RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments
Autonomous navigation in dynamic environments where people move unpredictably is an essential task for service robots in real-world populated scenarios. Recent works in reinforcement learning (RL) have been applied to autonomous vehicle driving and to navigation around pedestrians. In this paper, we...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 10; p. 3847 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
19.05.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Autonomous navigation in dynamic environments where people move unpredictably is an essential task for service robots in real-world populated scenarios. Recent works in reinforcement learning (RL) have been applied to autonomous vehicle driving and to navigation around pedestrians. In this paper, we present a novel planner (reinforcement learning dynamic object velocity space, RL-DOVS) based on an RL technique for dynamic environments. The method explicitly considers the robot kinodynamic constraints for selecting the actions in every control period. The main contribution of our work is to use an environment model where the dynamism is represented in the robocentric velocity space as input to the learning system. The use of this dynamic information speeds the training process with respect to other techniques that learn directly either from raw sensors (vision, lidar) or from basic information about obstacle location and kinematics. We propose two approaches using RL and dynamic obstacle velocity (DOVS), RL-DOVS-A, which automatically learns the actions having the maximum utility, and RL-DOVS-D, in which the actions are selected by a human driver. Simulation results and evaluation are presented using different numbers of active agents and static and moving passive agents with random motion directions and velocities in many different scenarios. The performance of the technique is compared with other state-of-the-art techniques for solving navigation problems in environments such as ours. |
---|---|
AbstractList | Autonomous navigation in dynamic environments where people move unpredictably is an essential task for service robots in real-world populated scenarios. Recent works in reinforcement learning (RL) have been applied to autonomous vehicle driving and to navigation around pedestrians. In this paper, we present a novel planner (reinforcement learning dynamic object velocity space, RL-DOVS) based on an RL technique for dynamic environments. The method explicitly considers the robot kinodynamic constraints for selecting the actions in every control period. The main contribution of our work is to use an environment model where the dynamism is represented in the robocentric velocity space as input to the learning system. The use of this dynamic information speeds the training process with respect to other techniques that learn directly either from raw sensors (vision, lidar) or from basic information about obstacle location and kinematics. We propose two approaches using RL and dynamic obstacle velocity (DOVS), RL-DOVS-A, which automatically learns the actions having the maximum utility, and RL-DOVS-D, in which the actions are selected by a human driver. Simulation results and evaluation are presented using different numbers of active agents and static and moving passive agents with random motion directions and velocities in many different scenarios. The performance of the technique is compared with other state-of-the-art techniques for solving navigation problems in environments such as ours. |
Audience | Academic |
Author | Mackay, Andrew K Montano, Luis Riazuelo, Luis |
AuthorAffiliation | Aragón Institute for Engineering Research (I3A), University of Zaragoza, 50009 Zaragoza, Spain; 737069@unizar.es (A.K.M.); riazuelo@unizar.es (L.R.) |
AuthorAffiliation_xml | – name: Aragón Institute for Engineering Research (I3A), University of Zaragoza, 50009 Zaragoza, Spain; 737069@unizar.es (A.K.M.); riazuelo@unizar.es (L.R.) |
Author_xml | – sequence: 1 givenname: Andrew K orcidid: 0000-0003-2032-948X surname: Mackay fullname: Mackay, Andrew K organization: Aragón Institute for Engineering Research (I3A), University of Zaragoza, 50009 Zaragoza, Spain – sequence: 2 givenname: Luis orcidid: 0000-0002-6722-5541 surname: Riazuelo fullname: Riazuelo, Luis organization: Aragón Institute for Engineering Research (I3A), University of Zaragoza, 50009 Zaragoza, Spain – sequence: 3 givenname: Luis orcidid: 0000-0002-0449-2300 surname: Montano fullname: Montano, Luis organization: Aragón Institute for Engineering Research (I3A), University of Zaragoza, 50009 Zaragoza, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35632257$$D View this record in MEDLINE/PubMed |
BookMark | eNpdUk1v1DAUtFAR_YADfwBF4gKHFNvPSRwOSKu2QKUVlZavo_XiOMGrxC52slL_PQ5bVi3ywfbzvLFnPKfkyHlnCHnJ6DlATd9FzhkFKaon5IQJLnLJOT16sD4mpzFuKeUAIJ-RYyhK4LyoTsjPzTq_vPnx9X22MdZ1PmgzGjdla4PBWddnqZSt5sk7P_o5Zhvf-Cn7gjvb42S9y6zLLu8cjlZnV25ng3dLf3xOnnY4RPPifj4j3z9efbv4nK9vPl1frNa5hgKqnDPTNU3VMaih5K1AjqzWreS6qgzKRnBTcpN2NZYlgpSaNoKBaaVEKjSFM3K95209btVtsCOGO-XRqr8FH3qFYbJ6MEoWoumETrqTVbqWCFxDqzlCiYXROnF92HPdzs1oWp10BBwekT4-cfaX6v1O1UyIZGwieHNPEPzv2cRJjTZqMwzoTDJP8bJivOK8Fgn6-j_o1s_BJasWFIW6kgUk1Pke1WMSsPxPulen0ZpkeApBZ1N9VUlWMlqXS8PbfYMOPsZgusPrGVVLVtQhKwn76qHcA_JfOOAPOjq6DQ |
CitedBy_id | crossref_primary_10_3390_buildings13040966 crossref_primary_10_3390_app13158925 |
Cites_doi | 10.1109/IVS.2018.8500427 10.1109/SSRR56537.2022.10018699 10.1177/0278364918775520 10.1109/IVS.2019.8814124 10.1109/IROS45743.2020.9341540 10.1109/ICRA48506.2021.9560893 10.1109/ICRA.2019.8794134 10.1109/ICRA48506.2021.9561049 10.1109/IROS.2018.8593871 10.1109/IVS.2017.7995727 10.1109/IROS51168.2021.9636579 10.1109/ICRA48506.2021.9560907 10.1109/ICRA48506.2021.9561595 10.1109/ICRA48506.2021.9561462 10.1109/ACCESS.2021.3050338 10.1007/BF00992698 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PIMPY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s22103847 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest One Academic ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 7X7 name: Health & Medical Collection (Proquest) url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_854bf4c225384c98a32c3dc2a36a5ecc A781610963 10_3390_s22103847 35632257 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Spanish Ministerio de Ciencia e Innovación grantid: PID2019-105390RB-I00 – fundername: Spanish projects grantid: PID2019-105390RB-I00; DGA_FSE-T45_20R |
GroupedDBID | --- 123 2WC 3V. 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH ABDBF ABJCF ABUWG ADBBV AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BPHCQ BVXVI CCPQU CGR CS3 CUY CVF D1I DU5 E3Z EBD ECM EIF ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO ITC KB. KQ8 L6V M1P M48 M7S MODMG M~E NPM OK1 P2P P62 PDBOC PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M AAYXX CITATION BGLVJ 7XB 8FK AZQEC DWQXO K9. PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c3537-21efbb7f139362d4a2a19cd82c77ea8b42e62e2c79a66a388c0b413ed88a04c03 |
IEDL.DBID | RPM |
ISSN | 1424-8220 |
IngestDate | Tue Oct 22 15:15:16 EDT 2024 Tue Sep 17 21:25:30 EDT 2024 Fri Oct 25 05:08:19 EDT 2024 Tue Oct 29 01:56:10 EDT 2024 Tue Feb 13 05:09:52 EST 2024 Thu Sep 26 21:35:07 EDT 2024 Wed Oct 16 00:41:25 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | dynamic environments autonomous navigation navigation strategies reinforcement learning |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3537-21efbb7f139362d4a2a19cd82c77ea8b42e62e2c79a66a388c0b413ed88a04c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2032-948X 0000-0002-0449-2300 0000-0002-6722-5541 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144338/ |
PMID | 35632257 |
PQID | 2670397853 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_854bf4c225384c98a32c3dc2a36a5ecc pubmedcentral_primary_oai_pubmedcentral_nih_gov_9144338 proquest_miscellaneous_2671272294 proquest_journals_2670397853 gale_infotracacademiconefile_A781610963 crossref_primary_10_3390_s22103847 pubmed_primary_35632257 |
PublicationCentury | 2000 |
PublicationDate | 20220519 |
PublicationDateYYYYMMDD | 2022-05-19 |
PublicationDate_xml | – month: 5 year: 2022 text: 20220519 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_14 ref_13 Lorente (ref_1) 2018; 37 ref_11 ref_10 ref_3 Watkins (ref_2) 1992; 8 ref_17 ref_16 ref_15 ref_9 ref_8 Everett (ref_12) 2021; 9 ref_5 ref_4 ref_7 ref_6 |
References_xml | – ident: ref_5 doi: 10.1109/IVS.2018.8500427 – ident: ref_9 doi: 10.1109/SSRR56537.2022.10018699 – volume: 37 start-page: 867 year: 2018 ident: ref_1 article-title: Model-based robocentric planning and navigation for dynamic environments publication-title: Int. J. Robot. Res. doi: 10.1177/0278364918775520 contributor: fullname: Lorente – ident: ref_7 doi: 10.1109/IVS.2019.8814124 – ident: ref_8 doi: 10.1109/IROS45743.2020.9341540 – ident: ref_14 doi: 10.1109/ICRA48506.2021.9560893 – ident: ref_11 doi: 10.1109/ICRA.2019.8794134 – ident: ref_6 doi: 10.1109/ICRA48506.2021.9561049 – ident: ref_10 doi: 10.1109/IROS.2018.8593871 – ident: ref_3 doi: 10.1109/IVS.2017.7995727 – ident: ref_13 doi: 10.1109/IROS51168.2021.9636579 – ident: ref_17 – ident: ref_4 doi: 10.1109/ICRA48506.2021.9560907 – ident: ref_16 doi: 10.1109/ICRA48506.2021.9561595 – ident: ref_15 doi: 10.1109/ICRA48506.2021.9561462 – volume: 9 start-page: 10357 year: 2021 ident: ref_12 article-title: Collision Avoidance in Pedestrian-Rich Environments With Deep Reinforcement Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3050338 contributor: fullname: Everett – volume: 8 start-page: 279 year: 1992 ident: ref_2 article-title: Q-learning publication-title: Mach. Learn. doi: 10.1007/BF00992698 contributor: fullname: Watkins |
SSID | ssj0023338 |
Score | 2.4065633 |
Snippet | Autonomous navigation in dynamic environments where people move unpredictably is an essential task for service robots in real-world populated scenarios. Recent... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 3847 |
SubjectTerms | Analysis Autonomous navigation Autonomous vehicles Barriers Computer Simulation Driverless cars dynamic environments Humans Kinematics Learning navigation strategies Neural networks Planning Problem Solving reinforcement learning Reinforcement, Psychology Remote sensing Robotics - methods Robotics industry Robots Semantics Sensors Service robots Velocity |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT-WAaMsjZUEGIXGKNrEdP7htX6oQFGmhsDfLnjjQS7Zit_39zCTZVVYcuPTohxRnPtvjL_F8w9j7RgDoEJoc2U-VK6ttHusScqWSqi0WoaYA5y9X-vJafVpUi1GqL7oT1ssD94ab2krFRgFOO2kVOBukAFmDCFKHCp_f7b6F25CpgWpJZF69jpBEUj9dCUFC4JRDZeR9OpH-f7fikS_avSc5cjwXT9mT4cTIZ_1ID9ij1B6yxyMdwSP2c_45P_v649tHPk-dEip0H_34IJ76i2MVn92tKYABmT6fL-Nyza_CfaevsWz5TcvP-tT0_HwU-faMXV-cfz-9zIeMCTnISppclKmJ0TR4rEPHVKsgQumgtgKMScFGJZIWCUsuaB2ktVBE9GIJUQmFgkI-Z3vtsk0vGY8hucIBIF5JFcqEBo8ChXUiycopZTL2bmNJf9sLY3gkFGRuvzV3xk7IxtsOpGXdVSDCfkDY_w_hjH0ghDzZD2GAMAQO4DhJu8rPjC1JNF7LjE02IPphKa680LipIVeusPntthkXEf0ZCW1Cs1OfUhghnMrYix7z7ZhlpWnTw3cxO7Nh56V2W9qb351Qt0O2ihPx-CGs8IrtC4q8IOFYN2F76z936TWeh9bxTTf1_wKzJQnL priority: 102 providerName: Directory of Open Access Journals – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9gIHxJtAQQYhcYqa2I5jc0FbulWFYEELhd4i23FKL0npbvn9zCTekBUSx7wkZ2Y8M5_t-QbgdcO9V9Y2KaKfIpVa6dTVuU-lDLLWeOlrKnD-tFQnp_LDWXEWF9zW8Vjl1if2jrruPK2RH3CFtomQpxDvLn-l1DWKdldjC42bsMcRKfAZ7B0ull9WI-QSiMAGPiGB4P5gzTkRglMvlUkU6sn6_3XJk5i0e15yEoCO78KdmDmy-aDqe3AjtPfh9oRP8AH8WH1Mjz5___qWrULPiOr7xT8WSVTPGd5i8-sNFTIg4merznUbtrS_e56NrmUXLTsaWtSzxaQC7iGcHi--vT9JY-eE1ItClCnPQ-Nc2WB6hwGqlpbb3Phac1-WwWoneVA84JWxSlmhtc8cRrOA2rGZ9Jl4BLO2a8MTYM4GkxnvUW9BZrK0DaYEmTY8iMJIWSbwaivJ6nIgyKgQWJC4q1HcCRySjMcXiNO6v9FdnVdxilS6kK6RHh0MfuKNtoJ7UXtuhbIFWloCb0hDFckP1eBtLCDAcRKHVTUvdU7k8UoksL9VYhWn5Lr6a0AJvBwf42SiHRLbBhQ7vZPzknMjE3g86HwcsygUOT_8l3LHGnZ-avdJe_GzJ-w2iFrREJ_-f1jP4Ban2gqihjX7MNtcXYfnmPFs3Ito1n8AGdYCSQ priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKucAB8W6gIIOQOAWSseMHEkILbVUhKNLCQm-R7TilEkra7RbBv2cmyUYbwYFjbEexZ8Yef7HnG8ae1RCCcq5OEf0UqTTKpL7KQypllJXBx1BRgPPHI3W4kO-Pi-Mtts6xOQjw4p_QjvJJLZY_Xvw6__0GJ_xrQpwI2V9eABDNt9RX2FUgPi66wSfHwwQQCMN6UqFp84kr6hj7_16XNxzT9NLkhhc6uMluDNtHPuv1fYttxeY2u75BKniHfZt_SPc-ff38is9jR4sauj-AfGBSPeFYxGeXK4pmQNjP561vV_zI_ezINtqGnzZ8r89Tz_c3wuDussXB_pd3h-mQPiENohA6hTzW3usa93jopSrpwOU2VAaC1tEZLyEqiPhknVJOGBMyjy4toopcJkMm7rHtpm3iDuPeRZvZEFB5UWZSuxr3BZmxEEVhpdQJe7qWZHnWs2SUiC5I3OUo7oS9JRmPDYjYuitolyflME9KU0hfy4CrDL4SrHECgqgCOKFcgeaWsOekoZLkh2oIbogiwH4SkVU50yYnBnklEra7VmK5NqsSFK5wCJwLrH4yVuOMomMS10QUO7XJQQNYmbD7vc7HPotC0QqIY9ETa5gMalrTnH7vWLstQlc0xAf_8d2H7BpQlAWRxNpdtr1aXsZHuPdZ-cedZf8Bb_wEUA priority: 102 providerName: Scholars Portal |
Title | RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35632257 https://www.proquest.com/docview/2670397853 https://search.proquest.com/docview/2671272294 https://pubmed.ncbi.nlm.nih.gov/PMC9144338 https://doaj.org/article/854bf4c225384c98a32c3dc2a36a5ecc |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615QIHxJtAWRmExCndxHb84LZtd6kQu1QLhb1FtuOUlWhStVt-P-M8Vhtx42LJL8mZGXv8OZ7PAO9L6pwwpowR_WQxV0LFtkhdzLnnhcKsK0KA83whzi7451W22oOsj4VpLu07uz6qfl8dVetfzd3K6ys37u-Jjc_nJxpRAEKr8T7so4H2EL1DWQxrWgohhnh-fEtp4ADn4bU9lolgv3Lggxqq_n8X5B2PNLwtueN-Zo_gYbdvJJN2fI9hz1dP4MEOm-BT-Ln8Ep9-_fHtI1n6hg_VNUd_pKNQvSRYRCZ3mxDGgHifLGtbb8jC_GlYNuqKrCty2j5QT6Y78W_P4GI2_X5yFnfvJsSOZUzGNPWltbLEzR26p4IbalLtCkWdlN4oy6kX1GNOGyEMU8olFn2ZR92YhLuEPYeDqq78SyDWeJ1o51BrnidcmhI3BInS1LNMcy4jeNdLMr9u6TFyhBVB8vlW8hEcBxlvGwRG66agvrnMO73mKuO25A7Vg12cVoZRxwpHDRMmQzuL4EPQUB7kh2pwpgsfwHEGBqt8IlUaqOMFi-CwV2LeTcjbnApc2hAxZ1j9dluNUyn8HzGVR7GHNimVlGoewYtW59sx96YTgRxYw-CjhjVovQ1dd2etr_6752u4T0PQReCM1YdwsLm5829wK7SxI5wAK4mpmn0awb3j6eJ8OWqOFTCdczVqpsZfjzcPBw |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,12070,12779,21402,24332,27938,27939,31733,31734,33387,33388,33758,33759,43324,43614,43819,53806,53808,74081,74371,74638 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BOQAHxLMEChiExClqYjt-cEELbbXAdpGWFvZmOY5TeklKd8vvZybJbneFxNGOI9kz43nYnm8A3tY8BOV9nWL0U6TSKJOWVR5SKaOsDDZDRQnOx1M1PpVf5sV8OHBbDM8qVzqxU9RVG-iMfJ8rlE0MeQrx4eJ3SlWj6HZ1KKFxE24RDhdh5-v5dcAlMP7q0YQEhvb7C84JDpwqqWzYoA6q_1-FvGGRtl9Lbpifo_twb_Ab2ahn9AO4EZuHcHcDTfAR_JxN0oNvP76_Z7PY4aGG7uiPDRCqZwy72OhqSWkMGO-zWVu2Szb1fzqUjbZh5w076AvUs8ON_LfHcHp0ePJpnA51E9IgCqFTnse6LHWNzh2ap0p67nMbKsOD1tGbUvKoeMSW9Up5YUzISrRlEXnjMxky8QR2mraJT4GVPtrMhoBcizKT2tfoEGTG8igKK6VO4M2Kku6ih8dwGFYQud2a3Al8JBqvBxCiddfRXp65YYM4U8iylgHVC_4SrPGCB1EF7oXyBcpZAu-IQ47oh2wIfkgfwHkSgpUbaZMTdLwSCeytmOiGDblw1-KTwOv1Z9xKdD_im4hkpzE515xbmcBuz_P1nEWhSPXhWvSWNGwtavtLc_6rg-u2GLOiID77_7Rewe3xyfHETT5Pvz6HO5yyLAgk1u7BzvLyKr5A32dZvuwE_C8PgQPU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9BJyF4QHwTGGAQEk9RE9vxBy-oo60GjDIVBnuzHMcZe0nG2vH3c07ckgqJRzuOZN-d73z23e8AXtfUOWFtnaL3U6RcCZWWVe5Szj2vFDZdFRKcPy_E4Qn_eFqcxvinVQyr3OjETlFXrQt35GMqUDbR5SnYuI5hEcfT-buLX2moIBVeWmM5jeuwJzlK1Qj2DmaL4-XW_WLojfXYQgwd_fGK0gAOHuqqDCxSB9z_r3oe2Kfd2MmBMZrfgdvxFEkmPdvvwjXf3INbA2zB-_BjeZROv3z_-pYsfYeO6rqLQBIBVc8IdpHJ1TokNaD3T5Zt2a7Jwv7uMDfahpw3ZNqXqyezQTbcAziZz769P0xjFYXUsYLJlOa-LktZ41EPjVXFLbW5dpWiTkpvVcmpF9RjS1shLFPKZSVaNo-cshl3GXsIo6Zt_GMgpfU6084hDz3PuLQ1Hg8ypalnheZcJvBqQ0lz0YNlGHQyArnNltwJHAQabwcEfOuuo708M3G7GFXwsuYOlQ3-4rSyjDpWOWqZsAVKXQJvAodMoB-ywdmYTIDzDHhWZiJVHoDkBUtgf8NEE7fnyvwVpgRebj_jxgqvJbbxSPYwJqeSUs0TeNTzfDtnVoigCHEtckcadha1-6U5_9mBd2v0YFEQn_x_Wi_gBkq3Ofqw-PQUbtKQchEQY_U-jNaXV_4ZHoTW5fMo4X8ArjsJdw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RL-DOVS%3A+Reinforcement+Learning+for+Autonomous+Robot+Navigation+in+Dynamic+Environments&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mackay%2C+Andrew+K&rft.au=Riazuelo%2C+Luis&rft.au=Montano%2C+Luis&rft.date=2022-05-19&rft.eissn=1424-8220&rft.volume=22&rft.issue=10&rft_id=info:doi/10.3390%2Fs22103847&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |