Mitochondria‐targeted antioxidant mitoquinone deactivates human and rat hepatic stellate cells and reduces portal hypertension in cirrhotic rats
Background & Aims In cirrhosis, activated hepatic stellate cells (HSC) play a major role in increasing intrahepatic vascular resistance and developing portal hypertension. We have shown that cirrhotic livers have increased reactive oxygen species (ROS), and that antioxidant therapy decreases por...
Saved in:
Published in | Liver international Vol. 37; no. 7; pp. 1002 - 1012 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background & Aims
In cirrhosis, activated hepatic stellate cells (HSC) play a major role in increasing intrahepatic vascular resistance and developing portal hypertension. We have shown that cirrhotic livers have increased reactive oxygen species (ROS), and that antioxidant therapy decreases portal pressure. Considering that mitochondria produce many of these ROS, our aim was to assess the effects of the oral mitochondria‐targeted antioxidant mitoquinone on hepatic oxidative stress, HSC phenotype, liver fibrosis and portal hypertension.
Methods
Ex vivo: Hepatic stellate cells phenotype was analysed in human precision‐cut liver slices in response to mitoquinone or vehicle. In vitro: Mitochondrial oxidative stress was analysed in different cell type of livers from control and cirrhotic rats. HSC phenotype, proliferation and viability were assessed in LX2, and in primary human and rat HSC treated with mitoquinone or vehicle. In vivo: CCl4‐ and thioacetamide‐cirrhotic rats were treated with mitoquinone (5 mg/kg/day) or the vehicle compound, DecylTPP, for 2 weeks, followed by measurement of oxidative stress, systemic and hepatic haemodynamic, liver fibrosis, HSC phenotype and liver inflammation.
Results
Mitoquinone deactivated human and rat HSC, decreased their proliferation but with no effects on viability. In CCl4‐cirrhotic rats, mitoquinone decreased hepatic oxidative stress, improved HSC phenotype, reduced intrahepatic vascular resistance and diminished liver fibrosis. These effects were associated with a significant reduction in portal pressure without changes in arterial pressure. These results were further confirmed in the thioacetamide‐cirrhotic model.
Conclusion
We propose mitochondria‐targeted antioxidants as a novel treatment approach against portal hypertension and cirrhosis.
See Editorial on Page 963 |
---|---|
AbstractList | Background & Aims In cirrhosis, activated hepatic stellate cells (HSC) play a major role in increasing intrahepatic vascular resistance and developing portal hypertension. We have shown that cirrhotic livers have increased reactive oxygen species (ROS), and that antioxidant therapy decreases portal pressure. Considering that mitochondria produce many of these ROS, our aim was to assess the effects of the oral mitochondria-targeted antioxidant mitoquinone on hepatic oxidative stress, HSC phenotype, liver fibrosis and portal hypertension. Methods Ex vivo: Hepatic stellate cells phenotype was analysed in human precision-cut liver slices in response to mitoquinone or vehicle. In vitro: Mitochondrial oxidative stress was analysed in different cell type of livers from control and cirrhotic rats. HSC phenotype, proliferation and viability were assessed in LX2, and in primary human and rat HSC treated with mitoquinone or vehicle. In vivo: CCl4- and thioacetamide-cirrhotic rats were treated with mitoquinone (5 mg/kg/day) or the vehicle compound, DecylTPP, for 2 weeks, followed by measurement of oxidative stress, systemic and hepatic haemodynamic, liver fibrosis, HSC phenotype and liver inflammation. Results Mitoquinone deactivated human and rat HSC, decreased their proliferation but with no effects on viability. In CCl4-cirrhotic rats, mitoquinone decreased hepatic oxidative stress, improved HSC phenotype, reduced intrahepatic vascular resistance and diminished liver fibrosis. These effects were associated with a significant reduction in portal pressure without changes in arterial pressure. These results were further confirmed in the thioacetamide-cirrhotic model. Conclusion We propose mitochondria-targeted antioxidants as a novel treatment approach against portal hypertension and cirrhosis. See Editorial on Page 963 Background & Aims In cirrhosis, activated hepatic stellate cells (HSC) play a major role in increasing intrahepatic vascular resistance and developing portal hypertension. We have shown that cirrhotic livers have increased reactive oxygen species (ROS), and that antioxidant therapy decreases portal pressure. Considering that mitochondria produce many of these ROS, our aim was to assess the effects of the oral mitochondria‐targeted antioxidant mitoquinone on hepatic oxidative stress, HSC phenotype, liver fibrosis and portal hypertension. Methods Ex vivo: Hepatic stellate cells phenotype was analysed in human precision‐cut liver slices in response to mitoquinone or vehicle. In vitro: Mitochondrial oxidative stress was analysed in different cell type of livers from control and cirrhotic rats. HSC phenotype, proliferation and viability were assessed in LX2, and in primary human and rat HSC treated with mitoquinone or vehicle. In vivo: CCl4‐ and thioacetamide‐cirrhotic rats were treated with mitoquinone (5 mg/kg/day) or the vehicle compound, DecylTPP, for 2 weeks, followed by measurement of oxidative stress, systemic and hepatic haemodynamic, liver fibrosis, HSC phenotype and liver inflammation. Results Mitoquinone deactivated human and rat HSC, decreased their proliferation but with no effects on viability. In CCl4‐cirrhotic rats, mitoquinone decreased hepatic oxidative stress, improved HSC phenotype, reduced intrahepatic vascular resistance and diminished liver fibrosis. These effects were associated with a significant reduction in portal pressure without changes in arterial pressure. These results were further confirmed in the thioacetamide‐cirrhotic model. Conclusion We propose mitochondria‐targeted antioxidants as a novel treatment approach against portal hypertension and cirrhosis. See Editorial on Page 963 In cirrhosis, activated hepatic stellate cells (HSC) play a major role in increasing intrahepatic vascular resistance and developing portal hypertension. We have shown that cirrhotic livers have increased reactive oxygen species (ROS), and that antioxidant therapy decreases portal pressure. Considering that mitochondria produce many of these ROS, our aim was to assess the effects of the oral mitochondria-targeted antioxidant mitoquinone on hepatic oxidative stress, HSC phenotype, liver fibrosis and portal hypertension. Ex vivo: Hepatic stellate cells phenotype was analysed in human precision-cut liver slices in response to mitoquinone or vehicle. In vitro: Mitochondrial oxidative stress was analysed in different cell type of livers from control and cirrhotic rats. HSC phenotype, proliferation and viability were assessed in LX2, and in primary human and rat HSC treated with mitoquinone or vehicle. In vivo: CCl - and thioacetamide-cirrhotic rats were treated with mitoquinone (5 mg/kg/day) or the vehicle compound, DecylTPP, for 2 weeks, followed by measurement of oxidative stress, systemic and hepatic haemodynamic, liver fibrosis, HSC phenotype and liver inflammation. Mitoquinone deactivated human and rat HSC, decreased their proliferation but with no effects on viability. In CCl -cirrhotic rats, mitoquinone decreased hepatic oxidative stress, improved HSC phenotype, reduced intrahepatic vascular resistance and diminished liver fibrosis. These effects were associated with a significant reduction in portal pressure without changes in arterial pressure. These results were further confirmed in the thioacetamide-cirrhotic model. We propose mitochondria-targeted antioxidants as a novel treatment approach against portal hypertension and cirrhosis. Abstract Background & Aims In cirrhosis, activated hepatic stellate cells ( HSC ) play a major role in increasing intrahepatic vascular resistance and developing portal hypertension. We have shown that cirrhotic livers have increased reactive oxygen species ( ROS ), and that antioxidant therapy decreases portal pressure. Considering that mitochondria produce many of these ROS , our aim was to assess the effects of the oral mitochondria‐targeted antioxidant mitoquinone on hepatic oxidative stress, HSC phenotype, liver fibrosis and portal hypertension. Methods Ex vivo: Hepatic stellate cells phenotype was analysed in human precision‐cut liver slices in response to mitoquinone or vehicle. In vitro: Mitochondrial oxidative stress was analysed in different cell type of livers from control and cirrhotic rats. HSC phenotype, proliferation and viability were assessed in LX 2, and in primary human and rat HSC treated with mitoquinone or vehicle. In vivo: CC l 4 ‐ and thioacetamide‐cirrhotic rats were treated with mitoquinone (5 mg/kg/day) or the vehicle compound, Decyl TPP , for 2 weeks, followed by measurement of oxidative stress, systemic and hepatic haemodynamic, liver fibrosis, HSC phenotype and liver inflammation. Results Mitoquinone deactivated human and rat HSC , decreased their proliferation but with no effects on viability. In CC l 4 ‐cirrhotic rats, mitoquinone decreased hepatic oxidative stress, improved HSC phenotype, reduced intrahepatic vascular resistance and diminished liver fibrosis. These effects were associated with a significant reduction in portal pressure without changes in arterial pressure. These results were further confirmed in the thioacetamide‐cirrhotic model. Conclusion We propose mitochondria‐targeted antioxidants as a novel treatment approach against portal hypertension and cirrhosis. See Editorial on Page 963 |
Author | Hernández‐Gea, Virginia López‐Sanjurjo, Cristina Isabel Gracia‐Sancho, Jordi García‐Pagán, Juan Carlos Vilaseca, Marina Bosch, Jaume Lafoz, Erica Ruart, Maria Deulofeu, Ramon Murphy, Michael P. García‐Calderó, Héctor |
Author_xml | – sequence: 1 givenname: Marina surname: Vilaseca fullname: Vilaseca, Marina organization: University of Barcelona Medical School – sequence: 2 givenname: Héctor surname: García‐Calderó fullname: García‐Calderó, Héctor organization: Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) – sequence: 3 givenname: Erica surname: Lafoz fullname: Lafoz, Erica organization: University of Barcelona Medical School – sequence: 4 givenname: Maria surname: Ruart fullname: Ruart, Maria organization: University of Barcelona Medical School – sequence: 5 givenname: Cristina Isabel surname: López‐Sanjurjo fullname: López‐Sanjurjo, Cristina Isabel organization: Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) – sequence: 6 givenname: Michael P. surname: Murphy fullname: Murphy, Michael P. organization: MRC Mitochondrial Biology Unit – sequence: 7 givenname: Ramon surname: Deulofeu fullname: Deulofeu, Ramon organization: Hospital Clinic de Barcelona – sequence: 8 givenname: Jaume surname: Bosch fullname: Bosch, Jaume organization: Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) – sequence: 9 givenname: Virginia surname: Hernández‐Gea fullname: Hernández‐Gea, Virginia organization: Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) – sequence: 10 givenname: Jordi surname: Gracia‐Sancho fullname: Gracia‐Sancho, Jordi organization: Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) – sequence: 11 givenname: Juan Carlos orcidid: 0000-0001-9032-4954 surname: García‐Pagán fullname: García‐Pagán, Juan Carlos email: jcgarcia@clinic.cat organization: Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28371136$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kMtOHDEQRS0ECq8s8gORpaxYDJRt3I8lQpAgTcQmYdvyo4Y26rEb2w3MLp8Q5RPzJfGkCbvU5pZUp26p7iHZ9cEjIR8YnLJSZ4N7OmXiXFQ75ICd181CcMF233ou9slhSg8ArG0le0f2eSNqxkR1QH59dTmYPngbnfr942dW8R4zWqp8duHF2aJ0XZjHyW2vUovKZPekMibaT2vlC2lpVJn2OKrsDE0Zh6HMqSma5jHayZSFMcSsBtpvRowZfXLBU-epcTH2YbtbfNIx2VupIeH7Vz0i36-vvl1-WSxvP99cXiwXRkhRLVoujG4rtAqskK2uQCNUteZaAaCVLTS1Ac0lwKqWynKpawC5qlvNdMNAHJFPs-8Yy3eYcvcQpujLyY61HCRvKlkX6mSmTAwpRVx1Y3RrFTcdg26bflfS7_6mX9iPr46TXqN9I__FXYCzGXh2A27-79Qtb-5myz8QL5TP |
CitedBy_id | crossref_primary_10_1016_j_actbio_2024_01_027 crossref_primary_10_1080_10409238_2020_1828258 crossref_primary_10_1080_1061186X_2021_1909051 crossref_primary_10_1111_cbdd_14386 crossref_primary_10_1080_13543784_2022_2095259 crossref_primary_10_1093_toxres_tfac062 crossref_primary_10_1016_j_biopha_2022_113133 crossref_primary_10_1038_s41419_020_2429_9 crossref_primary_10_1016_j_pharmthera_2020_107626 crossref_primary_10_1093_jpp_rgaa042 crossref_primary_10_1039_C8LC00456K crossref_primary_10_1177_1756284818811294 crossref_primary_10_1016_j_dld_2021_07_006 crossref_primary_10_1007_s11901_023_00598_4 crossref_primary_10_3389_fmed_2021_718896 crossref_primary_10_3390_antiox12081567 crossref_primary_10_1002_hep4_1360 crossref_primary_10_14336_AD_2019_0127 crossref_primary_10_2147_JIR_S357394 crossref_primary_10_1016_j_phymed_2022_154598 crossref_primary_10_3390_nu13113700 crossref_primary_10_1053_j_gastro_2018_07_022 crossref_primary_10_1152_ajpgi_00135_2019 crossref_primary_10_3390_antiox11050961 crossref_primary_10_1111_jcmm_13501 crossref_primary_10_3390_ijms22137137 crossref_primary_10_3390_ijms232113320 crossref_primary_10_1016_j_biopha_2020_110003 crossref_primary_10_1038_s41575_018_0097_3 crossref_primary_10_1139_apnm_2019_0407 crossref_primary_10_1016_j_cellsig_2024_111035 crossref_primary_10_3389_fphar_2017_00855 crossref_primary_10_1038_s41598_024_66235_2 crossref_primary_10_1007_s11684_019_0689_5 crossref_primary_10_3390_nu11102358 crossref_primary_10_3389_fmolb_2021_772174 crossref_primary_10_1016_j_hbpd_2023_08_003 crossref_primary_10_1515_med_2021_0394 crossref_primary_10_1007_s10620_017_4903_5 |
Cites_doi | 10.1016/j.jhep.2006.11.008 10.1053/j.gastro.2007.06.021 10.1016/j.jhep.2012.09.010 10.1016/S0165-6147(03)00233-5 10.1016/j.freeradbiomed.2012.05.036 10.1136/gut.2004.042127 10.1053/gast.2002.31040 10.1111/j.1478-3231.2010.02250.x 10.1007/s12072-009-9158-6 10.1371/journal.pone.0138655 10.1186/1755-1536-1-5 10.1016/j.jhep.2010.07.034 10.1016/S0169-409X(99)00069-1 10.1002/hep.1840040425 10.1053/jhep.2001.21045 10.1016/j.jhep.2011.12.008 10.1016/j.jhep.2014.07.014 10.1016/j.jhep.2012.12.012 10.1016/S1665-2681(19)32099-X 10.1016/j.jhep.2015.12.003 10.1016/j.jhep.2012.03.007 10.1002/hep.24377 10.1152/physrev.00013.2007 10.1007/s005350070045 10.1172/JCI24282 10.1016/S0168-8278(03)00347-7 10.1080/10715769900300841 10.1089/ars.2006.8.691 10.1055/s-2007-1007128 10.1172/JCI18212 10.1016/j.jhep.2010.03.021 10.1155/2001/746736 10.1002/hep.22166 10.1016/j.jhep.2013.01.009 10.1016/S0168-8278(01)00285-9 10.1136/gut.2010.220913 10.1111/j.1440-1746.2006.04231.x |
ContentType | Journal Article |
Copyright | 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. 2017 John Wiley & Sons A/S |
Copyright_xml | – notice: 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd – notice: 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. – notice: 2017 John Wiley & Sons A/S |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7T5 7U9 8FD FR3 H94 P64 RC3 |
DOI | 10.1111/liv.13436 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Immunology Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Virology and AIDS Abstracts Biotechnology Research Abstracts Technology Research Database AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Genetics Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1478-3231 |
EndPage | 1012 |
ExternalDocumentID | 10_1111_liv_13436 28371136 LIV13436 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Ministerio de Economía y Competitividad funderid: SAF 2013‐44723‐R; SAF2013‐44723‐R – fundername: European Union – fundername: Instituto de Salud Carlos III funderid: PI13/00341 – fundername: Medical Research Council grantid: MC_UU_00015/3 – fundername: Medical Research Council grantid: MC_U105663142 |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OC 29L 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EBD EBS EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WVDHM WXI WXSBR X7M XG1 ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7T5 7U9 8FD FR3 H94 P64 RC3 |
ID | FETCH-LOGICAL-c3536-923cb96eda0d359b60be067b2ba00ed59087c0b2500f75ad25b7005f79b1b8103 |
IEDL.DBID | DR2 |
ISSN | 1478-3223 |
IngestDate | Thu Oct 10 22:01:57 EDT 2024 Fri Aug 23 02:26:16 EDT 2024 Sat Sep 28 08:27:03 EDT 2024 Sat Aug 24 00:52:01 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | hepatic stellate cells liver hepatic haemodynamic cirrhosis oxidative stress |
Language | English |
License | 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3536-923cb96eda0d359b60be067b2ba00ed59087c0b2500f75ad25b7005f79b1b8103 |
Notes | Funding information This work was funded by the Ministerio de Economía y Competitividad (SAF 2013‐44723‐R), and Instituto de Salud Carlos III, FIS (PI13/00341), and the European Union (Fondos FEDER, “una manera de hacer Europa”). M.R. has a contract from the Ministerio de Economía y Competitividad (SAF2013‐44723‐R). JG‐S has a Ramón y Cajal contract from the Ministerio de Economía y Competitividad. CIBEREHD is funded by the Instituto de Salud Carlos III. |
ORCID | 0000-0001-9032-4954 |
PMID | 28371136 |
PQID | 1920528657 |
PQPubID | 2045125 |
PageCount | 11 |
ParticipantIDs | proquest_journals_1920528657 crossref_primary_10_1111_liv_13436 pubmed_primary_28371136 wiley_primary_10_1111_liv_13436_LIV13436 |
PublicationCentury | 2000 |
PublicationDate | July 2017 2017-07-00 20170701 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: July 2017 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Liver international |
PublicationTitleAlternate | Liver Int |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2002; 36 2010; 53 2011; 60 2005; 115 2000; 41 2015; 10 2004; 3 2006; 8 2011; 54 2003; 39 2008; 1 2012; 57 2014; 61 2012; 56 2003; 112 2012; 53 2013; 58 1984; 4 1999; 19 2006; 21 2000; 35 2007; 133 2002; 122 2008; 47 2003; 24 2016; 64 2005; 54 2001; 15 1999; 31 2008; 88 2009; 3 2001; 33 2007; 46 2010; 30 28635165 - Liver Int. 2017 Jul;37(7):963-965 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 15 start-page: 661 year: 2001 end-page: 668 article-title: Cytokines and liver diseases publication-title: Can J Gastroenterol – volume: 58 start-page: 240 year: 2013 end-page: 246 article-title: Recombinant human manganese superoxide dismutase reduces liver fibrosis and portal pressure in CCl4‐cirrhotic rats publication-title: J Hepatol – volume: 19 start-page: 397 year: 1999 end-page: 410 article-title: Biology of hepatic stellate cells and their possible relevance in the pathogenesis of portal hypertension in cirrhosis publication-title: Semin Liver Dis – volume: 47 start-page: 1248 year: 2008 end-page: 1256 article-title: Increased oxidative stress in cirrhotic rat livers: a potential mechanism contributing to reduced nitric oxide bioavailability publication-title: Hepatology – volume: 3 start-page: 86 year: 2004 end-page: 92 article-title: The importance of redox state in liver damage publication-title: Ann Hepatol – volume: 53 start-page: 1123 year: 2012 end-page: 1138 article-title: Mitochondrial reactive oxygen species generation triggers inflammatory response and tissue injury associated with hepatic ischemiareperfusion: therapeutic potential of mitochondrially targeted antioxidants publication-title: Free Radic Biol Med – volume: 54 start-page: 142 year: 2005 end-page: 151 article-title: Human hepatic stellate cell lines, LX‐1 and LX‐2: new tools for analysis of hepatic fibrosis publication-title: Gut – volume: 53 start-page: 558 year: 2010 end-page: 567 article-title: Hepatic endothelial dysfunction and abnormal angiogenesis: new targets in the treatment of portal hypertension publication-title: J Hepatol – volume: 115 start-page: 209 year: 2005 end-page: 218 article-title: Liver fibrosis publication-title: J Clin Invest – volume: 112 start-page: 1383 year: 2003 end-page: 1394 article-title: NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis publication-title: J Clin Invest – volume: 60 start-page: 517 year: 2011 end-page: 524 article-title: Endothelial expression of transcription factor Kruppel‐like factor 2 and its vasoprotective target genes in the normal and cirrhotic rat liver publication-title: Gut – volume: 61 start-page: 1321 year: 2014 end-page: 1327 article-title: Liver sinusoidal endothelial dysfunction after LPS administration: a role for inducible‐nitric oxide synthase publication-title: J Hepatol – volume: 39 start-page: 515 year: 2003 end-page: 521 article-title: Cyclooxygenase‐1 inhibition corrects endothelial dysfunction in cirrhotic rat livers publication-title: J Hepatol – volume: 35 start-page: 665 year: 2000 end-page: 672 article-title: Hepatic stellate cells: a target for the treatment of liver fibrosis publication-title: J Gastroenterol – volume: 21 start-page: 947 year: 2006 end-page: 957 article-title: Oxidative stress in the development of liver cirrhosis: a comparison of two different experimental models publication-title: J Gastroenterol Hepatol – volume: 31 start-page: 261 year: 1999 end-page: 272 article-title: Antioxidant defence mechanisms: from the beginning to the end (of the beginning) publication-title: Free Radic Res – volume: 33 start-page: 177 year: 2001 end-page: 188 article-title: Formation of normal desmin intermediate filaments in mouse hepatic stellate cells requires vimentin publication-title: Hepatology – volume: 88 start-page: 125 year: 2008 end-page: 172 article-title: Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver publication-title: Physiol Rev – volume: 54 start-page: 660 year: 2011 end-page: 665 article-title: Tempol administration, a superoxide dismutase mimetic, reduces hepatic vascular resistance and portal pressure in cirrhotic rats publication-title: J Hepatol – volume: 64 start-page: 834 year: 2016 end-page: 842 article-title: Enoxaparin reduces hepatic vascular resistance and portal pressure in cirrhotic rats publication-title: J Hepatol – volume: 8 start-page: 691 year: 2006 end-page: 728 article-title: NADPH oxidases in cardiovascular health and disease publication-title: Antioxid Redox Signal – volume: 3 start-page: 526 year: 2009 end-page: 536 article-title: Role of free radicals in liver diseases publication-title: Hepatol Int – volume: 30 start-page: 1019 year: 2010 end-page: 1026 article-title: The mitochondria‐targeted anti‐oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients publication-title: Liver Int – volume: 133 start-page: 959 year: 2007 end-page: 966 article-title: Evidence against a role for NADPH oxidase modulating hepatic vascular tone in cirrhosis publication-title: Gastroenterology – volume: 58 start-page: 904 year: 2013 end-page: 910 article-title: Resveratrol improves intrahepatic endothelial dysfunction and reduces hepatic fibrosis and portal pressure in cirrhotic rats publication-title: J Hepatol – volume: 46 start-page: 193 year: 2007 end-page: 197 article-title: Potential role of antioxidants in the treatment of portal hypertension publication-title: J Hepatol – volume: 56 start-page: 1033 year: 2012 end-page: 1039 article-title: PPARα activation improves endothelial dysfunction and reduces fibrosis and portal pressure in cirrhotic rats publication-title: J Hepatol – volume: 58 start-page: 1252 year: 2013 end-page: 1253 article-title: Precision‐cut liver slices: a tool to model the liver ex vivo publication-title: J Hepatol – volume: 54 start-page: 153 year: 2011 end-page: 163 article-title: Mitochondria‐targeted ubiquinone (MitoQ) decreases ethanol‐dependent micro and macro hepatosteatosis publication-title: Hepatology – volume: 36 start-page: 362 year: 2002 end-page: 369 article-title: Regulation of hepatic stellate cell proliferation and collagen synthesis by proteinase‐activated receptors publication-title: J Hepatol – volume: 57 start-page: 458 year: 2012 end-page: 461 article-title: Functional aspects on the pathophysiology of portal hypertension in cirrhosis publication-title: J Hepatol – volume: 4 start-page: 709 year: 1984 end-page: 714 article-title: Immunocytochemical detection of desmin in fat‐storing cells (Ito cells) publication-title: Hepatology – volume: 122 start-page: 387 year: 2002 end-page: 393 article-title: 5‐lipoxygenase inhibition reduces intrahepatic vascular resistance of cirrhotic rat livers: a possible role of cysteinyl‐leukotrienes publication-title: Gastroenterology – volume: 41 start-page: 235 year: 2000 end-page: 250 article-title: Drug delivery to mitochondria: the key to mitochondrial medicine publication-title: Adv Drug Deliv Rev – volume: 10 start-page: 1 year: 2015 end-page: 17 article-title: All‐in‐one: advanced preparation of human parenchymal and non‐parenchymal liver cells publication-title: PLoS One – volume: 24 start-page: 471 year: 2003 end-page: 478 article-title: The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases publication-title: Trends Pharmacol Sci – volume: 1 start-page: 5 year: 2008 article-title: Redox mechanisms in hepatic chronic wound healing and fibrogenesis publication-title: Fibrogenesis Tissue Repair – ident: e_1_2_9_9_1 doi: 10.1016/j.jhep.2006.11.008 – ident: e_1_2_9_25_1 doi: 10.1053/j.gastro.2007.06.021 – ident: e_1_2_9_16_1 doi: 10.1016/j.jhep.2012.09.010 – ident: e_1_2_9_15_1 doi: 10.1016/S0165-6147(03)00233-5 – ident: e_1_2_9_21_1 doi: 10.1016/j.freeradbiomed.2012.05.036 – ident: e_1_2_9_32_1 doi: 10.1136/gut.2004.042127 – ident: e_1_2_9_24_1 doi: 10.1053/gast.2002.31040 – ident: e_1_2_9_22_1 doi: 10.1111/j.1478-3231.2010.02250.x – ident: e_1_2_9_8_1 doi: 10.1007/s12072-009-9158-6 – ident: e_1_2_9_23_1 doi: 10.1371/journal.pone.0138655 – ident: e_1_2_9_10_1 doi: 10.1186/1755-1536-1-5 – ident: e_1_2_9_18_1 doi: 10.1016/j.jhep.2010.07.034 – ident: e_1_2_9_19_1 doi: 10.1016/S0169-409X(99)00069-1 – ident: e_1_2_9_35_1 doi: 10.1002/hep.1840040425 – ident: e_1_2_9_36_1 doi: 10.1053/jhep.2001.21045 – ident: e_1_2_9_28_1 doi: 10.1016/j.jhep.2011.12.008 – ident: e_1_2_9_26_1 doi: 10.1016/j.jhep.2014.07.014 – ident: e_1_2_9_17_1 doi: 10.1016/j.jhep.2012.12.012 – ident: e_1_2_9_13_1 doi: 10.1016/S1665-2681(19)32099-X – ident: e_1_2_9_29_1 doi: 10.1016/j.jhep.2015.12.003 – ident: e_1_2_9_3_1 doi: 10.1016/j.jhep.2012.03.007 – ident: e_1_2_9_20_1 doi: 10.1002/hep.24377 – ident: e_1_2_9_34_1 doi: 10.1152/physrev.00013.2007 – ident: e_1_2_9_7_1 doi: 10.1007/s005350070045 – ident: e_1_2_9_37_1 doi: 10.1172/JCI24282 – ident: e_1_2_9_27_1 doi: 10.1016/S0168-8278(03)00347-7 – ident: e_1_2_9_11_1 doi: 10.1080/10715769900300841 – ident: e_1_2_9_14_1 doi: 10.1089/ars.2006.8.691 – ident: e_1_2_9_4_1 doi: 10.1055/s-2007-1007128 – ident: e_1_2_9_6_1 doi: 10.1172/JCI18212 – ident: e_1_2_9_2_1 doi: 10.1016/j.jhep.2010.03.021 – ident: e_1_2_9_5_1 doi: 10.1155/2001/746736 – ident: e_1_2_9_12_1 doi: 10.1002/hep.22166 – ident: e_1_2_9_31_1 doi: 10.1016/j.jhep.2013.01.009 – ident: e_1_2_9_33_1 doi: 10.1016/S0168-8278(01)00285-9 – ident: e_1_2_9_30_1 doi: 10.1136/gut.2010.220913 – ident: e_1_2_9_38_1 doi: 10.1111/j.1440-1746.2006.04231.x |
SSID | ssj0019951 |
Score | 2.4173968 |
Snippet | Background & Aims
In cirrhosis, activated hepatic stellate cells (HSC) play a major role in increasing intrahepatic vascular resistance and developing portal... In cirrhosis, activated hepatic stellate cells (HSC) play a major role in increasing intrahepatic vascular resistance and developing portal hypertension. We... Abstract Background & Aims In cirrhosis, activated hepatic stellate cells ( HSC ) play a major role in increasing intrahepatic vascular resistance and... Background & Aims In cirrhosis, activated hepatic stellate cells (HSC) play a major role in increasing intrahepatic vascular resistance and developing portal... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1002 |
SubjectTerms | Animals Anti-Inflammatory Agents - pharmacology Antioxidants Antioxidants - pharmacology Bile Blood pressure Carbon tetrachloride CCL4 protein Cell Line Cell Proliferation - drug effects Cell Survival - drug effects Cirrhosis Deactivation Dose-Response Relationship, Drug Fibrosis Genotype & phenotype hepatic haemodynamic hepatic stellate cells Hepatic Stellate Cells - drug effects Hepatic Stellate Cells - metabolism Hepatic Stellate Cells - pathology Humans Hypertension Hypertension, Portal - etiology Hypertension, Portal - metabolism Hypertension, Portal - physiopathology Hypertension, Portal - prevention & control In vitro methods and tests Liver Liver cirrhosis Liver Cirrhosis, Experimental - complications Liver Cirrhosis, Experimental - drug therapy Liver Cirrhosis, Experimental - metabolism Liver Cirrhosis, Experimental - physiopathology Male Mitochondria Mitochondria, Liver - drug effects Mitochondria, Liver - metabolism Mitochondria, Liver - pathology Organophosphorus Compounds - pharmacology Oxidation resistance Oxidative stress Oxidative Stress - drug effects Phenotype Portal Pressure - drug effects Rats Rats, Wistar Reactive oxygen species Reactive Oxygen Species - metabolism Rodents Stellate cells Thioacetamide Time Factors Ubiquinone - analogs & derivatives Ubiquinone - pharmacology Viability |
Title | Mitochondria‐targeted antioxidant mitoquinone deactivates human and rat hepatic stellate cells and reduces portal hypertension in cirrhotic rats |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fliv.13436 https://www.ncbi.nlm.nih.gov/pubmed/28371136 https://www.proquest.com/docview/1920528657 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS9xAFL2IBfGlVm3rWpVBpPQly-TbpU_rx6Li-iC1-FAIczMTNqhZ3exK65M_ofQn-ku8d5IsaikUnxLIzJBk7sw9d-bcMwBbhDEyHRnpKA8pQNFoHDRx6GgTeJ5CHYXI2cj9k-jgLDg6D89n4GuTC1PpQ0wX3Hhk2PmaB7jC8skgv8xv264f-Cy37fox07n2TqfSUZx5bIOtgLf_yQfWqkLM4pnWfO6L_gKYz_GqdTi9BfjRvGrFM7loT8bYTu9eqDi-8lvewdsaiIpuZTmLMGOKJVjuFhSEX_0Sn4Wlhto19yWY69c78Mvwp09TAE2ZhSbLfbj_XTHJjRaKaZM_c01XcUVlbiZ5MSyM0IZTJ24Z0gp7ICCV1ILsTgwMs7lTUXIiCz0XvIlQVo9ZUJYqVMGBGFCwPLJU-2Eh8kKk-Wg0GHJdaqd8D2e9_W-7B059roOT-qEfOYQpU-xERiup_bCDkURDThM9VFIazaewx6lEAmcyi0OlvRBjmiyyuIMubrvS_wCz_AUrIDLeIYozTf4Xg23VQdY_1B65XRVFgRu0YLPp4eS6ku9ImrCHfnpif3oL1pq-T-oRXCaEfGXIabtxCz5W9jBtgRWD-CycFnyxvfrvppPjw-_2ZvX_i36CeY-xg-UEr8HseDQx64R8xrgBb7o7ezu9DWvqjz3fBD8 |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9wwEB5xSKUvnG3ZclkIVX3JypvDYSVeEIeWY3moAPFSRZnY0UaFLOyBKE_8BMRP5Jcw4yQraFWp4mmzim0l8YznG_ubGYANwhipVkY6sYvkoGg0DpowcLTxXTdGrQLkaOT2iWqd-YcXwcUYbFWxMEV-iNGGG2uGXa9ZwXlD-pWWX2a39Ybne2ocJkndPS7csPtjlDyKY4-tu-UzAYCsYJlXiHk8o65vrdFfEPMtYrUmZ38GflYPWzBNftWHA6wn93_kcXzv28zCdIlFxXYhPHMwZvJ5WNjOyQ-_-i2-CcsOtdvu8_ChXR7CL8BTm1YBWjVzTcL7_PBYkMmNFjEzJ-8yTb_iitrcDLO8mxuhDUdP3DKqFbYmILXUgkRPdAwTuhPR51gWui_4HKFf3OacstSh8A9Eh_zlnmXbd3OR5SLJer1Ol_vSOP1PcLa_d7rTcsrSDk7iBZ5yCFYm2FRGx1J7QROVREN2E12MpTSaC7GHiUTCZzINg1i7AYa0XqRhExu42ZDeZ5jgN1gEkfIhUZhqMsHob8ZN5BSI2iXLGyvlN_warFdTHF0XGTyiyvOhjx7Zj16D5Wryo1KJ-xGBXxlw5G5Ygy-FQIxG4KRBXA6nBt_ttP576Oj44NxefP3_pmsw1TptH9P_k6Ml-OgylLAU4WWYGPSGZoWA0ABXrby_ACzkBuU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6FIkVcCiSFhhZYVajqxdHGj3WjniIgCtBECDWoh0qWx7tWLFqnzaMqnPoTUH9ifwkzazuiVEiIk23tQ97d2ZlvducB8IYwRqqVkU7sIikoGo2DJgwcbXzXjVGrANkbeThSg7H_8Tg4rsFB5QtTxIdYHbjxzrD8mjf4uU5_2-Sn2WW74_meegAPfUXIlxHRl1XsKHY9ttqWz_f_JATLsEJsxrNqelcY3UOYdwGrlTj9x3BS_WthaPKtvVxgO_nxRxjH_xzME1gvkajoFaTzFGomb0Czl5MWfvZd7AprG2oP3RtQH5ZX8E24GRIPIJ6ZayLd2-ufhSm50SJmu8mrTNNTnFGdi2WWT3MjtGHfiUvGtMJmBKSaWhDhiYlhc-5EzNmThcoF3yLMi2KOKEsNCu1ATEhbnllb-2kuslwk2Ww2mXJb6me-AeP--6O3A6dM7OAkXuAph0Blgl1ldCy1F3RRSTQkNdHFWEqjOQ17mEgkdCbTMIi1G2BI3CINu9jB_Y70nsEaj2ATRMpXRGGqSQCjvx93kQMgapfkbqyU3_FbsFOtcHRexO-IKr2HJj2yk96C7Wrto3ILzyOCvjJgv92wBc8Lelj1wCGDOBlOC_bsqv696-jww1f78uLfq76G-ud3ffocfdqCRy7jCGsfvA1ri9nSvCQUtMBXltp_ASGPBZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondria%E2%80%90targeted+antioxidant+mitoquinone+deactivates+human+and+rat+hepatic+stellate+cells+and+reduces+portal+hypertension+in+cirrhotic+rats&rft.jtitle=Liver+international&rft.au=Vilaseca%2C+Marina&rft.au=Garc%C3%ADa%E2%80%90Calder%C3%B3%2C+H%C3%A9ctor&rft.au=Lafoz%2C+Erica&rft.au=Ruart%2C+Maria&rft.date=2017-07-01&rft.issn=1478-3223&rft.eissn=1478-3231&rft.volume=37&rft.issue=7&rft.spage=1002&rft.epage=1012&rft_id=info:doi/10.1111%2Fliv.13436&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_liv_13436 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1478-3223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1478-3223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1478-3223&client=summon |