Correlation of quantitative conductivity mapping and total tissue sodium concentration at 3T/4T

Purpose To investigate the correlation between electrical conductivity and sodium concentration, both measured in vivo, in the human brain. Methods Conductivity measurements were performed on samples with different sodium (Na+) and agarose concentrations using a dielectric probe, and the correlation...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 82; no. 4; pp. 1518 - 1526
Main Authors Liao, Yupeng, Lechea, Nazim, Magill, Arthur W., Worthoff, Wieland A., Gras, Vincent, Shah, N. Jon
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.10.2019
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.27787

Cover

Abstract Purpose To investigate the correlation between electrical conductivity and sodium concentration, both measured in vivo, in the human brain. Methods Conductivity measurements were performed on samples with different sodium (Na+) and agarose concentrations using a dielectric probe, and the correlation between conductivity and Na+ content was evaluated. Subsequently, brain conductivity and total Na+ content maps were measured in 8 healthy subjects using phase‐based MREPT and sodium MRI, respectively. After co‐registration and spatial normalization to the 1 mm 152 MNI brain atlas, the relationship between conductivity and tissue sodium concentration (TSC) was examined within different brain regions. Results The conductivities of agarose gels increased linearly with NaCl concentration, while remaining almost independent of agarose content. When measured in healthy subjects, conductivities showed positive correlation with total tissue sodium concentration (R = 0.39, P < 0.005). The same trend was found in gray matter (R = 0.36, P < 0.005) and in white matter (R = 0.28, P < 0.05). Conclusion Tissue conductivity shows a positive correlation with total sodium concentration. Conductivity might serve as a novel technique to visualize the total tissue electrolyte concentration, although refinements in the consideration of e.g., tissue water content, would be necessary to improve the quantitative value.
AbstractList Purpose To investigate the correlation between electrical conductivity and sodium concentration, both measured in vivo, in the human brain. Methods Conductivity measurements were performed on samples with different sodium (Na+) and agarose concentrations using a dielectric probe, and the correlation between conductivity and Na+ content was evaluated. Subsequently, brain conductivity and total Na+ content maps were measured in 8 healthy subjects using phase‐based MREPT and sodium MRI, respectively. After co‐registration and spatial normalization to the 1 mm 152 MNI brain atlas, the relationship between conductivity and tissue sodium concentration (TSC) was examined within different brain regions. Results The conductivities of agarose gels increased linearly with NaCl concentration, while remaining almost independent of agarose content. When measured in healthy subjects, conductivities showed positive correlation with total tissue sodium concentration (R = 0.39, P < 0.005). The same trend was found in gray matter (R = 0.36, P < 0.005) and in white matter (R = 0.28, P < 0.05). Conclusion Tissue conductivity shows a positive correlation with total sodium concentration. Conductivity might serve as a novel technique to visualize the total tissue electrolyte concentration, although refinements in the consideration of e.g., tissue water content, would be necessary to improve the quantitative value.
To investigate the correlation between electrical conductivity and sodium concentration, both measured in vivo, in the human brain. Conductivity measurements were performed on samples with different sodium (Na ) and agarose concentrations using a dielectric probe, and the correlation between conductivity and Na content was evaluated. Subsequently, brain conductivity and total Na content maps were measured in 8 healthy subjects using phase-based MREPT and sodium MRI, respectively. After co-registration and spatial normalization to the 1 mm 152 MNI brain atlas, the relationship between conductivity and tissue sodium concentration (TSC) was examined within different brain regions. The conductivities of agarose gels increased linearly with NaCl concentration, while remaining almost independent of agarose content. When measured in healthy subjects, conductivities showed positive correlation with total tissue sodium concentration (R = 0.39, P < 0.005). The same trend was found in gray matter (R = 0.36, P < 0.005) and in white matter (R = 0.28, P < 0.05). Tissue conductivity shows a positive correlation with total sodium concentration. Conductivity might serve as a novel technique to visualize the total tissue electrolyte concentration, although refinements in the consideration of e.g., tissue water content, would be necessary to improve the quantitative value.
PurposeTo investigate the correlation between electrical conductivity and sodium concentration, both measured in vivo, in the human brain.MethodsConductivity measurements were performed on samples with different sodium (Na+) and agarose concentrations using a dielectric probe, and the correlation between conductivity and Na+ content was evaluated. Subsequently, brain conductivity and total Na+ content maps were measured in 8 healthy subjects using phase‐based MREPT and sodium MRI, respectively. After co‐registration and spatial normalization to the 1 mm 152 MNI brain atlas, the relationship between conductivity and tissue sodium concentration (TSC) was examined within different brain regions.ResultsThe conductivities of agarose gels increased linearly with NaCl concentration, while remaining almost independent of agarose content. When measured in healthy subjects, conductivities showed positive correlation with total tissue sodium concentration (R = 0.39, P < 0.005). The same trend was found in gray matter (R = 0.36, P < 0.005) and in white matter (R = 0.28, P < 0.05).ConclusionTissue conductivity shows a positive correlation with total sodium concentration. Conductivity might serve as a novel technique to visualize the total tissue electrolyte concentration, although refinements in the consideration of e.g., tissue water content, would be necessary to improve the quantitative value.
To investigate the correlation between electrical conductivity and sodium concentration, both measured in vivo, in the human brain.PURPOSETo investigate the correlation between electrical conductivity and sodium concentration, both measured in vivo, in the human brain.Conductivity measurements were performed on samples with different sodium (Na+ ) and agarose concentrations using a dielectric probe, and the correlation between conductivity and Na+ content was evaluated. Subsequently, brain conductivity and total Na+ content maps were measured in 8 healthy subjects using phase-based MREPT and sodium MRI, respectively. After co-registration and spatial normalization to the 1 mm 152 MNI brain atlas, the relationship between conductivity and tissue sodium concentration (TSC) was examined within different brain regions.METHODSConductivity measurements were performed on samples with different sodium (Na+ ) and agarose concentrations using a dielectric probe, and the correlation between conductivity and Na+ content was evaluated. Subsequently, brain conductivity and total Na+ content maps were measured in 8 healthy subjects using phase-based MREPT and sodium MRI, respectively. After co-registration and spatial normalization to the 1 mm 152 MNI brain atlas, the relationship between conductivity and tissue sodium concentration (TSC) was examined within different brain regions.The conductivities of agarose gels increased linearly with NaCl concentration, while remaining almost independent of agarose content. When measured in healthy subjects, conductivities showed positive correlation with total tissue sodium concentration (R = 0.39, P < 0.005). The same trend was found in gray matter (R = 0.36, P < 0.005) and in white matter (R = 0.28, P < 0.05).RESULTSThe conductivities of agarose gels increased linearly with NaCl concentration, while remaining almost independent of agarose content. When measured in healthy subjects, conductivities showed positive correlation with total tissue sodium concentration (R = 0.39, P < 0.005). The same trend was found in gray matter (R = 0.36, P < 0.005) and in white matter (R = 0.28, P < 0.05).Tissue conductivity shows a positive correlation with total sodium concentration. Conductivity might serve as a novel technique to visualize the total tissue electrolyte concentration, although refinements in the consideration of e.g., tissue water content, would be necessary to improve the quantitative value.CONCLUSIONTissue conductivity shows a positive correlation with total sodium concentration. Conductivity might serve as a novel technique to visualize the total tissue electrolyte concentration, although refinements in the consideration of e.g., tissue water content, would be necessary to improve the quantitative value.
Author Gras, Vincent
Liao, Yupeng
Worthoff, Wieland A.
Magill, Arthur W.
Lechea, Nazim
Shah, N. Jon
Author_xml – sequence: 1
  givenname: Yupeng
  surname: Liao
  fullname: Liao, Yupeng
  organization: Institute of Neuroscience and Medicine (INM‐4), Forschungszentrum Jülich
– sequence: 2
  givenname: Nazim
  surname: Lechea
  fullname: Lechea, Nazim
  organization: Institute of Neuroscience and Medicine (INM‐4), Forschungszentrum Jülich
– sequence: 3
  givenname: Arthur W.
  surname: Magill
  fullname: Magill, Arthur W.
  organization: Institute of Neuroscience and Medicine (INM‐4), Forschungszentrum Jülich
– sequence: 4
  givenname: Wieland A.
  orcidid: 0000-0001-9121-8790
  surname: Worthoff
  fullname: Worthoff, Wieland A.
  organization: Institute of Neuroscience and Medicine (INM‐4), Forschungszentrum Jülich
– sequence: 5
  givenname: Vincent
  surname: Gras
  fullname: Gras, Vincent
  organization: Institute of Neuroscience and Medicine (INM‐4), Forschungszentrum Jülich
– sequence: 6
  givenname: N. Jon
  orcidid: 0000-0002-8151-6169
  surname: Shah
  fullname: Shah, N. Jon
  email: n.j.shah@fz-juelich.de
  organization: Monash University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31095776$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1qGzEUhUVJaeyki7xAEGTTLibW72i0DKZJCwmF4qyFNNIUhRnJkTQpfvvKsbMJ7UpX8J3DvecswUmIwQFwgdE1RoispjRdEyE68QEsMCekIVyyE7BAgqGGYslOwTLnJ4SQlIJ9AqcUI8mFaBdArWNKbtTFxwDjAJ9nHYov9f_iYB-Dnfs6-rKDk95uffgNdbCwxKJHWHzOs4M5Wj9Pe7h3oaSDlS6QblZscw4-DnrM7vPxPQOPt9826-_N_c-7H-ub-6annIrGGGzEQLng1GA2tNx0VmhpreCD6QZLGGOGaGOlaInpXE8Hwq3sRL2CY43pGfhy8N2m-Dy7XNTkc-_GUQcX56wIoQTxltK2olfv0Kc4p1C3q1RFJOOdqNTlkZrN5KzaJj_ptFNv0VVgdQD6FHNOblD9a25xn4EfFUZqX46q5ajXcqri6zvFm-m_2KP7Hz-63f9B9fDr4aD4C0zdnkg
CitedBy_id crossref_primary_10_1002_jmri_27655
crossref_primary_10_1038_s41598_024_67014_9
crossref_primary_10_1002_hbm_26102
crossref_primary_10_1002_mrm_28685
crossref_primary_10_1021_acschemneuro_2c00027
crossref_primary_10_1007_s40846_024_00865_9
crossref_primary_10_1007_s13246_023_01248_1
crossref_primary_10_1016_j_jneumeth_2022_109721
crossref_primary_10_3390_molecules27227729
crossref_primary_10_1038_s41598_023_30363_y
crossref_primary_10_1088_1361_6560_ab7308
crossref_primary_10_3174_ajnr_A7261
crossref_primary_10_1088_2057_1976_aca20b
crossref_primary_10_1109_TMI_2020_2969682
crossref_primary_10_1371_journal_pone_0313199
Cites_doi 10.1002/mrm.1910380624
10.1186/1743-8454-7-3
10.1080/16070658.1981.11689230
10.1007/s13311-011-0087-4
10.1038/srep31269
10.1109/TMI.2013.2251653
10.1002/mrm.25096
10.1016/j.neuroimage.2012.07.009
10.1109/TMI.2009.2015757
10.1088/0031-9155/41/11/001
10.1002/mrm.23225
10.1007/s00330-017-4942-5
10.1002/mrm.22357
10.1117/12.480000
10.1016/j.msec.2010.08.018
10.1006/nimg.2002.1092
10.1002/nbm.3729
10.1002/hbm.460020402
10.1002/mrm.25309
10.1016/j.msec.2012.07.024
10.1007/s00330-017-5291-0
10.1148/radiol.13130757
10.1002/mrm.25891
10.1002/mrm.24637
10.1148/radiol.13131725
10.1088/0031-9155/39/1/008
10.1371/journal.pone.0179276
10.1038/s41598-017-18515-3
10.1002/mrm.20868
10.1109/TEI.1984.298769
10.1016/j.jmr.2017.03.003
10.1002/mrm.1910070103
10.1109/10.1374
10.1002/jmri.24803
10.1088/0031-9155/41/11/003
10.1016/j.neuroimage.2015.03.025
10.1088/0031-9155/25/6/012
10.1016/j.neuroimage.2014.03.079
10.1016/j.neuroimage.2007.10.037
10.1016/j.jmr.2011.08.005
10.1007/978-1-61737-992-5_3
10.1007/s10334-013-0387-2
10.1002/mrm.26193
10.1002/mrm.25869
10.1371/journal.pone.0113202
10.1088/0031-9155/41/11/002
10.1088/0031-9155/36/6/002
10.1002/nbm.2813
ContentType Journal Article
Copyright 2019 International Society for Magnetic Resonance in Medicine
2019 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2019 International Society for Magnetic Resonance in Medicine
– notice: 2019 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.27787
DatabaseName CrossRef
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
Biochemistry Abstracts 1
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1526
ExternalDocumentID 31095776
10_1002_mrm_27787
MRM27787
Genre technicalNote
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: China Scholarship Council
  funderid: 20126090020
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3537-bb1b7f35753b14f65b8d7a9dd75fb8fd2444b2abd9762b8ec3f25d98757751a13
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 07:38:05 EDT 2025
Sun Jul 13 03:56:27 EDT 2025
Wed Feb 19 02:31:31 EST 2025
Tue Jul 01 01:21:08 EDT 2025
Thu Apr 24 23:05:03 EDT 2025
Wed Jan 22 16:42:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords sodium MRI
tissue sodium concentration (TSC)
sodium quantification
electrical conductivity
magnetic resonance electrical properties tomography (MREPT)
Language English
License 2019 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3537-bb1b7f35753b14f65b8d7a9dd75fb8fd2444b2abd9762b8ec3f25d98757751a13
Notes Funding information
China Scholarship Council (20126090020).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8151-6169
0000-0001-9121-8790
PMID 31095776
PQID 2256394587
PQPubID 1016391
PageCount 9
ParticipantIDs proquest_miscellaneous_2232056336
proquest_journals_2256394587
pubmed_primary_31095776
crossref_citationtrail_10_1002_mrm_27787
crossref_primary_10_1002_mrm_27787
wiley_primary_10_1002_mrm_27787_MRM27787
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2019
2019-10-00
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 16
2011; 213
2018; 28
1980; 25
2013; 26
1991; 36
2011; 711
2012
2015; 73
2006; 55
2013; 269
2008; 39
2014; 27
2016; 76
2011; 31
1988; 35
2014; 271
2004
2003
2017; 277
2010; 63
2012; 32
2009; 28
2016; 6
2017; 30
2013; 32
2015; 42
2017; 77
2015; 112
1988; 7
2017; 12
2019
1996; 41
1981; 16
2018
1997; 38
1984
2014
1994; 39
2013
2014; 96
2014; 9
2012; 68
2014; 71
1994; 2
2010; 7
2012; 63
2012; 9
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
Augustine GJ (e_1_2_7_42_1) 2004
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
Liao Y (e_1_2_7_15_1) 2019
References_xml – volume: 711
  start-page: 29
  year: 2011
  end-page: 64
  article-title: Measuring the absolute water content of the brain using quantitative MRI
  publication-title: Meth Mol Biol
– volume: 36
  start-page: 723
  year: 1991
  end-page: 734
  article-title: Extraction of conductivity and permittivity using magnetic resonance imaging
  publication-title: Phys Med Biol
– volume: 28
  start-page: 3204
  year: 2018
  end-page: 3214
  article-title: Correlation between electrical conductivity and apparent diffusion coefficient in breast cancer: effect of necrosis on magnetic resonance imaging
  publication-title: Eur Radiol
– volume: 9
  start-page: 65
  year: 2012
  end-page: 72
  article-title: Novel treatment targets for cerebral edema
  publication-title: Neurotherapeutics
– volume: 28
  start-page: 348
  year: 2018
  end-page: 355
  article-title: Noninvasive electrical conductivity measurement by MRI: a test of its validity and the electrical conductivity characteristics of glioma
  publication-title: Eur Radiol
– start-page: 40
  year: 2004
– volume: 213
  start-page: 344
  year: 2011
  end-page: 346
  article-title: The principle of reciprocity
  publication-title: J Magn Reson
– start-page: 471
  year: 2003
  end-page: 477
– volume: 28
  start-page: 1365
  year: 2009
  end-page: 1374
  article-title: Determination of electric conductivity and local SAR via B1 mapping
  publication-title: IEEE Trans Med Imaging
– volume: 73
  start-page: 342
  year: 2015
  end-page: 351
  article-title: High‐resolution quantitative sodium imaging at 9.4 Tesla
  publication-title: Magn Reson Med
– volume: 71
  start-page: 354
  year: 2014
  end-page: 363
  article-title: Electrical properties tomography in the human brain at 1.5, 3, and 7T: a comparison study
  publication-title: Magn Reson Med
– volume: 41
  start-page: 2231
  year: 1996
  end-page: 2249
  article-title: The dielectric properties of biological tissues: I. Literature survey
  publication-title: Phys Med Biol
– volume: 2
  start-page: 189
  year: 1994
  end-page: 210
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum Brain Mapp
– volume: 38
  start-page: 1022
  year: 1997
  end-page: 1028
  article-title: Spectrally weighted twisted projection imaging: Reducing T2 signal attenuation effects in fast three‐dimensional sodium imaging
  publication-title: Magn Reson Med
– year: 2014
– volume: 7
  start-page: 3
  year: 2010
  article-title: Cerebrospinal fluid sodium rhythms
  publication-title: Cerebrospinal Fluid Res
– volume: 32
  start-page: 2664
  year: 2012
  end-page: 2667
  article-title: Comparison of electrical conductivities of various brain phantom gels: developing a ‘brain gel model’
  publication-title: Mater Sci Eng C Mater Biol Appl
– volume: 63
  start-page: 1315
  year: 2010
  end-page: 1322
  article-title: B1 mapping by Bloch‐Siegert shift
  publication-title: Magn Reson Med
– volume: 42
  start-page: 371
  year: 2015
  end-page: 378
  article-title: Initial study on in vivo conductivity mapping of breast cancer using MRI
  publication-title: J Magn Reson Imaging
– volume: 76
  start-page: 214
  year: 2016
  end-page: 221
  article-title: Simultaneous quantitative mapping of conductivity and susceptibility using a double‐echo ultrashort echo time sequence: example using a hematoma evolution study
  publication-title: Magn Reson Med
– volume: 12
  year: 2017
  article-title: Temperature and concentration calibration of aqueous polyvinylpyrrolidone (PVP) solutions for isotropic diffusion MRI phantoms
  publication-title: PLoS ONE
– volume: 112
  start-page: 353
  year: 2015
  end-page: 363
  article-title: Partial volume correction for in vivo (23)Na‐MRI data of the human brain
  publication-title: NeuroImage
– volume: 16
  start-page: 754
  year: 2002
  end-page: 764
  article-title: New robust 3‐D phase unwrapping algorithms: application to magnetic field mapping and undistorting echoplanar images
  publication-title: NeuroImage
– volume: 55
  start-page: 1075
  year: 2006
  end-page: 1082
  article-title: Three‐dimensional radial ultrashort echo‐time imaging with T2 adapted sampling
  publication-title: Magn Reson Med
– volume: 39
  start-page: 1682
  year: 2008
  end-page: 1692
  article-title: Development of a robust method for generating 7T multichannel phase images of the brain with application to normal volunteers and patients with neurological diseases
  publication-title: NeuroImage
– volume: 35
  start-page: 257
  year: 1988
  end-page: 263
  article-title: Dielectric properties of breast carcinoma and the surrounding tissues
  publication-title: IEEE Trans Biomed Eng
– volume: 30
  year: 2017
  article-title: Electric properties tomography: biochemical, physical and technical background, evaluation and clinical applications
  publication-title: NMR Biomed
– volume: 16
  start-page: 107
  year: 1981
  end-page: 119
  article-title: Dielectric properties of tumor and normal tissues at radio through microwave frequencies
  publication-title: J Microw Power
– volume: 9
  year: 2014
  article-title: Use of electrical impedance tomography to monitor regional cerebral edema during clinical dehydration treatment
  publication-title: PLoS ONE
– year: 2018
  article-title: Extracellular total electrolyte concentration imaging for electrical brain stimulation (EBS)
  publication-title: Sci Rep
– volume: 41
  start-page: 2271
  year: 1996
  end-page: 2293
  article-title: The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues
  publication-title: Phys Med Biol
– volume: 269
  start-page: 569
  year: 2013
  end-page: 576
  article-title: In vivo 39K MR imaging of human muscle and brain
  publication-title: Radiology
– volume: 26
  start-page: 9
  year: 2013
  end-page: 19
  article-title: Noninvasive quantification of intracellular sodium in human brain using ultrahigh‐field MRI
  publication-title: NMR Biomed
– volume: 25
  start-page: 1149
  year: 1980
  end-page: 1159
  article-title: The UHF and microwave dielectric properties of normal and tumour tissues: variation in dielectric properties with tissue water content
  publication-title: Phys Med Biol
– volume: 6
  start-page: 31269
  year: 2016
  article-title: Sodium MRI in multiple sclerosis is compatible with intracellular sodium accumulation and inflammation‐induced hyper‐cellularity of acute brain lesions
  publication-title: Sci Rep
– volume: 77
  start-page: 1094
  year: 2017
  end-page: 1103
  article-title: Electrical conductivity and permittivity maps of brain tissues derived from water content based on T1 ‐weighted acquisition
  publication-title: Magn Reson Med
– volume: 31
  start-page: 494
  year: 2011
  end-page: 498
  article-title: NaCl doping and the conductivity of agar phantoms
  publication-title: Mater Sci Eng C Mater Biol Appl
– volume: 277
  start-page: 162
  year: 2017
  end-page: 168
  article-title: Comparison of potassium and sodium binding in vivo and in agarose samples using TQTPPI pulse sequence
  publication-title: J Magn Reson
– volume: 96
  start-page: 44
  year: 2014
  end-page: 53
  article-title: Mapping tissue sodium concentration in the human brain: a comparison of MR sequences at 9.4 Tesla
  publication-title: NeuroImage
– volume: 41
  start-page: 2251
  year: 1996
  end-page: 2269
  article-title: The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz
  publication-title: Phys Med Biol
– volume: 39
  start-page: 133
  year: 1994
  end-page: 144
  article-title: The effect of hyperthermia‐induced tissue conductivity changes on electrical impedance temperature mapping
  publication-title: Phys Med Biol
– start-page: 453
  year: 1984
  end-page: 474
  article-title: Dielectric properties of biological materials: biophysical and medical applications
  publication-title: IEEE Trans Elect Insul
– year: 2019
  article-title: An MR technique for simultaneous quantitative imaging of water content, conductivity and susceptibility, with application to brain tumours using a 3T hybrid MR‐PET scanner
  publication-title: Sci Rep
– year: 2012
– volume: 271
  start-page: 585
  year: 2014
  end-page: 595
  article-title: In vivo 35Cl MR imaging in humans: a feasibility study
  publication-title: Radiology
– volume: 73
  start-page: 2025
  year: 2015
  end-page: 2029
  article-title: On conductivity, permittivity, apparent diffusion coefficient, and their usefulness as cancer markers at MRI frequencies
  publication-title: Magn Reson Med
– volume: 27
  start-page: 63
  year: 2014
  end-page: 70
  article-title: vivo chlorine and sodium MRI of rat brain at 21.1 T
  publication-title: MAGMA
– volume: 32
  start-page: 1058
  year: 2013
  end-page: 1067
  article-title: From complex B1 mapping to local SAR estimation for human brain MR imaging using multi‐channel transceiver coil at 7T
  publication-title: IEEE Trans Med Imaging
– volume: 63
  start-page: 517
  year: 2012
  end-page: 524
  article-title: Increased brain tissue sodium concentration in Huntington's Disease ‐ a sodium imaging study at 4 T
  publication-title: NeuroImage
– volume: 7
  start-page: 11
  year: 1988
  end-page: 22
  article-title: In vivo magnetic resonance imaging of sodium in the human body
  publication-title: Magn Reson Med
– volume: 76
  start-page: 530
  year: 2016
  end-page: 539
  article-title: MR‐based conductivity imaging using multiple receiver coils
  publication-title: Magn Reson Med
– volume: 68
  start-page: 227
  year: 2012
  end-page: 233
  article-title: High‐resolution sodium imaging of human brain at 7 T
  publication-title: Magn Reson Med
– year: 2013
– ident: e_1_2_7_28_1
  doi: 10.1002/mrm.1910380624
– ident: e_1_2_7_34_1
  doi: 10.1186/1743-8454-7-3
– ident: e_1_2_7_6_1
  doi: 10.1080/16070658.1981.11689230
– ident: e_1_2_7_48_1
  doi: 10.1007/s13311-011-0087-4
– ident: e_1_2_7_35_1
  doi: 10.1038/srep31269
– ident: e_1_2_7_11_1
  doi: 10.1109/TMI.2013.2251653
– ident: e_1_2_7_52_1
  doi: 10.1002/mrm.25096
– ident: e_1_2_7_53_1
  doi: 10.1016/j.neuroimage.2012.07.009
– ident: e_1_2_7_10_1
  doi: 10.1109/TMI.2009.2015757
– ident: e_1_2_7_2_1
  doi: 10.1088/0031-9155/41/11/001
– ident: e_1_2_7_51_1
  doi: 10.1002/mrm.23225
– ident: e_1_2_7_14_1
  doi: 10.1007/s00330-017-4942-5
– ident: e_1_2_7_31_1
  doi: 10.1002/mrm.22357
– ident: e_1_2_7_9_1
  doi: 10.1117/12.480000
– ident: e_1_2_7_38_1
  doi: 10.1016/j.msec.2010.08.018
– ident: e_1_2_7_27_1
  doi: 10.1006/nimg.2002.1092
– ident: e_1_2_7_46_1
  doi: 10.1002/nbm.3729
– ident: e_1_2_7_24_1
– ident: e_1_2_7_36_1
  doi: 10.1002/hbm.460020402
– ident: e_1_2_7_16_1
  doi: 10.1002/mrm.25309
– ident: e_1_2_7_19_1
– ident: e_1_2_7_49_1
– ident: e_1_2_7_37_1
  doi: 10.1016/j.msec.2012.07.024
– ident: e_1_2_7_17_1
  doi: 10.1007/s00330-017-5291-0
– ident: e_1_2_7_23_1
  doi: 10.1148/radiol.13130757
– ident: e_1_2_7_25_1
  doi: 10.1002/mrm.25891
– ident: e_1_2_7_12_1
  doi: 10.1002/mrm.24637
– ident: e_1_2_7_21_1
  doi: 10.1148/radiol.13131725
– ident: e_1_2_7_7_1
  doi: 10.1088/0031-9155/39/1/008
– ident: e_1_2_7_45_1
  doi: 10.1371/journal.pone.0179276
– ident: e_1_2_7_44_1
  doi: 10.1038/s41598-017-18515-3
– ident: e_1_2_7_30_1
  doi: 10.1002/mrm.20868
– year: 2019
  ident: e_1_2_7_15_1
  article-title: An MR technique for simultaneous quantitative imaging of water content, conductivity and susceptibility, with application to brain tumours using a 3T hybrid MR‐PET scanner
  publication-title: Sci Rep
– ident: e_1_2_7_39_1
  doi: 10.1109/TEI.1984.298769
– ident: e_1_2_7_43_1
  doi: 10.1016/j.jmr.2017.03.003
– start-page: 40
  volume-title: Neuroscience
  year: 2004
  ident: e_1_2_7_42_1
– ident: e_1_2_7_20_1
  doi: 10.1002/mrm.1910070103
– ident: e_1_2_7_5_1
  doi: 10.1109/10.1374
– ident: e_1_2_7_13_1
  doi: 10.1002/jmri.24803
– ident: e_1_2_7_4_1
  doi: 10.1088/0031-9155/41/11/003
– ident: e_1_2_7_54_1
  doi: 10.1016/j.neuroimage.2015.03.025
– ident: e_1_2_7_41_1
  doi: 10.1088/0031-9155/25/6/012
– ident: e_1_2_7_29_1
  doi: 10.1016/j.neuroimage.2014.03.079
– ident: e_1_2_7_26_1
  doi: 10.1016/j.neuroimage.2007.10.037
– ident: e_1_2_7_33_1
  doi: 10.1016/j.jmr.2011.08.005
– ident: e_1_2_7_40_1
  doi: 10.1007/978-1-61737-992-5_3
– ident: e_1_2_7_22_1
  doi: 10.1007/s10334-013-0387-2
– ident: e_1_2_7_18_1
  doi: 10.1002/mrm.26193
– ident: e_1_2_7_50_1
  doi: 10.1002/mrm.25869
– ident: e_1_2_7_47_1
  doi: 10.1371/journal.pone.0113202
– ident: e_1_2_7_3_1
  doi: 10.1088/0031-9155/41/11/002
– ident: e_1_2_7_8_1
  doi: 10.1088/0031-9155/36/6/002
– ident: e_1_2_7_32_1
  doi: 10.1002/nbm.2813
SSID ssj0009974
Score 2.393592
Snippet Purpose To investigate the correlation between electrical conductivity and sodium concentration, both measured in vivo, in the human brain. Methods...
To investigate the correlation between electrical conductivity and sodium concentration, both measured in vivo, in the human brain. Conductivity measurements...
PurposeTo investigate the correlation between electrical conductivity and sodium concentration, both measured in vivo, in the human brain.MethodsConductivity...
To investigate the correlation between electrical conductivity and sodium concentration, both measured in vivo, in the human brain.PURPOSETo investigate the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1518
SubjectTerms Brain
Brain mapping
Conductivity
Electrical conductivity
Electrical resistivity
Gels
In vivo methods and tests
magnetic resonance electrical properties tomography (MREPT)
Magnetic resonance imaging
Mapping
Measurement methods
Moisture content
Sodium
Sodium chloride
sodium MRI
sodium quantification
Substantia alba
Substantia grisea
tissue sodium concentration (TSC)
Water content
Title Correlation of quantitative conductivity mapping and total tissue sodium concentration at 3T/4T
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27787
https://www.ncbi.nlm.nih.gov/pubmed/31095776
https://www.proquest.com/docview/2256394587
https://www.proquest.com/docview/2232056336
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3La9wwEIeHEEjppXn0kc2jqKWHXLy7tiQ_yCmkXZbC9hA2kEPBSJZVSrN2krUv-eszI9kOSVsovRk0tiyPNPrZHn0C-GQ5t2WhpoHB6S0QJp0GqbLTQBJzkhhL2uGaFt_i-aX4eiWvNuC0Xwvj-RDDBzcaGS5e0wBXej15hIau7lbjKMH-hvE35DFx8z9fPKKjsswTmBNBcSYTPVVoGk2GM5_ORb8JzKd61U04s2343t-qzzP5NW4bPS7un1Ec_7MtO_CqE6LszPecXdgoqz14seh-te_BlssNLdavIT-nHTx8zhyrLbttVeWWpmGgZPg6TcRYtwUFWymiPfxgqjKsqVHWs8b5la1r87NdkbFPBnWXUg3jy4lYvoHL2Zfl-Tzo9mUICi55Emgd6sRyFHpch8LGUqcmUZkxibQ6tQYVg9CR0galTqTTsuA2kiYjdH4iQxXyt7BZ1VW5D0xoKdPY6tiii0Qc6kJmmYpSovirVNoRnPQeyosOWk57Z1znHrcc5fjocvfoRvBxML3xpI4_GR31bs67wbrOMaShThOSij8MxTjM6N-Jqsq6JRseoVbkPB7BO989hloIropNw5IT5-S_V58vLhbu4ODfTQ_hJYq0zCcQHsFmc9eWxyiEGv3e9fgHo7QDXw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Lb9QwEIdHpQjaC4_SwkIBgzj0kt1NbOchcUGFaoGmh2or9YIiO44Rgk2gm1z61zNjJ6nKQ0LcInkSJ5mx_XMy_gzwynJuq1LNA4PDWyBMOg9SZeeBJOYkMZa0wzXlJ_HiTHw4l-cb8HpYC-P5EOMHN2oZrr-mBk4fpGdX1NDVxWoaJRhwN-CmQKFBU6-3p1fwqCzzDOZEUE-TiYErNI9m46nXR6PfJOZ1xeqGnKO78Gm4WZ9p8nXatXpaXv7Ccfzfp7kHd3otyt744LkPG1W9A7fz_m_7Dtxy6aHl-gEUh7SJh0-bY41lPzpVu9Vp2FcynFETNNbtQsFWioAPn5mqDWsbVPasda5l68Z86VZk7PNB3aVUy_hyJpa7cHb0bnm4CPqtGYKSS54EWoc6sRy1HtehsLHUqUlUZkwirU6tQdEgdKS0QbUT6bQquY2kyYien8hQhXwPNuumrh4BE1rKNLY6tugjEYe6lFmmopRA_iqVdgIHg4uKsueW0_YZ3wpPXI4KfHWFe3UTeDmafvewjj8Z7Q9-Lvr2ui6wV0OpJiQVvxiLsaXR7xNVV01HNjxCuch5PIGHPj7GWoivio-GJQfOy3-vvshPc3fw-N9Nn8PWYpkfF8fvTz4-gW3UbJnPJ9yHzfaiq56iLmr1Mxf-PwHZ1gd-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Lb9QwEIdHpYiKC4_yWihgEIdesruJ7TzECRVW5bEVqrZSD0iWHccIwSalm1z465mxk1TlISFukTyJY48fv8TjzwAvHOeuKvU8sji9RcLm8yjXbh5JYk4SY8l4XNPyKD08Ee9O5ekWvBz2wgQ-xPjDjXqGH6-pg59ZN7uAhq7P19Mkw_Z2Ba6KFJUEKaLjC3ZUUQQEcyZooCnEgBWaJ7Px1suT0W8K87Jg9TPO4iZ8Gt41BJp8nXatmZY_fsE4_mdhbsGNXomyV6Hp3Iatqt6FnWW_1r4L13xwaLm5A-qAjvAIQXOscex7p2u_Nw1HSobf04SM9WdQsLUm3MNnpmvL2gZ1PWu9Y9mmsV-6NRmHaFD_KN0yvpqJ1V04WbxZHRxG_cEMUcklzyJjYpM5jkqPm1i4VJrcZrqwNpPO5M6iZBAm0cai1klMXpXcJdIWxM7PZKxjfg-266auHgATRso8dSZ16CKRxqaURaGTnDD-OpduAvuDh1TZU8vp8IxvKvCWE4VVp3zVTeD5aHoWUB1_Mtob3Kz63rpROKahUBOSkp-NydjPaPFE11XTkQ1PUCxynk7gfmgeYy5EV8WiYcq-d_Lfs1fL46W_ePjvpk9h5-Prhfrw9uj9I7iOgq0IwYR7sN2ed9VjFEWteeIb_0_B4AYt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlation+of+quantitative+conductivity+mapping+and+total+tissue+sodium+concentration+at+3T%2F4T&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Liao%2C+Yupeng&rft.au=Lechea%2C+Nazim&rft.au=Magill%2C+Arthur+W.&rft.au=Worthoff%2C+Wieland+A.&rft.date=2019-10-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=82&rft.issue=4&rft.spage=1518&rft.epage=1526&rft_id=info:doi/10.1002%2Fmrm.27787&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_27787
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon