Deep learning–based MR fingerprinting ASL ReconStruction (DeepMARS)

Purpose To develop a reproducible and fast method to reconstruct MR fingerprinting arterial spin labeling (MRF‐ASL) perfusion maps using deep learning. Method A fully connected neural network, denoted as DeepMARS, was trained using simulation data and added Gaussian noise. Two MRF‐ASL models were us...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 84; no. 2; pp. 1024 - 1034
Main Authors Zhang, Qiang, Su, Pan, Chen, Zhensen, Liao, Ying, Chen, Shuo, Guo, Rui, Qi, Haikun, Li, Xuesong, Zhang, Xue, Hu, Zhangxuan, Lu, Hanzhang, Chen, Huijun
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To develop a reproducible and fast method to reconstruct MR fingerprinting arterial spin labeling (MRF‐ASL) perfusion maps using deep learning. Method A fully connected neural network, denoted as DeepMARS, was trained using simulation data and added Gaussian noise. Two MRF‐ASL models were used to generate the simulation data, specifically a single‐compartment model with 4 unknowns parameters and a two‐compartment model with 7 unknown parameters. The DeepMARS method was evaluated using MRF‐ASL data from healthy subjects (N = 7) and patients with Moymoya disease (N = 3). Computation time, coefficient of determination (R2), and intraclass correlation coefficient (ICC) were compared between DeepMARS and conventional dictionary matching (DM). The relationship between DeepMARS and Look–Locker PASL was evaluated by a linear mixed model. Results Computation time per voxel was <0.5 ms for DeepMARS and >4 seconds for DM in the single‐compartment model. Compared with DM, the DeepMARS showed higher R2 and significantly improved ICC for single‐compartment derived bolus arrival time (BAT) and two‐compartment derived cerebral blood flow (CBF) and higher or similar R2/ICC for other parameters. In addition, the DeepMARS was significantly correlated with Look–Locker PASL for BAT (single‐compartment) and CBF (two‐compartment). Moreover, for Moyamoya patients, the location of diminished CBF and prolonged BAT shown in DeepMARS was consistent with the position of occluded arteries shown in time‐of‐flight MR angiography. Conclusion Reconstruction of MRF‐ASL with DeepMARS is faster and more reproducible than DM.
AbstractList Purpose To develop a reproducible and fast method to reconstruct MR fingerprinting arterial spin labeling (MRF‐ASL) perfusion maps using deep learning. Method A fully connected neural network, denoted as DeepMARS, was trained using simulation data and added Gaussian noise. Two MRF‐ASL models were used to generate the simulation data, specifically a single‐compartment model with 4 unknowns parameters and a two‐compartment model with 7 unknown parameters. The DeepMARS method was evaluated using MRF‐ASL data from healthy subjects (N = 7) and patients with Moymoya disease (N = 3). Computation time, coefficient of determination (R2), and intraclass correlation coefficient (ICC) were compared between DeepMARS and conventional dictionary matching (DM). The relationship between DeepMARS and Look–Locker PASL was evaluated by a linear mixed model. Results Computation time per voxel was <0.5 ms for DeepMARS and >4 seconds for DM in the single‐compartment model. Compared with DM, the DeepMARS showed higher R2 and significantly improved ICC for single‐compartment derived bolus arrival time (BAT) and two‐compartment derived cerebral blood flow (CBF) and higher or similar R2/ICC for other parameters. In addition, the DeepMARS was significantly correlated with Look–Locker PASL for BAT (single‐compartment) and CBF (two‐compartment). Moreover, for Moyamoya patients, the location of diminished CBF and prolonged BAT shown in DeepMARS was consistent with the position of occluded arteries shown in time‐of‐flight MR angiography. Conclusion Reconstruction of MRF‐ASL with DeepMARS is faster and more reproducible than DM.
PurposeTo develop a reproducible and fast method to reconstruct MR fingerprinting arterial spin labeling (MRF‐ASL) perfusion maps using deep learning.MethodA fully connected neural network, denoted as DeepMARS, was trained using simulation data and added Gaussian noise. Two MRF‐ASL models were used to generate the simulation data, specifically a single‐compartment model with 4 unknowns parameters and a two‐compartment model with 7 unknown parameters. The DeepMARS method was evaluated using MRF‐ASL data from healthy subjects (N = 7) and patients with Moymoya disease (N = 3). Computation time, coefficient of determination (R2), and intraclass correlation coefficient (ICC) were compared between DeepMARS and conventional dictionary matching (DM). The relationship between DeepMARS and Look–Locker PASL was evaluated by a linear mixed model.ResultsComputation time per voxel was <0.5 ms for DeepMARS and >4 seconds for DM in the single‐compartment model. Compared with DM, the DeepMARS showed higher R2 and significantly improved ICC for single‐compartment derived bolus arrival time (BAT) and two‐compartment derived cerebral blood flow (CBF) and higher or similar R2/ICC for other parameters. In addition, the DeepMARS was significantly correlated with Look–Locker PASL for BAT (single‐compartment) and CBF (two‐compartment). Moreover, for Moyamoya patients, the location of diminished CBF and prolonged BAT shown in DeepMARS was consistent with the position of occluded arteries shown in time‐of‐flight MR angiography.ConclusionReconstruction of MRF‐ASL with DeepMARS is faster and more reproducible than DM.
To develop a reproducible and fast method to reconstruct MR fingerprinting arterial spin labeling (MRF-ASL) perfusion maps using deep learning.PURPOSETo develop a reproducible and fast method to reconstruct MR fingerprinting arterial spin labeling (MRF-ASL) perfusion maps using deep learning.A fully connected neural network, denoted as DeepMARS, was trained using simulation data and added Gaussian noise. Two MRF-ASL models were used to generate the simulation data, specifically a single-compartment model with 4 unknowns parameters and a two-compartment model with 7 unknown parameters. The DeepMARS method was evaluated using MRF-ASL data from healthy subjects (N = 7) and patients with Moymoya disease (N = 3). Computation time, coefficient of determination (R2 ), and intraclass correlation coefficient (ICC) were compared between DeepMARS and conventional dictionary matching (DM). The relationship between DeepMARS and Look-Locker PASL was evaluated by a linear mixed model.METHODA fully connected neural network, denoted as DeepMARS, was trained using simulation data and added Gaussian noise. Two MRF-ASL models were used to generate the simulation data, specifically a single-compartment model with 4 unknowns parameters and a two-compartment model with 7 unknown parameters. The DeepMARS method was evaluated using MRF-ASL data from healthy subjects (N = 7) and patients with Moymoya disease (N = 3). Computation time, coefficient of determination (R2 ), and intraclass correlation coefficient (ICC) were compared between DeepMARS and conventional dictionary matching (DM). The relationship between DeepMARS and Look-Locker PASL was evaluated by a linear mixed model.Computation time per voxel was <0.5 ms for DeepMARS and >4 seconds for DM in the single-compartment model. Compared with DM, the DeepMARS showed higher R2 and significantly improved ICC for single-compartment derived bolus arrival time (BAT) and two-compartment derived cerebral blood flow (CBF) and higher or similar R2 /ICC for other parameters. In addition, the DeepMARS was significantly correlated with Look-Locker PASL for BAT (single-compartment) and CBF (two-compartment). Moreover, for Moyamoya patients, the location of diminished CBF and prolonged BAT shown in DeepMARS was consistent with the position of occluded arteries shown in time-of-flight MR angiography.RESULTSComputation time per voxel was <0.5 ms for DeepMARS and >4 seconds for DM in the single-compartment model. Compared with DM, the DeepMARS showed higher R2 and significantly improved ICC for single-compartment derived bolus arrival time (BAT) and two-compartment derived cerebral blood flow (CBF) and higher or similar R2 /ICC for other parameters. In addition, the DeepMARS was significantly correlated with Look-Locker PASL for BAT (single-compartment) and CBF (two-compartment). Moreover, for Moyamoya patients, the location of diminished CBF and prolonged BAT shown in DeepMARS was consistent with the position of occluded arteries shown in time-of-flight MR angiography.Reconstruction of MRF-ASL with DeepMARS is faster and more reproducible than DM.CONCLUSIONReconstruction of MRF-ASL with DeepMARS is faster and more reproducible than DM.
To develop a reproducible and fast method to reconstruct MR fingerprinting arterial spin labeling (MRF-ASL) perfusion maps using deep learning. A fully connected neural network, denoted as DeepMARS, was trained using simulation data and added Gaussian noise. Two MRF-ASL models were used to generate the simulation data, specifically a single-compartment model with 4 unknowns parameters and a two-compartment model with 7 unknown parameters. The DeepMARS method was evaluated using MRF-ASL data from healthy subjects (N = 7) and patients with Moymoya disease (N = 3). Computation time, coefficient of determination (R ), and intraclass correlation coefficient (ICC) were compared between DeepMARS and conventional dictionary matching (DM). The relationship between DeepMARS and Look-Locker PASL was evaluated by a linear mixed model. Computation time per voxel was <0.5 ms for DeepMARS and >4 seconds for DM in the single-compartment model. Compared with DM, the DeepMARS showed higher R and significantly improved ICC for single-compartment derived bolus arrival time (BAT) and two-compartment derived cerebral blood flow (CBF) and higher or similar R /ICC for other parameters. In addition, the DeepMARS was significantly correlated with Look-Locker PASL for BAT (single-compartment) and CBF (two-compartment). Moreover, for Moyamoya patients, the location of diminished CBF and prolonged BAT shown in DeepMARS was consistent with the position of occluded arteries shown in time-of-flight MR angiography. Reconstruction of MRF-ASL with DeepMARS is faster and more reproducible than DM.
Author Chen, Zhensen
Hu, Zhangxuan
Li, Xuesong
Guo, Rui
Zhang, Xue
Zhang, Qiang
Chen, Shuo
Lu, Hanzhang
Chen, Huijun
Qi, Haikun
Su, Pan
Liao, Ying
Author_xml – sequence: 1
  givenname: Qiang
  orcidid: 0000-0001-5875-2692
  surname: Zhang
  fullname: Zhang, Qiang
  organization: Tsinghua University
– sequence: 2
  givenname: Pan
  surname: Su
  fullname: Su, Pan
  organization: Johns Hopkins University School of Medicine
– sequence: 3
  givenname: Zhensen
  orcidid: 0000-0001-7975-2528
  surname: Chen
  fullname: Chen, Zhensen
  organization: University of Washington
– sequence: 4
  givenname: Ying
  surname: Liao
  fullname: Liao, Ying
  organization: New York University School of Medicine
– sequence: 5
  givenname: Shuo
  surname: Chen
  fullname: Chen, Shuo
  organization: Tsinghua University
– sequence: 6
  givenname: Rui
  surname: Guo
  fullname: Guo, Rui
  organization: Beth Israel deaconess Medical Center and Harvard Medical School
– sequence: 7
  givenname: Haikun
  surname: Qi
  fullname: Qi, Haikun
  organization: King’s College London
– sequence: 8
  givenname: Xuesong
  surname: Li
  fullname: Li, Xuesong
  organization: Beijing Institute of Technology
– sequence: 9
  givenname: Xue
  surname: Zhang
  fullname: Zhang, Xue
  organization: Tsinghua University
– sequence: 10
  givenname: Zhangxuan
  orcidid: 0000-0002-6534-4299
  surname: Hu
  fullname: Hu, Zhangxuan
  organization: Tsinghua University
– sequence: 11
  givenname: Hanzhang
  surname: Lu
  fullname: Lu, Hanzhang
  organization: Johns Hopkins University School of Medicine
– sequence: 12
  givenname: Huijun
  orcidid: 0000-0003-1158-5510
  surname: Chen
  fullname: Chen, Huijun
  email: chenhj_cbir@mail.tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32017236$$D View this record in MEDLINE/PubMed
BookMark eNp90MtKw0AUBuBBKlqrC19AAm7qIvXMJUlnWeoVWoRW12EyOZFIMqkzCeLOd_ANfRKnVl0UdDUz8P2HOf8B6ZnGICHHFEYUgJ3Xth6xMY3jHdKnEWMhi6TokT4kAkJOpdgnB849AYCUidgj-5wBTRiP--TyAnEVVKisKc3jx9t7phzmwXwRFP6NdmVL0_pbMFnOggXqxixb2-m2bEwwXGfnk8Xy7JDsFqpyePR9DsjD1eX99Cac3V3fTiezUPOIx6EGiVxSoFSILI6TQqtCQC605Ek0pjJnccQ0g1xhFEcceCYEcprxgisKY8kHZLiZu7LNc4euTevSaawqZbDpXMp45JkUNPH0dIs-NZ01_ndeSeYNA_Dq5Ft1WY156tetlX1Nfwry4GwDtG2cs1j8EgrpuvzUl59-le_t-ZbVZavWVbVWldV_iZeywte_R6fzxXyT-AQDmpJT
CitedBy_id crossref_primary_10_1002_mrm_29193
crossref_primary_10_1002_jmri_28739
crossref_primary_10_1002_mrm_29381
crossref_primary_10_1016_j_mri_2022_02_006
crossref_primary_10_1161_STROKEAHA_121_037066
crossref_primary_10_3390_s22030858
crossref_primary_10_1002_nbm_4742
crossref_primary_10_1093_bib_bbaa310
crossref_primary_10_1002_mrm_29782
crossref_primary_10_1109_JBHI_2023_3312662
crossref_primary_10_1002_mrm_29880
crossref_primary_10_1186_s12968_021_00834_0
crossref_primary_10_1002_mrm_28560
crossref_primary_10_1002_nbm_5133
crossref_primary_10_1016_j_wneu_2022_02_006
crossref_primary_10_3389_frdem_2024_1408782
crossref_primary_10_1002_mp_15936
crossref_primary_10_1007_s10334_024_01189_0
crossref_primary_10_1159_000520099
crossref_primary_10_1016_j_neuroimage_2021_118237
crossref_primary_10_1002_mrm_28304
crossref_primary_10_1002_mrm_29721
crossref_primary_10_1002_mrm_30091
Cites_doi 10.1002/mrm.20178
10.1148/radiol.254082000
10.1155/2017/7064120
10.1016/S0730-725X(02)00629-X
10.1161/STROKEAHA.111.616466
10.1002/mrm.25197
10.1037/1082-989X.1.1.30
10.1002/mrm.25439
10.1109/ICIP.2016.7533065
10.1002/mrm.26587
10.1002/mrm.27198
10.1002/mrm.1284
10.1002/mrm.20784
10.1016/j.neurad.2016.12.006
10.1002/mrm.1910400308
10.1002/mrm.22320
10.1016/j.patcog.2017.01.005
10.1109/TSP.2008.2005752
10.1038/nature11971
10.1161/STROKEAHA.111.631929
10.1109/TMI.2014.2337321
10.1161/STROKEAHA.108.192616
10.1016/j.mri.2017.04.004
10.1002/mrm.28051
10.1109/TMI.2018.2817547
10.3171/2009.1.FOCUS08300
10.1002/nbm.4202
10.1145/1390156.1390294
ContentType Journal Article
Copyright 2020 International Society for Magnetic Resonance in Medicine
2020 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2020 International Society for Magnetic Resonance in Medicine
– notice: 2020 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.28166
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Biochemistry Abstracts 1
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1034
ExternalDocumentID 32017236
10_1002_mrm_28166
MRM28166
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Key R&D Program of China
  funderid: 2017YFC010802
– fundername: National Natural Science Foundation of China
  funderid: 61801026; 81371540; 81571667
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3536-c09e39101144b667fcaf40d4c9375819d2652c20dae565303b44e31b3f3a10893
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 09:30:45 EDT 2025
Fri Jul 25 09:25:08 EDT 2025
Wed Feb 19 02:26:24 EST 2025
Tue Jul 01 01:21:10 EDT 2025
Thu Apr 24 22:56:59 EDT 2025
Wed Jan 22 16:34:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords deep learning
reconstruction
MRF-ASL
DeepMARS
reproducibility
Language English
License 2020 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3536-c09e39101144b667fcaf40d4c9375819d2652c20dae565303b44e31b3f3a10893
Notes Funding information
National Key R&D Program of China, Grant/Award Number: 2017YFC010802; National Natural Science Foundation of China, Grants/Award Numbers: 81371540, 81571667, and 61801026
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5875-2692
0000-0003-1158-5510
0000-0001-7975-2528
0000-0002-6534-4299
PMID 32017236
PQID 2392941200
PQPubID 1016391
PageCount 11
ParticipantIDs proquest_miscellaneous_2350899417
proquest_journals_2392941200
pubmed_primary_32017236
crossref_primary_10_1002_mrm_28166
crossref_citationtrail_10_1002_mrm_28166
wiley_primary_10_1002_mrm_28166_MRM28166
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 41
2009; 40
2002; 96
2017; 2017
2015; 73
2006; 55
2017; 66
2017; 44
2015; 74
2018; 80
2008
2020; 33
1998; 40
2001; 46
2010; 63
2009; 26
2004; 52
2009; 57
2017; 78
2011; 42
2019
2010; 254
2018
2017
2016
2015
1996; 1
2013; 495
2014
2012; 43
2014; 33
2018; 37
2003; 21
Agarap AF (e_1_2_6_22_1) 2018
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Ioffe S (e_1_2_6_23_1) 2015
e_1_2_6_19_1
Yang W (e_1_2_6_28_1) 2018
Kingma DP (e_1_2_6_26_1) 2014
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
Pinheiro JC (e_1_2_6_39_1) 2002
e_1_2_6_3_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_27_1
36484231 - Magn Reson Med. 2022 Dec 9
References_xml – volume: 57
  start-page: 223
  year: 2009
  end-page: 236
  article-title: Variational Bayesian inference for a nonlinear forward model
  publication-title: IEEE Trans Signal Process
– volume: 63
  start-page: 1357
  year: 2010
  end-page: 1365
  article-title: Separation of macrovascular signal in multi‐inversion time arterial spin labelling MRI
  publication-title: Magn Reson Med
– volume: 42
  start-page: 2485
  year: 2011
  end-page: 2491
  article-title: Arterial spin‐labeling MRI can identify the presence and intensity of collateral perfusion in patients with Moyamoya disease
  publication-title: Stroke
– year: 2018
  article-title: Deep learning using rectified linear units (ReLU)
  publication-title: ArXiv e‐prints
– volume: 55
  start-page: 219
  year: 2006
  end-page: 232
  article-title: Model‐free arterial spin labeling quantification approach for perfusion MRI
  publication-title: Magn Reson Med
– volume: 74
  start-page: 523
  year: 2015
  end-page: 528
  article-title: Fast group matching for MR fingerprinting reconstruction
  publication-title: Magn Reson Med
– volume: 33
  start-page: 2311
  year: 2014
  end-page: 2322
  article-title: SVD compression for magnetic resonance fingerprinting in the time domain
  publication-title: IEEE Trans Med Imaging
– volume: 40
  start-page: 3646
  year: 2009
  end-page: 3678
  article-title: Recommendations for imaging of acute ischemic stroke: a scientific statement from the American Heart Association
  publication-title: Stroke
– volume: 96
  year: 2002
– volume: 43
  start-page: 1018
  year: 2012
  end-page: 1024
  article-title: The value of arterial spin‐labeled perfusion imaging in acute ischemic stroke: comparison with dynamic susceptibility contrast‐enhanced MRI
  publication-title: Stroke
– year: 2016
– year: 2018
– volume: 2017
  start-page: 7064120
  year: 2017
  article-title: Clinical applications of contrast‐enhanced perfusion MRI techniques in gliomas: recent advances and current challenges
  publication-title: Contrast Media Mol Imaging
– volume: 21
  start-page: 33
  year: 2003
  end-page: 39
  article-title: Reliability of mean transit time obtained using perfusion‐weighted MR imaging; comparison with positron emission tomography
  publication-title: Magn Reson Imaging
– volume: 41
  start-page: 53
  year: 2017
  end-page: 62
  article-title: MR fingerprinting reconstruction with Kalman filter
  publication-title: Magn Reson Imaging
– volume: 37
  start-page: 2103
  year: 2018
  end-page: 2114
  article-title: Dictionary‐free MRI PERK: parameter estimation via regression with kernels
  publication-title: IEEE Trans Med Imaging
– volume: 78
  start-page: 1812
  year: 2017
  end-page: 1823
  article-title: Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL
  publication-title: Magn Reson Med
– volume: 52
  start-page: 679
  year: 2004
  end-page: 682
  article-title: Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla
  publication-title: Magn Reson Med
– volume: 254
  start-page: 200
  year: 2010
  end-page: 209
  article-title: Differences in CT perfusion maps generated by different commercial software: quantitative analysis by using identical source data of acute stroke patients
  publication-title: Radiology
– volume: 1
  start-page: 30
  year: 1996
  end-page: 46
  article-title: Forming inferences about some intraclass correlation coefficients
  publication-title: Psychol Methods
– volume: 73
  start-page: 102
  year: 2015
  end-page: 116
  article-title: Recommended implementation of arterial spin‐labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia
  publication-title: Magn Reson Med
– volume: 40
  start-page: 383
  year: 1998
  end-page: 396
  article-title: A general kinetic model for quantitative perfusion imaging with arterial spin labeling
  publication-title: Magn Reson Med
– year: 2015
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
  publication-title: ArXiv e‐prints
– volume: 495
  start-page: 187
  year: 2013
  end-page: 192
  article-title: Magnetic resonance fingerprinting
  publication-title: Nature
– volume: 46
  start-page: 974
  year: 2001
  end-page: 984
  article-title: Arterial spin labeling in combination with a Look‐Locker sampling strategy: inflow turbo‐sampling EPI‐FAIR (ITS‐FAIR)
  publication-title: Magn Reson Med
– year: 2014
  article-title: Adam: a method for stochastic optimization
  publication-title: ArXiv e‐prints
– volume: 66
  start-page: 106
  year: 2017
  end-page: 116
  article-title: Diagnosing deep learning models for high accuracy age estimation from a single image
  publication-title: Pattern Recogn
– volume: 33
  year: 2020
  article-title: MR fingerprinting ASL: sequence characterization and comparison with dynamic susceptibility contrast (DSC) MRI
  publication-title: NMR Biomed
– year: 2017
– start-page: 1096
  year: 2008
  end-page: 1103
– year: 2019
– year: 2018
  article-title: Deep learning for single image super‐resolution: a brief review
  publication-title: ArXiv e‐prints
– year: 2015
– volume: 80
  start-page: 885
  year: 2018
  end-page: 894
  article-title: MR fingerprinting Deep RecOnstruction NEtwork (DRONE)
  publication-title: Magn Reson Med
– volume: 26
  start-page: E5
  year: 2009
  article-title: Quantitative hemodynamic studies in moyamoya disease: a review
  publication-title: Neurosurg Focus
– volume: 44
  start-page: 273
  year: 2017
  end-page: 280
  article-title: Clinical assessment of cerebral hemodynamics in Moyamoya disease via multiple inversion time arterial spin labeling and dynamic susceptibility contrast‐magnetic resonance imaging: a comparative study
  publication-title: J Neuroradiol
– ident: e_1_2_6_20_1
– year: 2018
  ident: e_1_2_6_22_1
  article-title: Deep learning using rectified linear units (ReLU)
  publication-title: ArXiv e‐prints
– ident: e_1_2_6_33_1
  doi: 10.1002/mrm.20178
– ident: e_1_2_6_41_1
  doi: 10.1148/radiol.254082000
– ident: e_1_2_6_34_1
– ident: e_1_2_6_40_1
  doi: 10.1155/2017/7064120
– ident: e_1_2_6_42_1
  doi: 10.1016/S0730-725X(02)00629-X
– ident: e_1_2_6_18_1
– ident: e_1_2_6_3_1
  doi: 10.1161/STROKEAHA.111.616466
– ident: e_1_2_6_6_1
  doi: 10.1002/mrm.25197
– ident: e_1_2_6_35_1
  doi: 10.1037/1082-989X.1.1.30
– volume-title: Mixed‐Effect Models in S and S‐plus
  year: 2002
  ident: e_1_2_6_39_1
– ident: e_1_2_6_12_1
  doi: 10.1002/mrm.25439
– ident: e_1_2_6_25_1
  doi: 10.1109/ICIP.2016.7533065
– ident: e_1_2_6_9_1
  doi: 10.1002/mrm.26587
– ident: e_1_2_6_16_1
  doi: 10.1002/mrm.27198
– ident: e_1_2_6_21_1
  doi: 10.1002/mrm.1284
– year: 2018
  ident: e_1_2_6_28_1
  article-title: Deep learning for single image super‐resolution: a brief review
  publication-title: ArXiv e‐prints
– ident: e_1_2_6_17_1
– ident: e_1_2_6_32_1
  doi: 10.1002/mrm.20784
– ident: e_1_2_6_38_1
  doi: 10.1016/j.neurad.2016.12.006
– ident: e_1_2_6_7_1
  doi: 10.1002/mrm.1910400308
– ident: e_1_2_6_37_1
  doi: 10.1002/mrm.22320
– ident: e_1_2_6_24_1
  doi: 10.1016/j.patcog.2017.01.005
– ident: e_1_2_6_30_1
– ident: e_1_2_6_10_1
– ident: e_1_2_6_36_1
  doi: 10.1109/TSP.2008.2005752
– ident: e_1_2_6_27_1
– ident: e_1_2_6_8_1
  doi: 10.1038/nature11971
– ident: e_1_2_6_5_1
  doi: 10.1161/STROKEAHA.111.631929
– ident: e_1_2_6_11_1
  doi: 10.1109/TMI.2014.2337321
– ident: e_1_2_6_4_1
  doi: 10.1161/STROKEAHA.108.192616
– ident: e_1_2_6_13_1
  doi: 10.1016/j.mri.2017.04.004
– ident: e_1_2_6_19_1
  doi: 10.1002/mrm.28051
– ident: e_1_2_6_14_1
  doi: 10.1109/TMI.2018.2817547
– ident: e_1_2_6_2_1
  doi: 10.3171/2009.1.FOCUS08300
– ident: e_1_2_6_31_1
  doi: 10.1002/nbm.4202
– ident: e_1_2_6_15_1
– year: 2015
  ident: e_1_2_6_23_1
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
  publication-title: ArXiv e‐prints
– year: 2014
  ident: e_1_2_6_26_1
  article-title: Adam: a method for stochastic optimization
  publication-title: ArXiv e‐prints
– ident: e_1_2_6_29_1
  doi: 10.1145/1390156.1390294
– reference: 36484231 - Magn Reson Med. 2022 Dec 9;:
SSID ssj0009974
Score 2.4549582
Snippet Purpose To develop a reproducible and fast method to reconstruct MR fingerprinting arterial spin labeling (MRF‐ASL) perfusion maps using deep learning. Method...
To develop a reproducible and fast method to reconstruct MR fingerprinting arterial spin labeling (MRF-ASL) perfusion maps using deep learning. A fully...
PurposeTo develop a reproducible and fast method to reconstruct MR fingerprinting arterial spin labeling (MRF‐ASL) perfusion maps using deep learning.MethodA...
To develop a reproducible and fast method to reconstruct MR fingerprinting arterial spin labeling (MRF-ASL) perfusion maps using deep learning.PURPOSETo...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1024
SubjectTerms Angiography
Arteries
Blood flow
Cerebral blood flow
Cerebrovascular Circulation
Computer simulation
Computing time
Correlation coefficients
Deep Learning
DeepMARS
Fingerprinting
Humans
Machine learning
Magnetic Resonance Imaging
Mathematical models
Moyamoya Disease
MRF‐ASL
Neural networks
Parameters
Perfusion
Random noise
Reconstruction
Reproducibility
Spin labeling
Spin Labels
Title Deep learning–based MR fingerprinting ASL ReconStruction (DeepMARS)
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28166
https://www.ncbi.nlm.nih.gov/pubmed/32017236
https://www.proquest.com/docview/2392941200
https://www.proquest.com/docview/2350899417
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5kQfHi-7G-qOJhPXS3m6RNg6fFB4tYD7sKexBKmyYe1CquXjz5H_yH_hIz6UN8gXgrNGnaTGbmm8z0C8BuwkPBdaZdmQrtMp0xN5SZdAMuVBjKkCpbPB6dBf0LdjLyRxOwX_0LU_BD1BtuqBnWXqOCJ-m480Eaevtw2yaY9TL2F2u1EBANPqijhCgYmDlDOyNYxSrkkU7d87Mv-gYwP-NV63COZ-GyetWizuS6_fSYtuXzFxbHf37LHMyUQNTpFStnHiZUvgBTUZlqX4BJWxsqx4twdKjUvVMeL3H19vKKni9zooGj7Z4gbg1i8bTTG546GM7mw4qU1mlh36g3GO4twcXx0flB3y1PX3Al9WngSk8oasCECZhYGgRcy0QzL2PSABrf4IiMBD6RxMsSZUCh8YQpY4p2U6pp0vUMDFqGRn6Xq1VwWCIpDUSouYFfUuiUSk6U8ARXgmae34RWJYdYltTkeELGTVyQKpPYTFBsJ6gJO3XT-4KP46dGG5Uw41IlxzFBJMi6xio0Ybu-bZQJMyRJru6esI2PaVDW5U1YKRZBPQolGC5T8_CWFeXvw8fRILIXa39vug7TBCN5W1q4AQ0jJ7Vp4M5jumXX9TuL1viP
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29btswED44KZp2aRv3z43bqkEHd5Ajk5QoAlmMOoHbWh7sGPASCBJFZkgtB028dMo75A3zJOFRP4abBii6CdBRlEge7-Pd6TuAzwkPBdeZdmUqtMt0xtxQZtINuFBhKEOqbPJ4NA6GM_Z97s8bcFj9C1PwQ9QON9QMu1-jgqND-mDNGrr4tegSDHttwSOs6I3M-YPJmjxKiIKDmTPcaQSreIU8clA33bRG9yDmJmK1Juf4OZxWL1tkmpx3V1dpV_7-g8fxf7_mBTwrsajTLxbPLjRU3oSdqIy2N-GxTQ-Vly_haKDUhVNWmDi7vb5B45c50cTR1i2I3kHMn3b605GDJ9p8WvHSOh1sG_Un0y-vYHZ8dPJ16JYFGFxJfRq40hOKGjxhzkwsDQKuZaKZlzFpMI1voERGAp9I4mWJMrjQGMOUMUV7KdU06XkGCb2G7XyZq7fgsERSGohQc4PApNAplZwo4QmuBM08vwWdaiJiWbKTY5GMn3HBq0xiM0CxHaAW7NeiFwUlx9-E2tVsxqVWXsYEwSDrmY2hBZ_q20afMEiS5Gq5QhkfI6Gsx1vwplgFdS-U4ImZmod37Fw-3H0cTSJ78e7fRT_Ck-FJNIpH38Y_9uApwYO9zTRsw7aZM_XeoJ-r9INd5HccBPyr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xUFEvvMpjeTWtOGwPWbK2E8fitGJZQUsQ2i0SB6Qo8aOHlrDiceHEf-Af8kvwOA8EpRLqLVLsOPF4PN94Jt8AbGc8Ftwo48tcGJ8ZxfxYKulHXOg4ljHVLnk8OY4OTtn3s_BsAnbrf2FKfojmwA01w-3XqOBjZXaeSUMvri46BKNekzDNokBg3Yb-8Jk7SoiSgpkz3GgEq2mFArLTdH1pjP5CmC8Bq7M4gzk4r9-1TDT53bm9yTvy7hWN439-zDzMVkjU65VLZwEmdLEIM0kVa1-EDy45VF5_gv2-1mOvqi_x6_H-AU2f8pKhZ9yhIJ4NYva01xsdeejPFqOaldZrY9-kNxx9W4LTwf7PvQO_Kr_gSxrSyJeB0NSiCesxsTyKuJGZYYFi0iKa0AIJRaKQSBKoTFtUaE1hzpim3ZwamnUDi4OWYaq4LPQqeCyTlEYiNtziLylMTiUnWgSCa0FVELagXcshlRU3OZbI-JOWrMoktROUuglqwdem6bgk5Hir0UYtzLTSyeuUIBRkXbsttOBLc9tqE4ZIskJf3mKbEOOgrMtbsFIugmYUStBfpvbhbSfKfw-fJsPEXay9v-lnmDnpD9Kjw-Mf6_CRoFfv0gw3YMqKTG9a6HOTb7kl_gQllfta
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+MR+fingerprinting+ASL+ReconStruction+%28DeepMARS%29&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Zhang%2C+Qiang&rft.au=Su%2C+Pan&rft.au=Chen%2C+Zhensen&rft.au=Liao%2C+Ying&rft.date=2020-08-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=84&rft.issue=2&rft.spage=1024&rft_id=info:doi/10.1002%2Fmrm.28166&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon