Emerging insights into molecular mechanisms underlying pyroptosis and functions of inflammasomes in diseases

Pyroptosis is a form of necrotic and inflammatory programmed cell death, which could be characterized by cell swelling, pore formation on plasma membranes, and release of proinflammatory cytokines (IL‐1β and IL‐18). The process of pyroptosis presents as dual effects: protecting multicellular organis...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 235; no. 4; pp. 3207 - 3221
Main Authors Lu, Fangfang, Lan, Zhixin, Xin, Zhaoqi, He, Chunrong, Guo, Zimeng, Xia, Xiaobo, Hu, Tu
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pyroptosis is a form of necrotic and inflammatory programmed cell death, which could be characterized by cell swelling, pore formation on plasma membranes, and release of proinflammatory cytokines (IL‐1β and IL‐18). The process of pyroptosis presents as dual effects: protecting multicellular organisms from microbial infection and endogenous dangers; leading to pathological inflammation if overactivated. Two pathways have been found to trigger pyroptosis: caspase‐1 mediated inflammasome pathway with the involvement of NLRP1‐, NLRP3‐, NLRC4‐, AIM2‐, pyrin‐inflammasome (canonical inflammasome pathway) and caspase‐4/5/11‐mediated inflammasome pathway (noncanonical inflammasome pathway). Gasdermin D (GSDMD) has been proved to be a substrate of inflammatory caspases (caspase‐1/4/5/11), and the cleaved N‐terminal domain of GSDMD oligomerizes to form cytotoxic pores on the plasma membrane. Here, we mainly reviewed the up to date mechanisms of pyroptosis, and began with the inflammasomes as the activator of caspase‐1/caspase‐11, 4, and 5. We further discussed these inflammasomes functions in diseases, including infectious diseases, sepsis, inflammatory autoimmune diseases, and neuroinflammatory diseases. We summarized the updated molecular mechanisms implicated in the regulation of inflammasomes which present as the activators of canonical/noncanonical inflammasome pathways of pyroptosis, and these inflammasomes function in relevant infectious, autoinflammatory, and neuroinflammatory diseases.
AbstractList Pyroptosis is a form of necrotic and inflammatory programmed cell death, which could be characterized by cell swelling, pore formation on plasma membranes, and release of proinflammatory cytokines (IL-1β and IL-18). The process of pyroptosis presents as dual effects: protecting multicellular organisms from microbial infection and endogenous dangers; leading to pathological inflammation if overactivated. Two pathways have been found to trigger pyroptosis: caspase-1 mediated inflammasome pathway with the involvement of NLRP1-, NLRP3-, NLRC4-, AIM2-, pyrin-inflammasome (canonical inflammasome pathway) and caspase-4/5/11-mediated inflammasome pathway (noncanonical inflammasome pathway). Gasdermin D (GSDMD) has been proved to be a substrate of inflammatory caspases (caspase-1/4/5/11), and the cleaved N-terminal domain of GSDMD oligomerizes to form cytotoxic pores on the plasma membrane. Here, we mainly reviewed the up to date mechanisms of pyroptosis, and began with the inflammasomes as the activator of caspase-1/caspase-11, 4, and 5. We further discussed these inflammasomes functions in diseases, including infectious diseases, sepsis, inflammatory autoimmune diseases, and neuroinflammatory diseases.Pyroptosis is a form of necrotic and inflammatory programmed cell death, which could be characterized by cell swelling, pore formation on plasma membranes, and release of proinflammatory cytokines (IL-1β and IL-18). The process of pyroptosis presents as dual effects: protecting multicellular organisms from microbial infection and endogenous dangers; leading to pathological inflammation if overactivated. Two pathways have been found to trigger pyroptosis: caspase-1 mediated inflammasome pathway with the involvement of NLRP1-, NLRP3-, NLRC4-, AIM2-, pyrin-inflammasome (canonical inflammasome pathway) and caspase-4/5/11-mediated inflammasome pathway (noncanonical inflammasome pathway). Gasdermin D (GSDMD) has been proved to be a substrate of inflammatory caspases (caspase-1/4/5/11), and the cleaved N-terminal domain of GSDMD oligomerizes to form cytotoxic pores on the plasma membrane. Here, we mainly reviewed the up to date mechanisms of pyroptosis, and began with the inflammasomes as the activator of caspase-1/caspase-11, 4, and 5. We further discussed these inflammasomes functions in diseases, including infectious diseases, sepsis, inflammatory autoimmune diseases, and neuroinflammatory diseases.
Pyroptosis is a form of necrotic and inflammatory programmed cell death, which could be characterized by cell swelling, pore formation on plasma membranes, and release of proinflammatory cytokines (IL‐1β and IL‐18). The process of pyroptosis presents as dual effects: protecting multicellular organisms from microbial infection and endogenous dangers; leading to pathological inflammation if overactivated. Two pathways have been found to trigger pyroptosis: caspase‐1 mediated inflammasome pathway with the involvement of NLRP1‐, NLRP3‐, NLRC4‐, AIM2‐, pyrin‐inflammasome (canonical inflammasome pathway) and caspase‐4/5/11‐mediated inflammasome pathway (noncanonical inflammasome pathway). Gasdermin D (GSDMD) has been proved to be a substrate of inflammatory caspases (caspase‐1/4/5/11), and the cleaved N‐terminal domain of GSDMD oligomerizes to form cytotoxic pores on the plasma membrane. Here, we mainly reviewed the up to date mechanisms of pyroptosis, and began with the inflammasomes as the activator of caspase‐1/caspase‐11, 4, and 5. We further discussed these inflammasomes functions in diseases, including infectious diseases, sepsis, inflammatory autoimmune diseases, and neuroinflammatory diseases.
Pyroptosis is a form of necrotic and inflammatory programmed cell death, which could be characterized by cell swelling, pore formation on plasma membranes, and release of proinflammatory cytokines (IL‐1β and IL‐18). The process of pyroptosis presents as dual effects: protecting multicellular organisms from microbial infection and endogenous dangers; leading to pathological inflammation if overactivated. Two pathways have been found to trigger pyroptosis: caspase‐1 mediated inflammasome pathway with the involvement of NLRP1‐, NLRP3‐, NLRC4‐, AIM2‐, pyrin‐inflammasome (canonical inflammasome pathway) and caspase‐4/5/11‐mediated inflammasome pathway (noncanonical inflammasome pathway). Gasdermin D (GSDMD) has been proved to be a substrate of inflammatory caspases (caspase‐1/4/5/11), and the cleaved N‐terminal domain of GSDMD oligomerizes to form cytotoxic pores on the plasma membrane. Here, we mainly reviewed the up to date mechanisms of pyroptosis, and began with the inflammasomes as the activator of caspase‐1/caspase‐11, 4, and 5. We further discussed these inflammasomes functions in diseases, including infectious diseases, sepsis, inflammatory autoimmune diseases, and neuroinflammatory diseases. We summarized the updated molecular mechanisms implicated in the regulation of inflammasomes which present as the activators of canonical/noncanonical inflammasome pathways of pyroptosis, and these inflammasomes function in relevant infectious, autoinflammatory, and neuroinflammatory diseases.
Author Hu, Tu
Guo, Zimeng
Lan, Zhixin
Xia, Xiaobo
Lu, Fangfang
He, Chunrong
Xin, Zhaoqi
Author_xml – sequence: 1
  givenname: Fangfang
  orcidid: 0000-0002-9214-3046
  surname: Lu
  fullname: Lu, Fangfang
  organization: Central South University
– sequence: 2
  givenname: Zhixin
  surname: Lan
  fullname: Lan, Zhixin
  organization: Central South University
– sequence: 3
  givenname: Zhaoqi
  surname: Xin
  fullname: Xin, Zhaoqi
  organization: Central South University
– sequence: 4
  givenname: Chunrong
  surname: He
  fullname: He, Chunrong
  organization: Central South University
– sequence: 5
  givenname: Zimeng
  surname: Guo
  fullname: Guo, Zimeng
  organization: Central South University
– sequence: 6
  givenname: Xiaobo
  surname: Xia
  fullname: Xia, Xiaobo
  organization: Central South University
– sequence: 7
  givenname: Tu
  surname: Hu
  fullname: Hu, Tu
  email: hutu1986@csu.edu.cn
  organization: Central South University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31621910$$D View this record in MEDLINE/PubMed
BookMark eNp1kctqHDEQRUVwiMdOFvkB0-BNvGhbj35paQbHTjAki2QtNOrqsQY92qpuwvx91J7xxiSbqoI691LUPSMnIQYg5DOj14xSfrMz4zWXvOnekRWjsi2rpuYnZJV3rJR1xU7JGeKOUiqlEB_IqWANZ5LRFXF3HtLWhm1hA9rt04R5mGLhowMzO50KD-ZJB4seizn0kNx-ocd9iuMU0WKhQ18MczCTjQGLOGSDwWnvNUYPi13RWwSNgB_J-0E7hE_Hfk5-f737tX4oH3_cf1vfPpZG1KIrBWsr3TC-aQVng4SOy6qvc9_UbQ9LEawDKg1woanQm7auOkG11lWeORXn5MvBd0zxeQaclLdowDkdIM6ouKBNJXPpMnr5Bt3FOYV8XaaEqBshuMzUxZGaNx56NSbrddqr1z9m4OYAmBQREwzK2EkvH5mStk4xqpakVE5KvSSVFVdvFK-m_2KP7n-sg_3_QfV9_fOg-Asv_aMF
CitedBy_id crossref_primary_10_1038_s41374_021_00675_6
crossref_primary_10_1016_j_yexcr_2024_114214
crossref_primary_10_1155_2022_4566851
crossref_primary_10_1186_s12935_022_02627_6
crossref_primary_10_3390_cimb45030134
crossref_primary_10_1016_j_jare_2020_08_004
crossref_primary_10_1016_j_cca_2022_04_011
crossref_primary_10_1002_ctm2_1692
crossref_primary_10_3390_ijms24032821
crossref_primary_10_1002_iid3_817
crossref_primary_10_3390_molecules27185999
crossref_primary_10_1016_j_chemosphere_2023_138817
crossref_primary_10_3389_fimmu_2024_1405376
crossref_primary_10_3389_fmed_2024_1451990
crossref_primary_10_1007_s11033_021_06402_0
crossref_primary_10_1186_s12964_024_01932_z
crossref_primary_10_2147_JIR_S445573
crossref_primary_10_1007_s43440_021_00321_4
crossref_primary_10_1007_s10637_023_01373_4
crossref_primary_10_1016_j_bbcan_2020_188453
crossref_primary_10_3389_fphar_2023_1151196
crossref_primary_10_1007_s10792_022_02506_z
crossref_primary_10_3390_cells10102562
crossref_primary_10_1021_acsami_1c17382
crossref_primary_10_1007_s10495_023_01823_7
crossref_primary_10_1016_j_clinre_2022_102070
crossref_primary_10_1007_s00011_021_01457_y
crossref_primary_10_1021_acsbiomaterials_9b01932
crossref_primary_10_3389_fimmu_2024_1386939
crossref_primary_10_1007_s11064_022_03810_x
crossref_primary_10_3390_cells10113023
crossref_primary_10_1016_j_lfs_2019_117138
crossref_primary_10_3390_ijms23052484
crossref_primary_10_1016_j_ijbiomac_2024_135979
crossref_primary_10_1016_j_biopha_2024_116667
crossref_primary_10_1186_s12950_024_00382_1
crossref_primary_10_1111_jop_13290
crossref_primary_10_1080_14767058_2024_2312447
crossref_primary_10_1111_acer_14936
crossref_primary_10_1007_s10565_024_09895_0
crossref_primary_10_1371_journal_ppat_1010718
crossref_primary_10_1016_j_exer_2023_109381
crossref_primary_10_3390_ijms22020561
crossref_primary_10_1128_IAI_00683_20
crossref_primary_10_7717_peerj_16818
crossref_primary_10_1186_s13048_022_01080_3
crossref_primary_10_4103_1673_5374_373676
crossref_primary_10_1111_odi_14648
crossref_primary_10_1007_s11011_025_01589_8
crossref_primary_10_1016_j_neulet_2022_136935
crossref_primary_10_1016_j_jep_2024_118231
crossref_primary_10_1016_j_micpath_2021_104866
crossref_primary_10_1016_j_critrevonc_2023_104249
crossref_primary_10_1186_s40001_024_01890_9
crossref_primary_10_1134_S106235902312018X
crossref_primary_10_3390_ijms222111581
crossref_primary_10_1007_s00011_021_01493_8
crossref_primary_10_3389_fendo_2023_1207142
crossref_primary_10_1016_j_cbi_2021_109573
crossref_primary_10_1128_mSystems_00336_21
crossref_primary_10_3390_cells11101717
crossref_primary_10_3390_toxics12120840
crossref_primary_10_1016_j_intimp_2021_107962
crossref_primary_10_1155_2020_4063562
crossref_primary_10_3389_fimmu_2022_823439
crossref_primary_10_1016_j_bbrc_2024_149760
crossref_primary_10_1016_j_neurot_2024_e00359
crossref_primary_10_3390_cells11203271
crossref_primary_10_3390_cells9081808
crossref_primary_10_1002_jbt_23458
crossref_primary_10_1002_advs_202203583
crossref_primary_10_1007_s13105_021_00817_w
crossref_primary_10_3389_fimmu_2022_1035709
crossref_primary_10_1016_j_biopha_2024_116129
crossref_primary_10_1007_s10753_023_01901_7
crossref_primary_10_3389_fimmu_2021_763092
crossref_primary_10_3389_fimmu_2023_1155222
crossref_primary_10_1016_j_jpba_2024_116239
crossref_primary_10_1142_S0192415X23500751
crossref_primary_10_1155_2021_9925059
crossref_primary_10_1016_j_chemosphere_2024_142826
crossref_primary_10_1016_j_jare_2024_10_026
crossref_primary_10_1186_s12931_024_02740_2
crossref_primary_10_1007_s11033_024_09329_4
crossref_primary_10_1080_09537104_2022_2156492
crossref_primary_10_3389_fonc_2022_889658
crossref_primary_10_1021_acschemneuro_2c00196
crossref_primary_10_1007_s12035_022_02960_x
crossref_primary_10_1016_j_phymed_2021_153687
crossref_primary_10_1186_s12890_023_02456_x
crossref_primary_10_3389_fphar_2021_726198
crossref_primary_10_3390_ijms22168773
crossref_primary_10_1016_j_apsb_2021_10_006
crossref_primary_10_1080_17512433_2021_1878024
crossref_primary_10_1096_fj_202100713RR
crossref_primary_10_1186_s12974_022_02547_2
crossref_primary_10_1016_j_joim_2023_03_003
crossref_primary_10_2147_JIR_S371536
crossref_primary_10_1021_acs_jafc_3c02441
crossref_primary_10_3390_ijms21134714
crossref_primary_10_1007_s12550_024_00524_7
crossref_primary_10_1186_s10020_024_01020_5
crossref_primary_10_3389_fcell_2021_753660
crossref_primary_10_1007_s11356_023_25254_8
crossref_primary_10_1080_08916934_2024_2312927
crossref_primary_10_1186_s40001_023_01578_6
crossref_primary_10_3390_cells11233758
crossref_primary_10_1016_j_bbcan_2023_189058
crossref_primary_10_1016_j_cyto_2023_156168
crossref_primary_10_3390_molecules27165298
crossref_primary_10_1155_2021_1173324
crossref_primary_10_1016_j_fct_2023_113683
crossref_primary_10_1016_j_heliyon_2024_e24974
crossref_primary_10_1002_dmrr_3841
crossref_primary_10_1002_tox_23861
crossref_primary_10_3389_fimmu_2021_737065
crossref_primary_10_1007_s10067_021_05755_y
crossref_primary_10_1096_fj_202300237R
crossref_primary_10_1016_j_crimmu_2023_100061
crossref_primary_10_1016_j_intimp_2023_111010
crossref_primary_10_1016_j_neuroscience_2022_04_011
crossref_primary_10_4236_jbm_2022_104011
crossref_primary_10_1111_jcmm_17277
crossref_primary_10_2147_CCID_S492340
crossref_primary_10_2174_0929867328666210910154330
crossref_primary_10_1111_cns_14221
crossref_primary_10_1186_s12989_024_00577_7
crossref_primary_10_1590_fst_45122
crossref_primary_10_3390_ijms21176204
crossref_primary_10_4103_wjsi_wjsi_3_24
crossref_primary_10_3390_md22120540
crossref_primary_10_4196_kjpp_24_240
crossref_primary_10_3389_fimmu_2022_841732
crossref_primary_10_1016_j_intimp_2023_111301
crossref_primary_10_1002_adhm_202401616
crossref_primary_10_1016_j_exer_2024_109812
crossref_primary_10_3389_fcell_2021_634690
crossref_primary_10_3389_fimmu_2023_1074606
crossref_primary_10_3390_ijms232113229
crossref_primary_10_1002_jbt_22951
crossref_primary_10_31857_S0869803123030128
crossref_primary_10_1038_s41419_022_04561_x
crossref_primary_10_1186_s12865_021_00463_3
crossref_primary_10_1016_j_molimm_2024_06_007
crossref_primary_10_1038_s41419_024_06992_0
crossref_primary_10_3390_ijms24087333
crossref_primary_10_1186_s13567_020_00829_2
crossref_primary_10_3390_ijms252011025
crossref_primary_10_3390_ijms252011146
crossref_primary_10_1084_jem_20201452
crossref_primary_10_3389_fcvm_2023_1180792
crossref_primary_10_3389_fimmu_2023_1085448
crossref_primary_10_1186_s40478_025_01950_z
crossref_primary_10_3389_fimmu_2023_1055788
Cites_doi 10.1002/bies.201200013
10.1074/jbc.M112.378323
10.1038/mi.2013.95
10.1002/JLB.MR0318-124R
10.1002/eji.201545655
10.1073/pnas.1708194114
10.1093/hmg/11.8.961
10.1073/pnas.1201836109
10.1016/j.cell.2016.04.015
10.1016/j.intimp.2018.12.019
10.1111/imr.12283
10.1126/science.1243640
10.1016/j.molcel.2018.11.018
10.1007/s00011-019-01256-6
10.1038/ni.1960
10.1016/j.cmet.2015.09.024
10.1097/ACI.0000000000000396
10.1038/jcbfm.2013.227
10.4049/jimmunol.0901363
10.1038/nri2925
10.1146/annurev.pathol.1.110304.100133
10.1128/IAI.01170-13
10.1084/jem.20141091
10.1111/imm.12787
10.1016/S1097-2765(02)00599-3
10.1074/jbc.M114.553305
10.1136/annrheumdis-2017-211473
10.1038/nature15541
10.1083/jcb.201602089
10.1002/jcp.27909
10.1186/s12882-019-1506-8
10.1038/ni.2474
10.1016/j.mib.2013.04.004
10.1002/eji.201545839
10.1002/jcp.26287
10.1016/j.molcel.2019.01.029
10.1073/pnas.90.21.10198
10.1038/sj.cdd.4401734
10.1371/journal.ppat.1006052
10.3171/2012.9.JNS12815
10.1128/IAI.01003-12
10.1126/science.1236381
10.1038/nature22393
10.1038/nature15632
10.1128/IAI.01032-08
10.1016/j.sbi.2014.08.011
10.1038/nature06246
10.3109/08916934.2011.637532
10.1038/nature13683
10.1086/665457
10.1038/cr.2014.101
10.1038/ncomms4209
10.1126/science.1230751
10.1126/scitranslmed.aaf1471
10.1016/j.tibs.2016.10.004
10.4049/jimmunol.179.2.1274
10.1186/s13024-016-0094-3
10.1016/j.cell.2017.01.008
10.3389/fimmu.2019.01904
10.1002/jlb.60.1.8
10.1186/s13045-019-0755-0
10.1111/imr.12286
10.1016/j.chom.2011.04.008
10.1038/ni.3457
10.1038/jcbfm.2013.236
10.1186/s12974-016-0521-y
10.1007/s11064-013-1115-z
10.1097/00063198-200305000-00011
10.1073/pnas.1601700113
10.1038/nature18629
10.1042/BJ20121198
10.1038/ni.1702
10.1074/jbc.M112.407130
10.1016/j.molcel.2014.02.018
10.1038/nature13157
10.1084/jem.20121960
10.1016/j.immuni.2011.02.006
10.1016/S0966-842X(00)01936-3
10.1016/j.tibs.2016.09.002
10.1073/pnas.1417945112
10.1371/journal.pone.0164662
10.1111/imr.12293
10.1016/j.coi.2015.01.007
10.1136/annrheumdis-2016-210021
10.1001/jama.2016.0287
10.1016/j.clim.2017.10.003
10.1038/nature10394
10.1111/imr.12287
10.1074/jbc.M113.468033
10.1002/eji.201545772
10.1371/journal.ppat.1007240
10.1111/j.1399-0039.2010.01470.x
10.1016/j.cell.2014.04.007
10.1016/j.bbrc.2017.11.156
10.1089/jir.2009.0096
10.1038/nature12940
10.1016/S1074-7613(04)00046-9
10.1038/358167a0
10.1093/hmg/7.10.1581
10.1371/journal.ppat.1003452
10.1186/s13024-016-0088-1
10.1111/nyas.12458
10.1016/j.immuni.2012.02.014
10.1038/nature18590
10.1093/femspd/ftw028
10.1016/j.cell.2016.09.001
10.1016/j.molcel.2007.01.032
10.1016/j.molcel.2007.08.029
10.1038/nature15514
10.1038/nature07710
10.1126/science.1240988
10.1111/imr.12534
10.1016/j.gene.2013.07.082
10.1074/jbc.M806121200
10.1016/j.molcel.2012.11.009
10.1073/pnas.0913087107
10.1152/ajpendo.00296.2016
10.1016/j.cell.2010.01.022
10.1016/j.immuni.2011.02.020
10.1074/jbc.C100250200
10.1038/nature10558
10.1038/nature13449
10.1146/annurev-micro-092412-155725
10.1111/exd.12037
10.1016/j.micinf.2011.12.005
10.1007/s12035-017-0400-2
10.1038/nrmicro2070
10.1073/pnas.1710433114
10.1016/j.cell.2014.02.008
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
2020 Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
– notice: 2020 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
DOI 10.1002/jcp.29268
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE

Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4652
EndPage 3221
ExternalDocumentID 31621910
10_1002_jcp_29268
JCP29268
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 2018M643004
– fundername: College students’ innovative project of CSU
  funderid: ZY2016698
– fundername: National Natural Science Foundation of China
  funderid: 81900890
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABIJN
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IH2
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
S10
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UPT
V2E
V8K
VQP
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
X7M
XG1
XJT
XOL
XPP
XSW
XV2
Y6R
YQT
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c3538-3174a612b7321f9e8294d59e8b57deb57d318e09ce23a03ab754830aaa4ab7203
IEDL.DBID DR2
ISSN 0021-9541
1097-4652
IngestDate Fri Jul 11 00:03:40 EDT 2025
Sat Jul 26 00:58:38 EDT 2025
Thu Apr 03 06:53:43 EDT 2025
Thu Apr 24 23:10:55 EDT 2025
Tue Jul 01 01:32:06 EDT 2025
Wed Jan 22 16:35:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords GSDMD
pyroptosis
inflammasomes
caspases
Language English
License 2019 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3538-3174a612b7321f9e8294d59e8b57deb57d318e09ce23a03ab754830aaa4ab7203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-9214-3046
PMID 31621910
PQID 2333563329
PQPubID 1006363
PageCount 15
ParticipantIDs proquest_miscellaneous_2306493068
proquest_journals_2333563329
pubmed_primary_31621910
crossref_citationtrail_10_1002_jcp_29268
crossref_primary_10_1002_jcp_29268
wiley_primary_10_1002_jcp_29268_JCP29268
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cellular physiology
PublicationTitleAlternate J Cell Physiol
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 479
2010; 11
2011; 477
2004; 20
2010; 107
2019; 10
2016b; 74
2015; 265
2019; 12
2002; 10
2002; 11
2014; 24
2017; 152
2014; 29
2012; 14
2017; 277
2013; 9
2014; 1319
2007; 179
2009; 10
2019; 20
2017; 76
2016; 311
1992; 358
1996; 60
2016; 41
2016; 315
2017; 168
2010; 30
2012; 21
2018; 187
2007; 449
2019; 105
2016; 167
2016; 165
2015; 526
2013; 341
2012; 36
2016; 17
2012; 34
2016a; 46
2016; 13
2016; 12
2012; 109
2014; 156
2009; 458
2011; 9
2014; 157
2016; 11
2001; 276
2009; 77
2013; 339
2015; 112
2018; 233
2013; 81
2009; 183
2016; 213
1998; 7
2012; 45
2012; 117
2014; 34
2016; 8
2018; 14
2016; 23
2017; 547
2017; 42
2012; 287
2013; 449
2015; 32
2013; 288
2011; 11
2014; 68
2010; 140
2011; 17
2017; 114
2014; 211
2012; 209
2007; 28
2015; 45
2018; 495
2014; 5
2013; 14
2013; 16
2019; 68
2019; 67
2003; 9
2016; 113
2019; 234
2009; 284
2014; 7
2007; 25
2014; 54
2014; 289
2014; 514
2010; 76
2014; 513
2019; 73
2013; 49
2006; 13
2011; 34
1993; 90
2006; 1
2014; 82
2014; 505
2013; 38
2014; 509
2017; 17
2001; 9
2015; 21
2013; 530
2009; 7
2016; 535
2018; 55
2012; 87
2014; 343
e_1_2_14_114_1
e_1_2_14_73_1
e_1_2_14_96_1
e_1_2_14_110_1
e_1_2_14_31_1
e_1_2_14_50_1
e_1_2_14_92_1
e_1_2_14_35_1
e_1_2_14_12_1
e_1_2_14_54_1
e_1_2_14_77_1
e_1_2_14_16_1
e_1_2_14_58_1
e_1_2_14_6_1
e_1_2_14_121_1
e_1_2_14_107_1
e_1_2_14_125_1
e_1_2_14_103_1
e_1_2_14_85_1
e_1_2_14_129_1
e_1_2_14_2_1
e_1_2_14_20_1
e_1_2_14_62_1
e_1_2_14_81_1
e_1_2_14_24_1
e_1_2_14_43_1
e_1_2_14_66_1
e_1_2_14_28_1
e_1_2_14_89_1
e_1_2_14_47_1
e_1_2_14_119_1
e_1_2_14_132_1
e_1_2_14_115_1
e_1_2_14_72_1
e_1_2_14_95_1
e_1_2_14_111_1
e_1_2_14_30_1
e_1_2_14_53_1
e_1_2_14_91_1
e_1_2_14_11_1
e_1_2_14_34_1
e_1_2_14_57_1
e_1_2_14_15_1
e_1_2_14_38_1
e_1_2_14_76_1
e_1_2_14_99_1
e_1_2_14_120_1
e_1_2_14_7_1
e_1_2_14_108_1
e_1_2_14_124_1
e_1_2_14_104_1
e_1_2_14_84_1
e_1_2_14_128_1
e_1_2_14_100_1
e_1_2_14_42_1
e_1_2_14_80_1
e_1_2_14_3_1
e_1_2_14_61_1
e_1_2_14_23_1
e_1_2_14_46_1
e_1_2_14_65_1
e_1_2_14_27_1
e_1_2_14_88_1
e_1_2_14_69_1
e_1_2_14_131_1
e_1_2_14_116_1
e_1_2_14_94_1
e_1_2_14_75_1
Guo H. (e_1_2_14_39_1) 2015; 21
e_1_2_14_52_1
e_1_2_14_90_1
e_1_2_14_71_1
e_1_2_14_10_1
e_1_2_14_56_1
e_1_2_14_33_1
e_1_2_14_14_1
e_1_2_14_98_1
e_1_2_14_37_1
e_1_2_14_79_1
e_1_2_14_8_1
e_1_2_14_109_1
e_1_2_14_123_1
e_1_2_14_105_1
e_1_2_14_60_1
e_1_2_14_83_1
e_1_2_14_127_1
e_1_2_14_101_1
e_1_2_14_41_1
e_1_2_14_64_1
e_1_2_14_4_1
e_1_2_14_45_1
e_1_2_14_68_1
e_1_2_14_22_1
e_1_2_14_87_1
e_1_2_14_49_1
e_1_2_14_26_1
e_1_2_14_19_1
e_1_2_14_130_1
Vandanmagsar B. (e_1_2_14_112_1) 2011; 17
e_1_2_14_117_1
e_1_2_14_113_1
e_1_2_14_74_1
e_1_2_14_97_1
e_1_2_14_51_1
e_1_2_14_70_1
e_1_2_14_93_1
e_1_2_14_13_1
e_1_2_14_32_1
e_1_2_14_55_1
e_1_2_14_17_1
e_1_2_14_36_1
e_1_2_14_59_1
e_1_2_14_78_1
e_1_2_14_29_1
e_1_2_14_5_1
e_1_2_14_122_1
e_1_2_14_9_1
e_1_2_14_106_1
e_1_2_14_126_1
e_1_2_14_102_1
e_1_2_14_86_1
e_1_2_14_63_1
e_1_2_14_40_1
e_1_2_14_82_1
e_1_2_14_67_1
e_1_2_14_21_1
e_1_2_14_44_1
e_1_2_14_25_1
e_1_2_14_48_1
e_1_2_14_18_1
e_1_2_14_118_1
References_xml – volume: 113
  start-page: E4857
  issue: 33
  year: 2016
  end-page: E4866
  article-title: Site‐specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 45
  start-page: 271
  issue: 4
  year: 2012
  end-page: 278
  article-title: Polimorphisms in inflammasome genes are involved in the predisposition to systemic lupus erythematosus
  publication-title: Autoimmunity
– volume: 276
  start-page: 28309
  issue: 30
  year: 2001
  end-page: 28313
  article-title: Identification of Ipaf, a human caspase‐1‐activating protein related to Apaf‐1
  publication-title: Journal of Biological Chemistry
– volume: 17
  start-page: 914
  issue: 8
  year: 2016
  end-page: 921
  article-title: Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS
  publication-title: Nature Immunology
– volume: 284
  start-page: 6546
  issue: 10
  year: 2009
  end-page: 6553
  article-title: Crystal structure of procaspase‐1 zymogen domain reveals insight into inflammatory caspase autoactivation
  publication-title: Journal of Biological Chemistry
– volume: 11
  start-page: 1136
  issue: 12
  year: 2010
  end-page: 1142
  article-title: Caspase‐1‐induced pyroptosis is an innate immune effector mechanism against intracellular bacteria
  publication-title: Nature Immunology
– volume: 479
  start-page: 117
  issue: 7371
  year: 2011
  end-page: 121
  article-title: Non‐canonical inflammasome activation targets caspase‐11
  publication-title: Nature
– volume: 17
  start-page: 398
  issue: 6
  year: 2017
  end-page: 404
  article-title: NLRC4 inflammasomopathies
  publication-title: Current Opinion in Allergy and Clinical Immunology
– volume: 165
  start-page: 1106
  issue: 5
  year: 2016
  end-page: 1119
  article-title: Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase‐11 activation
  publication-title: Cell
– volume: 9
  start-page: 221
  issue: 3
  year: 2003
  end-page: 226
  article-title: Inhalational anthrax and bioterrorism
  publication-title: Current Opinion in Pulmonary Medicine
– volume: 107
  start-page: 3076
  issue: 7
  year: 2010
  end-page: 3080
  article-title: Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome
  publication-title: Proceedings of the National Academy of Sciences
– volume: 46
  start-page: 269
  issue: 2
  year: 2016a
  end-page: 280
  article-title: AIM2 inflammasome in infection, cancer, and autoimmunity: Role in DNA sensing, inflammation, and innate immunity
  publication-title: European Journal of Immunology
– volume: 73
  start-page: 429
  issue: 3
  year: 2019
  end-page: 445
  article-title: The Crohn's disease risk factor IRGM limits NLRP3 inflammasome activation by impeding its assembly and by mediating its selective autophagy
  publication-title: Molecular Cell
– volume: 1319
  start-page: 82
  year: 2014
  end-page: 95
  article-title: Mechanism of NLRP3 inflammasome activation
  publication-title: Annals of the New York Academy of Sciences
– volume: 45
  start-page: 2918
  issue: 10
  year: 2015
  end-page: 2926
  article-title: NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspase‐4 and caspase‐5
  publication-title: European Journal of Immunology
– volume: 68
  start-page: 727
  issue: 9
  year: 2019
  end-page: 738
  article-title: Neferine inhibits LPS‐ATP‐induced endothelial cell pyroptosis via regulation of ROS/NLRP3/Caspase‐1 signaling pathway
  publication-title: Inflammation Research
– volume: 526
  start-page: 660
  issue: 7575
  year: 2015
  end-page: 665
  article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
  publication-title: Nature
– volume: 87
  start-page: 89
  issue: 2
  year: 2012
  end-page: 127
  article-title: Understanding secondary injury
  publication-title: The Quarterly Review of Biology
– volume: 11
  start-page: 98
  issue: 2
  year: 2011
  end-page: 107
  article-title: Type 2 diabetes as an inflammatory disease
  publication-title: Nature Reviews Immunology
– volume: 547
  start-page: 99
  issue: 7661
  year: 2017
  end-page: 103
  article-title: Chemotherapy drugs induce pyroptosis through caspase‐3 cleavage of a gasdermin
  publication-title: Nature
– volume: 209
  start-page: 1969
  issue: 11
  year: 2012
  end-page: 1983
  article-title: Extensive evolutionary and functional diversity among mammalian AIM2‐like receptors
  publication-title: Journal of Experimetnal Medicine
– volume: 32
  start-page: 78
  year: 2015
  end-page: 83
  article-title: Non‐canonical activation of inflammatory caspases by cytosolic LPS in innate immunity
  publication-title: Current Opinion in Immunology
– volume: 287
  start-page: 36617
  issue: 43
  year: 2012
  end-page: 36622
  article-title: Non‐transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation
  publication-title: Journal of Biological Chemistry
– volume: 12
  issue: 12
  year: 2016
  article-title: Functional and evolutionary analyses identify proteolysis as a general mechanism for NLRP1 inflammasome activation
  publication-title: PLOS Pathogens
– volume: 5
  start-page: 3209
  year: 2014
  article-title: Activation of the NLRP1b inflammasome independently of ASC‐mediated caspase‐1 autoproteolysis and speck formation
  publication-title: Nature Communications
– volume: 55
  start-page: 1364
  issue: 2
  year: 2018
  end-page: 1375
  article-title: Estrogen attenuates local inflammasome expression and activation after spinal cord injury
  publication-title: Molecular Neurobiology
– volume: 42
  start-page: 245
  issue: 4
  year: 2017
  end-page: 254
  article-title: Pyroptosis: Gasdermin‐mediated programmed necrotic cell death
  publication-title: Trends in Biochemical Sciences
– volume: 16
  start-page: 319
  issue: 3
  year: 2013
  end-page: 326
  article-title: Inflammasome‐mediated pyroptotic and apoptotic cell death, and defense against infection
  publication-title: Current Opinion in Microbiology
– volume: 213
  start-page: 617
  issue: 6
  year: 2016
  end-page: 629
  article-title: The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation
  publication-title: Journal of Cell Biology
– volume: 513
  start-page: 237
  issue: 7517
  year: 2014
  end-page: 241
  article-title: Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome
  publication-title: Nature
– volume: 530
  start-page: 151
  issue: 1
  year: 2013
  end-page: 154
  article-title: Variants of NLRP3 gene are associated with insulin resistance in Chinese Han population with type‐2 diabetes
  publication-title: Gene
– volume: 34
  start-page: 621
  issue: 4
  year: 2014
  end-page: 629
  article-title: Pyroptotic neuronal cell death mediated by the AIM2 inflammasome
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– volume: 311
  start-page: E825
  issue: 5
  year: 2016
  end-page: E835
  article-title: Saturated fatty acids activate caspase‐4/5 in human monocytes, triggering IL‐1β and IL‐18 release
  publication-title: American Journal of Physiology‐Endocrinology and Metabolism
– volume: 117
  start-page: 1119
  issue: 6
  year: 2012
  end-page: 1125
  article-title: Inflammasome proteins in cerebrospinal fluid of brain‐injured patients as biomarkers of functional outcome: Clinical article
  publication-title: Journal of Neurosurgery
– volume: 25
  start-page: 713
  issue: 5
  year: 2007
  end-page: 724
  article-title: Reconstituted NALP1 inflammasome reveals two‐step mechanism of caspase‐1 activation
  publication-title: Molecular Cell
– volume: 140
  start-page: 805
  issue: 6
  year: 2010
  end-page: 820
  article-title: Pattern recognition receptors and inflammation
  publication-title: Cell
– volume: 67
  start-page: 458
  year: 2019
  end-page: 464
  article-title: The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson's disease
  publication-title: International Immunopharmacology
– volume: 34
  start-page: 755
  issue: 5
  year: 2011
  end-page: 768
  article-title: Gain‐of‐function pyrin mutations induce NLRP3 protein‐independent interleukin‐1β activation and severe autoinflammation in mice
  publication-title: Immunity
– volume: 30
  start-page: 371
  issue: 6
  year: 2010
  end-page: 380
  article-title: Interferon‐inducible p200‐family proteins as novel sensors of cytoplasmic DNA: Role in inflammation and autoimmunity
  publication-title: Journal of Interferon & Cytokine Research
– volume: 11
  start-page: 28
  year: 2016
  article-title: MicroRNA‐7 targets Nod‐like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson's disease
  publication-title: Molecular Neurodegeneration
– volume: 156
  start-page: 1193
  issue: 6
  year: 2014
  end-page: 1206
  article-title: Unified polymerization mechanism for the assembly of ASC‐dependent inflammasomes
  publication-title: Cell
– volume: 10
  start-page: 417
  issue: 2
  year: 2002
  end-page: 426
  article-title: The Inflammasome
  publication-title: Molecular Cell
– volume: 343
  start-page: 428
  issue: 6169
  year: 2014
  end-page: 432
  article-title: IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV
  publication-title: Science
– volume: 157
  start-page: 1013
  issue: 5
  year: 2014
  end-page: 1022
  article-title: Mechanisms and functions of inflammasomes
  publication-title: Cell
– volume: 152
  start-page: 207
  issue: 2
  year: 2017
  end-page: 217
  article-title: Caspase‐11 non‐canonical inflammasome: A critical sensor of intracellular lipopolysaccharide in macrophage‐mediated inflammatory responses
  publication-title: Immunology
– volume: 287
  start-page: 25030
  issue: 30
  year: 2012
  end-page: 25037
  article-title: Autolytic proteolysis within the function to find domain (FIIND) is required for NLRP1 inflammasome activity
  publication-title: Journal of Biological Chemistry
– volume: 14
  issue: 8
  year: 2018
  article-title: Dysregulated hemolysin liberates bacterial outer membrane vesicles for cytosolic lipopolysaccharide sensing
  publication-title: PLOS Pathogens
– volume: 167
  start-page: 187
  issue: 1
  year: 2016
  end-page: 202
  article-title: Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via inflammasome activation
  publication-title: Cell
– volume: 341
  start-page: 1250
  issue: 6151
  year: 2013
  end-page: 1253
  article-title: Cytoplasmic LPS activates caspase‐11: Implications in TLR4‐independent endotoxic shock
  publication-title: Science
– volume: 21
  start-page: 961
  issue: 12
  year: 2012
  end-page: 964
  article-title: Strong induction of AIM2 expression in human epidermis in acute and chronic inflammatory skin conditions
  publication-title: Experimental Dermatology
– volume: 112
  start-page: 1541
  issue: 5
  year: 2015
  end-page: 1546
  article-title: Flagellin‐induced NLRC4 phosphorylation primes the inflammasome for activation by NAIP5
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 109
  start-page: 10480
  issue: 26
  year: 2012
  end-page: 10485
  article-title: NLRP3 inflammasome induces chemotactic immune cell migration to the CNS in experimental autoimmune encephalomyelitis
  publication-title: Proceedings of the National Academy of Sciences
– volume: 315
  start-page: 801
  issue: 8
  year: 2016
  end-page: 810
  article-title: The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis‐3)
  publication-title: Journal of the American Medical Association
– volume: 36
  start-page: 561
  issue: 4
  year: 2012
  end-page: 571
  article-title: Structures of the HIN domain: DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor
  publication-title: Immunity
– volume: 24
  start-page: 1286
  issue: 11
  year: 2014
  end-page: 1287
  article-title: Detecting “different”: Pyrin senses modified GTPases
  publication-title: Cell Research
– volume: 114
  start-page: 10642
  issue: 40
  year: 2017
  end-page: 10647
  article-title: Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 90
  start-page: 10198
  issue: 21
  year: 1993
  end-page: 10201
  article-title: On the role of macrophages in anthrax
  publication-title: Proceedings of the National Academy of Sciences
– volume: 168
  start-page: 544
  issue: 3
  year: 2017
  end-page: 544
  article-title: SnapShot: The noncanonical inflammasome
  publication-title: Cell
– volume: 54
  start-page: 17
  issue: 1
  year: 2014
  end-page: 29
  article-title: Molecular basis for specific recognition of bacterial ligands by NAIP/NLRC4 inflammasomes
  publication-title: Molecular Cell
– volume: 105
  start-page: 377
  issue: 2
  year: 2019
  end-page: 399
  article-title: Stressing out the mitochondria: Mechanistic insights into NLRP3 inflammasome activation
  publication-title: Journal of Leukocyte Biology
– volume: 13
  start-page: 52
  issue: 1
  year: 2016
  article-title: Heme oxygenase‐1 promotes neuron survival through down‐regulation of neuronal NLRP1 expression after spinal cord injury
  publication-title: Journal of Neuroinflammation
– volume: 234
  start-page: 7885
  issue: 6
  year: 2019
  end-page: 7892
  article-title: What role does pyroptosis play in microbial infection?
  publication-title: Journal of Cellular Physiology
– volume: 265
  start-page: 130
  issue: 1
  year: 2015
  end-page: 142
  article-title: Pyroptotic cell death defends against intracellular pathogens
  publication-title: Immunological Reviews
– volume: 41
  start-page: 1012
  issue: 12
  year: 2016
  end-page: 1021
  article-title: Mechanism and regulation of NLRP3 inflammasome activation
  publication-title: Trends in Biochemical Sciences
– volume: 34
  start-page: 213
  issue: 2
  year: 2011
  end-page: 223
  article-title: Type I interferon inhibits interleukin‐1 production and inflammasome activation
  publication-title: Immunity
– volume: 10
  start-page: 1904
  year: 2019
  article-title: AGER‐mediated lipid peroxidation drives caspase‐11 inflammasome activation in sepsis
  publication-title: Frontiers in Immunology
– volume: 11
  issue: 10
  year: 2016
  article-title: The biophysical characterisation and SAXS analysis of human NLRP1 uncover a new level of complexity of NLR proteins
  publication-title: PLOS One
– volume: 20
  start-page: 319
  issue: 3
  year: 2004
  end-page: 325
  article-title: NALP3 forms an IL‐1β‐processing inflammasome with increased activity in muckle‐wells autoinflammatory disorder
  publication-title: Immunity
– volume: 339
  start-page: 975
  issue: 6122
  year: 2013
  end-page: 978
  article-title: Caspase‐11 protects against bacteria that escape the vacuole
  publication-title: Science
– volume: 29
  start-page: 17
  year: 2014
  end-page: 25
  article-title: Structural mechanisms in NLR inflammasome signaling
  publication-title: Current Opinion in Structural Biology
– volume: 7
  start-page: 775
  issue: 4
  year: 2014
  end-page: 785
  article-title: NLRC4 expression in intestinal epithelial cells mediates protection against an enteric pathogen
  publication-title: Mucosal Immunology
– volume: 12
  start-page: 64
  issue: 1
  year: 2019
  article-title: Inflammasome inhibitors: Promising therapeutic approaches against cancer
  publication-title: Journal of Hematology & Oncology
– volume: 11
  start-page: 961
  issue: 8
  year: 2002
  end-page: 969
  article-title: Mutations in CD2BP1 disrupt binding to PTP PEST and are responsible for PAPA syndrome, an autoinflammatory disorder
  publication-title: Human Molecular Genetics
– volume: 526
  start-page: 642
  issue: 7575
  year: 2015
  end-page: 643
  article-title: Caspase target drives pyroptosis
  publication-title: Nature
– volume: 183
  start-page: 787
  issue: 2
  year: 2009
  end-page: 791
  article-title: Cutting edge: NF‐κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression
  publication-title: Journal of Immunology
– volume: 289
  start-page: 23504
  issue: 34
  year: 2014
  end-page: 23519
  article-title: Identification of multifaceted binding modes for pyrin and ASC pyrin domains gives insights into pyrin inflammasome assembly
  publication-title: Journal of Biological Chemistry
– volume: 535
  start-page: 111
  issue: 7610
  year: 2016
  end-page: 116
  article-title: Pore‐forming activity and structural autoinhibition of the gasdermin family
  publication-title: Nature
– volume: 20
  start-page: 319
  issue: 1
  year: 2019
  article-title: Uric acid regulates NLRP3/IL‐1beta signaling pathway and further induces vascular endothelial cells injury in early CKD through ROS activation and K(+) efflux
  publication-title: BMC Nephrology
– volume: 74
  start-page: ftw028
  issue: 4
  year: 2016b
  article-title: DNA‐sensing inflammasomes: Regulation of bacterial host defense and the gut microbiota
  publication-title: Pathogens and Disease
– volume: 7
  start-page: 99
  issue: 2
  year: 2009
  end-page: 109
  article-title: Pyroptosis: Host cell death and inflammation
  publication-title: Nature Reviews Microbiology
– volume: 509
  start-page: 366
  issue: 7500
  year: 2014
  end-page: 370
  article-title: Caspase‐11 activation requires lysis of pathogen‐containing vacuoles by IFN‐induced GTPases
  publication-title: Nature
– volume: 45
  start-page: 2927
  issue: 10
  year: 2015
  end-page: 2936
  article-title: Caspase‐11 activates a canonical NLRP3 inflammasome by promoting K(+) efflux
  publication-title: European Journal of Immunology
– volume: 495
  start-page: 1418
  issue: 1
  year: 2018
  end-page: 1425
  article-title: GSDME mediates caspase‐3‐dependent pyroptosis in gastric cancer
  publication-title: Biochemical and Biophysical Research Communications
– volume: 7
  start-page: 1581
  issue: 10
  year: 1998
  end-page: 1588
  article-title: The hereditary periodic fever syndromes: Molecular analysis of a new family of inflammatory diseases
  publication-title: Human Molecular Genetics
– volume: 9
  start-page: 363
  issue: 5
  year: 2011
  end-page: 375
  article-title: IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma‐associated herpesvirus infection
  publication-title: Cell Host & Microbe
– volume: 1
  start-page: 273
  year: 2006
  end-page: 296
  article-title: KSHV infection and the pathogenesis of Kaposi's sarcoma
  publication-title: Annual Review of Pathology: Mechanisms of Disease
– volume: 358
  start-page: 167
  issue: 6382
  year: 1992
  end-page: 169
  article-title: Shigella flexneri induces apoptosis in infected macrophages
  publication-title: Nature
– volume: 10
  start-page: 266
  issue: 3
  year: 2009
  end-page: 272
  article-title: An orthogonal proteomic‐genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome
  publication-title: Nature Immunology
– volume: 265
  start-page: 35
  issue: 1
  year: 2015
  end-page: 52
  article-title: Initiation and perpetuation of NLRP3 inflammasome activation and assembly
  publication-title: Immunological Reviews
– volume: 13
  start-page: 236
  issue: 2
  year: 2006
  end-page: 249
  article-title: Cryopyrin and pyrin activate caspase‐1, but not NF‐kappaB, via ASC oligomerization
  publication-title: Cell Death and Differentiation
– volume: 187
  start-page: 46
  year: 2018
  end-page: 49
  article-title: Gain‐of‐function variants in NLRP1 protect against the development of diabetic kidney disease: NLRP1 inflammasome role in metabolic stress sensing?
  publication-title: Clinical Immunology
– volume: 60
  start-page: 8
  issue: 1
  year: 1996
  end-page: 26
  article-title: Endotoxin signal transduction in macrophages
  publication-title: Journal of Leukocyte Biology
– volume: 8
  start-page: 332ra45
  issue: 332
  year: 2016
  end-page: 332ra45
  article-title: Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation
  publication-title: Science Translational Medicine
– volume: 11
  start-page: 23
  year: 2016
  article-title: The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer's disease
  publication-title: Molecular Neurodegeneration
– volume: 34
  start-page: 369
  issue: 3
  year: 2014
  end-page: 375
  article-title: Activation and regulation of cellular inflammasomes: Gaps in our knowledge for central nervous system injury
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– volume: 9
  start-page: 113
  issue: 3
  year: 2001
  end-page: 114
  article-title: Pro‐inflammatory programmed cell death
  publication-title: Trends in Microbiology
– volume: 514
  start-page: 187
  issue: 7521
  year: 2014
  end-page: 192
  article-title: Inflammatory caspases are innate immune receptors for intracellular LPS
  publication-title: Nature
– volume: 77
  start-page: 1262
  issue: 3
  year: 2009
  end-page: 1271
  article-title: Anthrax lethal toxin triggers the formation of a membrane‐associated inflammasome complex in murine macrophages
  publication-title: Infection and Immunity
– volume: 82
  start-page: 460
  issue: 1
  year: 2014
  end-page: 468
  article-title: NLRP1 is an inflammasome sensor for
  publication-title: Infection and Immunity
– volume: 23
  start-page: 155
  issue: 1
  year: 2016
  end-page: 164
  article-title: IL‐18 production from the NLRP1 inflammasome prevents obesity and metabolic syndrome
  publication-title: Cell Metabolism
– volume: 14
  start-page: 52
  issue: 1
  year: 2013
  end-page: 60
  article-title: Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome–dependent processing of IL‐1β
  publication-title: Nature Immunology
– volume: 21
  start-page: 677
  issue: 7
  year: 2015
  end-page: 687
  article-title: Inflammasomes: Mechanism of action, role in disease, and therapeutics
  publication-title: Nature Medicine (New York, NY, United States)
– volume: 73
  start-page: 391
  issue: 3
  year: 2019
  end-page: 392
  article-title: Inflammasome Inhibition Links IRGM to Innate Immunity
  publication-title: Molecular Cell
– volume: 535
  start-page: 153
  issue: 7610
  year: 2016
  end-page: 158
  article-title: Inflammasome‐activated gasdermin D causes pyroptosis by forming membrane pores
  publication-title: Nature
– volume: 458
  start-page: 509
  issue: 7237
  year: 2009
  end-page: 513
  article-title: AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA
  publication-title: Nature
– volume: 76
  start-page: 48
  issue: 1
  year: 2010
  end-page: 56
  article-title: The genetics of NOD‐like receptors in Crohn's disease
  publication-title: Tissue Antigens
– volume: 477
  start-page: 592
  issue: 7366
  year: 2011
  end-page: 595
  article-title: Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity
  publication-title: Nature
– volume: 9
  issue: 6
  year: 2013
  article-title: Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor
  publication-title: PLOS Pathogens
– volume: 341
  start-page: 172
  issue: 6142
  year: 2013
  end-page: 175
  article-title: Crystal structure of NLRC4 reveals its autoinhibition mechanism
  publication-title: Science
– volume: 233
  start-page: 5160
  issue: 7
  year: 2018
  end-page: 5169
  article-title: Inflammasome: Its role in traumatic brain and spinal cord injury
  publication-title: Journal of Cellular Physiology
– volume: 505
  start-page: 509
  issue: 7484
  year: 2014
  end-page: 514
  article-title: Cell death by pyroptosis drives CD4 T‐cell depletion in HIV‐1 infection
  publication-title: Nature
– volume: 76
  start-page: 2085
  issue: 12
  year: 2017
  end-page: 2094
  article-title: A novel pyrin‐associated autoinflammation with neutrophilic dermatosis mutation further defines 14‐3‐3 binding of pyrin and distinction to Familial Mediterranean Fever
  publication-title: Annals of the Rheumatic Diseases
– volume: 288
  start-page: 13225
  issue: 19
  year: 2013
  end-page: 13235
  article-title: Structure of the absent in melanoma 2 (AIM2) pyrin domain provides insights into the mechanisms of AIM2 autoinhibition and inflammasome assembly
  publication-title: Journal of Biological Chemistry
– volume: 449
  start-page: 613
  issue: 3
  year: 2013
  end-page: 621
  article-title: The CARD plays a critical role in ASC foci formation and inflammasome signalling
  publication-title: Biochemical Journal
– volume: 49
  start-page: 331
  issue: 2
  year: 2013
  end-page: 338
  article-title: Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity
  publication-title: Molecular Cell
– volume: 265
  start-page: 85
  issue: 1
  year: 2015
  end-page: 102
  article-title: The NAIP‐NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus
  publication-title: Immunological Reviews
– volume: 265
  start-page: 22
  issue: 1
  year: 2015
  end-page: 34
  article-title: The NLRP1 inflammasomes
  publication-title: Immunological Reviews
– volume: 28
  start-page: 214
  issue: 2
  year: 2007
  end-page: 227
  article-title: Pyrin activates the ASC pyroptosome in response to engagement by autoinflammatory PSTPIP1 mutants
  publication-title: Molecular Cell
– volume: 114
  start-page: 13242
  issue: 50
  year: 2017
  end-page: 13247
  article-title: Broad detection of bacterial type III secretion system and flagellin proteins by the human NAIP/NLRC4 inflammasome
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 76
  start-page: 1191
  issue: 7
  year: 2017
  end-page: 1198
  article-title: A new autoinflammatory and autoimmune syndrome associated with NLRP1 mutations: NAIAD (NLRP1‐associated autoinflammation with arthritis and dyskeratosis)
  publication-title: Annals of the Rheumatic Diseases
– volume: 81
  start-page: 570
  issue: 2
  year: 2013
  end-page: 579
  article-title: Activation of the Nlrp1b inflammasome by reduction of cytosolic ATP
  publication-title: Infection and Immunity
– volume: 17
  start-page: 179
  issue: 2
  year: 2011
  end-page: 188
  article-title: The NLRP3 inflammasome instigates obesity‐induced inflammation and insulin resistance
  publication-title: Nature Medicine (New York, NY, United States)
– volume: 34
  start-page: 589
  issue: 7
  year: 2012
  end-page: 598
  article-title: NAIPs: Building an innate immune barrier against bacterial pathogens: NAIPs function as sensors that initiate innate immunity by detection of bacterial proteins in the host cell cytosol
  publication-title: BioEssays
– volume: 526
  start-page: 666
  issue: 7575
  year: 2015
  end-page: 671
  article-title: Caspase‐11 cleaves gasdermin D for non‐canonical inflammasome signalling
  publication-title: Nature
– volume: 277
  start-page: 61
  issue: 1
  year: 2017
  end-page: 75
  article-title: Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases
  publication-title: Immunological Reviews
– volume: 179
  start-page: 1274
  issue: 2
  year: 2007
  end-page: 1281
  article-title: Pyrin levels in human monocytes and monocyte‐derived macrophages regulate IL‐1beta processing and release
  publication-title: Journal of Immunology
– volume: 38
  start-page: 2072
  issue: 10
  year: 2013
  end-page: 2083
  article-title: Expression of the NLRP3 inflammasome in cerebral cortex after traumatic brain injury in a rat model
  publication-title: Neurochemical Research
– volume: 449
  start-page: 819
  issue: 7164
  year: 2007
  end-page: 826
  article-title: Recognition of microorganisms and activation of the immune response
  publication-title: Nature
– volume: 211
  start-page: 2385
  issue: 12
  year: 2014
  end-page: 2396
  article-title: An inherited mutation in NLRC4 causes autoinflammation in human and mice
  publication-title: Journal of Experimetnal Medicine
– volume: 68
  start-page: 415
  year: 2014
  end-page: 438
  article-title: Bacterial type III secretion systems: Specialized nanomachines for protein delivery into target cells
  publication-title: Annual Review of Microbiology
– volume: 14
  start-page: 392
  issue: 5
  year: 2012
  end-page: 400
  article-title: Anthrax and the inflammasome
  publication-title: Microbes and Infection
– ident: e_1_2_14_54_1
  doi: 10.1002/bies.201200013
– ident: e_1_2_14_33_1
  doi: 10.1074/jbc.M112.378323
– ident: e_1_2_14_83_1
  doi: 10.1038/mi.2013.95
– ident: e_1_2_14_120_1
  doi: 10.1002/JLB.MR0318-124R
– ident: e_1_2_14_7_1
  doi: 10.1002/eji.201545655
– ident: e_1_2_14_56_1
  doi: 10.1073/pnas.1708194114
– ident: e_1_2_14_116_1
  doi: 10.1093/hmg/11.8.961
– ident: e_1_2_14_44_1
  doi: 10.1073/pnas.1201836109
– ident: e_1_2_14_111_1
  doi: 10.1016/j.cell.2016.04.015
– ident: e_1_2_14_113_1
  doi: 10.1016/j.intimp.2018.12.019
– ident: e_1_2_14_18_1
  doi: 10.1111/imr.12283
– ident: e_1_2_14_79_1
  doi: 10.1126/science.1243640
– ident: e_1_2_14_72_1
  doi: 10.1016/j.molcel.2018.11.018
– ident: e_1_2_14_108_1
  doi: 10.1007/s00011-019-01256-6
– ident: e_1_2_14_74_1
  doi: 10.1038/ni.1960
– ident: e_1_2_14_81_1
  doi: 10.1016/j.cmet.2015.09.024
– ident: e_1_2_14_95_1
  doi: 10.1097/ACI.0000000000000396
– ident: e_1_2_14_94_1
  doi: 10.1038/jcbfm.2013.227
– ident: e_1_2_14_8_1
  doi: 10.4049/jimmunol.0901363
– ident: e_1_2_14_27_1
  doi: 10.1038/nri2925
– ident: e_1_2_14_35_1
  doi: 10.1146/annurev.pathol.1.110304.100133
– ident: e_1_2_14_30_1
  doi: 10.1128/IAI.01170-13
– ident: e_1_2_14_52_1
  doi: 10.1084/jem.20141091
– ident: e_1_2_14_122_1
  doi: 10.1111/imm.12787
– ident: e_1_2_14_68_1
  doi: 10.1016/S1097-2765(02)00599-3
– ident: e_1_2_14_110_1
  doi: 10.1074/jbc.M114.553305
– ident: e_1_2_14_78_1
  doi: 10.1136/annrheumdis-2017-211473
– ident: e_1_2_14_49_1
  doi: 10.1038/nature15541
– ident: e_1_2_14_99_1
  doi: 10.1083/jcb.201602089
– ident: e_1_2_14_117_1
  doi: 10.1002/jcp.27909
– ident: e_1_2_14_123_1
  doi: 10.1186/s12882-019-1506-8
– ident: e_1_2_14_76_1
  doi: 10.1038/ni.2474
– ident: e_1_2_14_3_1
  doi: 10.1016/j.mib.2013.04.004
– ident: e_1_2_14_64_1
  doi: 10.1002/eji.201545839
– ident: e_1_2_14_80_1
  doi: 10.1002/jcp.26287
– ident: e_1_2_14_82_1
  doi: 10.1016/j.molcel.2019.01.029
– ident: e_1_2_14_41_1
  doi: 10.1073/pnas.90.21.10198
– ident: e_1_2_14_125_1
  doi: 10.1038/sj.cdd.4401734
– ident: e_1_2_14_16_1
  doi: 10.1371/journal.ppat.1006052
– ident: e_1_2_14_4_1
  doi: 10.3171/2012.9.JNS12815
– ident: e_1_2_14_59_1
  doi: 10.1128/IAI.01003-12
– ident: e_1_2_14_43_1
  doi: 10.1126/science.1236381
– ident: e_1_2_14_114_1
  doi: 10.1038/nature22393
– ident: e_1_2_14_11_1
  doi: 10.1038/nature15632
– ident: e_1_2_14_84_1
  doi: 10.1128/IAI.01032-08
– ident: e_1_2_14_58_1
  doi: 10.1016/j.sbi.2014.08.011
– ident: e_1_2_14_71_1
  doi: 10.1038/nature06246
– ident: e_1_2_14_88_1
  doi: 10.3109/08916934.2011.637532
– ident: e_1_2_14_102_1
  doi: 10.1038/nature13683
– ident: e_1_2_14_10_1
  doi: 10.1086/665457
– ident: e_1_2_14_131_1
  doi: 10.1038/cr.2014.101
– volume: 21
  start-page: 677
  issue: 7
  year: 2015
  ident: e_1_2_14_39_1
  article-title: Inflammasomes: Mechanism of action, role in disease, and therapeutics
  publication-title: Nature Medicine (New York, NY, United States)
– ident: e_1_2_14_85_1
  doi: 10.1038/ncomms4209
– ident: e_1_2_14_2_1
  doi: 10.1126/science.1230751
– ident: e_1_2_14_69_1
  doi: 10.1126/scitranslmed.aaf1471
– ident: e_1_2_14_100_1
  doi: 10.1016/j.tibs.2016.10.004
– ident: e_1_2_14_98_1
  doi: 10.4049/jimmunol.179.2.1274
– ident: e_1_2_14_130_1
  doi: 10.1186/s13024-016-0094-3
– ident: e_1_2_14_24_1
  doi: 10.1016/j.cell.2017.01.008
– ident: e_1_2_14_19_1
  doi: 10.3389/fimmu.2019.01904
– ident: e_1_2_14_106_1
  doi: 10.1002/jlb.60.1.8
– ident: e_1_2_14_119_1
  doi: 10.1186/s13045-019-0755-0
– ident: e_1_2_14_28_1
  doi: 10.1111/imr.12286
– ident: e_1_2_14_51_1
  doi: 10.1016/j.chom.2011.04.008
– ident: e_1_2_14_86_1
  doi: 10.1038/ni.3457
– ident: e_1_2_14_5_1
  doi: 10.1038/jcbfm.2013.236
– ident: e_1_2_14_60_1
  doi: 10.1186/s12974-016-0521-y
– ident: e_1_2_14_61_1
  doi: 10.1007/s11064-013-1115-z
– ident: e_1_2_14_92_1
  doi: 10.1097/00063198-200305000-00011
– ident: e_1_2_14_36_1
  doi: 10.1073/pnas.1601700113
– ident: e_1_2_14_62_1
  doi: 10.1038/nature18629
– ident: e_1_2_14_90_1
  doi: 10.1042/BJ20121198
– ident: e_1_2_14_13_1
  doi: 10.1038/ni.1702
– volume: 17
  start-page: 179
  issue: 2
  year: 2011
  ident: e_1_2_14_112_1
  article-title: The NLRP3 inflammasome instigates obesity‐induced inflammation and insulin resistance
  publication-title: Nature Medicine (New York, NY, United States)
– ident: e_1_2_14_48_1
  doi: 10.1074/jbc.M112.407130
– ident: e_1_2_14_109_1
  doi: 10.1016/j.molcel.2014.02.018
– ident: e_1_2_14_73_1
  doi: 10.1038/nature13157
– ident: e_1_2_14_12_1
  doi: 10.1084/jem.20121960
– ident: e_1_2_14_38_1
  doi: 10.1016/j.immuni.2011.02.006
– ident: e_1_2_14_22_1
  doi: 10.1016/S0966-842X(00)01936-3
– ident: e_1_2_14_42_1
  doi: 10.1016/j.tibs.2016.09.002
– ident: e_1_2_14_70_1
  doi: 10.1073/pnas.1417945112
– ident: e_1_2_14_67_1
  doi: 10.1371/journal.pone.0164662
– ident: e_1_2_14_127_1
  doi: 10.1111/imr.12293
– ident: e_1_2_14_121_1
  doi: 10.1016/j.coi.2015.01.007
– ident: e_1_2_14_37_1
  doi: 10.1136/annrheumdis-2016-210021
– ident: e_1_2_14_103_1
  doi: 10.1001/jama.2016.0287
– ident: e_1_2_14_104_1
  doi: 10.1016/j.clim.2017.10.003
– ident: e_1_2_14_53_1
  doi: 10.1038/nature10394
– ident: e_1_2_14_47_1
  doi: 10.1111/imr.12287
– ident: e_1_2_14_46_1
  doi: 10.1074/jbc.M113.468033
– ident: e_1_2_14_96_1
  doi: 10.1002/eji.201545772
– ident: e_1_2_14_20_1
  doi: 10.1371/journal.ppat.1007240
– ident: e_1_2_14_23_1
  doi: 10.1111/j.1399-0039.2010.01470.x
– ident: e_1_2_14_57_1
  doi: 10.1016/j.cell.2014.04.007
– ident: e_1_2_14_115_1
  doi: 10.1016/j.bbrc.2017.11.156
– ident: e_1_2_14_21_1
  doi: 10.1089/jir.2009.0096
– ident: e_1_2_14_26_1
  doi: 10.1038/nature12940
– ident: e_1_2_14_6_1
  doi: 10.1016/S1074-7613(04)00046-9
– ident: e_1_2_14_132_1
  doi: 10.1038/358167a0
– ident: e_1_2_14_14_1
  doi: 10.1093/hmg/7.10.1581
– ident: e_1_2_14_17_1
  doi: 10.1371/journal.ppat.1003452
– ident: e_1_2_14_97_1
  doi: 10.1186/s13024-016-0088-1
– ident: e_1_2_14_105_1
  doi: 10.1111/nyas.12458
– ident: e_1_2_14_45_1
  doi: 10.1016/j.immuni.2012.02.014
– ident: e_1_2_14_25_1
  doi: 10.1038/nature18590
– ident: e_1_2_14_65_1
  doi: 10.1093/femspd/ftw028
– ident: e_1_2_14_129_1
  doi: 10.1016/j.cell.2016.09.001
– ident: e_1_2_14_31_1
  doi: 10.1016/j.molcel.2007.01.032
– ident: e_1_2_14_124_1
  doi: 10.1016/j.molcel.2007.08.029
– ident: e_1_2_14_101_1
  doi: 10.1038/nature15514
– ident: e_1_2_14_32_1
  doi: 10.1038/nature07710
– ident: e_1_2_14_40_1
  doi: 10.1126/science.1240988
– ident: e_1_2_14_66_1
  doi: 10.1111/imr.12534
– ident: e_1_2_14_128_1
  doi: 10.1016/j.gene.2013.07.082
– ident: e_1_2_14_29_1
  doi: 10.1074/jbc.M806121200
– ident: e_1_2_14_91_1
  doi: 10.1016/j.molcel.2012.11.009
– ident: e_1_2_14_75_1
  doi: 10.1073/pnas.0913087107
– ident: e_1_2_14_87_1
  doi: 10.1152/ajpendo.00296.2016
– ident: e_1_2_14_107_1
  doi: 10.1016/j.cell.2010.01.022
– ident: e_1_2_14_15_1
  doi: 10.1016/j.immuni.2011.02.020
– ident: e_1_2_14_89_1
  doi: 10.1074/jbc.C100250200
– ident: e_1_2_14_50_1
  doi: 10.1038/nature10558
– ident: e_1_2_14_118_1
  doi: 10.1038/nature13449
– ident: e_1_2_14_34_1
  doi: 10.1146/annurev-micro-092412-155725
– ident: e_1_2_14_55_1
  doi: 10.1111/exd.12037
– ident: e_1_2_14_77_1
  doi: 10.1016/j.micinf.2011.12.005
– ident: e_1_2_14_126_1
  doi: 10.1007/s12035-017-0400-2
– ident: e_1_2_14_9_1
  doi: 10.1038/nrmicro2070
– ident: e_1_2_14_93_1
  doi: 10.1073/pnas.1710433114
– ident: e_1_2_14_63_1
  doi: 10.1016/j.cell.2014.02.008
SSID ssj0009933
Score 2.657915
SecondaryResourceType review_article
Snippet Pyroptosis is a form of necrotic and inflammatory programmed cell death, which could be characterized by cell swelling, pore formation on plasma membranes, and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3207
SubjectTerms Adaptor Proteins, Signal Transducing - genetics
Apoptosis
Apoptosis - genetics
Apoptosis Regulatory Proteins - genetics
Autoimmune diseases
Calcium-Binding Proteins - genetics
CARD Signaling Adaptor Proteins - genetics
Caspase
caspases
Caspases - genetics
Caspases - metabolism
Cell death
Cell size
Cytokines
Cytotoxicity
GSDMD
Humans
Infectious diseases
Inflammasomes
Inflammasomes - genetics
Inflammasomes - metabolism
Inflammation - genetics
Inflammation - metabolism
Inflammation - pathology
Interleukin-18 - genetics
Interleukin-1beta - genetics
Intracellular Signaling Peptides and Proteins - genetics
Membranes
Microorganisms
Molecular modelling
NLR Family, Pyrin Domain-Containing 3 Protein - genetics
Oligomerization
Phosphate-Binding Proteins - genetics
Plasma membranes
Pore formation
Pyrin protein
Pyroptosis
Pyroptosis - genetics
Sepsis
Substrates
Title Emerging insights into molecular mechanisms underlying pyroptosis and functions of inflammasomes in diseases
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.29268
https://www.ncbi.nlm.nih.gov/pubmed/31621910
https://www.proquest.com/docview/2333563329
https://www.proquest.com/docview/2306493068
Volume 235
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LatwwcAiBQi99JH1smxa1lNKLN7Jkey16CqEhBFpKaSCHgpFsCTZd28vKe9h-fWfkR0gfUHqxBB5LsjSjmZHmAfBGuTiWruIR8uY8SlSZR7lxKlKly4yj_bCiG92Pn7Lzy-TiKr3ag_ejL0wfH2I6cCPKCPs1Ebg2_vgmaOh1uZ4LJTJy9CVbLRKIvtyEjlJDGvlggpAm8RhViIvj6cvbvOg3AfO2vBoYztl9-DYOtbcz-T7fdmZe_vgliuN__ssDuDcIouykx5yHsGebAzg8aVAJr3fsLQumoeHM_QDu9Bkrd4ewokMsymvElo0nvd5jpWtZPWbZZbUlX-Klrz0j_7TNivyo2Hq3addd65ee6aZixE0DwrPWYQMO0bLWvq0tNceGSyP_CC7PPnw9PY-GhA1RKWnjRFkk0SgymYUUsVM2FyqpUixNuqgsPXAHsVyVVkjNpTYL1Jck11onWBdcPob9pm3sU2BWG6GMibG0CZcuFyYvpZZVTJbrPJvBu3HpinKIZk5JNVZFH4dZFDinRZjTGbyeQNd9CI8_AR2N618MVOwLIaVMMymFmsGr6TXSH12q6Ma2W4JBoU7hA5t40uPN1IuMM2QIMcfBhtX_e_fFxennUHn276DP4a4g5T-YER3BfrfZ2hcoIXXmZSCFn0djDTo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQwcFSKEFx4tDwWWjAIIS7ZJnaSjaVeqopqKW2FUCv1giI7saWFTbLaZA_L1zPjPKq2ICEusaVMbMee8Tw8ngF4L20QCJv7HvLmxAtllniJttKTmY21pf0wpxPd07N4ehEeX0aXG7Df34Vp40MMBjeiDLdfE4GTQXrvKmroj2wx5pLHyR24Sxm9nUL17Sp4lOwSyTsnhCgM-rhCPt8bPr3OjW6JmNclVsdyjh7B936wrafJz_Gq0ePs1404jv_7N4_hYSeLsoMWeZ7Ahim3YPugRD28WLMPzHmHOrP7Ftxrk1aut2FOdixKbcRmZU2qfY2VpmJFn2iXFYauE8_qomZ0RW05p6tUbLFeVoumqmc1U2XOiKE6nGeVxQYsYmah6qow1Bzrzo3qp3Bx9On8cOp1ORu8TNDeieJIqFBq0hPBAytNwmWYR1jqaJIbeuAmYnyZGS6UL5SeoMokfKVUiHXui2ewWValeQHMKM2l1gGWJvSFTbhOMqFEHpDzuh-P4GO_dmnWBTSnvBrztA3FzFOc09TN6QjeDaCLNorHn4B2egRIO0KuUy6EiGIhuBzB2-E1kiCdq6jSVCuCQblO4gObeN4iztCLCGLkCYGPg3XL__fu0-PDr67y8t9B38D96fnpSXry-ezLK3jAyRbgvIp2YLNZrswuCkyNfu3o4jcGdhFV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3ZbtQw0CpFIF44Wo6FAgYhxEu2jp1kY_FUtaxKgapCVOoDUmQntrSwObTOPixfz4xzVOWQEC-xpUxsx57xjMdzEPJK2jAUtmAB8OY0iGSeBqm2MpC5TbTF_bDAG91Pp8nxeXRyEV9skbeDL0wXH2JUuCFl-P0aCbwp7P5l0NBveTPlkifpNXI9SliKKH30-TJ2lOzzyHsbhDgKh7BCjO-Pn15lRr9JmFcFVs9x5nfI12GsnaHJ9-m61dP8xy9hHP_zZ-6S270kSg861LlHtky1Q3YPKjiFlxv6mnrbUK903yE3upSVm12yRC0WJjaii8rhwd5Bpa1pOaTZpaVBZ-KFKx1FB7XVEh2paLNZ1U1bu4WjqiooslOP8bS20IAFvCyVq0uDzdH-1sjdJ-fzd18Oj4M-Y0OQC9w5QRiJFMhMeiZ4aKVJuYyKGEodzwqDD9hCDJO54UIxofQMDkyCKaUiqHMmHpDtqq7MI0KN0lxqHUJpIiZsynWaCyWKEE3XWTIhb4aly_I-nDlm1VhmXSBmnsGcZn5OJ-TlCNp0MTz-BLQ3rH_Wk7HLuBAiToTgckJejK-BAPFWRVWmXiMMSHUSHtDEww5vxl5EmABHCBkM1q_-37vPTg7PfOXxv4M-JzfPjubZx_enH56QWxwVAd6kaI9st6u1eQrSUqufear4Ceg-EA0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+insights+into+molecular+mechanisms+underlying+pyroptosis+and+functions+of+inflammasomes+in+diseases&rft.jtitle=Journal+of+cellular+physiology&rft.au=Lu%2C+Fangfang&rft.au=Lan%2C+Zhixin&rft.au=Xin%2C+Zhaoqi&rft.au=He%2C+Chunrong&rft.date=2020-04-01&rft.issn=1097-4652&rft.eissn=1097-4652&rft.volume=235&rft.issue=4&rft.spage=3207&rft_id=info:doi/10.1002%2Fjcp.29268&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon