RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments

Autonomous navigation in dynamic environments where people move unpredictably is an essential task for service robots in real-world populated scenarios. Recent works in reinforcement learning (RL) have been applied to autonomous vehicle driving and to navigation around pedestrians. In this paper, we...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 10; p. 3847
Main Authors Mackay, Andrew K, Riazuelo, Luis, Montano, Luis
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 19.05.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Autonomous navigation in dynamic environments where people move unpredictably is an essential task for service robots in real-world populated scenarios. Recent works in reinforcement learning (RL) have been applied to autonomous vehicle driving and to navigation around pedestrians. In this paper, we present a novel planner (reinforcement learning dynamic object velocity space, RL-DOVS) based on an RL technique for dynamic environments. The method explicitly considers the robot kinodynamic constraints for selecting the actions in every control period. The main contribution of our work is to use an environment model where the dynamism is represented in the robocentric velocity space as input to the learning system. The use of this dynamic information speeds the training process with respect to other techniques that learn directly either from raw sensors (vision, lidar) or from basic information about obstacle location and kinematics. We propose two approaches using RL and dynamic obstacle velocity (DOVS), RL-DOVS-A, which automatically learns the actions having the maximum utility, and RL-DOVS-D, in which the actions are selected by a human driver. Simulation results and evaluation are presented using different numbers of active agents and static and moving passive agents with random motion directions and velocities in many different scenarios. The performance of the technique is compared with other state-of-the-art techniques for solving navigation problems in environments such as ours.
AbstractList Autonomous navigation in dynamic environments where people move unpredictably is an essential task for service robots in real-world populated scenarios. Recent works in reinforcement learning (RL) have been applied to autonomous vehicle driving and to navigation around pedestrians. In this paper, we present a novel planner (reinforcement learning dynamic object velocity space, RL-DOVS) based on an RL technique for dynamic environments. The method explicitly considers the robot kinodynamic constraints for selecting the actions in every control period. The main contribution of our work is to use an environment model where the dynamism is represented in the robocentric velocity space as input to the learning system. The use of this dynamic information speeds the training process with respect to other techniques that learn directly either from raw sensors (vision, lidar) or from basic information about obstacle location and kinematics. We propose two approaches using RL and dynamic obstacle velocity (DOVS), RL-DOVS-A, which automatically learns the actions having the maximum utility, and RL-DOVS-D, in which the actions are selected by a human driver. Simulation results and evaluation are presented using different numbers of active agents and static and moving passive agents with random motion directions and velocities in many different scenarios. The performance of the technique is compared with other state-of-the-art techniques for solving navigation problems in environments such as ours.
Audience Academic
Author Mackay, Andrew K
Montano, Luis
Riazuelo, Luis
AuthorAffiliation Aragón Institute for Engineering Research (I3A), University of Zaragoza, 50009 Zaragoza, Spain; 737069@unizar.es (A.K.M.); riazuelo@unizar.es (L.R.)
AuthorAffiliation_xml – name: Aragón Institute for Engineering Research (I3A), University of Zaragoza, 50009 Zaragoza, Spain; 737069@unizar.es (A.K.M.); riazuelo@unizar.es (L.R.)
Author_xml – sequence: 1
  givenname: Andrew K
  orcidid: 0000-0003-2032-948X
  surname: Mackay
  fullname: Mackay, Andrew K
  organization: Aragón Institute for Engineering Research (I3A), University of Zaragoza, 50009 Zaragoza, Spain
– sequence: 2
  givenname: Luis
  orcidid: 0000-0002-6722-5541
  surname: Riazuelo
  fullname: Riazuelo, Luis
  organization: Aragón Institute for Engineering Research (I3A), University of Zaragoza, 50009 Zaragoza, Spain
– sequence: 3
  givenname: Luis
  orcidid: 0000-0002-0449-2300
  surname: Montano
  fullname: Montano, Luis
  organization: Aragón Institute for Engineering Research (I3A), University of Zaragoza, 50009 Zaragoza, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35632257$$D View this record in MEDLINE/PubMed
BookMark eNpdUk1v1DAUtFAR_YADfwBF4gKHFNvPSRwOSKu2QKUVlZavo_XiOMGrxC52slL_PQ5bVi3ywfbzvLFnPKfkyHlnCHnJ6DlATd9FzhkFKaon5IQJLnLJOT16sD4mpzFuKeUAIJ-RYyhK4LyoTsjPzTq_vPnx9X22MdZ1PmgzGjdla4PBWddnqZSt5sk7P_o5Zhvf-Cn7gjvb42S9y6zLLu8cjlZnV25ng3dLf3xOnnY4RPPifj4j3z9efbv4nK9vPl1frNa5hgKqnDPTNU3VMaih5K1AjqzWreS6qgzKRnBTcpN2NZYlgpSaNoKBaaVEKjSFM3K95209btVtsCOGO-XRqr8FH3qFYbJ6MEoWoumETrqTVbqWCFxDqzlCiYXROnF92HPdzs1oWp10BBwekT4-cfaX6v1O1UyIZGwieHNPEPzv2cRJjTZqMwzoTDJP8bJivOK8Fgn6-j_o1s_BJasWFIW6kgUk1Pke1WMSsPxPulen0ZpkeApBZ1N9VUlWMlqXS8PbfYMOPsZgusPrGVVLVtQhKwn76qHcA_JfOOAPOjq6DQ
CitedBy_id crossref_primary_10_3390_buildings13040966
crossref_primary_10_3390_app13158925
Cites_doi 10.1109/IVS.2018.8500427
10.1109/SSRR56537.2022.10018699
10.1177/0278364918775520
10.1109/IVS.2019.8814124
10.1109/IROS45743.2020.9341540
10.1109/ICRA48506.2021.9560893
10.1109/ICRA.2019.8794134
10.1109/ICRA48506.2021.9561049
10.1109/IROS.2018.8593871
10.1109/IVS.2017.7995727
10.1109/IROS51168.2021.9636579
10.1109/ICRA48506.2021.9560907
10.1109/ICRA48506.2021.9561595
10.1109/ICRA48506.2021.9561462
10.1109/ACCESS.2021.3050338
10.1007/BF00992698
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22103847
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Academic
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 7X7
  name: Health & Medical Collection (Proquest)
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_854bf4c225384c98a32c3dc2a36a5ecc
A781610963
10_3390_s22103847
35632257
Genre Journal Article
GrantInformation_xml – fundername: Spanish Ministerio de Ciencia e Innovación
  grantid: PID2019-105390RB-I00
– fundername: Spanish projects
  grantid: PID2019-105390RB-I00; DGA_FSE-T45_20R
GroupedDBID ---
123
2WC
3V.
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
ABDBF
ABJCF
ABUWG
ADBBV
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BPHCQ
BVXVI
CCPQU
CGR
CS3
CUY
CVF
D1I
DU5
E3Z
EBD
ECM
EIF
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
ITC
KB.
KQ8
L6V
M1P
M48
M7S
MODMG
M~E
NPM
OK1
P2P
P62
PDBOC
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
AAYXX
CITATION
BGLVJ
7XB
8FK
AZQEC
DWQXO
K9.
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c3537-21efbb7f139362d4a2a19cd82c77ea8b42e62e2c79a66a388c0b413ed88a04c03
IEDL.DBID RPM
ISSN 1424-8220
IngestDate Tue Oct 22 15:15:16 EDT 2024
Tue Sep 17 21:25:30 EDT 2024
Fri Oct 25 05:08:19 EDT 2024
Tue Oct 29 01:56:10 EDT 2024
Tue Feb 13 05:09:52 EST 2024
Thu Sep 26 21:35:07 EDT 2024
Wed Oct 16 00:41:25 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords dynamic environments
autonomous navigation
navigation strategies
reinforcement learning
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3537-21efbb7f139362d4a2a19cd82c77ea8b42e62e2c79a66a388c0b413ed88a04c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2032-948X
0000-0002-0449-2300
0000-0002-6722-5541
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144338/
PMID 35632257
PQID 2670397853
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_854bf4c225384c98a32c3dc2a36a5ecc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9144338
proquest_miscellaneous_2671272294
proquest_journals_2670397853
gale_infotracacademiconefile_A781610963
crossref_primary_10_3390_s22103847
pubmed_primary_35632257
PublicationCentury 2000
PublicationDate 20220519
PublicationDateYYYYMMDD 2022-05-19
PublicationDate_xml – month: 5
  year: 2022
  text: 20220519
  day: 19
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_14
ref_13
Lorente (ref_1) 2018; 37
ref_11
ref_10
ref_3
Watkins (ref_2) 1992; 8
ref_17
ref_16
ref_15
ref_9
ref_8
Everett (ref_12) 2021; 9
ref_5
ref_4
ref_7
ref_6
References_xml – ident: ref_5
  doi: 10.1109/IVS.2018.8500427
– ident: ref_9
  doi: 10.1109/SSRR56537.2022.10018699
– volume: 37
  start-page: 867
  year: 2018
  ident: ref_1
  article-title: Model-based robocentric planning and navigation for dynamic environments
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364918775520
  contributor:
    fullname: Lorente
– ident: ref_7
  doi: 10.1109/IVS.2019.8814124
– ident: ref_8
  doi: 10.1109/IROS45743.2020.9341540
– ident: ref_14
  doi: 10.1109/ICRA48506.2021.9560893
– ident: ref_11
  doi: 10.1109/ICRA.2019.8794134
– ident: ref_6
  doi: 10.1109/ICRA48506.2021.9561049
– ident: ref_10
  doi: 10.1109/IROS.2018.8593871
– ident: ref_3
  doi: 10.1109/IVS.2017.7995727
– ident: ref_13
  doi: 10.1109/IROS51168.2021.9636579
– ident: ref_17
– ident: ref_4
  doi: 10.1109/ICRA48506.2021.9560907
– ident: ref_16
  doi: 10.1109/ICRA48506.2021.9561595
– ident: ref_15
  doi: 10.1109/ICRA48506.2021.9561462
– volume: 9
  start-page: 10357
  year: 2021
  ident: ref_12
  article-title: Collision Avoidance in Pedestrian-Rich Environments With Deep Reinforcement Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3050338
  contributor:
    fullname: Everett
– volume: 8
  start-page: 279
  year: 1992
  ident: ref_2
  article-title: Q-learning
  publication-title: Mach. Learn.
  doi: 10.1007/BF00992698
  contributor:
    fullname: Watkins
SSID ssj0023338
Score 2.4065633
Snippet Autonomous navigation in dynamic environments where people move unpredictably is an essential task for service robots in real-world populated scenarios. Recent...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 3847
SubjectTerms Analysis
Autonomous navigation
Autonomous vehicles
Barriers
Computer Simulation
Driverless cars
dynamic environments
Humans
Kinematics
Learning
navigation strategies
Neural networks
Planning
Problem Solving
reinforcement learning
Reinforcement, Psychology
Remote sensing
Robotics - methods
Robotics industry
Robots
Semantics
Sensors
Service robots
Velocity
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT-WAaMsjZUEGIXGKNrEdP7htX6oQFGmhsDfLnjjQS7Zit_39zCTZVVYcuPTohxRnPtvjL_F8w9j7RgDoEJoc2U-VK6ttHusScqWSqi0WoaYA5y9X-vJafVpUi1GqL7oT1ssD94ab2krFRgFOO2kVOBukAFmDCFKHCp_f7b6F25CpgWpJZF69jpBEUj9dCUFC4JRDZeR9OpH-f7fikS_avSc5cjwXT9mT4cTIZ_1ID9ij1B6yxyMdwSP2c_45P_v649tHPk-dEip0H_34IJ76i2MVn92tKYABmT6fL-Nyza_CfaevsWz5TcvP-tT0_HwU-faMXV-cfz-9zIeMCTnISppclKmJ0TR4rEPHVKsgQumgtgKMScFGJZIWCUsuaB2ktVBE9GIJUQmFgkI-Z3vtsk0vGY8hucIBIF5JFcqEBo8ChXUiycopZTL2bmNJf9sLY3gkFGRuvzV3xk7IxtsOpGXdVSDCfkDY_w_hjH0ghDzZD2GAMAQO4DhJu8rPjC1JNF7LjE02IPphKa680LipIVeusPntthkXEf0ZCW1Cs1OfUhghnMrYix7z7ZhlpWnTw3cxO7Nh56V2W9qb351Qt0O2ihPx-CGs8IrtC4q8IOFYN2F76z936TWeh9bxTTf1_wKzJQnL
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9gIHxJtAQQYhcYqa2I5jc0FbulWFYEELhd4i23FKL0npbvn9zCTekBUSx7wkZ2Y8M5_t-QbgdcO9V9Y2KaKfIpVa6dTVuU-lDLLWeOlrKnD-tFQnp_LDWXEWF9zW8Vjl1if2jrruPK2RH3CFtomQpxDvLn-l1DWKdldjC42bsMcRKfAZ7B0ull9WI-QSiMAGPiGB4P5gzTkRglMvlUkU6sn6_3XJk5i0e15yEoCO78KdmDmy-aDqe3AjtPfh9oRP8AH8WH1Mjz5___qWrULPiOr7xT8WSVTPGd5i8-sNFTIg4merznUbtrS_e56NrmUXLTsaWtSzxaQC7iGcHi--vT9JY-eE1ItClCnPQ-Nc2WB6hwGqlpbb3Phac1-WwWoneVA84JWxSlmhtc8cRrOA2rGZ9Jl4BLO2a8MTYM4GkxnvUW9BZrK0DaYEmTY8iMJIWSbwaivJ6nIgyKgQWJC4q1HcCRySjMcXiNO6v9FdnVdxilS6kK6RHh0MfuKNtoJ7UXtuhbIFWloCb0hDFckP1eBtLCDAcRKHVTUvdU7k8UoksL9VYhWn5Lr6a0AJvBwf42SiHRLbBhQ7vZPzknMjE3g86HwcsygUOT_8l3LHGnZ-avdJe_GzJ-w2iFrREJ_-f1jP4Ban2gqihjX7MNtcXYfnmPFs3Ito1n8AGdYCSQ
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKucAB8W6gIIOQOAWSseMHEkILbVUhKNLCQm-R7TilEkra7RbBv2cmyUYbwYFjbEexZ8Yef7HnG8ae1RCCcq5OEf0UqTTKpL7KQypllJXBx1BRgPPHI3W4kO-Pi-Mtts6xOQjw4p_QjvJJLZY_Xvw6__0GJ_xrQpwI2V9eABDNt9RX2FUgPi66wSfHwwQQCMN6UqFp84kr6hj7_16XNxzT9NLkhhc6uMluDNtHPuv1fYttxeY2u75BKniHfZt_SPc-ff38is9jR4sauj-AfGBSPeFYxGeXK4pmQNjP561vV_zI_ezINtqGnzZ8r89Tz_c3wuDussXB_pd3h-mQPiENohA6hTzW3usa93jopSrpwOU2VAaC1tEZLyEqiPhknVJOGBMyjy4toopcJkMm7rHtpm3iDuPeRZvZEFB5UWZSuxr3BZmxEEVhpdQJe7qWZHnWs2SUiC5I3OUo7oS9JRmPDYjYuitolyflME9KU0hfy4CrDL4SrHECgqgCOKFcgeaWsOekoZLkh2oIbogiwH4SkVU50yYnBnklEra7VmK5NqsSFK5wCJwLrH4yVuOMomMS10QUO7XJQQNYmbD7vc7HPotC0QqIY9ETa5gMalrTnH7vWLstQlc0xAf_8d2H7BpQlAWRxNpdtr1aXsZHuPdZ-cedZf8Bb_wEUA
  priority: 102
  providerName: Scholars Portal
Title RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments
URI https://www.ncbi.nlm.nih.gov/pubmed/35632257
https://www.proquest.com/docview/2670397853
https://search.proquest.com/docview/2671272294
https://pubmed.ncbi.nlm.nih.gov/PMC9144338
https://doaj.org/article/854bf4c225384c98a32c3dc2a36a5ecc
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615QIHxJtAWRmExCndxHb84LZtd6kQu1QLhb1FtuOUlWhStVt-P-M8Vhtx42LJL8mZGXv8OZ7PAO9L6pwwpowR_WQxV0LFtkhdzLnnhcKsK0KA83whzi7451W22oOsj4VpLu07uz6qfl8dVetfzd3K6ys37u-Jjc_nJxpRAEKr8T7so4H2EL1DWQxrWgohhnh-fEtp4ADn4bU9lolgv3Lggxqq_n8X5B2PNLwtueN-Zo_gYbdvJJN2fI9hz1dP4MEOm-BT-Ln8Ep9-_fHtI1n6hg_VNUd_pKNQvSRYRCZ3mxDGgHifLGtbb8jC_GlYNuqKrCty2j5QT6Y78W_P4GI2_X5yFnfvJsSOZUzGNPWltbLEzR26p4IbalLtCkWdlN4oy6kX1GNOGyEMU8olFn2ZR92YhLuEPYeDqq78SyDWeJ1o51BrnidcmhI3BInS1LNMcy4jeNdLMr9u6TFyhBVB8vlW8hEcBxlvGwRG66agvrnMO73mKuO25A7Vg12cVoZRxwpHDRMmQzuL4EPQUB7kh2pwpgsfwHEGBqt8IlUaqOMFi-CwV2LeTcjbnApc2hAxZ1j9dluNUyn8HzGVR7GHNimVlGoewYtW59sx96YTgRxYw-CjhjVovQ1dd2etr_6752u4T0PQReCM1YdwsLm5829wK7SxI5wAK4mpmn0awb3j6eJ8OWqOFTCdczVqpsZfjzcPBw
link.rule.ids 230,315,730,783,787,867,888,2109,2228,12070,12779,21402,24332,27938,27939,31733,31734,33387,33388,33758,33759,43324,43614,43819,53806,53808,74081,74371,74638
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BOQAHxLMEChiExClqYjt-cEELbbXAdpGWFvZmOY5TeklKd8vvZybJbneFxNGOI9kz43nYnm8A3tY8BOV9nWL0U6TSKJOWVR5SKaOsDDZDRQnOx1M1PpVf5sV8OHBbDM8qVzqxU9RVG-iMfJ8rlE0MeQrx4eJ3SlWj6HZ1KKFxE24RDhdh5-v5dcAlMP7q0YQEhvb7C84JDpwqqWzYoA6q_1-FvGGRtl9Lbpifo_twb_Ab2ahn9AO4EZuHcHcDTfAR_JxN0oNvP76_Z7PY4aGG7uiPDRCqZwy72OhqSWkMGO-zWVu2Szb1fzqUjbZh5w076AvUs8ON_LfHcHp0ePJpnA51E9IgCqFTnse6LHWNzh2ap0p67nMbKsOD1tGbUvKoeMSW9Up5YUzISrRlEXnjMxky8QR2mraJT4GVPtrMhoBcizKT2tfoEGTG8igKK6VO4M2Kku6ih8dwGFYQud2a3Al8JBqvBxCiddfRXp65YYM4U8iylgHVC_4SrPGCB1EF7oXyBcpZAu-IQ47oh2wIfkgfwHkSgpUbaZMTdLwSCeytmOiGDblw1-KTwOv1Z9xKdD_im4hkpzE515xbmcBuz_P1nEWhSPXhWvSWNGwtavtLc_6rg-u2GLOiID77_7Rewe3xyfHETT5Pvz6HO5yyLAgk1u7BzvLyKr5A32dZvuwE_C8PgQPU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9BJyF4QHwTGGAQEk9RE9vxBy-oo60GjDIVBnuzHMcZe0nG2vH3c07ckgqJRzuOZN-d73z23e8AXtfUOWFtnaL3U6RcCZWWVe5Szj2vFDZdFRKcPy_E4Qn_eFqcxvinVQyr3OjETlFXrQt35GMqUDbR5SnYuI5hEcfT-buLX2moIBVeWmM5jeuwJzlK1Qj2DmaL4-XW_WLojfXYQgwd_fGK0gAOHuqqDCxSB9z_r3oe2Kfd2MmBMZrfgdvxFEkmPdvvwjXf3INbA2zB-_BjeZROv3z_-pYsfYeO6rqLQBIBVc8IdpHJ1TokNaD3T5Zt2a7Jwv7uMDfahpw3ZNqXqyezQTbcAziZz769P0xjFYXUsYLJlOa-LktZ41EPjVXFLbW5dpWiTkpvVcmpF9RjS1shLFPKZSVaNo-cshl3GXsIo6Zt_GMgpfU6084hDz3PuLQ1Hg8ypalnheZcJvBqQ0lz0YNlGHQyArnNltwJHAQabwcEfOuuo708M3G7GFXwsuYOlQ3-4rSyjDpWOWqZsAVKXQJvAodMoB-ywdmYTIDzDHhWZiJVHoDkBUtgf8NEE7fnyvwVpgRebj_jxgqvJbbxSPYwJqeSUs0TeNTzfDtnVoigCHEtckcadha1-6U5_9mBd2v0YFEQn_x_Wi_gBkq3Ofqw-PQUbtKQchEQY_U-jNaXV_4ZHoTW5fMo4X8ArjsJdw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RL-DOVS%3A+Reinforcement+Learning+for+Autonomous+Robot+Navigation+in+Dynamic+Environments&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mackay%2C+Andrew+K&rft.au=Riazuelo%2C+Luis&rft.au=Montano%2C+Luis&rft.date=2022-05-19&rft.eissn=1424-8220&rft.volume=22&rft.issue=10&rft_id=info:doi/10.3390%2Fs22103847&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon