed.aaf1471 – ident: e_1_2_14_100_1 doi: 10.1016/j.tibs.2016.10.004 – ident: e_1_2_14_98_1 doi: 10.4049/jimmunol.179.2.1274 – ident: e_1_2_14_130_1 doi: 10.1186/s13024-016-0094-3 – ident: e_1_2_14_24_1 doi: 10.1016/j.cell.2017.01.008 – ident: e_1_2_14_19_1 doi: 10.3389/fimmu.2019.01904 – ident: e_1_2_14_106_1 doi: 10.1002/jlb.60.1.8 – ident: e_1_2_14_119_1 doi: 10.1186/s13045-019-0755-0 – ident: e_1_2_14_28_1 doi: 10.1111/imr.12286 – ident: e_1_2_14_51_1 doi: 10.1016/j.chom.2011.04.008 – ident: e_1_2_14_86_1 doi: 10.1038/ni.3457 – ident: e_1_2_14_5_1 doi: 10.1038/jcbfm.2013.236 – ident: e_1_2_14_60_1 doi: 10.1186/s12974-016-0521-y – ident: e_1_2_14_61_1 doi: 10.1007/s11064-013-1115-z – ident: e_1_2_14_92_1 doi: 10.1097/00063198-200305000-00011 – ident: e_1_2_14_36_1 doi: 10.1073/pnas.1601700113 – ident: e_1_2_14_62_1 doi: 10.1038/nature18629 – ident: e_1_2_14_90_1 doi: 10.1042/BJ20121198 – ident: e_1_2_14_13_1 doi: 10.1038/ni.1702 – volume: 17 start-page: 179 issue: 2 year: 2011 ident: e_1_2_14_112_1 article-title: The NLRP3 inflammasome instigates obesity‐induced inflammation and insulin resistance publication-title: Nature Medicine (New York, NY, United States) – ident: e_1_2_14_48_1 doi: 10.1074/jbc.M112.407130 – ident: e_1_2_14_109_1 doi: 10.1016/j.molcel.2014.02.018 – ident: e_1_2_14_73_1 doi: 10.1038/nature13157 – ident: e_1_2_14_12_1 doi: 10.1084/jem.20121960 – ident: e_1_2_14_38_1 doi: 10.1016/j.immuni.2011.02.006 – ident: e_1_2_14_22_1 doi: 10.1016/S0966-842X(00)01936-3 – ident: e_1_2_14_42_1 doi: 10.1016/j.tibs.2016.09.002 – ident: e_1_2_14_70_1 doi: 10.1073/pnas.1417945112 – ident: e_1_2_14_67_1 doi: 10.1371/journal.pone.0164662 – ident: e_1_2_14_127_1 doi: 10.1111/imr.12293 – ident: e_1_2_14_121_1 doi: 10.1016/j.coi.2015.01.007 – ident: e_1_2_14_37_1 doi: 10.1136/annrheumdis-2016-210021 – ident: e_1_2_14_103_1 doi: 10.1001/jama.2016.0287 – ident: e_1_2_14_104_1 doi: 10.1016/j.clim.2017.10.003 – ident: e_1_2_14_53_1 doi: 10.1038/nature10394 – ident: e_1_2_14_47_1 doi: 10.1111/imr.12287 – ident: e_1_2_14_46_1 doi: 10.1074/jbc.M113.468033 – ident: e_1_2_14_96_1 doi: 10.1002/eji.201545772 – ident: e_1_2_14_20_1 doi: 10.1371/journal.ppat.1007240 – ident: e_1_2_14_23_1 doi: 10.1111/j.1399-0039.2010.01470.x – ident: e_1_2_14_57_1 doi: 10.1016/j.cell.2014.04.007 – ident: e_1_2_14_115_1 doi: 10.1016/j.bbrc.2017.11.156 – ident: e_1_2_14_21_1 doi: 10.1089/jir.2009.0096 – ident: e_1_2_14_26_1 doi: 10.1038/nature12940 – ident: e_1_2_14_6_1 doi: 10.1016/S1074-7613(04)00046-9 – ident: e_1_2_14_132_1 doi: 10.1038/358167a0 – ident: e_1_2_14_14_1 doi: 10.1093/hmg/7.10.1581 – ident: e_1_2_14_17_1 doi: 10.1371/journal.ppat.1003452 – ident: e_1_2_14_97_1 doi: 10.1186/s13024-016-0088-1 – ident: e_1_2_14_105_1 doi: 10.1111/nyas.12458 – ident: e_1_2_14_45_1 doi: 10.1016/j.immuni.2012.02.014 – ident: e_1_2_14_25_1 doi: 10.1038/nature18590 – ident: e_1_2_14_65_1 doi: 10.1093/femspd/ftw028 – ident: e_1_2_14_129_1 doi: 10.1016/j.cell.2016.09.001 – ident: e_1_2_14_31_1 doi: 10.1016/j.molcel.2007.01.032 – ident: e_1_2_14_124_1 doi: 10.1016/j.molcel.2007.08.029 – ident: e_1_2_14_101_1 doi: 10.1038/nature15514 – ident: e_1_2_14_32_1 doi: 10.1038/nature07710 – ident: e_1_2_14_40_1 doi: 10.1126/science.1240988 – ident: e_1_2_14_66_1 doi: 10.1111/imr.12534 – ident: e_1_2_14_128_1 doi: 10.1016/j.gene.2013.07.082 – ident: e_1_2_14_29_1 doi: 10.1074/jbc.M806121200 – ident: e_1_2_14_91_1 doi: 10.1016/j.molcel.2012.11.009 – ident: e_1_2_14_75_1 doi: 10.1073/pnas.0913087107 – ident: e_1_2_14_87_1 doi: 10.1152/ajpendo.00296.2016 – ident: e_1_2_14_107_1 doi: 10.1016/j.cell.2010.01.022 – ident: e_1_2_14_15_1 doi: 10.1016/j.immuni.2011.02.020 – ident: e_1_2_14_89_1 doi: 10.1074/jbc.C100250200 – ident: e_1_2_14_50_1 doi: 10.1038/nature10558 – ident: e_1_2_14_118_1 doi: 10.1038/nature13449 – ident: e_1_2_14_34_1 doi: 10.1146/annurev-micro-092412-155725 – ident: e_1_2_14_55_1 doi: 10.1111/exd.12037 – ident: e_1_2_14_77_1 doi: 10.1016/j.micinf.2011.12.005 – ident: e_1_2_14_126_1 doi: 10.1007/s12035-017-0400-2 – ident: e_1_2_14_9_1 doi: 10.1038/nrmicro2070 – ident: e_1_2_14_93_1 doi: 10.1073/pnas.1710433114 – ident: e_1_2_14_63_1 doi: 10.1016/j.cell.2014.02.008 |
SSID | ssj0009933 |
Score | 2.657915 |
SecondaryResourceType | review_article |
Snippet | Pyroptosis is a form of necrotic and inflammatory programmed cell death, which could be characterized by cell swelling, pore formation on plasma membranes, and... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3207 |
SubjectTerms | Adaptor Proteins, Signal Transducing - genetics Apoptosis Apoptosis - genetics Apoptosis Regulatory Proteins - genetics Autoimmune diseases Calcium-Binding Proteins - genetics CARD Signaling Adaptor Proteins - genetics Caspase caspases Caspases - genetics Caspases - metabolism Cell death Cell size Cytokines Cytotoxicity GSDMD Humans Infectious diseases Inflammasomes Inflammasomes - genetics Inflammasomes - metabolism Inflammation - genetics Inflammation - metabolism Inflammation - pathology Interleukin-18 - genetics Interleukin-1beta - genetics Intracellular Signaling Peptides and Proteins - genetics Membranes Microorganisms Molecular modelling NLR Family, Pyrin Domain-Containing 3 Protein - genetics Oligomerization Phosphate-Binding Proteins - genetics Plasma membranes Pore formation Pyrin protein Pyroptosis Pyroptosis - genetics Sepsis Substrates |
Title | Emerging insights into molecular mechanisms underlying pyroptosis and functions of inflammasomes in diseases |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.29268 https://www.ncbi.nlm.nih.gov/pubmed/31621910 https://www.proquest.com/docview/2333563329 https://www.proquest.com/docview/2306493068 |
Volume | 235 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LatwwcAiBQi99JH1smxa1lNKLN7Jkey16CqEhBFpKaSCHgpFsCTZd28vKe9h-fWfkR0gfUHqxBB5LsjSjmZHmAfBGuTiWruIR8uY8SlSZR7lxKlKly4yj_bCiG92Pn7Lzy-TiKr3ag_ejL0wfH2I6cCPKCPs1Ebg2_vgmaOh1uZ4LJTJy9CVbLRKIvtyEjlJDGvlggpAm8RhViIvj6cvbvOg3AfO2vBoYztl9-DYOtbcz-T7fdmZe_vgliuN__ssDuDcIouykx5yHsGebAzg8aVAJr3fsLQumoeHM_QDu9Bkrd4ewokMsymvElo0nvd5jpWtZPWbZZbUlX-Klrz0j_7TNivyo2Hq3addd65ee6aZixE0DwrPWYQMO0bLWvq0tNceGSyP_CC7PPnw9PY-GhA1RKWnjRFkk0SgymYUUsVM2FyqpUixNuqgsPXAHsVyVVkjNpTYL1Jck11onWBdcPob9pm3sU2BWG6GMibG0CZcuFyYvpZZVTJbrPJvBu3HpinKIZk5JNVZFH4dZFDinRZjTGbyeQNd9CI8_AR2N618MVOwLIaVMMymFmsGr6TXSH12q6Ma2W4JBoU7hA5t40uPN1IuMM2QIMcfBhtX_e_fFxennUHn276DP4a4g5T-YER3BfrfZ2hcoIXXmZSCFn0djDTo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQwcFSKEFx4tDwWWjAIIS7ZJnaSjaVeqopqKW2FUCv1giI7saWFTbLaZA_L1zPjPKq2ICEusaVMbMee8Tw8ngF4L20QCJv7HvLmxAtllniJttKTmY21pf0wpxPd07N4ehEeX0aXG7Df34Vp40MMBjeiDLdfE4GTQXrvKmroj2wx5pLHyR24Sxm9nUL17Sp4lOwSyTsnhCgM-rhCPt8bPr3OjW6JmNclVsdyjh7B936wrafJz_Gq0ePs1404jv_7N4_hYSeLsoMWeZ7Ahim3YPugRD28WLMPzHmHOrP7Ftxrk1aut2FOdixKbcRmZU2qfY2VpmJFn2iXFYauE8_qomZ0RW05p6tUbLFeVoumqmc1U2XOiKE6nGeVxQYsYmah6qow1Bzrzo3qp3Bx9On8cOp1ORu8TNDeieJIqFBq0hPBAytNwmWYR1jqaJIbeuAmYnyZGS6UL5SeoMokfKVUiHXui2ewWValeQHMKM2l1gGWJvSFTbhOMqFEHpDzuh-P4GO_dmnWBTSnvBrztA3FzFOc09TN6QjeDaCLNorHn4B2egRIO0KuUy6EiGIhuBzB2-E1kiCdq6jSVCuCQblO4gObeN4iztCLCGLkCYGPg3XL__fu0-PDr67y8t9B38D96fnpSXry-ezLK3jAyRbgvIp2YLNZrswuCkyNfu3o4jcGdhFV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3ZbtQw0CpFIF44Wo6FAgYhxEu2jp1kY_FUtaxKgapCVOoDUmQntrSwObTOPixfz4xzVOWQEC-xpUxsx57xjMdzEPJK2jAUtmAB8OY0iGSeBqm2MpC5TbTF_bDAG91Pp8nxeXRyEV9skbeDL0wXH2JUuCFl-P0aCbwp7P5l0NBveTPlkifpNXI9SliKKH30-TJ2lOzzyHsbhDgKh7BCjO-Pn15lRr9JmFcFVs9x5nfI12GsnaHJ9-m61dP8xy9hHP_zZ-6S270kSg861LlHtky1Q3YPKjiFlxv6mnrbUK903yE3upSVm12yRC0WJjaii8rhwd5Bpa1pOaTZpaVBZ-KFKx1FB7XVEh2paLNZ1U1bu4WjqiooslOP8bS20IAFvCyVq0uDzdH-1sjdJ-fzd18Oj4M-Y0OQC9w5QRiJFMhMeiZ4aKVJuYyKGEodzwqDD9hCDJO54UIxofQMDkyCKaUiqHMmHpDtqq7MI0KN0lxqHUJpIiZsynWaCyWKEE3XWTIhb4aly_I-nDlm1VhmXSBmnsGcZn5OJ-TlCNp0MTz-BLQ3rH_Wk7HLuBAiToTgckJejK-BAPFWRVWmXiMMSHUSHtDEww5vxl5EmABHCBkM1q_-37vPTg7PfOXxv4M-JzfPjubZx_enH56QWxwVAd6kaI9st6u1eQrSUqufear4Ceg-EA0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+insights+into+molecular+mechanisms+underlying+pyroptosis+and+functions+of+inflammasomes+in+diseases&rft.jtitle=Journal+of+cellular+physiology&rft.au=Lu%2C+Fangfang&rft.au=Lan%2C+Zhixin&rft.au=Xin%2C+Zhaoqi&rft.au=He%2C+Chunrong&rft.date=2020-04-01&rft.issn=1097-4652&rft.eissn=1097-4652&rft.volume=235&rft.issue=4&rft.spage=3207&rft_id=info:doi/10.1002%2Fjcp.29268&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon |