Unsupervised motion artifact correction of turbo spin‐echo MRI using deep image prior

Purpose In MRI, motion artifacts can significantly degrade image quality. Motion artifact correction methods using deep neural networks usually required extensive training on large datasets, making them time‐consuming and resource‐intensive. In this paper, an unsupervised deep learning‐based motion...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 92; no. 1; pp. 28 - 42
Main Authors Lee, Jongyeon, Seo, Hyunseok, Lee, Wonil, Park, HyunWook
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose In MRI, motion artifacts can significantly degrade image quality. Motion artifact correction methods using deep neural networks usually required extensive training on large datasets, making them time‐consuming and resource‐intensive. In this paper, an unsupervised deep learning‐based motion artifact correction method for turbo‐spin echo MRI is proposed using the deep image prior framework. Theory and Methods The proposed approach takes advantage of the high impedance to motion artifacts offered by the neural network parameterization to remove motion artifacts in MR images. The framework consists of parameterization of MR image, automatic spatial transformation, and motion simulation model. The proposed method synthesizes motion‐corrupted images from the motion‐corrected images generated by the convolutional neural network, where an optimization process minimizes the objective function between the synthesized images and the acquired images. Results In the simulation study of 280 slices from 14 subjects, the proposed method showed a significant increase in the averaged structural similarity index measure by 0.2737 in individual coil images and by 0.4550 in the root‐sum‐of‐square images. In addition, the ablation study demonstrated the effectiveness of each proposed component in correcting motion artifacts compared to the corrected images produced by the baseline method. The experiments on real motion dataset has shown its clinical potential. Conclusion The proposed method exhibited significant quantitative and qualitative improvements in correcting rigid and in‐plane motion artifacts in MR images acquired using turbo spin‐echo sequence.
AbstractList PurposeIn MRI, motion artifacts can significantly degrade image quality. Motion artifact correction methods using deep neural networks usually required extensive training on large datasets, making them time‐consuming and resource‐intensive. In this paper, an unsupervised deep learning‐based motion artifact correction method for turbo‐spin echo MRI is proposed using the deep image prior framework.Theory and MethodsThe proposed approach takes advantage of the high impedance to motion artifacts offered by the neural network parameterization to remove motion artifacts in MR images. The framework consists of parameterization of MR image, automatic spatial transformation, and motion simulation model. The proposed method synthesizes motion‐corrupted images from the motion‐corrected images generated by the convolutional neural network, where an optimization process minimizes the objective function between the synthesized images and the acquired images.ResultsIn the simulation study of 280 slices from 14 subjects, the proposed method showed a significant increase in the averaged structural similarity index measure by 0.2737 in individual coil images and by 0.4550 in the root‐sum‐of‐square images. In addition, the ablation study demonstrated the effectiveness of each proposed component in correcting motion artifacts compared to the corrected images produced by the baseline method. The experiments on real motion dataset has shown its clinical potential.ConclusionThe proposed method exhibited significant quantitative and qualitative improvements in correcting rigid and in‐plane motion artifacts in MR images acquired using turbo spin‐echo sequence.
In MRI, motion artifacts can significantly degrade image quality. Motion artifact correction methods using deep neural networks usually required extensive training on large datasets, making them time-consuming and resource-intensive. In this paper, an unsupervised deep learning-based motion artifact correction method for turbo-spin echo MRI is proposed using the deep image prior framework. The proposed approach takes advantage of the high impedance to motion artifacts offered by the neural network parameterization to remove motion artifacts in MR images. The framework consists of parameterization of MR image, automatic spatial transformation, and motion simulation model. The proposed method synthesizes motion-corrupted images from the motion-corrected images generated by the convolutional neural network, where an optimization process minimizes the objective function between the synthesized images and the acquired images. In the simulation study of 280 slices from 14 subjects, the proposed method showed a significant increase in the averaged structural similarity index measure by 0.2737 in individual coil images and by 0.4550 in the root-sum-of-square images. In addition, the ablation study demonstrated the effectiveness of each proposed component in correcting motion artifacts compared to the corrected images produced by the baseline method. The experiments on real motion dataset has shown its clinical potential. The proposed method exhibited significant quantitative and qualitative improvements in correcting rigid and in-plane motion artifacts in MR images acquired using turbo spin-echo sequence.
In MRI, motion artifacts can significantly degrade image quality. Motion artifact correction methods using deep neural networks usually required extensive training on large datasets, making them time-consuming and resource-intensive. In this paper, an unsupervised deep learning-based motion artifact correction method for turbo-spin echo MRI is proposed using the deep image prior framework.PURPOSEIn MRI, motion artifacts can significantly degrade image quality. Motion artifact correction methods using deep neural networks usually required extensive training on large datasets, making them time-consuming and resource-intensive. In this paper, an unsupervised deep learning-based motion artifact correction method for turbo-spin echo MRI is proposed using the deep image prior framework.The proposed approach takes advantage of the high impedance to motion artifacts offered by the neural network parameterization to remove motion artifacts in MR images. The framework consists of parameterization of MR image, automatic spatial transformation, and motion simulation model. The proposed method synthesizes motion-corrupted images from the motion-corrected images generated by the convolutional neural network, where an optimization process minimizes the objective function between the synthesized images and the acquired images.THEORY AND METHODSThe proposed approach takes advantage of the high impedance to motion artifacts offered by the neural network parameterization to remove motion artifacts in MR images. The framework consists of parameterization of MR image, automatic spatial transformation, and motion simulation model. The proposed method synthesizes motion-corrupted images from the motion-corrected images generated by the convolutional neural network, where an optimization process minimizes the objective function between the synthesized images and the acquired images.In the simulation study of 280 slices from 14 subjects, the proposed method showed a significant increase in the averaged structural similarity index measure by 0.2737 in individual coil images and by 0.4550 in the root-sum-of-square images. In addition, the ablation study demonstrated the effectiveness of each proposed component in correcting motion artifacts compared to the corrected images produced by the baseline method. The experiments on real motion dataset has shown its clinical potential.RESULTSIn the simulation study of 280 slices from 14 subjects, the proposed method showed a significant increase in the averaged structural similarity index measure by 0.2737 in individual coil images and by 0.4550 in the root-sum-of-square images. In addition, the ablation study demonstrated the effectiveness of each proposed component in correcting motion artifacts compared to the corrected images produced by the baseline method. The experiments on real motion dataset has shown its clinical potential.The proposed method exhibited significant quantitative and qualitative improvements in correcting rigid and in-plane motion artifacts in MR images acquired using turbo spin-echo sequence.CONCLUSIONThe proposed method exhibited significant quantitative and qualitative improvements in correcting rigid and in-plane motion artifacts in MR images acquired using turbo spin-echo sequence.
Purpose In MRI, motion artifacts can significantly degrade image quality. Motion artifact correction methods using deep neural networks usually required extensive training on large datasets, making them time‐consuming and resource‐intensive. In this paper, an unsupervised deep learning‐based motion artifact correction method for turbo‐spin echo MRI is proposed using the deep image prior framework. Theory and Methods The proposed approach takes advantage of the high impedance to motion artifacts offered by the neural network parameterization to remove motion artifacts in MR images. The framework consists of parameterization of MR image, automatic spatial transformation, and motion simulation model. The proposed method synthesizes motion‐corrupted images from the motion‐corrected images generated by the convolutional neural network, where an optimization process minimizes the objective function between the synthesized images and the acquired images. Results In the simulation study of 280 slices from 14 subjects, the proposed method showed a significant increase in the averaged structural similarity index measure by 0.2737 in individual coil images and by 0.4550 in the root‐sum‐of‐square images. In addition, the ablation study demonstrated the effectiveness of each proposed component in correcting motion artifacts compared to the corrected images produced by the baseline method. The experiments on real motion dataset has shown its clinical potential. Conclusion The proposed method exhibited significant quantitative and qualitative improvements in correcting rigid and in‐plane motion artifacts in MR images acquired using turbo spin‐echo sequence.
Author Seo, Hyunseok
Park, HyunWook
Lee, Wonil
Lee, Jongyeon
Author_xml – sequence: 1
  givenname: Jongyeon
  orcidid: 0000-0001-7961-1899
  surname: Lee
  fullname: Lee, Jongyeon
  organization: Biomedical Research Division, Korea Institute of Science and Technology (KIST)
– sequence: 2
  givenname: Hyunseok
  orcidid: 0000-0003-0224-8942
  surname: Seo
  fullname: Seo, Hyunseok
  organization: Biomedical Research Division, Korea Institute of Science and Technology (KIST)
– sequence: 3
  givenname: Wonil
  orcidid: 0000-0002-2144-0211
  surname: Lee
  fullname: Lee, Wonil
  organization: Harvard Medical School
– sequence: 4
  givenname: HyunWook
  orcidid: 0000-0002-4757-1922
  surname: Park
  fullname: Park, HyunWook
  email: hwpark@kaist.ac.kr
  organization: Korea Advanced Institute of Science and Technology (KAIST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38282279$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1O3DAUha0KVGamXfQFKkts6CJw_ZM4XiIELRIjJATq0nI89tQoiVM7acWOR-AZeZKamWGDyspX1neOzr1njvb60FuEvhA4JgD0pIvdMctD9QHNSElpQUvJ99AMBIeCEckP0DylewCQUvCP6IDVtKZUyBn6edenabDxj092hbsw-tBjHUfvtBmxCTFas_kLDo9TbAJOg--fH5-s-RXw8uYST8n3a7yydsC-02uLh-hD_IT2nW6T_bx7F-j24vz27Edxdf398uz0qjCsZFVRccYpr3IuoAxcU4ImUjquuWGaGnAVlEw0wjHe1NwRQxrgtXOC2FqDYwt0tLUdYvg92TSqzidj21b3NkxJUUnyxoIJmtHDN-h9mGKfwykGvJI5gmCZ-rqjpqazK5WX6XR8UK8Xy8DJFjAxpBStU8aP-uVEY9S-VQTUSycqd6I2nWTFtzeKV9P_sTv3v761D--Danmz3Cr-AYSFmmI
CitedBy_id crossref_primary_10_1016_j_neuroimage_2025_121045
crossref_primary_10_1016_j_engappai_2024_109978
Cites_doi 10.1016/j.neuroimage.2014.06.077
10.1002/jmri.24850
10.1002/mrm.24314
10.1002/mp.16119
10.1148/radiology.160.3.3737920
10.1109/ISBI45749.2020.9098570
10.1002/mrm.27772
10.1002/mrm.1910030602
10.1109/TMI.2019.2927101
10.13104/imri.2020.24.4.196
10.1088/0031-9155/61/5/R32
10.1109/CVPR.2018.00984
10.1002/mrm.27783
10.1109/42.650886
10.1109/TMI.2021.3084288
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1007/978-3-319-24574-4_28
10.1109/ISBI53787.2023.10230457
10.1016/j.neuroimage.2022.119411
10.1214/aoms/1177729586
10.1007/978-3-031-16446-0_35
10.1109/TMI.2021.3089708
10.1109/TIP.2003.819861
10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L
10.1109/TMI.2018.2888491
10.1118/1.595782
10.1002/mrm.28719
10.1145/3065386
ContentType Journal Article
Copyright 2024 International Society for Magnetic Resonance in Medicine
2024 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2024 International Society for Magnetic Resonance in Medicine
– notice: 2024 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.30026
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Biochemistry Abstracts 1
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 42
ExternalDocumentID 38282279
10_1002_mrm_30026
MRM30026
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Korea Institute of Science and Technology
  funderid: 2V09831; 2E32211; 2E32271; 2E32341
– fundername: Korea Health Industry Development Institute
  funderid: HI14C1135
– fundername: Korea Institute of Science and Technology
  grantid: 2E32341
– fundername: Korea Health Industry Development Institute
  grantid: HI14C1135
– fundername: Korea Institute of Science and Technology
  grantid: 2E32211
– fundername: Korea Institute of Science and Technology
  grantid: 2V09831
– fundername: Korea Institute of Science and Technology
  grantid: 2E32271
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3536-64342460990230fb50a199f4a4c3a2c0f60537b7f34b84f1c1b048ff71e8a0f3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 04:23:42 EDT 2025
Fri Jul 25 09:35:19 EDT 2025
Thu Apr 03 07:04:25 EDT 2025
Tue Jul 01 04:27:09 EDT 2025
Thu Apr 24 22:56:04 EDT 2025
Wed Jan 22 17:20:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords turbo spin‐echo
deep learning
deep image prior
unsupervised motion correction
Language English
License 2024 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3536-64342460990230fb50a199f4a4c3a2c0f60537b7f34b84f1c1b048ff71e8a0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4757-1922
0000-0002-2144-0211
0000-0001-7961-1899
0000-0003-0224-8942
PMID 38282279
PQID 3046999073
PQPubID 1016391
PageCount 15
ParticipantIDs proquest_miscellaneous_2919747372
proquest_journals_3046999073
pubmed_primary_38282279
crossref_citationtrail_10_1002_mrm_30026
crossref_primary_10_1002_mrm_30026
wiley_primary_10_1002_mrm_30026_MRM30026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
2024-Jul
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 69
2021; 86
2017; 60
2019; 39
2014; 27
1996
1951; 22
1999; 42
2004
2022; 259
2019; 82
2015; 28
2023
2022
2020
2015; 42
1986; 3
1986; 160
2022; 13436
2004; 13
2018
1997; 16
2017
2016; 61
2020; 24
2016
2015
1985; 12
2021; 40
2018; 38
2023; 50
2014; 101
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_8_1
Jaderberg M (e_1_2_8_30_1) 2015; 28
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
Goodfellow I (e_1_2_8_18_1) 2014; 27
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
Bernstein MA (e_1_2_8_6_1) 2004
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – volume: 39
  start-page: 377
  year: 2019
  end-page: 386
  article-title: k‐space deep learning for accelerated MRI
  publication-title: IEEE Trans Med Imaging
– volume: 42
  start-page: 887
  year: 2015
  end-page: 901
  article-title: Motion artifacts in MRI: a complex problem with many partial solutions
  publication-title: J Magn Reson Imaging
– volume: 38
  start-page: 1655
  year: 2018
  end-page: 1665
  article-title: PET image reconstruction using deep image prior
  publication-title: IEEE Trans Med Imaging
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun ACM
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans Image Process
– volume: 61
  start-page: R32
  year: 2016
  end-page: R56
  article-title: Motion correction in MRI of the brain
  publication-title: Phys Med Biol
– volume: 160
  start-page: 795
  year: 1986
  end-page: 801
  article-title: Respiratory effects in two‐dimensional Fourier transform MR imaging
  publication-title: Radiology
– volume: 82
  start-page: 1527
  year: 2019
  end-page: 1540
  article-title: Retrospective correction of motion‐affected MR images using deep learning frameworks
  publication-title: Magn Reson Med
– year: 1996
– volume: 27
  start-page: 139
  year: 2014
  end-page: 144
  article-title: Generative adversarial nets
  publication-title: Adv Neural Inf Process Syst
– volume: 42
  start-page: 963
  year: 1999
  end-page: 969
  article-title: Motion correction with PROPELLER MRI: application to head motion and free‐breathing cardiac imaging
  publication-title: Magn Reson Med
– volume: 12
  start-page: 143
  year: 1985
  end-page: 151
  article-title: MR image artifacts from periodic motion
  publication-title: Med Phys
– volume: 69
  start-page: 621
  year: 2013
  end-page: 636
  article-title: Prospective motion correction in brain imaging: a review
  publication-title: Magn Reson Med
– volume: 16
  start-page: 903
  year: 1997
  end-page: 910
  article-title: Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion
  publication-title: IEEE Trans Med Imaging
– volume: 40
  start-page: 3125
  year: 2021
  end-page: 3139
  article-title: Unpaired MR motion artifact deep learning using outlier‐rejecting bootstrap aggregation
  publication-title: IEEE Trans Med Imaging
– year: 2016
– year: 2018
– volume: 22
  start-page: 400
  year: 1951
  end-page: 407
  article-title: A stochastic approximation method
  publication-title: Ann Math Stat
– volume: 3
  start-page: 823
  year: 1986
  end-page: 833
  article-title: RARE imaging: a fast imaging method for clinical MR
  publication-title: Magn Reson Med
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
– volume: 28
  start-page: 2017
  year: 2015
  end-page: 2025
  article-title: Spatial transformer networks
  publication-title: Adv Neural Inf Process Syst
– volume: 101
  start-page: 569
  year: 2014
  end-page: 582
  article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
  publication-title: Neuroimage
– year: 2022
– year: 2004
– year: 2020
– year: 2023
– volume: 82
  start-page: 901
  year: 2019
  end-page: 910
  article-title: Conditional generative adversarial network for 3D rigid‐body motion correction in MRI
  publication-title: Magn Reson Med
– volume: 86
  start-page: 1077
  year: 2021
  end-page: 1092
  article-title: MC ‐net: motion correction network for multi‐contrast brain MRI
  publication-title: Magn Reson Med
– volume: 13436
  start-page: 365
  year: 2022
  end-page: 375
– volume: 40
  start-page: 3337
  year: 2021
  end-page: 3348
  article-title: Time‐dependent deep image prior for dynamic MRI
  publication-title: IEEE Trans Med Imaging
– year: 2017
– volume: 50
  start-page: 2148
  year: 2023
  end-page: 2161
  article-title: Deep learning‐based motion quantification from k‐space for fast model‐based magnetic resonance imaging motion correction
  publication-title: Med Phys
– volume: 259
  year: 2022
  article-title: Stacked U‐nets with self‐assisted priors towards robust correction of rigid motion artifact in brain MRI
  publication-title: Neuroimage
– year: 2015
– volume: 24
  start-page: 196
  year: 2020
  end-page: 206
  article-title: Deep learning in MR motion correction: a brief review and a new motion simulation tool (view2Dmotion)
  publication-title: Investig Magn Reson Imaging
– ident: e_1_2_8_37_1
– ident: e_1_2_8_11_1
  doi: 10.1016/j.neuroimage.2014.06.077
– ident: e_1_2_8_4_1
  doi: 10.1002/jmri.24850
– ident: e_1_2_8_14_1
– ident: e_1_2_8_8_1
  doi: 10.1002/mrm.24314
– ident: e_1_2_8_24_1
  doi: 10.1002/mp.16119
– ident: e_1_2_8_39_1
– ident: e_1_2_8_25_1
– ident: e_1_2_8_3_1
  doi: 10.1148/radiology.160.3.3737920
– ident: e_1_2_8_21_1
  doi: 10.1109/ISBI45749.2020.9098570
– ident: e_1_2_8_15_1
  doi: 10.1002/mrm.27772
– ident: e_1_2_8_5_1
  doi: 10.1002/mrm.1910030602
– ident: e_1_2_8_36_1
– ident: e_1_2_8_13_1
  doi: 10.1109/TMI.2019.2927101
– ident: e_1_2_8_31_1
  doi: 10.13104/imri.2020.24.4.196
– ident: e_1_2_8_7_1
  doi: 10.1088/0031-9155/61/5/R32
– ident: e_1_2_8_27_1
  doi: 10.1109/CVPR.2018.00984
– ident: e_1_2_8_16_1
  doi: 10.1002/mrm.27783
– volume: 27
  start-page: 139
  year: 2014
  ident: e_1_2_8_18_1
  article-title: Generative adversarial nets
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_8_10_1
  doi: 10.1109/42.650886
– ident: e_1_2_8_29_1
  doi: 10.1109/TMI.2021.3084288
– volume: 28
  start-page: 2017
  year: 2015
  ident: e_1_2_8_30_1
  article-title: Spatial transformer networks
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_8_32_1
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– ident: e_1_2_8_12_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_2_8_35_1
– ident: e_1_2_8_26_1
  doi: 10.1109/ISBI53787.2023.10230457
– ident: e_1_2_8_20_1
  doi: 10.1016/j.neuroimage.2022.119411
– ident: e_1_2_8_38_1
– ident: e_1_2_8_40_1
  doi: 10.1214/aoms/1177729586
– ident: e_1_2_8_23_1
  doi: 10.1007/978-3-031-16446-0_35
– ident: e_1_2_8_22_1
  doi: 10.1109/TMI.2021.3089708
– ident: e_1_2_8_33_1
  doi: 10.1109/TIP.2003.819861
– ident: e_1_2_8_9_1
  doi: 10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L
– volume-title: Handbook of MRI Pulse Sequences
  year: 2004
  ident: e_1_2_8_6_1
– ident: e_1_2_8_28_1
  doi: 10.1109/TMI.2018.2888491
– ident: e_1_2_8_2_1
  doi: 10.1118/1.595782
– ident: e_1_2_8_19_1
  doi: 10.1002/mrm.28719
– ident: e_1_2_8_17_1
  doi: 10.1145/3065386
– ident: e_1_2_8_34_1
SSID ssj0009974
Score 2.4809604
Snippet Purpose In MRI, motion artifacts can significantly degrade image quality. Motion artifact correction methods using deep neural networks usually required...
In MRI, motion artifacts can significantly degrade image quality. Motion artifact correction methods using deep neural networks usually required extensive...
PurposeIn MRI, motion artifacts can significantly degrade image quality. Motion artifact correction methods using deep neural networks usually required...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 28
SubjectTerms Ablation
Algorithms
Artificial neural networks
Brain - diagnostic imaging
Computer Simulation
Datasets
deep image prior
Deep Learning
High impedance
Humans
Image acquisition
Image degradation
Image Processing, Computer-Assisted - methods
Image quality
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Motion
Motion simulation
Neural networks
Neural Networks, Computer
Parameterization
Simulation models
Synthesis
turbo spin‐echo
unsupervised motion correction
Title Unsupervised motion artifact correction of turbo spin‐echo MRI using deep image prior
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30026
https://www.ncbi.nlm.nih.gov/pubmed/38282279
https://www.proquest.com/docview/3046999073
https://www.proquest.com/docview/2919747372
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VlUBceJTXQkEGceCSbWI7D4sTQlQFKRxWregBKbKzdrWCTaLN7oUTP4HfyC9hxk5SlYeEuEWKozj2PL7JjL8BeBE7bhzOMNJSmEiiS4l0kaSRTTKDIa6Qqe91WH7ITs7k-_P0fA9ejWdhAj_E9MONNMPba1JwbfqjS9LQ9WY9FxRCoP2lWi0CRItL6iilAgNzLsnOKDmyCsX8aHryqi_6DWBexave4Rzfgk_jVEOdyef5bmvm9ddfWBz_81tuw80BiLLXQXLuwJ5tDuB6OaTaD-Carw2t-7vw8azpdx3ZlN4uWWj7w0ji6FAEq6m9hz8cwVrH0IGZlvXdqvnx7btF08rKxTtGxfUXbGltx1ZrNGCs26zazT04PX57-uYkGvoxRLVIRRYheJFcZpRKw8DFmTTWiVJOalkLzevYZUQOY3InpCmkS-rEoH1wLk9soWMn7sN-0zb2ITCu89gqoTC2MTLHQcuszgudOo3hWFFkM3g5bkxVD1zl1DLjSxVYlnmFK1b5FZvB82loFwg6_jTocNzdatDRvqKcMMJjtHEzeDbdRu2ilIlubLvrK64SCrhEzmfwIEjF9BZRUAlurnCyfm___vqqXJT-4tG_D30MNzjip1AZfAj7283OPkH8szVPvaD_BINy_ww
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiiXAoXClgIGceCSbWI7L4kLQlRbaHpYbUUvKLK9NlrBJtFm98KJn8Bv5JcwtpNU5SEhbpEykR17np7xNwAvQkOlwRkGgjMZcDQpgciiONBRIjHEZTx2vQ6Ls2Ryzt9dxBdb8Kq_C-PxIYYDNysZTl9bAbcH0keXqKHL1XLMbAxxDa7bjt4uoJpegkflucdgTrnVNDnvcYVCejR8etUa_eZiXvVYnck5vg0f-8n6SpPP481ajtXXX3Ac__dv7sBu54uS15557sKWrvbgZtFl2_fghisPVe09-HBetZvGqpVWz4nv_EMs09l7EUTZDh_ufgSpDUEbJmvSNovqx7fvGrUrKaYnxNbXfyJzrRuyWKIOI81qUa_uw-z47ezNJOhaMgSKxSwJ0H_hlCc2m4axi5FxKKI8N1xwxQRVoUksPoxMDeMy4yZSkUQVYUwa6UyEhu3DdlVX-iEQKtJQ5yzH8EbyFInmiUozERuBEVmWJSN42e9MqTq4cts140vpgZZpiStWuhUbwfOBtPEYHX8iOuy3t-zEtC1tWhg9ZFRzI3g2vEYBs1kTUel605Y0j2zMxVI6ggeeLYZRWGarcNMcJ-s29-_Dl8W0cA8H_076FHYms-K0PD05e_8IblF0p3yh8CFsr1cb_RjdobV84rj-J2-tAzY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiouPMproYBBHLhkm9jOw-qpoqxaIBVataIHpMj22mgFm0Sb3QsnfgK_sb-kY-dRlYeEuEXKRHHseXwTj78BeBVaqiyOMJCcqYBjSAlkFsWBiRKFKS7jse91mB8nh6f83Vl8tgF7_VmYlh9i-OHmLMP7a2fg9czuXpKGLpaLMXMpxDW4zpMwcyp9ML3kjhKipWBOuXM0gve0QiHdHR69Gox-Q5hXAauPOJPb8Lkfa1to8nW8Xqmx_v4LjeN_fswduNUhUbLfqs5d2DDlNmzl3V77NtzwxaG6uQefTstmXTun0pgZafv-EKdy7lQE0a6_hz8dQSpLMIKpijT1vDz_8dOgbyX59Ii46vovZGZMTeYL9GCkXs6r5X04mbw9eXMYdA0ZAs1ilgSIXjjFucYIhpmLVXEoIyEsl1wzSXVoE8cOo1LLuMq4jXSk0EFYm0Ymk6FlD2CzrErzCAiVaWgEE5jcKJ6i0CzRaSZjKzEfy7JkBK_7hSl0R1buemZ8K1qaZVrgjBV-xkbwchCtW4aOPwnt9KtbdEbaFG5TGPExOrkRvBhuo3m5PRNZmmrdFFRELuNiKR3Bw1YrhrewzNXgpgIH69f2768v8mnuLx7_u-hz2Pp4MCk-HB2_fwI3KWKptkp4BzZXy7V5ilhopZ55nb8Af1MB7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+motion+artifact+correction+of+turbo+spin%E2%80%90echo+MRI+using+deep+image+prior&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Lee%2C+Jongyeon&rft.au=Seo%2C+Hyunseok&rft.au=Lee%2C+Wonil&rft.au=Park%2C+HyunWook&rft.date=2024-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=92&rft.issue=1&rft.spage=28&rft.epage=42&rft_id=info:doi/10.1002%2Fmrm.30026&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon