Unsupervised motion artifact correction of turbo spin‐echo MRI using deep image prior
Purpose In MRI, motion artifacts can significantly degrade image quality. Motion artifact correction methods using deep neural networks usually required extensive training on large datasets, making them time‐consuming and resource‐intensive. In this paper, an unsupervised deep learning‐based motion...
Saved in:
Published in | Magnetic resonance in medicine Vol. 92; no. 1; pp. 28 - 42 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
In MRI, motion artifacts can significantly degrade image quality. Motion artifact correction methods using deep neural networks usually required extensive training on large datasets, making them time‐consuming and resource‐intensive. In this paper, an unsupervised deep learning‐based motion artifact correction method for turbo‐spin echo MRI is proposed using the deep image prior framework.
Theory and Methods
The proposed approach takes advantage of the high impedance to motion artifacts offered by the neural network parameterization to remove motion artifacts in MR images. The framework consists of parameterization of MR image, automatic spatial transformation, and motion simulation model. The proposed method synthesizes motion‐corrupted images from the motion‐corrected images generated by the convolutional neural network, where an optimization process minimizes the objective function between the synthesized images and the acquired images.
Results
In the simulation study of 280 slices from 14 subjects, the proposed method showed a significant increase in the averaged structural similarity index measure by 0.2737 in individual coil images and by 0.4550 in the root‐sum‐of‐square images. In addition, the ablation study demonstrated the effectiveness of each proposed component in correcting motion artifacts compared to the corrected images produced by the baseline method. The experiments on real motion dataset has shown its clinical potential.
Conclusion
The proposed method exhibited significant quantitative and qualitative improvements in correcting rigid and in‐plane motion artifacts in MR images acquired using turbo spin‐echo sequence. |
---|---|
AbstractList | PurposeIn MRI, motion artifacts can significantly degrade image quality. Motion artifact correction methods using deep neural networks usually required extensive training on large datasets, making them time‐consuming and resource‐intensive. In this paper, an unsupervised deep learning‐based motion artifact correction method for turbo‐spin echo MRI is proposed using the deep image prior framework.Theory and MethodsThe proposed approach takes advantage of the high impedance to motion artifacts offered by the neural network parameterization to remove motion artifacts in MR images. The framework consists of parameterization of MR image, automatic spatial transformation, and motion simulation model. The proposed method synthesizes motion‐corrupted images from the motion‐corrected images generated by the convolutional neural network, where an optimization process minimizes the objective function between the synthesized images and the acquired images.ResultsIn the simulation study of 280 slices from 14 subjects, the proposed method showed a significant increase in the averaged structural similarity index measure by 0.2737 in individual coil images and by 0.4550 in the root‐sum‐of‐square images. In addition, the ablation study demonstrated the effectiveness of each proposed component in correcting motion artifacts compared to the corrected images produced by the baseline method. The experiments on real motion dataset has shown its clinical potential.ConclusionThe proposed method exhibited significant quantitative and qualitative improvements in correcting rigid and in‐plane motion artifacts in MR images acquired using turbo spin‐echo sequence. In MRI, motion artifacts can significantly degrade image quality. Motion artifact correction methods using deep neural networks usually required extensive training on large datasets, making them time-consuming and resource-intensive. In this paper, an unsupervised deep learning-based motion artifact correction method for turbo-spin echo MRI is proposed using the deep image prior framework. The proposed approach takes advantage of the high impedance to motion artifacts offered by the neural network parameterization to remove motion artifacts in MR images. The framework consists of parameterization of MR image, automatic spatial transformation, and motion simulation model. The proposed method synthesizes motion-corrupted images from the motion-corrected images generated by the convolutional neural network, where an optimization process minimizes the objective function between the synthesized images and the acquired images. In the simulation study of 280 slices from 14 subjects, the proposed method showed a significant increase in the averaged structural similarity index measure by 0.2737 in individual coil images and by 0.4550 in the root-sum-of-square images. In addition, the ablation study demonstrated the effectiveness of each proposed component in correcting motion artifacts compared to the corrected images produced by the baseline method. The experiments on real motion dataset has shown its clinical potential. The proposed method exhibited significant quantitative and qualitative improvements in correcting rigid and in-plane motion artifacts in MR images acquired using turbo spin-echo sequence. In MRI, motion artifacts can significantly degrade image quality. Motion artifact correction methods using deep neural networks usually required extensive training on large datasets, making them time-consuming and resource-intensive. In this paper, an unsupervised deep learning-based motion artifact correction method for turbo-spin echo MRI is proposed using the deep image prior framework.PURPOSEIn MRI, motion artifacts can significantly degrade image quality. Motion artifact correction methods using deep neural networks usually required extensive training on large datasets, making them time-consuming and resource-intensive. In this paper, an unsupervised deep learning-based motion artifact correction method for turbo-spin echo MRI is proposed using the deep image prior framework.The proposed approach takes advantage of the high impedance to motion artifacts offered by the neural network parameterization to remove motion artifacts in MR images. The framework consists of parameterization of MR image, automatic spatial transformation, and motion simulation model. The proposed method synthesizes motion-corrupted images from the motion-corrected images generated by the convolutional neural network, where an optimization process minimizes the objective function between the synthesized images and the acquired images.THEORY AND METHODSThe proposed approach takes advantage of the high impedance to motion artifacts offered by the neural network parameterization to remove motion artifacts in MR images. The framework consists of parameterization of MR image, automatic spatial transformation, and motion simulation model. The proposed method synthesizes motion-corrupted images from the motion-corrected images generated by the convolutional neural network, where an optimization process minimizes the objective function between the synthesized images and the acquired images.In the simulation study of 280 slices from 14 subjects, the proposed method showed a significant increase in the averaged structural similarity index measure by 0.2737 in individual coil images and by 0.4550 in the root-sum-of-square images. In addition, the ablation study demonstrated the effectiveness of each proposed component in correcting motion artifacts compared to the corrected images produced by the baseline method. The experiments on real motion dataset has shown its clinical potential.RESULTSIn the simulation study of 280 slices from 14 subjects, the proposed method showed a significant increase in the averaged structural similarity index measure by 0.2737 in individual coil images and by 0.4550 in the root-sum-of-square images. In addition, the ablation study demonstrated the effectiveness of each proposed component in correcting motion artifacts compared to the corrected images produced by the baseline method. The experiments on real motion dataset has shown its clinical potential.The proposed method exhibited significant quantitative and qualitative improvements in correcting rigid and in-plane motion artifacts in MR images acquired using turbo spin-echo sequence.CONCLUSIONThe proposed method exhibited significant quantitative and qualitative improvements in correcting rigid and in-plane motion artifacts in MR images acquired using turbo spin-echo sequence. Purpose In MRI, motion artifacts can significantly degrade image quality. Motion artifact correction methods using deep neural networks usually required extensive training on large datasets, making them time‐consuming and resource‐intensive. In this paper, an unsupervised deep learning‐based motion artifact correction method for turbo‐spin echo MRI is proposed using the deep image prior framework. Theory and Methods The proposed approach takes advantage of the high impedance to motion artifacts offered by the neural network parameterization to remove motion artifacts in MR images. The framework consists of parameterization of MR image, automatic spatial transformation, and motion simulation model. The proposed method synthesizes motion‐corrupted images from the motion‐corrected images generated by the convolutional neural network, where an optimization process minimizes the objective function between the synthesized images and the acquired images. Results In the simulation study of 280 slices from 14 subjects, the proposed method showed a significant increase in the averaged structural similarity index measure by 0.2737 in individual coil images and by 0.4550 in the root‐sum‐of‐square images. In addition, the ablation study demonstrated the effectiveness of each proposed component in correcting motion artifacts compared to the corrected images produced by the baseline method. The experiments on real motion dataset has shown its clinical potential. Conclusion The proposed method exhibited significant quantitative and qualitative improvements in correcting rigid and in‐plane motion artifacts in MR images acquired using turbo spin‐echo sequence. |
Author | Seo, Hyunseok Park, HyunWook Lee, Wonil Lee, Jongyeon |
Author_xml | – sequence: 1 givenname: Jongyeon orcidid: 0000-0001-7961-1899 surname: Lee fullname: Lee, Jongyeon organization: Biomedical Research Division, Korea Institute of Science and Technology (KIST) – sequence: 2 givenname: Hyunseok orcidid: 0000-0003-0224-8942 surname: Seo fullname: Seo, Hyunseok organization: Biomedical Research Division, Korea Institute of Science and Technology (KIST) – sequence: 3 givenname: Wonil orcidid: 0000-0002-2144-0211 surname: Lee fullname: Lee, Wonil organization: Harvard Medical School – sequence: 4 givenname: HyunWook orcidid: 0000-0002-4757-1922 surname: Park fullname: Park, HyunWook email: hwpark@kaist.ac.kr organization: Korea Advanced Institute of Science and Technology (KAIST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38282279$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1O3DAUha0KVGamXfQFKkts6CJw_ZM4XiIELRIjJATq0nI89tQoiVM7acWOR-AZeZKamWGDyspX1neOzr1njvb60FuEvhA4JgD0pIvdMctD9QHNSElpQUvJ99AMBIeCEckP0DylewCQUvCP6IDVtKZUyBn6edenabDxj092hbsw-tBjHUfvtBmxCTFas_kLDo9TbAJOg--fH5-s-RXw8uYST8n3a7yydsC-02uLh-hD_IT2nW6T_bx7F-j24vz27Edxdf398uz0qjCsZFVRccYpr3IuoAxcU4ImUjquuWGaGnAVlEw0wjHe1NwRQxrgtXOC2FqDYwt0tLUdYvg92TSqzidj21b3NkxJUUnyxoIJmtHDN-h9mGKfwykGvJI5gmCZ-rqjpqazK5WX6XR8UK8Xy8DJFjAxpBStU8aP-uVEY9S-VQTUSycqd6I2nWTFtzeKV9P_sTv3v761D--Danmz3Cr-AYSFmmI |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2025_121045 crossref_primary_10_1016_j_engappai_2024_109978 |
Cites_doi | 10.1016/j.neuroimage.2014.06.077 10.1002/jmri.24850 10.1002/mrm.24314 10.1002/mp.16119 10.1148/radiology.160.3.3737920 10.1109/ISBI45749.2020.9098570 10.1002/mrm.27772 10.1002/mrm.1910030602 10.1109/TMI.2019.2927101 10.13104/imri.2020.24.4.196 10.1088/0031-9155/61/5/R32 10.1109/CVPR.2018.00984 10.1002/mrm.27783 10.1109/42.650886 10.1109/TMI.2021.3084288 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1007/978-3-319-24574-4_28 10.1109/ISBI53787.2023.10230457 10.1016/j.neuroimage.2022.119411 10.1214/aoms/1177729586 10.1007/978-3-031-16446-0_35 10.1109/TMI.2021.3089708 10.1109/TIP.2003.819861 10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L 10.1109/TMI.2018.2888491 10.1118/1.595782 10.1002/mrm.28719 10.1145/3065386 |
ContentType | Journal Article |
Copyright | 2024 International Society for Magnetic Resonance in Medicine 2024 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2024 International Society for Magnetic Resonance in Medicine – notice: 2024 International Society for Magnetic Resonance in Medicine. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
DOI | 10.1002/mrm.30026 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Biochemistry Abstracts 1 MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 42 |
ExternalDocumentID | 38282279 10_1002_mrm_30026 MRM30026 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Korea Institute of Science and Technology funderid: 2V09831; 2E32211; 2E32271; 2E32341 – fundername: Korea Health Industry Development Institute funderid: HI14C1135 – fundername: Korea Institute of Science and Technology grantid: 2E32341 – fundername: Korea Health Industry Development Institute grantid: HI14C1135 – fundername: Korea Institute of Science and Technology grantid: 2E32211 – fundername: Korea Institute of Science and Technology grantid: 2V09831 – fundername: Korea Institute of Science and Technology grantid: 2E32271 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. M7Z P64 7X8 |
ID | FETCH-LOGICAL-c3536-64342460990230fb50a199f4a4c3a2c0f60537b7f34b84f1c1b048ff71e8a0f3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Jul 11 04:23:42 EDT 2025 Fri Jul 25 09:35:19 EDT 2025 Thu Apr 03 07:04:25 EDT 2025 Tue Jul 01 04:27:09 EDT 2025 Thu Apr 24 22:56:04 EDT 2025 Wed Jan 22 17:20:52 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | turbo spin‐echo deep learning deep image prior unsupervised motion correction |
Language | English |
License | 2024 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3536-64342460990230fb50a199f4a4c3a2c0f60537b7f34b84f1c1b048ff71e8a0f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4757-1922 0000-0002-2144-0211 0000-0001-7961-1899 0000-0003-0224-8942 |
PMID | 38282279 |
PQID | 3046999073 |
PQPubID | 1016391 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2919747372 proquest_journals_3046999073 pubmed_primary_38282279 crossref_citationtrail_10_1002_mrm_30026 crossref_primary_10_1002_mrm_30026 wiley_primary_10_1002_mrm_30026_MRM30026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2024 2024-07-00 2024-Jul 20240701 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 69 2021; 86 2017; 60 2019; 39 2014; 27 1996 1951; 22 1999; 42 2004 2022; 259 2019; 82 2015; 28 2023 2022 2020 2015; 42 1986; 3 1986; 160 2022; 13436 2004; 13 2018 1997; 16 2017 2016; 61 2020; 24 2016 2015 1985; 12 2021; 40 2018; 38 2023; 50 2014; 101 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_8_1 Jaderberg M (e_1_2_8_30_1) 2015; 28 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 Goodfellow I (e_1_2_8_18_1) 2014; 27 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 Bernstein MA (e_1_2_8_6_1) 2004 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – volume: 39 start-page: 377 year: 2019 end-page: 386 article-title: k‐space deep learning for accelerated MRI publication-title: IEEE Trans Med Imaging – volume: 42 start-page: 887 year: 2015 end-page: 901 article-title: Motion artifacts in MRI: a complex problem with many partial solutions publication-title: J Magn Reson Imaging – volume: 38 start-page: 1655 year: 2018 end-page: 1665 article-title: PET image reconstruction using deep image prior publication-title: IEEE Trans Med Imaging – volume: 60 start-page: 84 year: 2017 end-page: 90 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun ACM – volume: 13 start-page: 600 year: 2004 end-page: 612 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans Image Process – volume: 61 start-page: R32 year: 2016 end-page: R56 article-title: Motion correction in MRI of the brain publication-title: Phys Med Biol – volume: 160 start-page: 795 year: 1986 end-page: 801 article-title: Respiratory effects in two‐dimensional Fourier transform MR imaging publication-title: Radiology – volume: 82 start-page: 1527 year: 2019 end-page: 1540 article-title: Retrospective correction of motion‐affected MR images using deep learning frameworks publication-title: Magn Reson Med – year: 1996 – volume: 27 start-page: 139 year: 2014 end-page: 144 article-title: Generative adversarial nets publication-title: Adv Neural Inf Process Syst – volume: 42 start-page: 963 year: 1999 end-page: 969 article-title: Motion correction with PROPELLER MRI: application to head motion and free‐breathing cardiac imaging publication-title: Magn Reson Med – volume: 12 start-page: 143 year: 1985 end-page: 151 article-title: MR image artifacts from periodic motion publication-title: Med Phys – volume: 69 start-page: 621 year: 2013 end-page: 636 article-title: Prospective motion correction in brain imaging: a review publication-title: Magn Reson Med – volume: 16 start-page: 903 year: 1997 end-page: 910 article-title: Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion publication-title: IEEE Trans Med Imaging – volume: 40 start-page: 3125 year: 2021 end-page: 3139 article-title: Unpaired MR motion artifact deep learning using outlier‐rejecting bootstrap aggregation publication-title: IEEE Trans Med Imaging – year: 2016 – year: 2018 – volume: 22 start-page: 400 year: 1951 end-page: 407 article-title: A stochastic approximation method publication-title: Ann Math Stat – volume: 3 start-page: 823 year: 1986 end-page: 833 article-title: RARE imaging: a fast imaging method for clinical MR publication-title: Magn Reson Med – volume: 42 start-page: 952 year: 1999 end-page: 962 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn Reson Med – volume: 28 start-page: 2017 year: 2015 end-page: 2025 article-title: Spatial transformer networks publication-title: Adv Neural Inf Process Syst – volume: 101 start-page: 569 year: 2014 end-page: 582 article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis publication-title: Neuroimage – year: 2022 – year: 2004 – year: 2020 – year: 2023 – volume: 82 start-page: 901 year: 2019 end-page: 910 article-title: Conditional generative adversarial network for 3D rigid‐body motion correction in MRI publication-title: Magn Reson Med – volume: 86 start-page: 1077 year: 2021 end-page: 1092 article-title: MC ‐net: motion correction network for multi‐contrast brain MRI publication-title: Magn Reson Med – volume: 13436 start-page: 365 year: 2022 end-page: 375 – volume: 40 start-page: 3337 year: 2021 end-page: 3348 article-title: Time‐dependent deep image prior for dynamic MRI publication-title: IEEE Trans Med Imaging – year: 2017 – volume: 50 start-page: 2148 year: 2023 end-page: 2161 article-title: Deep learning‐based motion quantification from k‐space for fast model‐based magnetic resonance imaging motion correction publication-title: Med Phys – volume: 259 year: 2022 article-title: Stacked U‐nets with self‐assisted priors towards robust correction of rigid motion artifact in brain MRI publication-title: Neuroimage – year: 2015 – volume: 24 start-page: 196 year: 2020 end-page: 206 article-title: Deep learning in MR motion correction: a brief review and a new motion simulation tool (view2Dmotion) publication-title: Investig Magn Reson Imaging – ident: e_1_2_8_37_1 – ident: e_1_2_8_11_1 doi: 10.1016/j.neuroimage.2014.06.077 – ident: e_1_2_8_4_1 doi: 10.1002/jmri.24850 – ident: e_1_2_8_14_1 – ident: e_1_2_8_8_1 doi: 10.1002/mrm.24314 – ident: e_1_2_8_24_1 doi: 10.1002/mp.16119 – ident: e_1_2_8_39_1 – ident: e_1_2_8_25_1 – ident: e_1_2_8_3_1 doi: 10.1148/radiology.160.3.3737920 – ident: e_1_2_8_21_1 doi: 10.1109/ISBI45749.2020.9098570 – ident: e_1_2_8_15_1 doi: 10.1002/mrm.27772 – ident: e_1_2_8_5_1 doi: 10.1002/mrm.1910030602 – ident: e_1_2_8_36_1 – ident: e_1_2_8_13_1 doi: 10.1109/TMI.2019.2927101 – ident: e_1_2_8_31_1 doi: 10.13104/imri.2020.24.4.196 – ident: e_1_2_8_7_1 doi: 10.1088/0031-9155/61/5/R32 – ident: e_1_2_8_27_1 doi: 10.1109/CVPR.2018.00984 – ident: e_1_2_8_16_1 doi: 10.1002/mrm.27783 – volume: 27 start-page: 139 year: 2014 ident: e_1_2_8_18_1 article-title: Generative adversarial nets publication-title: Adv Neural Inf Process Syst – ident: e_1_2_8_10_1 doi: 10.1109/42.650886 – ident: e_1_2_8_29_1 doi: 10.1109/TMI.2021.3084288 – volume: 28 start-page: 2017 year: 2015 ident: e_1_2_8_30_1 article-title: Spatial transformer networks publication-title: Adv Neural Inf Process Syst – ident: e_1_2_8_32_1 doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – ident: e_1_2_8_12_1 doi: 10.1007/978-3-319-24574-4_28 – ident: e_1_2_8_35_1 – ident: e_1_2_8_26_1 doi: 10.1109/ISBI53787.2023.10230457 – ident: e_1_2_8_20_1 doi: 10.1016/j.neuroimage.2022.119411 – ident: e_1_2_8_38_1 – ident: e_1_2_8_40_1 doi: 10.1214/aoms/1177729586 – ident: e_1_2_8_23_1 doi: 10.1007/978-3-031-16446-0_35 – ident: e_1_2_8_22_1 doi: 10.1109/TMI.2021.3089708 – ident: e_1_2_8_33_1 doi: 10.1109/TIP.2003.819861 – ident: e_1_2_8_9_1 doi: 10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L – volume-title: Handbook of MRI Pulse Sequences year: 2004 ident: e_1_2_8_6_1 – ident: e_1_2_8_28_1 doi: 10.1109/TMI.2018.2888491 – ident: e_1_2_8_2_1 doi: 10.1118/1.595782 – ident: e_1_2_8_19_1 doi: 10.1002/mrm.28719 – ident: e_1_2_8_17_1 doi: 10.1145/3065386 – ident: e_1_2_8_34_1 |
SSID | ssj0009974 |
Score | 2.4809604 |
Snippet | Purpose
In MRI, motion artifacts can significantly degrade image quality. Motion artifact correction methods using deep neural networks usually required... In MRI, motion artifacts can significantly degrade image quality. Motion artifact correction methods using deep neural networks usually required extensive... PurposeIn MRI, motion artifacts can significantly degrade image quality. Motion artifact correction methods using deep neural networks usually required... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 28 |
SubjectTerms | Ablation Algorithms Artificial neural networks Brain - diagnostic imaging Computer Simulation Datasets deep image prior Deep Learning High impedance Humans Image acquisition Image degradation Image Processing, Computer-Assisted - methods Image quality Machine learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Motion Motion simulation Neural networks Neural Networks, Computer Parameterization Simulation models Synthesis turbo spin‐echo unsupervised motion correction |
Title | Unsupervised motion artifact correction of turbo spin‐echo MRI using deep image prior |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30026 https://www.ncbi.nlm.nih.gov/pubmed/38282279 https://www.proquest.com/docview/3046999073 https://www.proquest.com/docview/2919747372 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VlUBceJTXQkEGceCSbWI7D4sTQlQFKRxWregBKbKzdrWCTaLN7oUTP4HfyC9hxk5SlYeEuEWKozj2PL7JjL8BeBE7bhzOMNJSmEiiS4l0kaSRTTKDIa6Qqe91WH7ITs7k-_P0fA9ejWdhAj_E9MONNMPba1JwbfqjS9LQ9WY9FxRCoP2lWi0CRItL6iilAgNzLsnOKDmyCsX8aHryqi_6DWBexave4Rzfgk_jVEOdyef5bmvm9ddfWBz_81tuw80BiLLXQXLuwJ5tDuB6OaTaD-Carw2t-7vw8azpdx3ZlN4uWWj7w0ji6FAEq6m9hz8cwVrH0IGZlvXdqvnx7btF08rKxTtGxfUXbGltx1ZrNGCs26zazT04PX57-uYkGvoxRLVIRRYheJFcZpRKw8DFmTTWiVJOalkLzevYZUQOY3InpCmkS-rEoH1wLk9soWMn7sN-0zb2ITCu89gqoTC2MTLHQcuszgudOo3hWFFkM3g5bkxVD1zl1DLjSxVYlnmFK1b5FZvB82loFwg6_jTocNzdatDRvqKcMMJjtHEzeDbdRu2ilIlubLvrK64SCrhEzmfwIEjF9BZRUAlurnCyfm___vqqXJT-4tG_D30MNzjip1AZfAj7283OPkH8szVPvaD_BINy_ww |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiiXAoXClgIGceCSbWI7L4kLQlRbaHpYbUUvKLK9NlrBJtFm98KJn8Bv5JcwtpNU5SEhbpEykR17np7xNwAvQkOlwRkGgjMZcDQpgciiONBRIjHEZTx2vQ6Ls2Ryzt9dxBdb8Kq_C-PxIYYDNysZTl9bAbcH0keXqKHL1XLMbAxxDa7bjt4uoJpegkflucdgTrnVNDnvcYVCejR8etUa_eZiXvVYnck5vg0f-8n6SpPP481ajtXXX3Ac__dv7sBu54uS15557sKWrvbgZtFl2_fghisPVe09-HBetZvGqpVWz4nv_EMs09l7EUTZDh_ufgSpDUEbJmvSNovqx7fvGrUrKaYnxNbXfyJzrRuyWKIOI81qUa_uw-z47ezNJOhaMgSKxSwJ0H_hlCc2m4axi5FxKKI8N1xwxQRVoUksPoxMDeMy4yZSkUQVYUwa6UyEhu3DdlVX-iEQKtJQ5yzH8EbyFInmiUozERuBEVmWJSN42e9MqTq4cts140vpgZZpiStWuhUbwfOBtPEYHX8iOuy3t-zEtC1tWhg9ZFRzI3g2vEYBs1kTUel605Y0j2zMxVI6ggeeLYZRWGarcNMcJ-s29-_Dl8W0cA8H_076FHYms-K0PD05e_8IblF0p3yh8CFsr1cb_RjdobV84rj-J2-tAzY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiouPMproYBBHLhkm9jOw-qpoqxaIBVataIHpMj22mgFm0Sb3QsnfgK_sb-kY-dRlYeEuEXKRHHseXwTj78BeBVaqiyOMJCcqYBjSAlkFsWBiRKFKS7jse91mB8nh6f83Vl8tgF7_VmYlh9i-OHmLMP7a2fg9czuXpKGLpaLMXMpxDW4zpMwcyp9ML3kjhKipWBOuXM0gve0QiHdHR69Gox-Q5hXAauPOJPb8Lkfa1to8nW8Xqmx_v4LjeN_fswduNUhUbLfqs5d2DDlNmzl3V77NtzwxaG6uQefTstmXTun0pgZafv-EKdy7lQE0a6_hz8dQSpLMIKpijT1vDz_8dOgbyX59Ii46vovZGZMTeYL9GCkXs6r5X04mbw9eXMYdA0ZAs1ilgSIXjjFucYIhpmLVXEoIyEsl1wzSXVoE8cOo1LLuMq4jXSk0EFYm0Ymk6FlD2CzrErzCAiVaWgEE5jcKJ6i0CzRaSZjKzEfy7JkBK_7hSl0R1buemZ8K1qaZVrgjBV-xkbwchCtW4aOPwnt9KtbdEbaFG5TGPExOrkRvBhuo3m5PRNZmmrdFFRELuNiKR3Bw1YrhrewzNXgpgIH69f2768v8mnuLx7_u-hz2Pp4MCk-HB2_fwI3KWKptkp4BzZXy7V5ilhopZ55nb8Af1MB7g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+motion+artifact+correction+of+turbo+spin%E2%80%90echo+MRI+using+deep+image+prior&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Lee%2C+Jongyeon&rft.au=Seo%2C+Hyunseok&rft.au=Lee%2C+Wonil&rft.au=Park%2C+HyunWook&rft.date=2024-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=92&rft.issue=1&rft.spage=28&rft.epage=42&rft_id=info:doi/10.1002%2Fmrm.30026&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |