Albedo‐Enabled Enhanced Energy Harvesting via GaAs Bifacial Thin‐Film Solar Cells

In addition to direct solar illumination to the photovoltaic cell, the albedo effect provides a unique opportunity to enhance energy harvesting. However, conventional solar cells are inefficient albedo energy harvesters because the rear side of the cell is usually blocked by a thick substrate or met...

Full description

Saved in:
Bibliographic Details
Published inAdvanced photonics research Vol. 3; no. 7
Main Authors Xing, Zhang, Nam, Seonghyun, Kim, Dahee, Baek, Yongmin, Kim, Dohyun, Park, Youngseo, Lee, Hsin-Ying, Lee, Ching-Ting, Lee, Kyusang, Heo, Junseok
Format Journal Article
LanguageEnglish
Published Hoboken John Wiley & Sons, Inc 01.07.2022
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In addition to direct solar illumination to the photovoltaic cell, the albedo effect provides a unique opportunity to enhance energy harvesting. However, conventional solar cells are inefficient albedo energy harvesters because the rear side of the cell is usually blocked by a thick substrate or metal contact. In this study, structurally thin active layers of GaAs thin‐film solar cells covered with transparent Ag nanowires that enable bifacial solar cell operations are fabricated. The GaAs bifacial thin‐film solar cell is fabricated by bonding the active regions of the solar cell on colorless polyimide sheets with highly transparent epoxy adhesives. The fabricated bifacial solar cells without any anti‐reflection coatings demonstrated power conversion efficiencies of 8.54 and 6.78% at the front and rear sides, respectively, under AM 1.5 G irradiance conditions. The increase in energy harvesting by the GaAs bifacial thin‐film solar cells was estimated, which showed approximately a 72% increase in short‐circuit current density (JSC) when the solar cells operated on a high‐reflection‐coated ground. Positioning the solar cells on snow or sand (deserts and beaches) increased JSC by ≈44 and 31%, respectively, compared to monofacial solar cells. Structurally thin active layers of GaAs thin‐film solar cells covered with transparent Ag nanowires that enable bifacial solar cell operations are fabricated. The albedo effect boosting the energy harvesting by the GaAs bifacial thin‐film solar cells is estimated to be 72% increase in the short‐circuit current density (JSC) when the solar cells operate on a high‐reflection‐coated ground.
AbstractList In addition to direct solar illumination to the photovoltaic cell, the albedo effect provides a unique opportunity to enhance energy harvesting. However, conventional solar cells are inefficient albedo energy harvesters because the rear side of the cell is usually blocked by a thick substrate or metal contact. In this study, structurally thin active layers of GaAs thin‐film solar cells covered with transparent Ag nanowires that enable bifacial solar cell operations are fabricated. The GaAs bifacial thin‐film solar cell is fabricated by bonding the active regions of the solar cell on colorless polyimide sheets with highly transparent epoxy adhesives. The fabricated bifacial solar cells without any anti‐reflection coatings demonstrated power conversion efficiencies of 8.54 and 6.78% at the front and rear sides, respectively, under AM 1.5 G irradiance conditions. The increase in energy harvesting by the GaAs bifacial thin‐film solar cells was estimated, which showed approximately a 72% increase in short‐circuit current density (JSC) when the solar cells operated on a high‐reflection‐coated ground. Positioning the solar cells on snow or sand (deserts and beaches) increased JSC by ≈44 and 31%, respectively, compared to monofacial solar cells. Structurally thin active layers of GaAs thin‐film solar cells covered with transparent Ag nanowires that enable bifacial solar cell operations are fabricated. The albedo effect boosting the energy harvesting by the GaAs bifacial thin‐film solar cells is estimated to be 72% increase in the short‐circuit current density (JSC) when the solar cells operate on a high‐reflection‐coated ground.
In addition to direct solar illumination to the photovoltaic cell, the albedo effect provides a unique opportunity to enhance energy harvesting. However, conventional solar cells are inefficient albedo energy harvesters because the rear side of the cell is usually blocked by a thick substrate or metal contact. In this study, structurally thin active layers of GaAs thin‐film solar cells covered with transparent Ag nanowires that enable bifacial solar cell operations are fabricated. The GaAs bifacial thin‐film solar cell is fabricated by bonding the active regions of the solar cell on colorless polyimide sheets with highly transparent epoxy adhesives. The fabricated bifacial solar cells without any anti‐reflection coatings demonstrated power conversion efficiencies of 8.54 and 6.78% at the front and rear sides, respectively, under AM 1.5 G irradiance conditions. The increase in energy harvesting by the GaAs bifacial thin‐film solar cells was estimated, which showed approximately a 72% increase in short‐circuit current density ( J SC ) when the solar cells operated on a high‐reflection‐coated ground. Positioning the solar cells on snow or sand (deserts and beaches) increased J SC by ≈44 and 31%, respectively, compared to monofacial solar cells.
In addition to direct solar illumination to the photovoltaic cell, the albedo effect provides a unique opportunity to enhance energy harvesting. However, conventional solar cells are inefficient albedo energy harvesters because the rear side of the cell is usually blocked by a thick substrate or metal contact. In this study, structurally thin active layers of GaAs thin‐film solar cells covered with transparent Ag nanowires that enable bifacial solar cell operations are fabricated. The GaAs bifacial thin‐film solar cell is fabricated by bonding the active regions of the solar cell on colorless polyimide sheets with highly transparent epoxy adhesives. The fabricated bifacial solar cells without any anti‐reflection coatings demonstrated power conversion efficiencies of 8.54 and 6.78% at the front and rear sides, respectively, under AM 1.5 G irradiance conditions. The increase in energy harvesting by the GaAs bifacial thin‐film solar cells was estimated, which showed approximately a 72% increase in short‐circuit current density (JSC) when the solar cells operated on a high‐reflection‐coated ground. Positioning the solar cells on snow or sand (deserts and beaches) increased JSC by ≈44 and 31%, respectively, compared to monofacial solar cells.
Author Lee, Kyusang
Xing, Zhang
Heo, Junseok
Baek, Yongmin
Park, Youngseo
Kim, Dahee
Lee, Ching-Ting
Nam, Seonghyun
Kim, Dohyun
Lee, Hsin-Ying
Author_xml – sequence: 1
  givenname: Zhang
  surname: Xing
  fullname: Xing, Zhang
  organization: Jimei University
– sequence: 2
  givenname: Seonghyun
  surname: Nam
  fullname: Nam, Seonghyun
  organization: Ajou University
– sequence: 3
  givenname: Dahee
  surname: Kim
  fullname: Kim, Dahee
  organization: Ajou University
– sequence: 4
  givenname: Yongmin
  surname: Baek
  fullname: Baek, Yongmin
  organization: University of Virginia
– sequence: 5
  givenname: Dohyun
  surname: Kim
  fullname: Kim, Dohyun
  organization: Ajou University
– sequence: 6
  givenname: Youngseo
  surname: Park
  fullname: Park, Youngseo
  organization: Ajou University
– sequence: 7
  givenname: Hsin-Ying
  surname: Lee
  fullname: Lee, Hsin-Ying
  organization: National Cheng Kung University
– sequence: 8
  givenname: Ching-Ting
  surname: Lee
  fullname: Lee, Ching-Ting
  organization: Yuan Ze University
– sequence: 9
  givenname: Kyusang
  surname: Lee
  fullname: Lee, Kyusang
  email: kyusang@virginia.edu
  organization: University of Virginia
– sequence: 10
  givenname: Junseok
  orcidid: 0000-0002-8125-6141
  surname: Heo
  fullname: Heo, Junseok
  email: jsheo@ajou.ac.kr
  organization: Ajou University
BookMark eNqFUctOAjEUbYwmIrp1PYlrsI9pp10iApqQaBTXTdtpoaRMsQMYdn6C3-iXOIBRd67uuTfnnPs6A8dVrCwAlwh2EYT4WpXL1MUQ7xJRHIEWZkJ0BBbk-A8-BRd1PYcNhyKCqGiBl17Qtoyf7x-DSulgy2xQzVRl9sCm6Ta7U2lj65WvptnGq2ykenV2450yXoVsMvNVox36sMieY1Ap69sQ6nNw4lSo7cV3bIPJcDDp33XGD6P7fm_cMYSSopPjHDFboAK7HBPstBEaUSe4RRRR6DihgutcQMgQ00xohiEpnbaOUFRw0gb3B9syqrlcJr9QaSuj8nJfiGkqVVp5E6wsDRaWcY6IVTnnTBFmrOPCacFonpvG6-rgtUzxdd0sLOdxnapmekkgF5xBinHD6h5YJsW6Ttb9dEVQ7m4vd4-QP49oBOIgePPBbv9hy97t49Ov9gschI0j
CitedBy_id crossref_primary_10_1364_OE_466296
Cites_doi 10.1109/JPHOTOV.2017.2756068
10.1063/1.1978979
10.1002/aenm.201201064
10.1109/PVSC40753.2019.8980829
10.1063/1.4798267
10.1038/nature09054
10.1063/1.1736034
10.1109/JPHOTOV.2016.2642642
10.1002/pip.715
10.1021/nn1005232
10.1109/JPHOTOV.2012.2198434
10.1038/srep30107
10.1039/c3tc32197e
10.1016/j.solmat.2016.06.009
10.1016/0022-0248(78)90449-9
10.1002/pip.930
10.1038/lsa.2015.61
10.1016/j.rser.2016.03.041
10.1007/s12274-011-0172-3
10.1016/j.solmat.2017.04.004
10.1002/adfm.201400453
10.1016/j.solmat.2007.08.005
10.1109/JPHOTOV.2013.2241594
10.1002/pip.3102
10.1002/aenm.201200827
10.1016/j.solmat.2014.04.005
ContentType Journal Article
Copyright 2022 The Authors. Advanced Photonics Research published by Wiley‐VCH GmbH
Copyright John Wiley & Sons, Inc. 2022
Copyright_xml – notice: 2022 The Authors. Advanced Photonics Research published by Wiley‐VCH GmbH
– notice: Copyright John Wiley & Sons, Inc. 2022
DBID 24P
WIN
AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PIMPY
PQEST
PQQKQ
PQUKI
DOA
DOI 10.1002/adpr.202100297
DatabaseName Wiley Online Library
Wiley Online Library
CrossRef
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2699-9293
EndPage n/a
ExternalDocumentID oai_doaj_org_article_dc29e68813ea4886a36cef89fb96544c
10_1002_adpr_202100297
ADPR202100297
Genre article
GrantInformation_xml – fundername: Key Scientific and Technological Program of Xiamen
  funderid: 3502Z20191016
– fundername: Ministry of Science and Technology of the Republic of China
  funderid: MOST 106-2923-E-006-008-MY2
– fundername: National Research Foundation of Korea
  funderid: 2017K2A9A1A06057314
GroupedDBID 0R~
1OC
24P
AAFWJ
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
BENPR
CCPQU
EBS
GROUPED_DOAJ
IAO
M~E
OK1
PIMPY
WIN
AAYXX
CITATION
ITC
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c3537-42416e7172f4232fbc9b15f98e15150f83598b4900616b69b6203dfbef351783
IEDL.DBID 24P
ISSN 2699-9293
IngestDate Thu Jul 04 21:01:49 EDT 2024
Fri Sep 13 09:58:22 EDT 2024
Wed Sep 25 14:11:22 EDT 2024
Sat Aug 24 00:58:43 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3537-42416e7172f4232fbc9b15f98e15150f83598b4900616b69b6203dfbef351783
ORCID 0000-0002-8125-6141
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadpr.202100297
PQID 3089860522
PQPubID 6860423
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_dc29e68813ea4886a36cef89fb96544c
proquest_journals_3089860522
crossref_primary_10_1002_adpr_202100297
wiley_primary_10_1002_adpr_202100297_ADPR202100297
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
20220701
2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced photonics research
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2017; 7
2013; 3
2015; 4
2011; 2
2010; 18
2010; 465
2007; 91
2005; 86
2014; 24
1961; 32
2011; 4
2007; 15
2016; 6
2012; 2
2012; 111
2014; 2
1978; 45
2019; 27
2019
2016; 155
2013; 113
2016; 60
2017; 167
2010; 4
2014; 125
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
Liu C. H. (e_1_2_8_25_1) 2011; 2
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_10_1
Lee K. (e_1_2_8_9_1) 2012; 111
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – volume: 60
  start-page: 1533
  year: 2016
  publication-title: Renew. Sustain. Energy Rev.
– volume: 4
  start-page: 2955
  year: 2010
  publication-title: ACS Nano
– volume: 24
  start-page: 4284
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 1233
  year: 2014
  publication-title: J. Mater. Chem. C
– volume: 4
  start-page: 1215
  year: 2011
  publication-title: Nano Res.
– volume: 2
  start-page: 303
  year: 2012
  publication-title: IEEE J. Photovoltaics
– volume: 3
  start-page: 566
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1611
  year: 2017
  publication-title: IEEE J. Photovoltaics
– volume: 7
  start-page: 702
  year: 2017
  publication-title: IEEE J. Photovoltaics
– volume: 15
  start-page: 51
  year: 2007
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 113
  start-page: 123109
  year: 2013
  publication-title: J. Appl. Phys.
– volume: 91
  start-page: 1966
  year: 2007
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 32
  start-page: 510
  year: 1961
  publication-title: J. Appl. Phys.
– volume: 18
  start-page: 155
  year: 2010
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 465
  start-page: 329
  year: 2010
  publication-title: Nature
– volume: 3
  start-page: 737
  year: 2013
  publication-title: IEEE J. Photovoltaics
– volume: 86
  start-page: 1
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 30107
  year: 2016
  publication-title: Sci. Rep.
– volume: 27
  start-page: 3
  year: 2019
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 125
  start-page: 297
  year: 2014
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 2
  start-page: 1233
  year: 2011
  publication-title: Nanoscale Res. Lett.
– volume: 3
  start-page: 991
  year: 2013
  publication-title: Adv. Energy Mater
– volume: 111
  start-page: 133901
  year: 2012
  publication-title: J. Appl. Phys.
– volume: 45
  start-page: 277
  year: 1978
  publication-title: J. Cryst. Growth
– volume: 167
  start-page: 102
  year: 2017
  publication-title: Sol. Cells
– start-page: 2528
  year: 2019
– volume: 155
  start-page: 264
  year: 2016
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 4
  start-page: 1
  year: 2015
  publication-title: Light Sci. Appl
– ident: e_1_2_8_18_1
  doi: 10.1109/JPHOTOV.2017.2756068
– ident: e_1_2_8_23_1
  doi: 10.1063/1.1978979
– ident: e_1_2_8_19_1
  doi: 10.1002/aenm.201201064
– ident: e_1_2_8_21_1
  doi: 10.1109/PVSC40753.2019.8980829
– ident: e_1_2_8_15_1
  doi: 10.1063/1.4798267
– ident: e_1_2_8_8_1
  doi: 10.1038/nature09054
– ident: e_1_2_8_2_1
  doi: 10.1063/1.1736034
– ident: e_1_2_8_5_1
  doi: 10.1109/JPHOTOV.2016.2642642
– ident: e_1_2_8_4_1
  doi: 10.1002/pip.715
– ident: e_1_2_8_24_1
  doi: 10.1021/nn1005232
– ident: e_1_2_8_28_1
  doi: 10.1109/JPHOTOV.2012.2198434
– ident: e_1_2_8_11_1
  doi: 10.1038/srep30107
– ident: e_1_2_8_12_1
  doi: 10.1039/c3tc32197e
– ident: e_1_2_8_16_1
  doi: 10.1016/j.solmat.2016.06.009
– ident: e_1_2_8_6_1
  doi: 10.1016/0022-0248(78)90449-9
– ident: e_1_2_8_7_1
  doi: 10.1002/pip.930
– volume: 2
  start-page: 1233
  year: 2011
  ident: e_1_2_8_25_1
  publication-title: Nanoscale Res. Lett.
  contributor:
    fullname: Liu C. H.
– ident: e_1_2_8_17_1
  doi: 10.1038/lsa.2015.61
– ident: e_1_2_8_27_1
  doi: 10.1016/j.rser.2016.03.041
– ident: e_1_2_8_26_1
  doi: 10.1007/s12274-011-0172-3
– volume: 111
  start-page: 133901
  year: 2012
  ident: e_1_2_8_9_1
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Lee K.
– ident: e_1_2_8_20_1
  doi: 10.1016/j.solmat.2017.04.004
– ident: e_1_2_8_10_1
  doi: 10.1002/adfm.201400453
– ident: e_1_2_8_22_1
  doi: 10.1016/j.solmat.2007.08.005
– ident: e_1_2_8_3_1
  doi: 10.1109/JPHOTOV.2013.2241594
– ident: e_1_2_8_14_1
  doi: 10.1002/pip.3102
– ident: e_1_2_8_13_1
  doi: 10.1002/aenm.201200827
– ident: e_1_2_8_29_1
  doi: 10.1016/j.solmat.2014.04.005
SSID ssj0002513159
Score 2.2342432
Snippet In addition to direct solar illumination to the photovoltaic cell, the albedo effect provides a unique opportunity to enhance energy harvesting. However,...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
SubjectTerms albedo
Annealing
bifacial solar cells
Efficiency
Electricity
Epoxy adhesives
GaAs
Light
photovoltaics
thin-film
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSgMxEA7SkxdRVKxWyUHwtLSb7GaTY1tbi6CIttBb2PxpoW6LrZ59BJ_RJzGT3Zb21IuXZbPswjCTzXyTyXyD0HVmvB8RFDbdiY2SzF9EFtvIcsqdpj4oCon2h0c2GCX343S80eoLzoSV9MCl4ppGE2EZ5zG1uZ9sLKdMW8eFU4KlSaLD6hunG8EUrMHea1Mvw4qlsUWauZkD_SeJQ7umLS8UyPq3EOYmTg2Opn-IDiqEiNulZEdozxbHaNSeKmtmv98_vVDsZHCveAvJe38D1XsYmvwAY0bxir8mOb7L2wvcmbgctsQxdOf03_Yn03f8AsEs7trpdHGChv3esDuIqo4IkaYpzaLE-1tmfQRGHCRYndJCxakT3AIuaTkOfHwqEQBMmGJCMdKixinraBpnnJ6iWjEr7BnCfkw1dcpQYxKmYpV5JAVsdE7zPNW2jm5WCpLzkvdClgzHRIIq5VqVddQB_a3fAr7q8MBbUVZWlLusWEeNlfZl9RMtJG1xwX24RUgdkWCRHaLI9u3T83p0_h-CXaB9AgUP4YBuA9WWH5_20sOQpboKM-4PDprW4A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwELYKLCwIBIjykgckpqiNnTj2hFpoqZBAVQGJzYpfpVJJCy3M_AR-I78En5sUWGCJ4iixovPjvrvzfYfQSWa8HhEUnO7ERknmLyKLbWQ55U5TbxSFQPv1DevdJ1cP6UMN9apcGDhWWe2JYaM2Ew0-8gZtcsE99iakkSvwAuh542z6HEH9KIizlsU0VtAaiRMI2K61Ozf9wdLf4vU4jUPtNMKAlNKruYrDsem7NFMgByVxKOb0S0cFKv9f-PMnig1qqLuJNkr8iFuLAd9CNVtso_vWWFkz-Xz_6IRUKIM7xWMI7fsbyO3DUAII-DSKIX4b5fgyb81we-RycJhjqN3pv-2Oxk_4FkxdfG7H49kOuut27s57UVkvIdI0pVmUeG3MrLfPiIPwq1NaqDh1gltALU3Hga1PJQJgC1NMKEaa1DhlHU3jjNNdtFpMCruHsG9TTZ0y1JiEqVhlHmcBV53TPE-1raPTSkByumDFkAv-YyJBlHIpyjpqg_yWbwGbdXgweRnKcnFIo4mwjPOY2txvKCynTFvHhVOCpUmi6-iwkr4sl9hMfk-IOiJhRP75Fdm66A-Wrf2_-zxA6wQSHcLB3EO0On95tUcefszVcTmzvgCRG9UX
  priority: 102
  providerName: ProQuest
Title Albedo‐Enabled Enhanced Energy Harvesting via GaAs Bifacial Thin‐Film Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadpr.202100297
https://www.proquest.com/docview/3089860522/abstract/
https://doaj.org/article/dc29e68813ea4886a36cef89fb96544c
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSgMxEA5aL15EUbH-lBwET0u7yW42ObZ1qwhKqS14C5s_LdStWPUoPoLP6JOYSdvVngQvYbNslmWSyXwz2fkGodPMeDsiKATdiY2SzDcii21kOeVOU-8UhYP26xt2OUqu7tK7X1n8c36IKuAGmhH2a1DwQs2aP6ShhXkCPk8Sh_pL62jDYxsO65ok_SrK4q03jUPFNMKAitIbtyVzY4s0V1-xYpkCgf8K6vyNXYPx6W2jrQVqxO35NO-gNVvuolF7oqyZfn185iEByuC8fAgH-v4CMvowFP4BFo3yHr-NC3xRtGe4M3YFhMkxVOz0Y3vjySO-BQcXd-1kMttDw14-7F5GiyoJkaYpzaLE22BmvVdGHBy6OqWFilMnuAWs0nIcOPpUIgCsMMWEYqRFjVPW0TTOON1HtXJa2gOEfZ9q6pShxiRMxSrz6AoY6pzmRaptHZ0tBSSf5lwYcs56TCSIUlairKMOyK96Cjisw43p871cqIQ0mgjLOI-pLfw2wgrKtHVcOCVYmiS6jo6X0pcLxZpJ2uKCexeMkDoiYUb--BTZPu8Pqt7hfwYdoU0CSQ_hJ91jVHt5frUnHoq8qEZYbQ200clv-oNGcOh9e_2efwOiPtdC
link.rule.ids 315,786,790,870,2115,11589,21416,27957,27958,33779,43840,46087,46511
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9tAEB6VcIALAhVEeLR7qNSTRbxrr3dPKKEJaQsRgiBxW3lfECk4gUDP_Qn8Rn5JdzZOWi70YtmWbVmzj_lmZvf7AL4UNvgRyTDpTl2SFeEgi9QlTjDhDQtBUSy0nw94_zr7cZPf1Am3Wb2scjEnxonaTgzmyI9YS0gRsDelx9OHBFWjsLpaS2iswGrGQqjSgNVOd3BxucyyBO_N0qiYRjlSUQbntmBubNGj0k6REpSmUcLpjWeKBP5vUOe_2DU6n94mbNSokbTnzbwFH1z1Ea7bY-3s5PX3SzdugLKkW93Fgn44wR19BIV_kEWjuiW_RiU5Ldsz0hn5EtPkBBU7w7u90fieXGGAS07ceDzbhmGvOzzpJ7VKQmJYzookCz6YuxCVUY9FV6-N1GnupXCIVVpeIEefziSCFa651Jy2mPXaeZanhWA70KgmldsFEq6ZYV5bZm3GdaqLgK6Qoc4bUebGNeHrwkBqOufCUHPWY6rQlGppyiZ00H7Lp5DDOt6YPN6qekgoa6h0XIiUuTJMI7xk3DgvpNeS51lmmnCwsL6qB9ZM_e0GTaCxRf7zK6r97eJyebX3_jc_w1p_eH6mzr4Pfu7DOsWtDnFp7gE0nh6f3WEAIE_6U93L_gAirdRK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagSKu9IFaw2kIBH5A4RU1sx7GPfVJeVQWt1JsVv5ZKJa3awpmfsL9xfwket822JyQuURzFUTTOeL6ZyXyD0LvCBjsiKQTdiUtYEQ6yyFziBBXe0OAUxUT71zEfzdineT4_qeLf80PUATfQjLhfg4KvrW8_kIaWdg18niSL_ZceoyeMpwLcL8ImdZQlWG-axY5phAMVZTBuR-bGlLTPH3FmmSKB_xnqPMWu0fgMn6GnB9SIO_tlvkKPXPUczTpL7ezq_s_dIBZAWTyofsSEfjiBij4MjX-ARaO6xb8XJf5Qdra4u_AlhMkxdOwMc4eL5U_8HRxc3HPL5fYFmg4H094oOXRJSAzNaZGwYIO5C14Z8ZB09dpIneVeCgdYJfUCOPo0kwBWuOZSc5JS67XzNM8KQa9Ro1pV7gbhMKaGem2ptYzrTBcBXQFDnTeizI1rovdHAan1ngtD7VmPiQJRqlqUTdQF-dV3AYd1vLDa3KqDSihriHRciIy6MmwjvKTcOC-k15LnjJkmah2lrw6KtVU0FVIEF4yQJiJxRf7xKqrTn3yrRy__Z9JbdDHpD9WXj-PPr9AlgfqH-L9uCzV2m1_udUAlO_0mfnh_ATYM1hU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Albedo%E2%80%90Enabled+Enhanced+Energy+Harvesting+via+GaAs+Bifacial+Thin%E2%80%90Film+Solar+Cells&rft.jtitle=Advanced+photonics+research&rft.au=Xing%2C+Zhang&rft.au=Nam%2C+Seonghyun&rft.au=Kim%2C+Dahee&rft.au=Baek%2C+Yongmin&rft.date=2022-07-01&rft.issn=2699-9293&rft.eissn=2699-9293&rft.volume=3&rft.issue=7&rft_id=info:doi/10.1002%2Fadpr.202100297&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adpr_202100297
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2699-9293&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2699-9293&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2699-9293&client=summon