Combining polygenic risk scores and human leukocyte antigen variants for personalized risk assessment of type 1 diabetes in the Taiwanese population
Aims To analyse the genome‐wide association study (GWAS) data of patients with type 1 diabetes mellitus (T1D) in order to develop a risk score for the genetic effects on T1D risk and age at diagnosis in the Taiwanese population. Materials and Methods We selected 610 patients with T1D and 2511 health...
Saved in:
Published in | Diabetes, obesity & metabolism Vol. 25; no. 10; pp. 2928 - 2936 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.10.2023
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aims
To analyse the genome‐wide association study (GWAS) data of patients with type 1 diabetes mellitus (T1D) in order to develop a risk score for the genetic effects on T1D risk and age at diagnosis in the Taiwanese population.
Materials and Methods
We selected 610 patients with T1D and 2511 healthy individuals from an electronic medical record database of more than 300 000 individuals with genetic information, analysed their GWAS data, and developed a polygenic risk score (PRS).
Results
The PRS, based on 149 selected single‐nucleotide polymorphisms, could effectively predict T1D risk. A PRS increase was associated with increased T1D risk (odds ratio [OR] 2.09, 95% confidence interval [CI] 1.72‐2.55). Moreover, a 1‐unit increase in standardized T1D PRS decreased the age at diagnosis by 0.74 years. Combined PRS and human leukocyte antigen (HLA) DQA1*03:02–DQA1*05:01 genotypes could accurately predict T1D risk. In multivariable models, HLA variants and PRS were independent risk factors for T1D risk (OR 3.76 [95% CI 1.54‐9.16] and 1.71 [95% CI 1.37‐2.13] for HLA DQA1*03:02–DQA1*05:01 and PRS, respectively). In a limited study population of those aged ≤18 years, PRS remained significantly associated with T1D risk. The association between T1D PRS and age at diagnosis was more obvious among males and patients aged ≤18 years.
Conclusions
Polygenic risk score and HLA variations enable personalized risk estimates, enhance newborn screening efficiency for ketoacidosis prevention, and addresses the gap in data on T1D prediction in isolated Asian populations. |
---|---|
AbstractList | To analyse the genome-wide association study (GWAS) data of patients with type 1 diabetes mellitus (T1D) in order to develop a risk score for the genetic effects on T1D risk and age at diagnosis in the Taiwanese population.AIMSTo analyse the genome-wide association study (GWAS) data of patients with type 1 diabetes mellitus (T1D) in order to develop a risk score for the genetic effects on T1D risk and age at diagnosis in the Taiwanese population.We selected 610 patients with T1D and 2511 healthy individuals from an electronic medical record database of more than 300 000 individuals with genetic information, analysed their GWAS data, and developed a polygenic risk score (PRS).MATERIALS AND METHODSWe selected 610 patients with T1D and 2511 healthy individuals from an electronic medical record database of more than 300 000 individuals with genetic information, analysed their GWAS data, and developed a polygenic risk score (PRS).The PRS, based on 149 selected single-nucleotide polymorphisms, could effectively predict T1D risk. A PRS increase was associated with increased T1D risk (odds ratio [OR] 2.09, 95% confidence interval [CI] 1.72-2.55). Moreover, a 1-unit increase in standardized T1D PRS decreased the age at diagnosis by 0.74 years. Combined PRS and human leukocyte antigen (HLA) DQA1*03:02-DQA1*05:01 genotypes could accurately predict T1D risk. In multivariable models, HLA variants and PRS were independent risk factors for T1D risk (OR 3.76 [95% CI 1.54-9.16] and 1.71 [95% CI 1.37-2.13] for HLA DQA1*03:02-DQA1*05:01 and PRS, respectively). In a limited study population of those aged ≤18 years, PRS remained significantly associated with T1D risk. The association between T1D PRS and age at diagnosis was more obvious among males and patients aged ≤18 years.RESULTSThe PRS, based on 149 selected single-nucleotide polymorphisms, could effectively predict T1D risk. A PRS increase was associated with increased T1D risk (odds ratio [OR] 2.09, 95% confidence interval [CI] 1.72-2.55). Moreover, a 1-unit increase in standardized T1D PRS decreased the age at diagnosis by 0.74 years. Combined PRS and human leukocyte antigen (HLA) DQA1*03:02-DQA1*05:01 genotypes could accurately predict T1D risk. In multivariable models, HLA variants and PRS were independent risk factors for T1D risk (OR 3.76 [95% CI 1.54-9.16] and 1.71 [95% CI 1.37-2.13] for HLA DQA1*03:02-DQA1*05:01 and PRS, respectively). In a limited study population of those aged ≤18 years, PRS remained significantly associated with T1D risk. The association between T1D PRS and age at diagnosis was more obvious among males and patients aged ≤18 years.Polygenic risk score and HLA variations enable personalized risk estimates, enhance newborn screening efficiency for ketoacidosis prevention, and addresses the gap in data on T1D prediction in isolated Asian populations.CONCLUSIONSPolygenic risk score and HLA variations enable personalized risk estimates, enhance newborn screening efficiency for ketoacidosis prevention, and addresses the gap in data on T1D prediction in isolated Asian populations. AimsTo analyse the genome‐wide association study (GWAS) data of patients with type 1 diabetes mellitus (T1D) in order to develop a risk score for the genetic effects on T1D risk and age at diagnosis in the Taiwanese population.Materials and MethodsWe selected 610 patients with T1D and 2511 healthy individuals from an electronic medical record database of more than 300 000 individuals with genetic information, analysed their GWAS data, and developed a polygenic risk score (PRS).ResultsThe PRS, based on 149 selected single‐nucleotide polymorphisms, could effectively predict T1D risk. A PRS increase was associated with increased T1D risk (odds ratio [OR] 2.09, 95% confidence interval [CI] 1.72‐2.55). Moreover, a 1‐unit increase in standardized T1D PRS decreased the age at diagnosis by 0.74 years. Combined PRS and human leukocyte antigen (HLA) DQA1*03:02–DQA1*05:01 genotypes could accurately predict T1D risk. In multivariable models, HLA variants and PRS were independent risk factors for T1D risk (OR 3.76 [95% CI 1.54‐9.16] and 1.71 [95% CI 1.37‐2.13] for HLA DQA1*03:02–DQA1*05:01 and PRS, respectively). In a limited study population of those aged ≤18 years, PRS remained significantly associated with T1D risk. The association between T1D PRS and age at diagnosis was more obvious among males and patients aged ≤18 years.ConclusionsPolygenic risk score and HLA variations enable personalized risk estimates, enhance newborn screening efficiency for ketoacidosis prevention, and addresses the gap in data on T1D prediction in isolated Asian populations. Aims To analyse the genome‐wide association study (GWAS) data of patients with type 1 diabetes mellitus (T1D) in order to develop a risk score for the genetic effects on T1D risk and age at diagnosis in the Taiwanese population. Materials and Methods We selected 610 patients with T1D and 2511 healthy individuals from an electronic medical record database of more than 300 000 individuals with genetic information, analysed their GWAS data, and developed a polygenic risk score (PRS). Results The PRS, based on 149 selected single‐nucleotide polymorphisms, could effectively predict T1D risk. A PRS increase was associated with increased T1D risk (odds ratio [OR] 2.09, 95% confidence interval [CI] 1.72‐2.55). Moreover, a 1‐unit increase in standardized T1D PRS decreased the age at diagnosis by 0.74 years. Combined PRS and human leukocyte antigen (HLA) DQA1*03:02–DQA1*05:01 genotypes could accurately predict T1D risk. In multivariable models, HLA variants and PRS were independent risk factors for T1D risk (OR 3.76 [95% CI 1.54‐9.16] and 1.71 [95% CI 1.37‐2.13] for HLA DQA1*03:02–DQA1*05:01 and PRS, respectively). In a limited study population of those aged ≤18 years, PRS remained significantly associated with T1D risk. The association between T1D PRS and age at diagnosis was more obvious among males and patients aged ≤18 years. Conclusions Polygenic risk score and HLA variations enable personalized risk estimates, enhance newborn screening efficiency for ketoacidosis prevention, and addresses the gap in data on T1D prediction in isolated Asian populations. To analyse the genome-wide association study (GWAS) data of patients with type 1 diabetes mellitus (T1D) in order to develop a risk score for the genetic effects on T1D risk and age at diagnosis in the Taiwanese population. We selected 610 patients with T1D and 2511 healthy individuals from an electronic medical record database of more than 300 000 individuals with genetic information, analysed their GWAS data, and developed a polygenic risk score (PRS). The PRS, based on 149 selected single-nucleotide polymorphisms, could effectively predict T1D risk. A PRS increase was associated with increased T1D risk (odds ratio [OR] 2.09, 95% confidence interval [CI] 1.72-2.55). Moreover, a 1-unit increase in standardized T1D PRS decreased the age at diagnosis by 0.74 years. Combined PRS and human leukocyte antigen (HLA) DQA1*03:02-DQA1*05:01 genotypes could accurately predict T1D risk. In multivariable models, HLA variants and PRS were independent risk factors for T1D risk (OR 3.76 [95% CI 1.54-9.16] and 1.71 [95% CI 1.37-2.13] for HLA DQA1*03:02-DQA1*05:01 and PRS, respectively). In a limited study population of those aged ≤18 years, PRS remained significantly associated with T1D risk. The association between T1D PRS and age at diagnosis was more obvious among males and patients aged ≤18 years. Polygenic risk score and HLA variations enable personalized risk estimates, enhance newborn screening efficiency for ketoacidosis prevention, and addresses the gap in data on T1D prediction in isolated Asian populations. |
Author | Huang, Yu‐Nan Liu, Ting‐Yuan Tsai, Fuu‐Jen Liao, Wen‐Ling Lu, Hsing‐Fang Su, Pen‐Hua Chang, Ya‐Wen Tiao, Zih‐Yu Wang, Chung‐Hsing |
Author_xml | – sequence: 1 givenname: Wen‐Ling orcidid: 0000-0003-1223-8844 surname: Liao fullname: Liao, Wen‐Ling organization: China Medical University Hospital – sequence: 2 givenname: Yu‐Nan orcidid: 0000-0003-1688-1685 surname: Huang fullname: Huang, Yu‐Nan organization: Chung Shan Medical University Hospital – sequence: 3 givenname: Ya‐Wen surname: Chang fullname: Chang, Ya‐Wen organization: China Medical University Hospital – sequence: 4 givenname: Ting‐Yuan surname: Liu fullname: Liu, Ting‐Yuan organization: China Medical University Hospital – sequence: 5 givenname: Hsing‐Fang surname: Lu fullname: Lu, Hsing‐Fang organization: China Medical University Hospital – sequence: 6 givenname: Zih‐Yu surname: Tiao fullname: Tiao, Zih‐Yu organization: China Medical University – sequence: 7 givenname: Pen‐Hua surname: Su fullname: Su, Pen‐Hua organization: Chung Shan Medical University – sequence: 8 givenname: Chung‐Hsing surname: Wang fullname: Wang, Chung‐Hsing email: chwang5894@gmail.com organization: China Medical University – sequence: 9 givenname: Fuu‐Jen surname: Tsai fullname: Tsai, Fuu‐Jen email: d0704@mail.cmuh.org.tw organization: Asia University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37455666$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1vFSEUhompsR-68A8YEje6mBYGGOYuzfUzqemmricMHFpaBkZgbMbf4Q-W3ltdNFE2nJDnPMB5j9FBiAEQeknJKa3rzMTplArayyfoiPKONZS13cGubpt-Q9pDdJzzDSGEs14-Q4dMciG6rjtCv7ZxGl1w4QrP0a9XEJzGyeVbnHVMkLEKBl8vkwrYw3Ib9VqgnhVXSfxDJVfrjG1MeIaUY1De_QSzN6icIecJQsHR4rLOgCk2To1QqtgFXK4BXyp3pwJkqPfPi1fFxfAcPbXKZ3jxsJ-gbx8_XG4_N-cXn75s3503mgkmGz0KCcD5KIwyYIntlaCSGLthjFnORjJCL-jGStNzpoUixLLOUkYkB8koO0Fv9t45xe8L5DJMLmvwvj4oLnloe9Z3XLSEVfT1I_QmLql-957qSFuVVFbq1QO1jBOYYU5uUmkd_sy7Am_3gE4x5wT2L0LJcJ_lULMcdllW9uwRq13Zzack5fz_Ou6ch_Xf6uH9xdd9x28HpLH- |
CitedBy_id | crossref_primary_10_3389_fphys_2024_1395371 crossref_primary_10_1186_s12864_024_10526_5 crossref_primary_10_3389_fimmu_2024_1457213 crossref_primary_10_3892_mmr_2024_13239 |
Cites_doi | 10.1371/journal.pgen.1002293 10.1046/j.1464‐5491.2001.00400.x 10.1056/NEJMoa1610187 10.3389/fendo.2022.842673 10.1038/ng.3245 10.1186/1471‐2350‐8‐54 10.1196/annals.1375.046 10.1016/0198‐8859(95)00108‐5 10.34172/hpp.2020.18 10.1093/gigascience/giz082 10.1210/er.2019-00088 10.1038/nrdp.2017.16 10.1016/S0140-6736(13)60591-7 10.1002/dmrr.970 10.2337/diacare.18.11.1483 10.1007/s11892‐011‐0223‐x 10.1038/s41525‐021‐00178‐9 10.1093/bfgp/elu022 10.1038/nature05911 10.1038/s41576-019-0127-1 10.1038/s43586-021-00056-9 10.1038/s41588-022-01054-7 10.1016/S0140-6736(16)30582-7 10.1038/ng.3330 10.1038/s41598-020-75690-6 10.1016/0198‐8859(93)90526‐7 10.1038/s41588‐021‐00880‐5 10.1038/s41576-018-0018-x 10.1186/s13742‐015‐0047‐8 10.1038/nrendo.2015.8 10.1111/pedi.12645 10.37796/2211‐8039.1302 10.1530/eje.1.02035 10.1016/S2213-8587(22)00159-0 10.1038/s41591-020-0930-4 10.2337/dc18-2023 10.1038/ncomms15927 10.1038/ng.2354 10.1038/ng.381 10.1038/ng2068 10.1172/JCI142242 10.1016/j.ajhg.2022.09.010 10.1038/nature06406 10.1038/995 |
ContentType | Journal Article |
Copyright | 2023 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2023 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION NPM 7T5 7TK H94 K9. 7X8 |
DOI | 10.1111/dom.15187 |
DatabaseName | CrossRef PubMed Immunology Abstracts Neurosciences Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic AIDS and Cancer Research Abstracts PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1463-1326 |
EndPage | 2936 |
ExternalDocumentID | 37455666 10_1111_dom_15187 DOM15187 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Technology funderid: MOST109‐2314‐B‐039‐033‐MY2; 111‐2813‐C‐039‐060‐B – fundername: China Medical University funderid: CMU110‐MF‐71 CMU111‐SR‐50 – fundername: China Medical University Hospital funderid: DMR‐112‐071 DMR‐111‐137 – fundername: Chung Shan Medical University Hospital funderid: CSH‐2019‐C‐026 – fundername: China Medical University grantid: CMU110-MF-71 CMU111-SR-50 – fundername: Ministry of Science and Technology grantid: MOST109-2314-B-039-033-MY2 – fundername: Chung Shan Medical University Hospital grantid: CSH-2019-C-026 – fundername: China Medical University Hospital grantid: DMR-112-071 DMR-111-137 – fundername: Ministry of Science and Technology grantid: 111-2813-C-039-060-B |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OC 29F 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAKAS AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WVDHM WXI WXSBR XG1 YFH ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7T5 7TK AAMMB AEFGJ AGXDD AIDQK AIDYY H94 K9. 7X8 |
ID | FETCH-LOGICAL-c3537-cb57ee44b5dadef0f8a5170df9333f43b0be8519f7d843c5a00f36f13074e7313 |
IEDL.DBID | DR2 |
ISSN | 1462-8902 1463-1326 |
IngestDate | Fri Jul 11 01:07:03 EDT 2025 Fri Jul 25 04:56:16 EDT 2025 Wed Feb 19 02:23:53 EST 2025 Tue Jul 01 02:57:49 EDT 2025 Thu Apr 24 22:57:25 EDT 2025 Wed Jan 22 16:20:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | electronic medical record type 1 diabetes clinical event human leukocyte antigen genome-wide association studies polygenic risk scores |
Language | English |
License | 2023 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3537-cb57ee44b5dadef0f8a5170df9333f43b0be8519f7d843c5a00f36f13074e7313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1223-8844 0000-0003-1688-1685 |
PMID | 37455666 |
PQID | 2860207417 |
PQPubID | 1006516 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2838645203 proquest_journals_2860207417 pubmed_primary_37455666 crossref_primary_10_1111_dom_15187 crossref_citationtrail_10_1111_dom_15187 wiley_primary_10_1111_dom_15187_DOM15187 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2023 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
PublicationDecade | 2020 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Oxford |
PublicationTitle | Diabetes, obesity & metabolism |
PublicationTitleAlternate | Diabetes Obes Metab |
PublicationYear | 2023 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | 2007; 39 2019; 8 2009; 25 2021; 6 2017; 8 2009; 41 2017; 3 2015; 4 2007; 447 2005; 153 2015; 11 2016; 387 2011; 11 2020; 10 1995; 18 2021; 1 2017; 376 2011; 7 2018; 19 2015; 47 2013; 15 2021; 53 1998; 19 2019; 40 2021; 11 1993; 38 2019; 42 2019; 20 1995; 44 2007; 450 2007; 8 2022; 13 2020; 26 2014; 13 2021; 131 2022; 10 2022; 54 2001; 18 2006; 1079 2022; 109 2014; 383 2012; 44 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_33_1 Sayad A (e_1_2_8_34_1) 2013; 15 e_1_2_8_30_1 |
References_xml | – volume: 11 start-page: 533 issue: 6 year: 2011 end-page: 542 article-title: Genetics of the HLA region in the prediction of type 1 diabetes publication-title: Curr Diab Rep – volume: 387 start-page: 387 year: 2016 end-page: 2339 article-title: Genetic risk factors for type 1 diabetes publication-title: Lancet – volume: 44 start-page: 955 issue: 8 year: 2012 end-page: 959 article-title: Fast and accurate genotype imputation in genome‐wide association studies through pre‐phasing publication-title: Nat Genet – volume: 6 start-page: 10 issue: 1 year: 2021 article-title: Genetic profiles of 103,106 individuals in the Taiwan Biobank provide insights into the health and history of Han Chinese publication-title: NPJ Genom Med – volume: 20 start-page: 467 issue: 8 year: 2019 end-page: 484 article-title: Benefits and limitations of genome‐wide association studies publication-title: Nat Rev Genet – volume: 11 start-page: 289 issue: 5 year: 2015 end-page: 297 article-title: Combination immunotherapies for type 1 diabetes mellitus. publication-title: Endocrinology – volume: 376 start-page: 1419 issue: 15 year: 2017 end-page: 1429 article-title: Incidence trends of type 1 and type 2 diabetes among youths, 2002‐2012 publication-title: N Engl J Med – volume: 11 start-page: 57 issue: 4 year: 2021 end-page: 65 article-title: Comparison of multiple imputation algorithms and verification using whole‐genome sequencing in the CMUH genetic biobank publication-title: Biomedicine (Taipei) – volume: 42 start-page: 1414 issue: 8 year: 2019 end-page: 1421 article-title: Identification of novel T1D risk loci and their association with age and islet function at diagnosis in autoantibody‐positive T1D individuals: based on a two‐stage genome‐wide association study publication-title: Diabetes Care – volume: 3 year: 2017 article-title: Type 1 diabetes mellitus publication-title: Nat Rev Dis Primers – volume: 47 start-page: 381 issue: 4 year: 2015 end-page: 386 article-title: Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers publication-title: Nat Genet – volume: 10 issue: 1 year: 2020 article-title: Novel genetic risk factors influence progression of islet autoimmunity to type 1 diabetes publication-title: Sci Rep – volume: 4 start-page: 7 year: 2015 article-title: Second‐generation PLINK: rising to the challenge of larger and richer datasets publication-title: GigaScience – volume: 1079 start-page: 305 year: 2006 end-page: 309 article-title: Is HLA class II profile relevant for the study of large‐scale differentially expressed genes in type 1 diabetes mellitus patients? publication-title: Ann N Y Acad Sci – volume: 8 year: 2017 article-title: Enrichment of low‐frequency functional variants revealed by whole‐genome sequencing of multiple isolated European populations publication-title: Nat Commun – volume: 10 start-page: 597 issue: 8 year: 2022 end-page: 608 article-title: Type 1 diabetes in diverse ancestries and the use of genetic risk scores publication-title: Lancet Diabetes Endocrinol – volume: 44 start-page: 210 issue: 4 year: 1995 end-page: 219 article-title: HLA‐encoded susceptibility to insulin‐dependent diabetes mellitus is determined by DR and DQ genes as well as their linkage disequilibria in a Chinese population publication-title: Hum Immunol – volume: 40 start-page: 1500 issue: 6 year: 2019 end-page: 1520 article-title: Genetic risk scores for diabetes diagnosis and precision medicine publication-title: Endocr Rev – volume: 10 start-page: 98 issue: 2 year: 2020 end-page: 115 article-title: Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta‐analysis publication-title: Health Promot Perspect – volume: 53 start-page: 962 issue: 7 year: 2021 end-page: 971 article-title: Fine‐mapping, trans‐ancestral and genomic analyses identify causal variants, cells, genes and drug targets for type 1 diabetes publication-title: Nat Genet – volume: 25 start-page: 299 issue: 4 year: 2009 end-page: 301 article-title: New prospects for immunotherapy at diagnosis of type 1 diabetes publication-title: Diabetes Metab Res Rev – volume: 153 start-page: 895 issue: 6 year: 2005 end-page: 899 article-title: Sex‐specific association of PTPN22 1858T with type 1 diabetes but not with Hashimoto's thyroiditis or Addison's disease in the German population publication-title: Eur J Endocrinol – volume: 7 issue: 9 year: 2011 article-title: A genome‐wide meta‐analysis of six type 1 diabetes cohorts identifies multiple associated loci publication-title: PLoS Genet – volume: 15 start-page: 108 issue: 2 year: 2013 end-page: 115 article-title: Investigation the role of gender on the HLA‐DRB1 and DQB1 association with type 1 diabetes mellitus in Iranian patients publication-title: Cell J Summer – volume: 18 start-page: 1483 issue: 11 year: 1995 end-page: 1486 article-title: Transcomplementation of HLA DQA1‐DQB1 in DR3/DR4 and DR3/DR9 heterozygotes and IDDM in Taiwanese families publication-title: Diabetes Care – volume: 19 start-page: 581 issue: 9 year: 2018 end-page: 590 article-title: The personal and clinical utility of polygenic risk scores publication-title: Nat Rev Genet – volume: 450 start-page: 887 issue: 7171 year: 2007 end-page: 892 article-title: Localization of type 1 diabetes susceptibility to the MHC class I genes HLA‐B and HLA‐A publication-title: Nature – volume: 109 start-page: 1998 issue: 11 year: 2022 end-page: 2008 article-title: The construction of cross‐population polygenic risk scores using transfer learning publication-title: Am J Hum Genet – volume: 1 year: 2021 article-title: Genome‐wide association studies publication-title: Nature Reviews Methods Primers – volume: 19 start-page: 699 issue: 4 year: 2018 end-page: 706 article-title: Comprehensive human leukocyte antigen genotyping of patients with type 1 diabetes mellitus in Taiwan publication-title: Pediatr Diabetes – volume: 447 start-page: 661 issue: 7145 year: 2007 end-page: 678 article-title: Genome‐wide association study of 14,000 cases of seven common diseases and 3,000 shared controls publication-title: Nature – volume: 41 start-page: 703 issue: 6 year: 2009 end-page: 707 article-title: Genome‐wide association study and meta‐analysis find that over 40 loci affect risk of type 1 diabetes publication-title: Nat Genet – volume: 8 start-page: 54 issue: 1 year: 2007 article-title: Susceptibility to type 1 diabetes conferred by the PTPN22 C1858T polymorphism in the Spanish population publication-title: BMC Med Genet – volume: 38 start-page: 105 issue: 2 year: 1993 end-page: 114 article-title: Association of insulin‐dependent diabetes mellitus in Taiwan with HLA class II DQB1 and DRB1 alleles publication-title: Hum Immunol – volume: 19 start-page: 301 issue: 3 year: 1998 end-page: 302 article-title: A male‐female bias in type 1 diabetes and linkage to chromosome Xp in MHC HLA‐DR3‐positive patients publication-title: Nat Genet – volume: 13 start-page: 371 issue: 5 year: 2014 end-page: 377 article-title: Using population isolates in genetic association studies publication-title: Brief Funct Genomics – volume: 131 issue: 8 year: 2021 article-title: Type 1 diabetes mellitus: much progress, many opportunities publication-title: J Clin Invest – volume: 47 start-page: 839 issue: 7 year: 2015 end-page: 846 article-title: Statistical colocalization of genetic risk variants for related autoimmune diseases in the context of common controls publication-title: Nat Genet – volume: 18 start-page: 22 issue: 1 year: 2001 end-page: 28 article-title: HLA typing and immunological characterization of young‐onset diabetes mellitus in a Hong Kong Chinese population publication-title: Diabet Med – volume: 8 issue: 7 year: 2019 article-title: PRSice‐2: polygenic risk score software for biobank‐scale data publication-title: GigaScience – volume: 39 start-page: 857 issue: 7 year: 2007 end-page: 864 article-title: Robust associations of four new chromosome regions from genome‐wide analyses of type 1 diabetes publication-title: Nat Genet – volume: 54 start-page: 573 issue: 5 year: 2022 end-page: 580 article-title: Improving polygenic prediction in ancestrally diverse populations publication-title: Nat Genet – volume: 383 start-page: 69 issue: 9911 year: 2014 end-page: 82 article-title: Type 1 diabetes publication-title: Lancet – volume: 13 year: 2022 article-title: Analysis of HLA variants and Graves' disease and its comorbidities using a high resolution imputation system to examine electronic medical health records publication-title: Front Endocrinol – volume: 26 start-page: 1247 issue: 8 year: 2020 end-page: 1255 article-title: A combined risk score enhances prediction of type 1 diabetes among susceptible children publication-title: Nat Med – ident: e_1_2_8_14_1 doi: 10.1371/journal.pgen.1002293 – ident: e_1_2_8_21_1 doi: 10.1046/j.1464‐5491.2001.00400.x – ident: e_1_2_8_7_1 doi: 10.1056/NEJMoa1610187 – ident: e_1_2_8_27_1 doi: 10.3389/fendo.2022.842673 – ident: e_1_2_8_9_1 doi: 10.1038/ng.3245 – ident: e_1_2_8_36_1 doi: 10.1186/1471‐2350‐8‐54 – ident: e_1_2_8_38_1 doi: 10.1196/annals.1375.046 – ident: e_1_2_8_41_1 doi: 10.1016/0198‐8859(95)00108‐5 – ident: e_1_2_8_8_1 doi: 10.34172/hpp.2020.18 – ident: e_1_2_8_32_1 doi: 10.1093/gigascience/giz082 – ident: e_1_2_8_26_1 doi: 10.1210/er.2019-00088 – ident: e_1_2_8_2_1 doi: 10.1038/nrdp.2017.16 – ident: e_1_2_8_3_1 doi: 10.1016/S0140-6736(13)60591-7 – ident: e_1_2_8_6_1 doi: 10.1002/dmrr.970 – ident: e_1_2_8_40_1 doi: 10.2337/diacare.18.11.1483 – ident: e_1_2_8_39_1 doi: 10.1007/s11892‐011‐0223‐x – ident: e_1_2_8_30_1 doi: 10.1038/s41525‐021‐00178‐9 – ident: e_1_2_8_43_1 doi: 10.1093/bfgp/elu022 – ident: e_1_2_8_13_1 doi: 10.1038/nature05911 – ident: e_1_2_8_19_1 doi: 10.1038/s41576-019-0127-1 – ident: e_1_2_8_20_1 doi: 10.1038/s43586-021-00056-9 – ident: e_1_2_8_46_1 doi: 10.1038/s41588-022-01054-7 – ident: e_1_2_8_11_1 doi: 10.1016/S0140-6736(16)30582-7 – ident: e_1_2_8_15_1 doi: 10.1038/ng.3330 – ident: e_1_2_8_33_1 doi: 10.1038/s41598-020-75690-6 – ident: e_1_2_8_42_1 doi: 10.1016/0198‐8859(93)90526‐7 – volume: 15 start-page: 108 issue: 2 year: 2013 ident: e_1_2_8_34_1 article-title: Investigation the role of gender on the HLA‐DRB1 and DQB1 association with type 1 diabetes mellitus in Iranian patients publication-title: Cell J Summer – ident: e_1_2_8_16_1 doi: 10.1038/s41588‐021‐00880‐5 – ident: e_1_2_8_23_1 doi: 10.1038/s41576-018-0018-x – ident: e_1_2_8_31_1 doi: 10.1186/s13742‐015‐0047‐8 – ident: e_1_2_8_4_1 doi: 10.1038/nrendo.2015.8 – ident: e_1_2_8_22_1 doi: 10.1111/pedi.12645 – ident: e_1_2_8_28_1 doi: 10.37796/2211‐8039.1302 – ident: e_1_2_8_37_1 doi: 10.1530/eje.1.02035 – ident: e_1_2_8_25_1 doi: 10.1016/S2213-8587(22)00159-0 – ident: e_1_2_8_24_1 doi: 10.1038/s41591-020-0930-4 – ident: e_1_2_8_17_1 doi: 10.2337/dc18-2023 – ident: e_1_2_8_44_1 doi: 10.1038/ncomms15927 – ident: e_1_2_8_29_1 doi: 10.1038/ng.2354 – ident: e_1_2_8_10_1 doi: 10.1038/ng.381 – ident: e_1_2_8_12_1 doi: 10.1038/ng2068 – ident: e_1_2_8_5_1 doi: 10.1172/JCI142242 – ident: e_1_2_8_45_1 doi: 10.1016/j.ajhg.2022.09.010 – ident: e_1_2_8_18_1 doi: 10.1038/nature06406 – ident: e_1_2_8_35_1 doi: 10.1038/995 |
SSID | ssj0004387 |
Score | 2.4297597 |
Snippet | Aims
To analyse the genome‐wide association study (GWAS) data of patients with type 1 diabetes mellitus (T1D) in order to develop a risk score for the genetic... To analyse the genome-wide association study (GWAS) data of patients with type 1 diabetes mellitus (T1D) in order to develop a risk score for the genetic... AimsTo analyse the genome‐wide association study (GWAS) data of patients with type 1 diabetes mellitus (T1D) in order to develop a risk score for the genetic... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2928 |
SubjectTerms | Age Antigens clinical event Diabetes Diabetes mellitus (insulin dependent) Diagnosis DQA1 protein electronic medical record Electronic medical records Genetic analysis Genomes genome‐wide association studies Histocompatibility antigen HLA human leukocyte antigen Ketoacidosis Leukocytes Medical screening polygenic risk scores Population studies Risk assessment Risk factors type 1 diabetes |
Title | Combining polygenic risk scores and human leukocyte antigen variants for personalized risk assessment of type 1 diabetes in the Taiwanese population |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fdom.15187 https://www.ncbi.nlm.nih.gov/pubmed/37455666 https://www.proquest.com/docview/2860207417 https://www.proquest.com/docview/2838645203 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHhAXKO-FggziwCWrZG3HiTghoKqQChJqpR6QIj_G0qrbZMVmQe3v4Acz48SB8pAQtyh2Mo4z4_lsj79h7LnVZV1rBZkOtcukrVVmqqLIPJRKgvNEOkbRFu_LwxP57lSd7rCX6SzMwA8xLbiRZcTxmgzc2M1PRu678zm6q4pOklOsFgGijz-oo6SIyfFwIECLrymKZy9F8UxPXvVFvwHMq3g1OpyDm-xTauoQZ3I23_Z27i5_YXH8z2_ZYzdGIMpfDZpzi-1Ae5tdOxq32u-wbzhS2Jg9gq-71QXq2dJxCkTnG2K-3HDTeh4z_PEVbM86d9ED3uuJ3ZN_wRk4BdhwhMR8nfD-JfjhDWaiA-Vd4LQKzAueVoH5suWISvmxWX41lB8T5ackY3fZycHb49eH2ZjCIXNCCZ05qzSAlFZ54yHkoTKq0LkPtRAiSGFzC4j56qB9JYVTJs-DKAM6Vi1Bi0LcY7tt18IDxhe5MyIHn0daNqjqCqqAMkIhcYIAbsZepJ_ZuJHfnNJsrJo0z8FebmIvz9izqep6IPX4U6X9pBHNaNebZkEpuwiFYfHTqRgtkrZZsE-6LdURFW0X52LG7g-aNEkRWioE0CU2NurD38U3bz4cxYuH_171Ebu-QAw2xBrus93-8xYeI2bq7ZNoHN8Bu9sUGw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkYALlEdhoYBBHLhk5aztOJG4IEq1QLdIaCv1giI_pVWXZMVmQe3v4Acz4zygPCTELUqc2HFm7M_jyfcR8syorCiU9IkKhU2EKWSi8zRNnM-k8NYh6RhmWxxl02Px9kSebJEX_b8wLT_EEHBDz4jjNTo4BqR_8nJXfxrDfJWrS-QyKnojc_7-hx_kUYJHeTwYCsDnC8zj2enzeIZbL85Gv0HMi4g1TjkHN8jHvrFtpsnpeNOYsT3_hcfxf99mh1zvsCh92RrPTbLlq1vkyqzbbb9NvsFgYaKABF3VyzMwtYWlmItO10h-uaa6cjSK_NGl35zW9qzxcK5Bgk_6BRbhmGNDARXTVQ_5z71rn6AHRlBaB4qBYJrSPhBMFxUFYErnevFVo0Qm1N_rjN0hxwev56-mSafikFguuUqskcp7IYx02vnAQq5lqpgLBec8CG6Y8QD7iqBcLriVmrHAswBzqxJe8ZTvku2qrvw9QifMas68Y5GZzedF7vMAdYRUwBrB2xF53n_N0nYU56i0sSz7pQ70chl7eUSeDkVXLa_Hnwrt9SZRdq69Lieo2oVADC4_GS6DU-JOC_RJvcEyPMcdY8ZH5G5rSkMtXAkJGDqDxkaD-Hv15f77WTy4_-9FH5Or0_nssDx8c_TuAbk2AUjWph7uke3m88Y_BAjVmEfRU74D5gEYNw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVKkSo2tLzKlAIGsWCTkTO241isEMOoPFoQaqUukCI_pVGHZMRkQO138MFcO3GgPCTELkpuYse51z62b85B6IkWhZSCu0x4aTKmJc9UmeeZdQVnzthAOhayLY6KgxP2-pSfbqBn6V-Yjh9iWHALkRH76xDgS-t_CnLbfBrDcFWKK-gqK4gMug3TDz-4oxiN6njQE0DIy5DGs5PSeIZbLw9GvyHMy4A1jjizbfQx1bVLNDkbr1s9Nhe_0Dj-58vsoOs9EsXPO9e5gTZcfRNtHfZ77bfQN-gqdJSPwMtmcQ6ONjc4ZKLjVaC-XGFVWxwl_vDCrc8ac946ONcGek_8BabgIcMGAybGywT4L5ztnqAGPlDceByWgXGO0zIwntcYYCk-VvOvKghkQvlJZew2Opm9PH5xkPUaDpmhnIrMaC6cY0xzq6zzxJeK54JYLymlnlFNtAPQJ72wJaOGK0I8LTyMrII5QXN6B23WTe3uIjwhRlHiLIm8bK6UpSs9lOFzBjMEZ0boafqYlekJzoPOxqJKEx1o5Sq28gg9HkyXHavHn4z2k0dUfWCvqknQ7AowDC4_Gi5DSIZ9FmiTZh1saBn2iwkdod3Ok4ZSqGAcEHQBlY3-8Pfiq-m7w3iw9--mD9HW--msevvq6M09dG0CeKzLO9xHm-3ntbsP-KnVD2KcfAeTxxbm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+polygenic+risk+scores+and+human+leukocyte+antigen+variants+for+personalized+risk+assessment+of+type+1+diabetes+in+the+Taiwanese+population&rft.jtitle=Diabetes%2C+obesity+%26+metabolism&rft.au=Liao%2C+Wen%E2%80%90Ling&rft.au=Huang%2C+Yu%E2%80%90Nan&rft.au=Chang%2C+Ya%E2%80%90Wen&rft.au=Liu%2C+Ting%E2%80%90Yuan&rft.date=2023-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1462-8902&rft.eissn=1463-1326&rft.volume=25&rft.issue=10&rft.spage=2928&rft.epage=2936&rft_id=info:doi/10.1111%2Fdom.15187&rft.externalDBID=10.1111%252Fdom.15187&rft.externalDocID=DOM15187 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-8902&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-8902&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-8902&client=summon |