Anatomical changes in stem and root of soybean plants submitted to salt stress
The soybean is a legume that is widely cultivated in many countries due to the high levels of protein and oil contained in its seed, and is used for human and animal nutrition. However, salinity affects more than 800 million hectares worldwide, limiting global agricultural production. The aim of thi...
Saved in:
Published in | Plant biology (Stuttgart, Germany) Vol. 23; no. 1; pp. 57 - 65 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The soybean is a legume that is widely cultivated in many countries due to the high levels of protein and oil contained in its seed, and is used for human and animal nutrition. However, salinity affects more than 800 million hectares worldwide, limiting global agricultural production.
The aim of this research was to evaluate the structural behaviour of the roots and stems under progressive salt stress, detailing the possible anatomical modifications to these organs in soybean plants during this stress. The plants were randomized into five treatments (0, 50, 100, 150 and 200 mm NaCl).
All the root regions studied and exposed to 100 mm Na+ exhibited increases in the epidermis and endodermis and formation of lysogenic aerenchyma with increasing salinity, revealing the protective roles of these structures in reducing Na+ influx. In the stem, increases in the cortex and pith in the first internode subject to 100 mm Na+ suggest anatomical responses that aim to minimize oxidative stress.
Soybean plants subjected to progressive salt stress (>50 mm Na+) avoided cavitation and loss of function linked to vessel elements, reducing the metaxylem in all the root and stem regions analysed. Finally, our results confirm anatomical changes to the roots and stems.
Soybean plants subjected to progressive salt stress exhibited anatomical modifications in root and stem tissues to minimize the deleterious effects associated with Na+. |
---|---|
AbstractList | The soybean is a legume that is widely cultivated in many countries due to the high levels of protein and oil contained in its seed, and is used for human and animal nutrition. However, salinity affects more than 800 million hectares worldwide, limiting global agricultural production.
The aim of this research was to evaluate the structural behaviour of the roots and stems under progressive salt stress, detailing the possible anatomical modifications to these organs in soybean plants during this stress. The plants were randomized into five treatments (0, 50, 100, 150 and 200 mm NaCl).
All the root regions studied and exposed to 100 mm Na+ exhibited increases in the epidermis and endodermis and formation of lysogenic aerenchyma with increasing salinity, revealing the protective roles of these structures in reducing Na+ influx. In the stem, increases in the cortex and pith in the first internode subject to 100 mm Na+ suggest anatomical responses that aim to minimize oxidative stress.
Soybean plants subjected to progressive salt stress (>50 mm Na+) avoided cavitation and loss of function linked to vessel elements, reducing the metaxylem in all the root and stem regions analysed. Finally, our results confirm anatomical changes to the roots and stems.
Soybean plants subjected to progressive salt stress exhibited anatomical modifications in root and stem tissues to minimize the deleterious effects associated with Na+. The soybean is a legume that is widely cultivated in many countries due to the high levels of protein and oil contained in its seed, and is used for human and animal nutrition. However, salinity affects more than 800 million hectares worldwide, limiting global agricultural production.The aim of this research was to evaluate the structural behaviour of the roots and stems under progressive salt stress, detailing the possible anatomical modifications to these organs in soybean plants during this stress. The plants were randomized into five treatments (0, 50, 100, 150 and 200 mm NaCl).All the root regions studied and exposed to 100 mm Na+ exhibited increases in the epidermis and endodermis and formation of lysogenic aerenchyma with increasing salinity, revealing the protective roles of these structures in reducing Na+ influx. In the stem, increases in the cortex and pith in the first internode subject to 100 mm Na+ suggest anatomical responses that aim to minimize oxidative stress.Soybean plants subjected to progressive salt stress (>50 mm Na+) avoided cavitation and loss of function linked to vessel elements, reducing the metaxylem in all the root and stem regions analysed. Finally, our results confirm anatomical changes to the roots and stems. The soybean is a legume that is widely cultivated in many countries due to the high levels of protein and oil contained in its seed, and is used for human and animal nutrition. However, salinity affects more than 800 million hectares worldwide, limiting global agricultural production. The aim of this research was to evaluate the structural behaviour of the roots and stems under progressive salt stress, detailing the possible anatomical modifications to these organs in soybean plants during this stress. The plants were randomized into five treatments (0, 50, 100, 150 and 200 m m NaCl). All the root regions studied and exposed to 100 m m Na + exhibited increases in the epidermis and endodermis and formation of lysogenic aerenchyma with increasing salinity, revealing the protective roles of these structures in reducing Na + influx. In the stem, increases in the cortex and pith in the first internode subject to 100 m m Na + suggest anatomical responses that aim to minimize oxidative stress. Soybean plants subjected to progressive salt stress (>50 m m Na + ) avoided cavitation and loss of function linked to vessel elements, reducing the metaxylem in all the root and stem regions analysed. Finally, our results confirm anatomical changes to the roots and stems. The soybean is a legume that is widely cultivated in many countries due to the high levels of protein and oil contained in its seed, and is used for human and animal nutrition. However, salinity affects more than 800 million hectares worldwide, limiting global agricultural production. The aim of this research was to evaluate the structural behaviour of the roots and stems under progressive salt stress, detailing the possible anatomical modifications to these organs in soybean plants during this stress. The plants were randomized into five treatments (0, 50, 100, 150 and 200 mm NaCl). All the root regions studied and exposed to 100 mm Na+ exhibited increases in the epidermis and endodermis and formation of lysogenic aerenchyma with increasing salinity, revealing the protective roles of these structures in reducing Na+ influx. In the stem, increases in the cortex and pith in the first internode subject to 100 mm Na+ suggest anatomical responses that aim to minimize oxidative stress. Soybean plants subjected to progressive salt stress (>50 mm Na+ ) avoided cavitation and loss of function linked to vessel elements, reducing the metaxylem in all the root and stem regions analysed. Finally, our results confirm anatomical changes to the roots and stems.The soybean is a legume that is widely cultivated in many countries due to the high levels of protein and oil contained in its seed, and is used for human and animal nutrition. However, salinity affects more than 800 million hectares worldwide, limiting global agricultural production. The aim of this research was to evaluate the structural behaviour of the roots and stems under progressive salt stress, detailing the possible anatomical modifications to these organs in soybean plants during this stress. The plants were randomized into five treatments (0, 50, 100, 150 and 200 mm NaCl). All the root regions studied and exposed to 100 mm Na+ exhibited increases in the epidermis and endodermis and formation of lysogenic aerenchyma with increasing salinity, revealing the protective roles of these structures in reducing Na+ influx. In the stem, increases in the cortex and pith in the first internode subject to 100 mm Na+ suggest anatomical responses that aim to minimize oxidative stress. Soybean plants subjected to progressive salt stress (>50 mm Na+ ) avoided cavitation and loss of function linked to vessel elements, reducing the metaxylem in all the root and stem regions analysed. Finally, our results confirm anatomical changes to the roots and stems. The soybean is a legume that is widely cultivated in many countries due to the high levels of protein and oil contained in its seed, and is used for human and animal nutrition. However, salinity affects more than 800 million hectares worldwide, limiting global agricultural production. The aim of this research was to evaluate the structural behaviour of the roots and stems under progressive salt stress, detailing the possible anatomical modifications to these organs in soybean plants during this stress. The plants were randomized into five treatments (0, 50, 100, 150 and 200 mm NaCl). All the root regions studied and exposed to 100 mm Na exhibited increases in the epidermis and endodermis and formation of lysogenic aerenchyma with increasing salinity, revealing the protective roles of these structures in reducing Na influx. In the stem, increases in the cortex and pith in the first internode subject to 100 mm Na suggest anatomical responses that aim to minimize oxidative stress. Soybean plants subjected to progressive salt stress (>50 mm Na ) avoided cavitation and loss of function linked to vessel elements, reducing the metaxylem in all the root and stem regions analysed. Finally, our results confirm anatomical changes to the roots and stems. |
Author | Batista, B. L. Silva, B. R. S. Lobato, A. K. S. Luo, Z.‐B. |
Author_xml | – sequence: 1 givenname: B. R. S. surname: Silva fullname: Silva, B. R. S. organization: Universidade Federal Rural da Amazônia. Paragominas – sequence: 2 givenname: B. L. surname: Batista fullname: Batista, B. L. organization: Universidade Federal do ABC – sequence: 3 givenname: A. K. S. orcidid: 0000-0002-2641-6122 surname: Lobato fullname: Lobato, A. K. S. email: allanllobato@yahoo.com.br organization: Universidade Federal Rural da Amazônia. Paragominas – sequence: 4 givenname: Z.‐B. surname: Luo fullname: Luo, Z.‐B. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32841475$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kbtOAzEQRS0EIiRQ8APIEg0USfzatVMC4iVFQAG1ZTtecLRrB9sRyt9j8mgQTDNTnHs1M7cP9n3wFoBTjEa41HjR6hGmmNd74AgzKoai5nx_PVdlRrQH-inNEcJsgvAh6FEiGGa8OgJPV17l0DmjWmg-lH-3CToPU7YdVH4GYwgZhgamsNJWebholc8JpqXuXM52BnOASbW5KKJN6RgcNKpN9mTbB-Dt7vb15mE4fb5_vLmaDg2taD0kRulKW14ZM8F1LSaIGo0bThDXSgutWG2YQaSxGivCCbdEzCqsaiMQR4bSAbjY-C5i-FzalGXnkrFt2c6GZZKEUc4QYwIX9PwXOg_L6Mt2heKkfEfwSaHOtlS5zM7kIrpOxZXcfaoA4w1gYkgp2kYal1V2weeoXCsxkj9ZyJKFXGdRFJe_FDvTv9it-5dr7ep_UL5MrzeKb_mzlvc |
CitedBy_id | crossref_primary_10_3390_plants13131840 crossref_primary_10_1093_plphys_kiab392 crossref_primary_10_3390_cells12111466 crossref_primary_10_1007_s11104_024_06767_8 crossref_primary_10_3390_plants13233413 crossref_primary_10_1007_s11270_022_05990_2 crossref_primary_10_3390_ijms24010518 crossref_primary_10_1093_treephys_tpae113 crossref_primary_10_3390_plants11212827 crossref_primary_10_1038_s41598_021_03735_5 crossref_primary_10_3390_agronomy13010232 crossref_primary_10_1016_j_stress_2024_100378 crossref_primary_10_1111_ppl_13977 crossref_primary_10_1186_s12870_022_03612_x crossref_primary_10_3390_bioengineering9100495 crossref_primary_10_3390_agronomy12092098 crossref_primary_10_1093_aob_mcae152 crossref_primary_10_1007_s44279_024_00105_3 crossref_primary_10_3390_plants12223869 crossref_primary_10_1080_11263504_2024_2415614 crossref_primary_10_3390_plants11182381 crossref_primary_10_1016_j_jafr_2024_101322 crossref_primary_10_1007_s42729_024_02022_2 crossref_primary_10_1016_j_flora_2022_152034 crossref_primary_10_1080_11263504_2025_2472772 crossref_primary_10_30970_sbi_1804_794 crossref_primary_10_1007_s00344_023_11220_8 crossref_primary_10_33158_ASB_r137_v8_2022 crossref_primary_10_3390_plants12010189 crossref_primary_10_3390_plants12071525 crossref_primary_10_1111_ppl_14452 crossref_primary_10_1007_s10725_024_01125_1 crossref_primary_10_1007_s40415_021_00773_1 crossref_primary_10_1007_s00344_021_10481_5 crossref_primary_10_3389_fpls_2022_1023178 crossref_primary_10_3390_plants11202769 |
Cites_doi | 10.1007/s00344-018-9870-3 10.3390/plants8100435 10.1104/pp.15.00122 10.1007/s13593-015-0287-0 10.1016/j.indcrop.2013.12.041 10.1007/s11738-008-0173-3 10.3390/plants8030061 10.1016/j.ecoenv.2018.12.046 10.1007/s11099-013-0003-8 10.1111/j.1469-8137.2010.03514.x 10.1007/s11738-009-0310-7 10.3389/fpls.2016.01787 10.1016/j.sajb.2013.11.002 10.3389/fpls.2016.01825 10.1016/j.plantsci.2005.03.003 10.1371/journal.pone.0016645 10.1016/j.rsase.2018.12.010 10.1016/j.jclepro.2009.09.008 10.15835/nsb315627 10.1007/s11104-009-9911-6 10.1071/FP16385 10.1007/s00253-012-4330-7 10.1007/s11356-014-3739-1 10.1111/j.1365-3040.2005.01364.x 10.1016/j.plantsci.2006.12.017 10.1007/s13593-015-0344-8 10.1016/j.scienta.2015.10.023 10.3390/agronomy7010018 10.1016/j.tplants.2014.02.001 10.1626/pps.16.1 10.3389/fpls.2016.00081 10.1016/j.tplants.2007.01.004 10.1016/j.tifs.2016.01.010 10.1016/j.micron.2017.10.007 10.3390/biom9110640 10.17129/botsci.886 10.1007/BF01248568 10.1039/C8AY01295D 10.1007/s11104-016-2875-4 10.1104/pp.107.109413 10.1104/pp.114.248963 10.1111/j.1744-7909.2008.00760.x 10.1016/j.cell.2015.12.021 10.1016/j.jplph.2010.03.008 10.1016/j.pbi.2017.06.010 10.1111/j.1469-8137.2005.01487.x 10.1104/pp.001164 10.1093/aob/mcw047 10.1016/j.jplph.2009.06.013 10.1007/s00709-014-0669-1 10.1016/j.foodhyd.2014.01.013 10.1007/s11738-014-1506-z 10.1111/nph.13217 10.1146/annurev.arplant.53.091401.143329 10.1186/1939-8433-5-11 10.1007/s00709-010-0211-z 10.1016/j.plaphy.2013.11.008 10.1093/jxb/erw064 |
ContentType | Journal Article |
Copyright | 2020 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands 2020 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands. 2021 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands |
Copyright_xml | – notice: 2020 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands – notice: 2020 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands. – notice: 2021 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 |
DOI | 10.1111/plb.13176 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1438-8677 |
EndPage | 65 |
ExternalDocumentID | 32841475 10_1111_plb_13176 PLB13176 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil) – fundername: Fundação Amazônia de Amparo a Estudos e Pesquisas (FAPESPA/Brazil) – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Brazil) – fundername: Universidade Federal Rural da Amazônia (UFRA/Brazil) |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 29O 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMB EMOBN F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X H13 HF~ HGLYW HVGLF HZ~ IX1 J0M LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 R.K RIG RJQFR ROL RTC RX1 SUPJJ SV3 UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG BIYOS CITATION CGR CUY CVF ECM EIF NPM 1OB 7QO 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 P64 7X8 |
ID | FETCH-LOGICAL-c3536-2cab5be75cc91668903cb1f7207bab8ba46c4c02feb1a2727e28d51a6c8070c33 |
IEDL.DBID | DR2 |
ISSN | 1435-8603 1438-8677 |
IngestDate | Fri Jul 11 09:25:37 EDT 2025 Wed Aug 13 11:21:56 EDT 2025 Thu Apr 03 07:05:46 EDT 2025 Tue Jul 01 02:52:59 EDT 2025 Thu Apr 24 22:57:36 EDT 2025 Wed Jan 22 16:30:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | salinity vascular cylinder Cambium Glycine max Na+ exclusion |
Language | English |
License | 2020 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3536-2cab5be75cc91668903cb1f7207bab8ba46c4c02feb1a2727e28d51a6c8070c33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2641-6122 |
PMID | 32841475 |
PQID | 2472603879 |
PQPubID | 2045112 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2437404481 proquest_journals_2472603879 pubmed_primary_32841475 crossref_citationtrail_10_1111_plb_13176 crossref_primary_10_1111_plb_13176 wiley_primary_10_1111_plb_13176_PLB13176 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 2021-Jan 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Hoboken |
PublicationTitle | Plant biology (Stuttgart, Germany) |
PublicationTitleAlternate | Plant Biol (Stuttg) |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 35 2017; 7 2017; 8 2002; 53 2010; 18 2019; 13 2017; 44 2008; 30 2008; 146 2005; 28 2016; 38 2014; 252 2016; 36 2012; 96 2013; 16 2007; 172 2017; 39 2016; 118 2013; 51 2009; 166 2009; 322 2014; 19 2014; 166 2014; 54 2019; 8 2010; 33 2019; 9 2014; 90 2018; 105 2016; 406 2015; 168 2010; 247 2017; 68 2010; 167 2008; 59 2019; 38 2006 1950 2016; 50 2015; 206 2008; 50 2011; 3 2011; 6 2007; 12 2016; 164 2017; 95 2016; 7 2009; 31 2005; 169 2015; 22 2015; 197 2002; 129 2014; 36 2017 1964; 59 2014; 39 2014; 74 2018; 10 2019; 171 2012; 5 2011; 189 2016; 67 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 Prince S.J. (e_1_2_10_47_1) 2017; 68 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_37_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 Akhtar N. (e_1_2_10_5_1) 2017; 95 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_63_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 Hoagland D.R. (e_1_2_10_27_1) 1950 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Choat B. (e_1_2_10_14_1) 2010; 33 Hussain M.I. (e_1_2_10_29_1) 2016; 36 Jiang K. (e_1_2_10_31_1) 2016; 7 Qin L. (e_1_2_10_49_1) 2016; 38 Steel R.G. (e_1_2_10_58_1) 2006 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 Shu K. (e_1_2_10_57_1) 2017; 8 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_26_1 |
References_xml | – volume: 9 start-page: 640 year: 2019 article-title: 24‐epibrassinolide (EBR) confers tolerance against NaCl stress in soybean plants by up‐regulating antioxidant system, ascorbate‐glutathione cycle, and glyoxalase system publication-title: Biomolecules – volume: 44 start-page: 941 year: 2017 end-page: 953 article-title: Plant ionic relation and whole‐plant physiological responses to waterlogging, salinity and their combination in barley publication-title: Functional Plant Biology – volume: 50 start-page: 1 year: 2016 end-page: 10 article-title: Production of bioactive peptides during soybean fermentation and their potential health benefits publication-title: Trends in Food Science & Technology – volume: 35 start-page: 461 year: 2015 end-page: 481 article-title: Salt stress in maize: effects, resistance mechanisms, and management. A review publication-title: Agronomy for Sustainable Development – volume: 10 start-page: 4094 year: 2018 end-page: 4103 article-title: Effective procedures for the determination of As, Cd, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Se, Th, Zn, U and rare earth elements in plants and foodstuffs publication-title: Analytical Methods – volume: 33 start-page: 1502 year: 2010 end-page: 1512 article-title: Measurement of vulnerability to water stress‐induced cavitation in grapevine: a comparison of four techniques applied to a long‐vesseled species publication-title: Plant, Cell & Environment – volume: 59 start-page: 368 year: 1964 end-page: 373 article-title: Polychromatic staining of plant cell walls by toluidine blue O publication-title: Protoplasma – volume: 3 start-page: 41 year: 2011 end-page: 45 article-title: Effect of salinity on growth, xylem structure and anatomical characteristics of soybean publication-title: Notulae Scientia Biologicae – volume: 39 start-page: 136 year: 2017 end-page: 143 article-title: The endodermis, a tightly controlled barrier for nutrients publication-title: Current Opinion in Plant Biology – volume: 129 start-page: 374 year: 2002 end-page: 388 article-title: The biophysics of leaf growth in salt‐stressed barley. A study at the cell level publication-title: Plant Physiology – volume: 164 start-page: 447 year: 2016 end-page: 459 article-title: Adaptation of root function by nutrient‐induced plasticity of endodermal differentiation publication-title: Cell – volume: 53 start-page: 247 year: 2002 end-page: 273 article-title: Salt and drought stress signal transduction in plants publication-title: Annual Review of Plant Biology – volume: 30 start-page: 595 year: 2008 end-page: 618 article-title: Salinity and its effects on the functional biology of legumes publication-title: Acta Physiologiae Plantarum – volume: 13 start-page: 415 year: 2019 end-page: 425 article-title: Mapping soil salinity in arid and semi‐arid regions using Landsat 8 OLI satellite data publication-title: Remote Sensing Applications: Society and Environment – volume: 39 start-page: 301 year: 2014 end-page: 318 article-title: Soy proteins: a review on composition, aggregation and emulsification publication-title: Food Hydrocolloids – volume: 167 start-page: 1145 year: 2010 end-page: 1151 article-title: Salt stress induces programmed cell death in suspension‐cultured cells publication-title: Journal of Plant Physiology – volume: 5 start-page: 1 year: 2012 end-page: 18 article-title: Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants publication-title: Rice – volume: 54 start-page: 233 year: 2014 end-page: 239 article-title: Physiological adjustment to salt stress in seedlings is associated with a probable mechanism of osmotic adjustment and a reduction in water lost by transpiration publication-title: Industrial Crops and Products – volume: 146 start-page: 178 year: 2008 end-page: 188 article-title: Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis publication-title: Plant Physiology – volume: 166 start-page: 1968 year: 2009 end-page: 1981 article-title: The effect of salinity on photosynthetic activity in potassium‐deficient barley species publication-title: Journal of Plant Physiology – volume: 50 start-page: 1196 year: 2008 end-page: 1212 article-title: Salt tolerance in soybean publication-title: Journal of Integrative Plant Biology – volume: 197 start-page: 579 year: 2015 end-page: 583 article-title: The effects of salinity stress on morphological characteristics, mineral nutrient accumulation and essential oil yield and composition in L publication-title: Scientia Horticulturae – volume: 31 start-page: 947 year: 2009 end-page: 960 article-title: Anatomical changes induced by increasing NaCl salinity in three fodder shrubs, , and publication-title: Acta Physiologiae Plantarum – volume: 51 start-page: 95 year: 2013 end-page: 101 article-title: Effect of sodium chloride on gas exchange, antioxidative defense mechanism and ion accumulation in different cultivars of Indian jujube ( L.) publication-title: Photosynthetica – volume: 38 issue: 68 year: 2016 article-title: The influence of silicon application on growth and photosynthesis response of salt stressed grapevines ( L.) publication-title: Acta Physiologiae Plantarum – volume: 7 start-page: 1 year: 2017 end-page: 38 article-title: Plant responses to salt stress: adaptive mechanisms publication-title: Agronomy – volume: 189 start-page: 17 year: 2011 end-page: 39 article-title: Epidermis: the formation and functions of a fundamental plant tissue publication-title: New Phytologist – volume: 68 start-page: 2027 year: 2017 end-page: 2036 article-title: Root xylem plasticity to improve water use and yield in water‐stressed soybean publication-title: Journal of Experimental Botany – volume: 169 start-page: 125 year: 2005 end-page: 130 article-title: Na exclusion and salt resistance of wheat ( ) in saline‐waterlogged conditions are improved by the development of adventitious nodal roots and cortical root aerenchyma publication-title: Plant Science – volume: 166 start-page: 1387 year: 2014 end-page: 1402 article-title: Capturing Arabidopsis root architecture dynamics with root‐fit reveals diversity in responses to salinity publication-title: Plant Physiology – volume: 19 start-page: 371 year: 2014 end-page: 379 article-title: Plant salt‐tolerance mechanisms publication-title: Trends in Plant Science – volume: 18 start-page: 55 year: 2010 end-page: 70 article-title: Integrated environmental assessment of biodiesel production from soybean in Brazil publication-title: Journal of Cleaner Production – volume: 7 start-page: 1 year: 2016 end-page: 10 article-title: Salt stress affects the redox status of Arabidopsis root meristems publication-title: Frontiers in Plant Science – volume: 12 start-page: 98 year: 2007 end-page: 105 article-title: Stress‐induced morphogenic responses: growing out of trouble? publication-title: Trends in Plant Science – volume: 22 start-page: 4056 year: 2015 end-page: 4075 article-title: Effect of salinity stress on plants and its tolerance strategies: a review publication-title: Environmental Science and Pollution Research – volume: 406 start-page: 327 year: 2016 end-page: 340 article-title: Anatomical changes to protect organelle integrity account for tolerance to alkali and salt stresses in publication-title: Plant and Soil – volume: 322 start-page: 229 year: 2009 end-page: 238 article-title: Anatomical adaptations to salinity in cogon grass [ (L.) Raeuschel] from the Salt Range, Pakistan publication-title: Plant and Soil – volume: 8 start-page: 435 year: 2019 article-title: Potassium in root growth and development publication-title: Plants – volume: 168 start-page: 452 year: 2015 end-page: 463 article-title: Suppression of dwarf and Irregular Xylem phenotypes generates low‐acetylated biomass lines in Arabidopsis publication-title: Plant Physiology – volume: 36 start-page: 1 year: 2016 end-page: 31 article-title: Salt and drought stresses in safflower: a review publication-title: Agronomy for Sustainable Development – volume: 8 start-page: 1 year: 2017 end-page: 12 article-title: Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis publication-title: Frontiers in Plant Science – volume: 171 start-page: 12 year: 2019 end-page: 25 article-title: Salt‐adaptive strategies in oil seed crop early seedlings (cotyledon vs. true leaf) revealed from proteomics analysis publication-title: Ecotoxicology and Environmental Safety – volume: 206 start-page: 557 year: 2015 end-page: 570 article-title: The evolution of halophytes, glycophytes and crops, and its implications for food security under saline conditions publication-title: New Phytologist – volume: 95 start-page: 807 year: 2017 end-page: 821 article-title: Leaf anatomical and biochemical adaptations in Pers. ecotypes for salinity tolerance publication-title: Botanical Sciences – volume: 67 start-page: 3719 year: 2016 end-page: 3729 article-title: Salinity‐induced reduction in root surface area and changes in major root and shoot traits at the phytomer level in wheat publication-title: Journal of Experimental Botany – year: 1950 – volume: 96 start-page: 9 year: 2012 end-page: 22 article-title: Soyfoods and soybean products: from traditional use to modern applications publication-title: Applied Microbiology and Biotechnology – volume: 16 start-page: 1 year: 2013 end-page: 8 article-title: Root anatomical traits and their possible contribution to drought tolerance in grain legumes publication-title: Plant Production Science – volume: 105 start-page: 70 year: 2018 end-page: 81 article-title: NaCl – Changes stem morphology, anatomy and phloem structure in Lucerne ( cv. Gabès): Comparison of upper and lower internodes publication-title: Micron – volume: 247 start-page: 145 year: 2010 end-page: 161 article-title: The vascular cambium: molecular control of cellular structure publication-title: Protoplasma – volume: 6 year: 2011 article-title: ESKIMO1 disruption in Arabidopsis alters vascular tissue and impairs water transport publication-title: PLoS One – volume: 172 start-page: 897 year: 2007 end-page: 902 article-title: Cell death in response to osmotic and salt stresses in two rice ( L.) ecotypes publication-title: Plant Science – volume: 7 start-page: 1 year: 2016 end-page: 14 article-title: GmSALT3, which confers improved soybean salt tolerance in the field, increases leaf C exclusion prior to Na exclusion but does not improve early vigor under salinity publication-title: Frontiers in Plant Science – volume: 7 start-page: 1 year: 2016 end-page: 17 article-title: New insights on plant salt tolerance mechanisms and their potential use for breeding publication-title: Frontiers in Plant Science – volume: 59 start-page: 651 year: 2008 end-page: 681 article-title: Mechanisms of salinity tolerance publication-title: Annual Review of Plant Biology – year: 2006 – volume: 74 start-page: 118 year: 2014 end-page: 124 article-title: Rubisco decrease is involved in chloroplast protrusion and Rubisco‐containing body formation in soybean ( ) under salt stress publication-title: Plant Physiology and Biochemistry – volume: 36 start-page: 1261 year: 2014 end-page: 1269 article-title: The influence of salinity on cell ultrastructure and photosynthetic apparatus of barley genotypes differing in salt stress tolerance publication-title: Acta Physiologiae Plantarum – volume: 28 start-page: 1230 year: 2005 end-page: 1246 article-title: Screening plants for salt tolerance by measuring K flux: a case study for barley publication-title: Plant, Cell and Environment – volume: 118 start-page: 667 year: 2016 end-page: 674 article-title: Asymmetrical development of root endodermis and exodermis in reaction to abiotic stresses publication-title: Annals of Botany – volume: 38 start-page: 557 year: 2019 end-page: 573 article-title: Brassinosteroids confer tolerance to salt stress in plants enhancing homeostasis, antioxidant metabolism and leaf anatomy publication-title: Journal of Plant Growth Regulation – volume: 252 start-page: 173 year: 2014 end-page: 180 article-title: Apoplastic barrier development and water transport in seedling roots under salt and osmotic stresses publication-title: Protoplasma – volume: 8 start-page: 1 year: 2019 end-page: 17 article-title: Arabidopsis natural accessions display adaptations in inflorescence growth and vascular anatomy to withstand high salinity during reproductive growth publication-title: Plants – year: 2017 – volume: 90 start-page: 131 year: 2014 end-page: 136 article-title: Effect of exogenous application of nitric oxide on salt stress responses of soybean publication-title: South African Journal of Botany – ident: e_1_2_10_42_1 doi: 10.1007/s00344-018-9870-3 – ident: e_1_2_10_60_1 doi: 10.3390/plants8100435 – ident: e_1_2_10_8_1 doi: 10.1104/pp.15.00122 – ident: e_1_2_10_22_1 doi: 10.1007/s13593-015-0287-0 – ident: e_1_2_10_52_1 doi: 10.1016/j.indcrop.2013.12.041 – ident: e_1_2_10_37_1 doi: 10.1007/s11738-008-0173-3 – ident: e_1_2_10_55_1 doi: 10.3390/plants8030061 – ident: e_1_2_10_62_1 doi: 10.1016/j.ecoenv.2018.12.046 – volume-title: The water‐culture method for growing plants without soil year: 1950 ident: e_1_2_10_27_1 – ident: e_1_2_10_21_1 – ident: e_1_2_10_4_1 doi: 10.1007/s11099-013-0003-8 – ident: e_1_2_10_30_1 doi: 10.1111/j.1469-8137.2010.03514.x – ident: e_1_2_10_9_1 doi: 10.1007/s11738-009-0310-7 – ident: e_1_2_10_25_1 doi: 10.3389/fpls.2016.01787 – ident: e_1_2_10_19_1 doi: 10.1016/j.sajb.2013.11.002 – ident: e_1_2_10_36_1 doi: 10.3389/fpls.2016.01825 – volume: 38 issue: 68 year: 2016 ident: e_1_2_10_49_1 article-title: The influence of silicon application on growth and photosynthesis response of salt stressed grapevines (Vitis vinifera L.) publication-title: Acta Physiologiae Plantarum – ident: e_1_2_10_54_1 doi: 10.1016/j.plantsci.2005.03.003 – ident: e_1_2_10_33_1 doi: 10.1371/journal.pone.0016645 – ident: e_1_2_10_2_1 doi: 10.1016/j.rsase.2018.12.010 – ident: e_1_2_10_10_1 doi: 10.1016/j.jclepro.2009.09.008 – ident: e_1_2_10_18_1 doi: 10.15835/nsb315627 – ident: e_1_2_10_24_1 doi: 10.1007/s11104-009-9911-6 – volume: 8 start-page: 1 year: 2017 ident: e_1_2_10_57_1 article-title: Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis publication-title: Frontiers in Plant Science – ident: e_1_2_10_20_1 doi: 10.1071/FP16385 – ident: e_1_2_10_12_1 doi: 10.1007/s00253-012-4330-7 – ident: e_1_2_10_44_1 doi: 10.1007/s11356-014-3739-1 – ident: e_1_2_10_13_1 doi: 10.1111/j.1365-3040.2005.01364.x – ident: e_1_2_10_35_1 doi: 10.1016/j.plantsci.2006.12.017 – volume: 36 start-page: 1 year: 2016 ident: e_1_2_10_29_1 article-title: Salt and drought stresses in safflower: a review publication-title: Agronomy for Sustainable Development doi: 10.1007/s13593-015-0344-8 – ident: e_1_2_10_63_1 doi: 10.1016/j.scienta.2015.10.023 – ident: e_1_2_10_3_1 doi: 10.3390/agronomy7010018 – ident: e_1_2_10_16_1 doi: 10.1016/j.tplants.2014.02.001 – ident: e_1_2_10_48_1 doi: 10.1626/pps.16.1 – volume: 7 start-page: 1 year: 2016 ident: e_1_2_10_31_1 article-title: Salt stress affects the redox status of Arabidopsis root meristems publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2016.00081 – ident: e_1_2_10_46_1 doi: 10.1016/j.tplants.2007.01.004 – ident: e_1_2_10_53_1 doi: 10.1016/j.tifs.2016.01.010 – volume: 68 start-page: 2027 year: 2017 ident: e_1_2_10_47_1 article-title: Root xylem plasticity to improve water use and yield in water‐stressed soybean publication-title: Journal of Experimental Botany – ident: e_1_2_10_40_1 doi: 10.1016/j.micron.2017.10.007 – ident: e_1_2_10_6_1 doi: 10.3390/biom9110640 – volume: 95 start-page: 807 year: 2017 ident: e_1_2_10_5_1 article-title: Leaf anatomical and biochemical adaptations in Typha domingensis Pers. ecotypes for salinity tolerance publication-title: Botanical Sciences doi: 10.17129/botsci.886 – ident: e_1_2_10_41_1 doi: 10.1007/BF01248568 – ident: e_1_2_10_43_1 doi: 10.1039/C8AY01295D – ident: e_1_2_10_65_1 doi: 10.1007/s11104-016-2875-4 – ident: e_1_2_10_59_1 doi: 10.1104/pp.107.109413 – ident: e_1_2_10_32_1 doi: 10.1104/pp.114.248963 – ident: e_1_2_10_45_1 doi: 10.1111/j.1744-7909.2008.00760.x – ident: e_1_2_10_7_1 doi: 10.1016/j.cell.2015.12.021 – ident: e_1_2_10_61_1 doi: 10.1016/j.jplph.2010.03.008 – ident: e_1_2_10_17_1 doi: 10.1016/j.pbi.2017.06.010 – ident: e_1_2_10_38_1 doi: 10.1111/j.1469-8137.2005.01487.x – volume-title: Principles and procedures of statistics: a biometrical approach year: 2006 ident: e_1_2_10_58_1 – ident: e_1_2_10_23_1 doi: 10.1104/pp.001164 – ident: e_1_2_10_34_1 doi: 10.1093/aob/mcw047 – ident: e_1_2_10_15_1 doi: 10.1016/j.jplph.2009.06.013 – ident: e_1_2_10_56_1 doi: 10.1007/s00709-014-0669-1 – ident: e_1_2_10_39_1 doi: 10.1016/j.foodhyd.2014.01.013 – ident: e_1_2_10_64_1 doi: 10.1007/s11738-014-1506-z – ident: e_1_2_10_11_1 doi: 10.1111/nph.13217 – ident: e_1_2_10_66_1 doi: 10.1146/annurev.arplant.53.091401.143329 – ident: e_1_2_10_28_1 doi: 10.1186/1939-8433-5-11 – ident: e_1_2_10_50_1 doi: 10.1007/s00709-010-0211-z – volume: 33 start-page: 1502 year: 2010 ident: e_1_2_10_14_1 article-title: Measurement of vulnerability to water stress‐induced cavitation in grapevine: a comparison of four techniques applied to a long‐vesseled species publication-title: Plant, Cell & Environment – ident: e_1_2_10_26_1 doi: 10.1016/j.plaphy.2013.11.008 – ident: e_1_2_10_51_1 doi: 10.1093/jxb/erw064 |
SSID | ssj0014901 |
Score | 2.4845881 |
Snippet | The soybean is a legume that is widely cultivated in many countries due to the high levels of protein and oil contained in its seed, and is used for human and... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 57 |
SubjectTerms | Abiotic stress Agricultural production Animal nutrition Cambium Cavitation Epidermis Glycine max Glycine max - anatomy & histology Glycine max - physiology Human nutrition Legumes Na+ exclusion Nutrition Organs Oxidative stress Plant Roots - anatomy & histology Plant Stems - anatomy & histology Protective structures Roots Salinity Salinity effects Salinity tolerance Salt Stress Salts Sodium chloride Soybeans Stems vascular cylinder |
Title | Anatomical changes in stem and root of soybean plants submitted to salt stress |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fplb.13176 https://www.ncbi.nlm.nih.gov/pubmed/32841475 https://www.proquest.com/docview/2472603879 https://www.proquest.com/docview/2437404481 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6WkEMufSVtN90UJeSQixfbetn0tBsalpIspTSQQ8FIsgwhi73E3sP213ckP8g2LZTeDB6jx2g038gznwDOuUQ3kpooUEqIgKk0CjQPbcBTo3KphbbWFTjfLMXiln2543cj-NTXwrT8EMOBm7MMv187A1e6fmLk65WeRuj9HN22y9VygOjbQB2FwN9ffezgQJCIkHasQi6LZ_hy1xc9A5i7eNU7nKuX8KPvaptn8jDdNHpqfv7G4vifY3kFLzogSmbtynkNI1u-gf15hWBxewjLWYnRuKcSIG1tcE3uS-JYn4kqc4J4uyFVQepqq60qyXrl8mlIjSO6bxDEkqYitVo1pK1FOYLbq8_fLxdBd_VCYCinIoiN0lxbyY1B_CiSNKRGR4WMQ6mVTrRiwjATxgVu9SpGDGTjJOeREibBPcRQ-hb2yqq074Fom-o4iYxhRc5ogXpBRFfkVjoeGaPYGC56JWSm4yV312Ossj4-wdnJ_OyM4WwQXbdkHH8SmvSazDp7rLOYSQzcaCLTMZwOr9GS3O8RVdpq42SoZCGGq9EY3rUrYGiFohePmOTYWa_Hvzeffb2e-4fjfxf9AAexS5XxJzsT2GseN_YEsU6jP_pF_QttqPlG |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8AksgLKoicIi6GB196abtfbeILqOTQ40IMJLyYZne7TYiX9kJ7D_jXO7v9iIAmhrcm3WY_ZmfnN9uZ3wAccolmJDVRoJQQAVNpFGge2oCnRuVSC22tS3A-m4nJJft6xa9W4GOfC9PyQwwXbk4z_HntFNxdSP-h5Yu5Hkdo_sQqPHEVvR1z_ufvA3kUQn9f_NgBgiARIe14hVwcz_DpXWv0AGLeRaze5Jw8gx_9YNtIk5_jZaPH5tc9HsfHzuY5bHZYlBy1m-cFrNhyC9aPK8SLt9swOyrRIfdsAqRND67JdUkc8TNRZU4QcjekKkhd3WqrSrKYu5AaUuOUrhvEsaSpSK3mDWnTUV7C5cmXi0-ToKu-EBjKqQhiozTXVnJjEEKKJA2p0VEh41BqpROtmDDMhHGBp72KEQbZOMl5pIRJ8BgxlO7AWlmVdheItqmOk8gYVuSMFigYBHVFbqWjkjGKjeBDL4XMdNTkrkLGPOtdFFydzK_OCN4PTRctH8ffGu31osw6layzmEn03Wgi0xEcDK9RmdwfElXaaunaUMlC9FijEbxqt8DQC0VDHjHJcbBekP_uPjufHvuH1__f9B08nVycTbPp6ezbG9iIXeSMv-jZg7XmZmnfIvRp9L7f4b8BAcn9Yg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xqKpeKH1Al0LrVj30klUSvxJxgsKKAl2hCiQOlSLbcSTEKlmR7IH--o6dhwoFqeIWKY78GI_nG2fmG4AvXKIZSU0UKCVEwFQaBZqHNuCpUbnUQlvrEpx_TMXRBTu-5JdLsNvnwrT8EMOFm9MMf147BZ_nxV9KPp_pcYTWTyzDKhNh6uo2HPwcuKMQ-fvaxw4PBIkIaUcr5MJ4hk_vGqN_EOZdwOotzuQl_OrH2gaaXI8XjR6b3_doHJ84mXVY65Ao2Wu3zitYsuVreLZfIVq8fQPTvRLdcc8lQNrk4JpclcTRPhNV5gQBd0OqgtTVrbaqJPOZC6ghNc7oqkEUS5qK1GrWkDYZ5S1cTA7Pvx0FXe2FwFBORRAbpbm2khuDAFIkaUiNjgoZh1IrnWjFhGEmjAs861WMIMjGSc4jJUyCh4ihdANWyqq074Bom-o4iYxhRc5ogXJBSFfkVjoiGaPYCL72QshMR0zu6mPMst5BwdXJ_OqM4PPQdN6ycTzUaLuXZNYpZJ3FTKLnRhOZjuDT8BpVyf0fUaWtFq4NlSxEfzUawWa7A4ZeKJrxiEmOg_VyfLz77Ox03z9s_X_Tj_D87GCSnX6fnryHF7ELm_G3PNuw0tws7A7inkZ_8Pv7Dw5i_BE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anatomical+changes+in+stem+and+root+of+soybean+plants+submitted+to+salt+stress&rft.jtitle=Plant+biology+%28Stuttgart%2C+Germany%29&rft.au=Silva%2C+B.+R.+S.&rft.au=Batista%2C+B.+L.&rft.au=Lobato%2C+A.+K.+S.&rft.au=Luo%2C+Z.%E2%80%90B.&rft.date=2021-01-01&rft.issn=1435-8603&rft.eissn=1438-8677&rft.volume=23&rft.issue=1&rft.spage=57&rft.epage=65&rft_id=info:doi/10.1111%2Fplb.13176&rft.externalDBID=10.1111%252Fplb.13176&rft.externalDocID=PLB13176 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1435-8603&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1435-8603&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1435-8603&client=summon |