Correlation of quantitative conductivity mapping and total tissue sodium concentration at 3T/4T
Purpose To investigate the correlation between electrical conductivity and sodium concentration, both measured in vivo, in the human brain. Methods Conductivity measurements were performed on samples with different sodium (Na+) and agarose concentrations using a dielectric probe, and the correlation...
Saved in:
Published in | Magnetic resonance in medicine Vol. 82; no. 4; pp. 1518 - 1526 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.10.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 1522-2594 |
DOI | 10.1002/mrm.27787 |
Cover
Abstract | Purpose
To investigate the correlation between electrical conductivity and sodium concentration, both measured in vivo, in the human brain.
Methods
Conductivity measurements were performed on samples with different sodium (Na+) and agarose concentrations using a dielectric probe, and the correlation between conductivity and Na+ content was evaluated. Subsequently, brain conductivity and total Na+ content maps were measured in 8 healthy subjects using phase‐based MREPT and sodium MRI, respectively. After co‐registration and spatial normalization to the 1 mm 152 MNI brain atlas, the relationship between conductivity and tissue sodium concentration (TSC) was examined within different brain regions.
Results
The conductivities of agarose gels increased linearly with NaCl concentration, while remaining almost independent of agarose content. When measured in healthy subjects, conductivities showed positive correlation with total tissue sodium concentration (R = 0.39, P < 0.005). The same trend was found in gray matter (R = 0.36, P < 0.005) and in white matter (R = 0.28, P < 0.05).
Conclusion
Tissue conductivity shows a positive correlation with total sodium concentration. Conductivity might serve as a novel technique to visualize the total tissue electrolyte concentration, although refinements in the consideration of e.g., tissue water content, would be necessary to improve the quantitative value. |
---|---|
AbstractList | Purpose
To investigate the correlation between electrical conductivity and sodium concentration, both measured in vivo, in the human brain.
Methods
Conductivity measurements were performed on samples with different sodium (Na+) and agarose concentrations using a dielectric probe, and the correlation between conductivity and Na+ content was evaluated. Subsequently, brain conductivity and total Na+ content maps were measured in 8 healthy subjects using phase‐based MREPT and sodium MRI, respectively. After co‐registration and spatial normalization to the 1 mm 152 MNI brain atlas, the relationship between conductivity and tissue sodium concentration (TSC) was examined within different brain regions.
Results
The conductivities of agarose gels increased linearly with NaCl concentration, while remaining almost independent of agarose content. When measured in healthy subjects, conductivities showed positive correlation with total tissue sodium concentration (R = 0.39, P < 0.005). The same trend was found in gray matter (R = 0.36, P < 0.005) and in white matter (R = 0.28, P < 0.05).
Conclusion
Tissue conductivity shows a positive correlation with total sodium concentration. Conductivity might serve as a novel technique to visualize the total tissue electrolyte concentration, although refinements in the consideration of e.g., tissue water content, would be necessary to improve the quantitative value. To investigate the correlation between electrical conductivity and sodium concentration, both measured in vivo, in the human brain. Conductivity measurements were performed on samples with different sodium (Na ) and agarose concentrations using a dielectric probe, and the correlation between conductivity and Na content was evaluated. Subsequently, brain conductivity and total Na content maps were measured in 8 healthy subjects using phase-based MREPT and sodium MRI, respectively. After co-registration and spatial normalization to the 1 mm 152 MNI brain atlas, the relationship between conductivity and tissue sodium concentration (TSC) was examined within different brain regions. The conductivities of agarose gels increased linearly with NaCl concentration, while remaining almost independent of agarose content. When measured in healthy subjects, conductivities showed positive correlation with total tissue sodium concentration (R = 0.39, P < 0.005). The same trend was found in gray matter (R = 0.36, P < 0.005) and in white matter (R = 0.28, P < 0.05). Tissue conductivity shows a positive correlation with total sodium concentration. Conductivity might serve as a novel technique to visualize the total tissue electrolyte concentration, although refinements in the consideration of e.g., tissue water content, would be necessary to improve the quantitative value. PurposeTo investigate the correlation between electrical conductivity and sodium concentration, both measured in vivo, in the human brain.MethodsConductivity measurements were performed on samples with different sodium (Na+) and agarose concentrations using a dielectric probe, and the correlation between conductivity and Na+ content was evaluated. Subsequently, brain conductivity and total Na+ content maps were measured in 8 healthy subjects using phase‐based MREPT and sodium MRI, respectively. After co‐registration and spatial normalization to the 1 mm 152 MNI brain atlas, the relationship between conductivity and tissue sodium concentration (TSC) was examined within different brain regions.ResultsThe conductivities of agarose gels increased linearly with NaCl concentration, while remaining almost independent of agarose content. When measured in healthy subjects, conductivities showed positive correlation with total tissue sodium concentration (R = 0.39, P < 0.005). The same trend was found in gray matter (R = 0.36, P < 0.005) and in white matter (R = 0.28, P < 0.05).ConclusionTissue conductivity shows a positive correlation with total sodium concentration. Conductivity might serve as a novel technique to visualize the total tissue electrolyte concentration, although refinements in the consideration of e.g., tissue water content, would be necessary to improve the quantitative value. To investigate the correlation between electrical conductivity and sodium concentration, both measured in vivo, in the human brain.PURPOSETo investigate the correlation between electrical conductivity and sodium concentration, both measured in vivo, in the human brain.Conductivity measurements were performed on samples with different sodium (Na+ ) and agarose concentrations using a dielectric probe, and the correlation between conductivity and Na+ content was evaluated. Subsequently, brain conductivity and total Na+ content maps were measured in 8 healthy subjects using phase-based MREPT and sodium MRI, respectively. After co-registration and spatial normalization to the 1 mm 152 MNI brain atlas, the relationship between conductivity and tissue sodium concentration (TSC) was examined within different brain regions.METHODSConductivity measurements were performed on samples with different sodium (Na+ ) and agarose concentrations using a dielectric probe, and the correlation between conductivity and Na+ content was evaluated. Subsequently, brain conductivity and total Na+ content maps were measured in 8 healthy subjects using phase-based MREPT and sodium MRI, respectively. After co-registration and spatial normalization to the 1 mm 152 MNI brain atlas, the relationship between conductivity and tissue sodium concentration (TSC) was examined within different brain regions.The conductivities of agarose gels increased linearly with NaCl concentration, while remaining almost independent of agarose content. When measured in healthy subjects, conductivities showed positive correlation with total tissue sodium concentration (R = 0.39, P < 0.005). The same trend was found in gray matter (R = 0.36, P < 0.005) and in white matter (R = 0.28, P < 0.05).RESULTSThe conductivities of agarose gels increased linearly with NaCl concentration, while remaining almost independent of agarose content. When measured in healthy subjects, conductivities showed positive correlation with total tissue sodium concentration (R = 0.39, P < 0.005). The same trend was found in gray matter (R = 0.36, P < 0.005) and in white matter (R = 0.28, P < 0.05).Tissue conductivity shows a positive correlation with total sodium concentration. Conductivity might serve as a novel technique to visualize the total tissue electrolyte concentration, although refinements in the consideration of e.g., tissue water content, would be necessary to improve the quantitative value.CONCLUSIONTissue conductivity shows a positive correlation with total sodium concentration. Conductivity might serve as a novel technique to visualize the total tissue electrolyte concentration, although refinements in the consideration of e.g., tissue water content, would be necessary to improve the quantitative value. |
Author | Gras, Vincent Liao, Yupeng Worthoff, Wieland A. Magill, Arthur W. Lechea, Nazim Shah, N. Jon |
Author_xml | – sequence: 1 givenname: Yupeng surname: Liao fullname: Liao, Yupeng organization: Institute of Neuroscience and Medicine (INM‐4), Forschungszentrum Jülich – sequence: 2 givenname: Nazim surname: Lechea fullname: Lechea, Nazim organization: Institute of Neuroscience and Medicine (INM‐4), Forschungszentrum Jülich – sequence: 3 givenname: Arthur W. surname: Magill fullname: Magill, Arthur W. organization: Institute of Neuroscience and Medicine (INM‐4), Forschungszentrum Jülich – sequence: 4 givenname: Wieland A. orcidid: 0000-0001-9121-8790 surname: Worthoff fullname: Worthoff, Wieland A. organization: Institute of Neuroscience and Medicine (INM‐4), Forschungszentrum Jülich – sequence: 5 givenname: Vincent surname: Gras fullname: Gras, Vincent organization: Institute of Neuroscience and Medicine (INM‐4), Forschungszentrum Jülich – sequence: 6 givenname: N. Jon orcidid: 0000-0002-8151-6169 surname: Shah fullname: Shah, N. Jon email: n.j.shah@fz-juelich.de organization: Monash University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31095776$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1qGzEUhUVJaeyki7xAEGTTLibW72i0DKZJCwmF4qyFNNIUhRnJkTQpfvvKsbMJ7UpX8J3DvecswUmIwQFwgdE1RoispjRdEyE68QEsMCekIVyyE7BAgqGGYslOwTLnJ4SQlIJ9AqcUI8mFaBdArWNKbtTFxwDjAJ9nHYov9f_iYB-Dnfs6-rKDk95uffgNdbCwxKJHWHzOs4M5Wj9Pe7h3oaSDlS6QblZscw4-DnrM7vPxPQOPt9826-_N_c-7H-ub-6annIrGGGzEQLng1GA2tNx0VmhpreCD6QZLGGOGaGOlaInpXE8Hwq3sRL2CY43pGfhy8N2m-Dy7XNTkc-_GUQcX56wIoQTxltK2olfv0Kc4p1C3q1RFJOOdqNTlkZrN5KzaJj_ptFNv0VVgdQD6FHNOblD9a25xn4EfFUZqX46q5ajXcqri6zvFm-m_2KP7Hz-63f9B9fDr4aD4C0zdnkg |
CitedBy_id | crossref_primary_10_1002_jmri_27655 crossref_primary_10_1038_s41598_024_67014_9 crossref_primary_10_1002_hbm_26102 crossref_primary_10_1002_mrm_28685 crossref_primary_10_1021_acschemneuro_2c00027 crossref_primary_10_1007_s40846_024_00865_9 crossref_primary_10_1007_s13246_023_01248_1 crossref_primary_10_1016_j_jneumeth_2022_109721 crossref_primary_10_3390_molecules27227729 crossref_primary_10_1038_s41598_023_30363_y crossref_primary_10_1088_1361_6560_ab7308 crossref_primary_10_3174_ajnr_A7261 crossref_primary_10_1088_2057_1976_aca20b crossref_primary_10_1109_TMI_2020_2969682 crossref_primary_10_1371_journal_pone_0313199 |
Cites_doi | 10.1002/mrm.1910380624 10.1186/1743-8454-7-3 10.1080/16070658.1981.11689230 10.1007/s13311-011-0087-4 10.1038/srep31269 10.1109/TMI.2013.2251653 10.1002/mrm.25096 10.1016/j.neuroimage.2012.07.009 10.1109/TMI.2009.2015757 10.1088/0031-9155/41/11/001 10.1002/mrm.23225 10.1007/s00330-017-4942-5 10.1002/mrm.22357 10.1117/12.480000 10.1016/j.msec.2010.08.018 10.1006/nimg.2002.1092 10.1002/nbm.3729 10.1002/hbm.460020402 10.1002/mrm.25309 10.1016/j.msec.2012.07.024 10.1007/s00330-017-5291-0 10.1148/radiol.13130757 10.1002/mrm.25891 10.1002/mrm.24637 10.1148/radiol.13131725 10.1088/0031-9155/39/1/008 10.1371/journal.pone.0179276 10.1038/s41598-017-18515-3 10.1002/mrm.20868 10.1109/TEI.1984.298769 10.1016/j.jmr.2017.03.003 10.1002/mrm.1910070103 10.1109/10.1374 10.1002/jmri.24803 10.1088/0031-9155/41/11/003 10.1016/j.neuroimage.2015.03.025 10.1088/0031-9155/25/6/012 10.1016/j.neuroimage.2014.03.079 10.1016/j.neuroimage.2007.10.037 10.1016/j.jmr.2011.08.005 10.1007/978-1-61737-992-5_3 10.1007/s10334-013-0387-2 10.1002/mrm.26193 10.1002/mrm.25869 10.1371/journal.pone.0113202 10.1088/0031-9155/41/11/002 10.1088/0031-9155/36/6/002 10.1002/nbm.2813 |
ContentType | Journal Article |
Copyright | 2019 International Society for Magnetic Resonance in Medicine 2019 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2019 International Society for Magnetic Resonance in Medicine – notice: 2019 International Society for Magnetic Resonance in Medicine. |
DBID | AAYXX CITATION NPM 8FD FR3 K9. M7Z P64 7X8 |
DOI | 10.1002/mrm.27787 |
DatabaseName | CrossRef PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Biochemistry Abstracts 1 MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 1526 |
ExternalDocumentID | 31095776 10_1002_mrm_27787 MRM27787 |
Genre | technicalNote Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: China Scholarship Council funderid: 20126090020 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. M7Z P64 7X8 |
ID | FETCH-LOGICAL-c3537-bb1b7f35753b14f65b8d7a9dd75fb8fd2444b2abd9762b8ec3f25d98757751a13 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Jul 11 07:38:05 EDT 2025 Sun Jul 13 03:56:27 EDT 2025 Wed Feb 19 02:31:31 EST 2025 Tue Jul 01 01:21:08 EDT 2025 Thu Apr 24 23:05:03 EDT 2025 Wed Jan 22 16:42:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | sodium MRI tissue sodium concentration (TSC) sodium quantification electrical conductivity magnetic resonance electrical properties tomography (MREPT) |
Language | English |
License | 2019 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3537-bb1b7f35753b14f65b8d7a9dd75fb8fd2444b2abd9762b8ec3f25d98757751a13 |
Notes | Funding information China Scholarship Council (20126090020). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8151-6169 0000-0001-9121-8790 |
PMID | 31095776 |
PQID | 2256394587 |
PQPubID | 1016391 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2232056336 proquest_journals_2256394587 pubmed_primary_31095776 crossref_citationtrail_10_1002_mrm_27787 crossref_primary_10_1002_mrm_27787 wiley_primary_10_1002_mrm_27787_MRM27787 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2019 2019-10-00 20191001 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2002; 16 2011; 213 2018; 28 1980; 25 2013; 26 1991; 36 2011; 711 2012 2015; 73 2006; 55 2013; 269 2008; 39 2014; 27 2016; 76 2011; 31 1988; 35 2014; 271 2004 2003 2017; 277 2010; 63 2012; 32 2009; 28 2016; 6 2017; 30 2013; 32 2015; 42 2017; 77 2015; 112 1988; 7 2017; 12 2019 1996; 41 1981; 16 2018 1997; 38 1984 2014 1994; 39 2013 2014; 96 2014; 9 2012; 68 2014; 71 1994; 2 2010; 7 2012; 63 2012; 9 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 Augustine GJ (e_1_2_7_42_1) 2004 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 Liao Y (e_1_2_7_15_1) 2019 |
References_xml | – volume: 711 start-page: 29 year: 2011 end-page: 64 article-title: Measuring the absolute water content of the brain using quantitative MRI publication-title: Meth Mol Biol – volume: 36 start-page: 723 year: 1991 end-page: 734 article-title: Extraction of conductivity and permittivity using magnetic resonance imaging publication-title: Phys Med Biol – volume: 28 start-page: 3204 year: 2018 end-page: 3214 article-title: Correlation between electrical conductivity and apparent diffusion coefficient in breast cancer: effect of necrosis on magnetic resonance imaging publication-title: Eur Radiol – volume: 9 start-page: 65 year: 2012 end-page: 72 article-title: Novel treatment targets for cerebral edema publication-title: Neurotherapeutics – volume: 28 start-page: 348 year: 2018 end-page: 355 article-title: Noninvasive electrical conductivity measurement by MRI: a test of its validity and the electrical conductivity characteristics of glioma publication-title: Eur Radiol – start-page: 40 year: 2004 – volume: 213 start-page: 344 year: 2011 end-page: 346 article-title: The principle of reciprocity publication-title: J Magn Reson – start-page: 471 year: 2003 end-page: 477 – volume: 28 start-page: 1365 year: 2009 end-page: 1374 article-title: Determination of electric conductivity and local SAR via B1 mapping publication-title: IEEE Trans Med Imaging – volume: 73 start-page: 342 year: 2015 end-page: 351 article-title: High‐resolution quantitative sodium imaging at 9.4 Tesla publication-title: Magn Reson Med – volume: 71 start-page: 354 year: 2014 end-page: 363 article-title: Electrical properties tomography in the human brain at 1.5, 3, and 7T: a comparison study publication-title: Magn Reson Med – volume: 41 start-page: 2231 year: 1996 end-page: 2249 article-title: The dielectric properties of biological tissues: I. Literature survey publication-title: Phys Med Biol – volume: 2 start-page: 189 year: 1994 end-page: 210 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum Brain Mapp – volume: 38 start-page: 1022 year: 1997 end-page: 1028 article-title: Spectrally weighted twisted projection imaging: Reducing T2 signal attenuation effects in fast three‐dimensional sodium imaging publication-title: Magn Reson Med – year: 2014 – volume: 7 start-page: 3 year: 2010 article-title: Cerebrospinal fluid sodium rhythms publication-title: Cerebrospinal Fluid Res – volume: 32 start-page: 2664 year: 2012 end-page: 2667 article-title: Comparison of electrical conductivities of various brain phantom gels: developing a ‘brain gel model’ publication-title: Mater Sci Eng C Mater Biol Appl – volume: 63 start-page: 1315 year: 2010 end-page: 1322 article-title: B1 mapping by Bloch‐Siegert shift publication-title: Magn Reson Med – volume: 42 start-page: 371 year: 2015 end-page: 378 article-title: Initial study on in vivo conductivity mapping of breast cancer using MRI publication-title: J Magn Reson Imaging – volume: 76 start-page: 214 year: 2016 end-page: 221 article-title: Simultaneous quantitative mapping of conductivity and susceptibility using a double‐echo ultrashort echo time sequence: example using a hematoma evolution study publication-title: Magn Reson Med – volume: 12 year: 2017 article-title: Temperature and concentration calibration of aqueous polyvinylpyrrolidone (PVP) solutions for isotropic diffusion MRI phantoms publication-title: PLoS ONE – volume: 112 start-page: 353 year: 2015 end-page: 363 article-title: Partial volume correction for in vivo (23)Na‐MRI data of the human brain publication-title: NeuroImage – volume: 16 start-page: 754 year: 2002 end-page: 764 article-title: New robust 3‐D phase unwrapping algorithms: application to magnetic field mapping and undistorting echoplanar images publication-title: NeuroImage – volume: 55 start-page: 1075 year: 2006 end-page: 1082 article-title: Three‐dimensional radial ultrashort echo‐time imaging with T2 adapted sampling publication-title: Magn Reson Med – volume: 39 start-page: 1682 year: 2008 end-page: 1692 article-title: Development of a robust method for generating 7T multichannel phase images of the brain with application to normal volunteers and patients with neurological diseases publication-title: NeuroImage – volume: 35 start-page: 257 year: 1988 end-page: 263 article-title: Dielectric properties of breast carcinoma and the surrounding tissues publication-title: IEEE Trans Biomed Eng – volume: 30 year: 2017 article-title: Electric properties tomography: biochemical, physical and technical background, evaluation and clinical applications publication-title: NMR Biomed – volume: 16 start-page: 107 year: 1981 end-page: 119 article-title: Dielectric properties of tumor and normal tissues at radio through microwave frequencies publication-title: J Microw Power – volume: 9 year: 2014 article-title: Use of electrical impedance tomography to monitor regional cerebral edema during clinical dehydration treatment publication-title: PLoS ONE – year: 2018 article-title: Extracellular total electrolyte concentration imaging for electrical brain stimulation (EBS) publication-title: Sci Rep – volume: 41 start-page: 2271 year: 1996 end-page: 2293 article-title: The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues publication-title: Phys Med Biol – volume: 269 start-page: 569 year: 2013 end-page: 576 article-title: In vivo 39K MR imaging of human muscle and brain publication-title: Radiology – volume: 26 start-page: 9 year: 2013 end-page: 19 article-title: Noninvasive quantification of intracellular sodium in human brain using ultrahigh‐field MRI publication-title: NMR Biomed – volume: 25 start-page: 1149 year: 1980 end-page: 1159 article-title: The UHF and microwave dielectric properties of normal and tumour tissues: variation in dielectric properties with tissue water content publication-title: Phys Med Biol – volume: 6 start-page: 31269 year: 2016 article-title: Sodium MRI in multiple sclerosis is compatible with intracellular sodium accumulation and inflammation‐induced hyper‐cellularity of acute brain lesions publication-title: Sci Rep – volume: 77 start-page: 1094 year: 2017 end-page: 1103 article-title: Electrical conductivity and permittivity maps of brain tissues derived from water content based on T1 ‐weighted acquisition publication-title: Magn Reson Med – volume: 31 start-page: 494 year: 2011 end-page: 498 article-title: NaCl doping and the conductivity of agar phantoms publication-title: Mater Sci Eng C Mater Biol Appl – volume: 277 start-page: 162 year: 2017 end-page: 168 article-title: Comparison of potassium and sodium binding in vivo and in agarose samples using TQTPPI pulse sequence publication-title: J Magn Reson – volume: 96 start-page: 44 year: 2014 end-page: 53 article-title: Mapping tissue sodium concentration in the human brain: a comparison of MR sequences at 9.4 Tesla publication-title: NeuroImage – volume: 41 start-page: 2251 year: 1996 end-page: 2269 article-title: The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz publication-title: Phys Med Biol – volume: 39 start-page: 133 year: 1994 end-page: 144 article-title: The effect of hyperthermia‐induced tissue conductivity changes on electrical impedance temperature mapping publication-title: Phys Med Biol – start-page: 453 year: 1984 end-page: 474 article-title: Dielectric properties of biological materials: biophysical and medical applications publication-title: IEEE Trans Elect Insul – year: 2019 article-title: An MR technique for simultaneous quantitative imaging of water content, conductivity and susceptibility, with application to brain tumours using a 3T hybrid MR‐PET scanner publication-title: Sci Rep – year: 2012 – volume: 271 start-page: 585 year: 2014 end-page: 595 article-title: In vivo 35Cl MR imaging in humans: a feasibility study publication-title: Radiology – volume: 73 start-page: 2025 year: 2015 end-page: 2029 article-title: On conductivity, permittivity, apparent diffusion coefficient, and their usefulness as cancer markers at MRI frequencies publication-title: Magn Reson Med – volume: 27 start-page: 63 year: 2014 end-page: 70 article-title: vivo chlorine and sodium MRI of rat brain at 21.1 T publication-title: MAGMA – volume: 32 start-page: 1058 year: 2013 end-page: 1067 article-title: From complex B1 mapping to local SAR estimation for human brain MR imaging using multi‐channel transceiver coil at 7T publication-title: IEEE Trans Med Imaging – volume: 63 start-page: 517 year: 2012 end-page: 524 article-title: Increased brain tissue sodium concentration in Huntington's Disease ‐ a sodium imaging study at 4 T publication-title: NeuroImage – volume: 7 start-page: 11 year: 1988 end-page: 22 article-title: In vivo magnetic resonance imaging of sodium in the human body publication-title: Magn Reson Med – volume: 76 start-page: 530 year: 2016 end-page: 539 article-title: MR‐based conductivity imaging using multiple receiver coils publication-title: Magn Reson Med – volume: 68 start-page: 227 year: 2012 end-page: 233 article-title: High‐resolution sodium imaging of human brain at 7 T publication-title: Magn Reson Med – year: 2013 – ident: e_1_2_7_28_1 doi: 10.1002/mrm.1910380624 – ident: e_1_2_7_34_1 doi: 10.1186/1743-8454-7-3 – ident: e_1_2_7_6_1 doi: 10.1080/16070658.1981.11689230 – ident: e_1_2_7_48_1 doi: 10.1007/s13311-011-0087-4 – ident: e_1_2_7_35_1 doi: 10.1038/srep31269 – ident: e_1_2_7_11_1 doi: 10.1109/TMI.2013.2251653 – ident: e_1_2_7_52_1 doi: 10.1002/mrm.25096 – ident: e_1_2_7_53_1 doi: 10.1016/j.neuroimage.2012.07.009 – ident: e_1_2_7_10_1 doi: 10.1109/TMI.2009.2015757 – ident: e_1_2_7_2_1 doi: 10.1088/0031-9155/41/11/001 – ident: e_1_2_7_51_1 doi: 10.1002/mrm.23225 – ident: e_1_2_7_14_1 doi: 10.1007/s00330-017-4942-5 – ident: e_1_2_7_31_1 doi: 10.1002/mrm.22357 – ident: e_1_2_7_9_1 doi: 10.1117/12.480000 – ident: e_1_2_7_38_1 doi: 10.1016/j.msec.2010.08.018 – ident: e_1_2_7_27_1 doi: 10.1006/nimg.2002.1092 – ident: e_1_2_7_46_1 doi: 10.1002/nbm.3729 – ident: e_1_2_7_24_1 – ident: e_1_2_7_36_1 doi: 10.1002/hbm.460020402 – ident: e_1_2_7_16_1 doi: 10.1002/mrm.25309 – ident: e_1_2_7_19_1 – ident: e_1_2_7_49_1 – ident: e_1_2_7_37_1 doi: 10.1016/j.msec.2012.07.024 – ident: e_1_2_7_17_1 doi: 10.1007/s00330-017-5291-0 – ident: e_1_2_7_23_1 doi: 10.1148/radiol.13130757 – ident: e_1_2_7_25_1 doi: 10.1002/mrm.25891 – ident: e_1_2_7_12_1 doi: 10.1002/mrm.24637 – ident: e_1_2_7_21_1 doi: 10.1148/radiol.13131725 – ident: e_1_2_7_7_1 doi: 10.1088/0031-9155/39/1/008 – ident: e_1_2_7_45_1 doi: 10.1371/journal.pone.0179276 – ident: e_1_2_7_44_1 doi: 10.1038/s41598-017-18515-3 – ident: e_1_2_7_30_1 doi: 10.1002/mrm.20868 – year: 2019 ident: e_1_2_7_15_1 article-title: An MR technique for simultaneous quantitative imaging of water content, conductivity and susceptibility, with application to brain tumours using a 3T hybrid MR‐PET scanner publication-title: Sci Rep – ident: e_1_2_7_39_1 doi: 10.1109/TEI.1984.298769 – ident: e_1_2_7_43_1 doi: 10.1016/j.jmr.2017.03.003 – start-page: 40 volume-title: Neuroscience year: 2004 ident: e_1_2_7_42_1 – ident: e_1_2_7_20_1 doi: 10.1002/mrm.1910070103 – ident: e_1_2_7_5_1 doi: 10.1109/10.1374 – ident: e_1_2_7_13_1 doi: 10.1002/jmri.24803 – ident: e_1_2_7_4_1 doi: 10.1088/0031-9155/41/11/003 – ident: e_1_2_7_54_1 doi: 10.1016/j.neuroimage.2015.03.025 – ident: e_1_2_7_41_1 doi: 10.1088/0031-9155/25/6/012 – ident: e_1_2_7_29_1 doi: 10.1016/j.neuroimage.2014.03.079 – ident: e_1_2_7_26_1 doi: 10.1016/j.neuroimage.2007.10.037 – ident: e_1_2_7_33_1 doi: 10.1016/j.jmr.2011.08.005 – ident: e_1_2_7_40_1 doi: 10.1007/978-1-61737-992-5_3 – ident: e_1_2_7_22_1 doi: 10.1007/s10334-013-0387-2 – ident: e_1_2_7_18_1 doi: 10.1002/mrm.26193 – ident: e_1_2_7_50_1 doi: 10.1002/mrm.25869 – ident: e_1_2_7_47_1 doi: 10.1371/journal.pone.0113202 – ident: e_1_2_7_3_1 doi: 10.1088/0031-9155/41/11/002 – ident: e_1_2_7_8_1 doi: 10.1088/0031-9155/36/6/002 – ident: e_1_2_7_32_1 doi: 10.1002/nbm.2813 |
SSID | ssj0009974 |
Score | 2.393592 |
Snippet | Purpose
To investigate the correlation between electrical conductivity and sodium concentration, both measured in vivo, in the human brain.
Methods... To investigate the correlation between electrical conductivity and sodium concentration, both measured in vivo, in the human brain. Conductivity measurements... PurposeTo investigate the correlation between electrical conductivity and sodium concentration, both measured in vivo, in the human brain.MethodsConductivity... To investigate the correlation between electrical conductivity and sodium concentration, both measured in vivo, in the human brain.PURPOSETo investigate the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1518 |
SubjectTerms | Brain Brain mapping Conductivity Electrical conductivity Electrical resistivity Gels In vivo methods and tests magnetic resonance electrical properties tomography (MREPT) Magnetic resonance imaging Mapping Measurement methods Moisture content Sodium Sodium chloride sodium MRI sodium quantification Substantia alba Substantia grisea tissue sodium concentration (TSC) Water content |
Title | Correlation of quantitative conductivity mapping and total tissue sodium concentration at 3T/4T |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27787 https://www.ncbi.nlm.nih.gov/pubmed/31095776 https://www.proquest.com/docview/2256394587 https://www.proquest.com/docview/2232056336 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3La9wwEIeHEEjppXn0kc2jqKWHXLy7tiQ_yCmkXZbC9hA2kEPBSJZVSrN2krUv-eszI9kOSVsovRk0tiyPNPrZHn0C-GQ5t2WhpoHB6S0QJp0GqbLTQBJzkhhL2uGaFt_i-aX4eiWvNuC0Xwvj-RDDBzcaGS5e0wBXej15hIau7lbjKMH-hvE35DFx8z9fPKKjsswTmBNBcSYTPVVoGk2GM5_ORb8JzKd61U04s2343t-qzzP5NW4bPS7un1Ec_7MtO_CqE6LszPecXdgoqz14seh-te_BlssNLdavIT-nHTx8zhyrLbttVeWWpmGgZPg6TcRYtwUFWymiPfxgqjKsqVHWs8b5la1r87NdkbFPBnWXUg3jy4lYvoHL2Zfl-Tzo9mUICi55Emgd6sRyFHpch8LGUqcmUZkxibQ6tQYVg9CR0galTqTTsuA2kiYjdH4iQxXyt7BZ1VW5D0xoKdPY6tiii0Qc6kJmmYpSovirVNoRnPQeyosOWk57Z1znHrcc5fjocvfoRvBxML3xpI4_GR31bs67wbrOMaShThOSij8MxTjM6N-Jqsq6JRseoVbkPB7BO989hloIropNw5IT5-S_V58vLhbu4ODfTQ_hJYq0zCcQHsFmc9eWxyiEGv3e9fgHo7QDXw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Lb9QwEIdHpQjaC4_SwkIBgzj0kt1NbOchcUGFaoGmh2or9YIiO44Rgk2gm1z61zNjJ6nKQ0LcInkSJ5mx_XMy_gzwynJuq1LNA4PDWyBMOg9SZeeBJOYkMZa0wzXlJ_HiTHw4l-cb8HpYC-P5EOMHN2oZrr-mBk4fpGdX1NDVxWoaJRhwN-CmQKFBU6-3p1fwqCzzDOZEUE-TiYErNI9m46nXR6PfJOZ1xeqGnKO78Gm4WZ9p8nXatXpaXv7Ccfzfp7kHd3otyt744LkPG1W9A7fz_m_7Dtxy6aHl-gEUh7SJh0-bY41lPzpVu9Vp2FcynFETNNbtQsFWioAPn5mqDWsbVPasda5l68Z86VZk7PNB3aVUy_hyJpa7cHb0bnm4CPqtGYKSS54EWoc6sRy1HtehsLHUqUlUZkwirU6tQdEgdKS0QbUT6bQquY2kyYien8hQhXwPNuumrh4BE1rKNLY6tugjEYe6lFmmopRA_iqVdgIHg4uKsueW0_YZ3wpPXI4KfHWFe3UTeDmafvewjj8Z7Q9-Lvr2ui6wV0OpJiQVvxiLsaXR7xNVV01HNjxCuch5PIGHPj7GWoivio-GJQfOy3-vvshPc3fw-N9Nn8PWYpkfF8fvTz4-gW3UbJnPJ9yHzfaiq56iLmr1Mxf-PwHZ1gd- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Lb9QwEIdHpYiKC4_yWihgEIdesruJ7TzECRVW5bEVqrZSD0iWHccIwSalm1z465mxk1TlISFukTyJY48fv8TjzwAvHOeuKvU8sji9RcLm8yjXbh5JYk4SY8l4XNPyKD08Ee9O5ekWvBz2wgQ-xPjDjXqGH6-pg59ZN7uAhq7P19Mkw_Z2Ba6KFJUEKaLjC3ZUUQQEcyZooCnEgBWaJ7Px1suT0W8K87Jg9TPO4iZ8Gt41BJp8nXatmZY_fsE4_mdhbsGNXomyV6Hp3Iatqt6FnWW_1r4L13xwaLm5A-qAjvAIQXOscex7p2u_Nw1HSobf04SM9WdQsLUm3MNnpmvL2gZ1PWu9Y9mmsV-6NRmHaFD_KN0yvpqJ1V04WbxZHRxG_cEMUcklzyJjYpM5jkqPm1i4VJrcZrqwNpPO5M6iZBAm0cai1klMXpXcJdIWxM7PZKxjfg-266auHgATRso8dSZ16CKRxqaURaGTnDD-OpduAvuDh1TZU8vp8IxvKvCWE4VVp3zVTeD5aHoWUB1_Mtob3Kz63rpROKahUBOSkp-NydjPaPFE11XTkQ1PUCxynk7gfmgeYy5EV8WiYcq-d_Lfs1fL46W_ePjvpk9h5-Prhfrw9uj9I7iOgq0IwYR7sN2ed9VjFEWteeIb_0_B4AYt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlation+of+quantitative+conductivity+mapping+and+total+tissue+sodium+concentration+at+3T%2F4T&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Liao%2C+Yupeng&rft.au=Lechea%2C+Nazim&rft.au=Magill%2C+Arthur+W.&rft.au=Worthoff%2C+Wieland+A.&rft.date=2019-10-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=82&rft.issue=4&rft.spage=1518&rft.epage=1526&rft_id=info:doi/10.1002%2Fmrm.27787&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_27787 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |