Overall and thermal comfort under different temperature, noise, and vibration exposures

Public transports like the bus and subway inherently experience noise, vibration, and temperature variations that are different from building environment. Each of them can influence passengers’ comfort, but little is known about their combined effects, especially how they affect thermal comfort. Thi...

Full description

Saved in:
Bibliographic Details
Published inIndoor air Vol. 32; no. 1; pp. e12915 - n/a
Main Authors Zhou, Xiang, Liu, Yunliang, Luo, Maohui, Zheng, Shun, Yang, Rui, Zhang, Xu
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Public transports like the bus and subway inherently experience noise, vibration, and temperature variations that are different from building environment. Each of them can influence passengers’ comfort, but little is known about their combined effects, especially how they affect thermal comfort. This paper presents experimental results from a series of human subject tests under different noises, vibrations, and temperatures. 32 subjects’ subjective perception and physiological response were collected under three temperatures (22.5, 25.5, 28.5℃), five noise levels (55, 60, 65, 70, 75 dB(A)), and five vibrating accelerations (0, 0.2, 0.4, 0.6, 0.8 m/s2). We also varied the noise and vibration spectrums to simulate the bus and subway environments. In total, 48 195‐min and 192 115‐min laboratory tests were conducted. By using significance tests (paired t tests and two‐way ANOVA tests) and sensitivity analysis (Treed Gaussian Process), the results show that temperature, noise, and vibration exposures can significantly affect subjects’ overall satisfaction. More interestingly, high noise and vibration levels can cause warmer thermal sensations. A change in the noise of 20 dB(A) or vibration of 0.6 m/s2 is equivalent to an ambient temperature change of 0.6 °C. We also observed higher heart rates and metabolic heat production at higher levels of noise and vibrating accelerators. Based on the test results, regression models were developed to describe the combined effects of temperature, noise, and vibration on subjects’ overall comfort perception and thermal neutral temperature. They can serve as references for the design and operation of public transport environments.
AbstractList Public transports like the bus and subway inherently experience noise, vibration, and temperature variations that are different from building environment. Each of them can influence passengers' comfort, but little is known about their combined effects, especially how they affect thermal comfort. This paper presents experimental results from a series of human subject tests under different noises, vibrations, and temperatures. 32 subjects' subjective perception and physiological response were collected under three temperatures (22.5, 25.5, 28.5℃), five noise levels (55, 60, 65, 70, 75 dB(A)), and five vibrating accelerations (0, 0.2, 0.4, 0.6, 0.8 m/s ). We also varied the noise and vibration spectrums to simulate the bus and subway environments. In total, 48 195-min and 192 115-min laboratory tests were conducted. By using significance tests (paired t tests and two-way ANOVA tests) and sensitivity analysis (Treed Gaussian Process), the results show that temperature, noise, and vibration exposures can significantly affect subjects' overall satisfaction. More interestingly, high noise and vibration levels can cause warmer thermal sensations. A change in the noise of 20 dB(A) or vibration of 0.6 m/s is equivalent to an ambient temperature change of 0.6 °C. We also observed higher heart rates and metabolic heat production at higher levels of noise and vibrating accelerators. Based on the test results, regression models were developed to describe the combined effects of temperature, noise, and vibration on subjects' overall comfort perception and thermal neutral temperature. They can serve as references for the design and operation of public transport environments.
Public transports like the bus and subway inherently experience noise, vibration, and temperature variations that are different from building environment. Each of them can influence passengers’ comfort, but little is known about their combined effects, especially how they affect thermal comfort. This paper presents experimental results from a series of human subject tests under different noises, vibrations, and temperatures. 32 subjects’ subjective perception and physiological response were collected under three temperatures (22.5, 25.5, 28.5℃), five noise levels (55, 60, 65, 70, 75 dB(A)), and five vibrating accelerations (0, 0.2, 0.4, 0.6, 0.8 m/s2). We also varied the noise and vibration spectrums to simulate the bus and subway environments. In total, 48 195‐min and 192 115‐min laboratory tests were conducted. By using significance tests (paired t tests and two‐way ANOVA tests) and sensitivity analysis (Treed Gaussian Process), the results show that temperature, noise, and vibration exposures can significantly affect subjects’ overall satisfaction. More interestingly, high noise and vibration levels can cause warmer thermal sensations. A change in the noise of 20 dB(A) or vibration of 0.6 m/s2 is equivalent to an ambient temperature change of 0.6 °C. We also observed higher heart rates and metabolic heat production at higher levels of noise and vibrating accelerators. Based on the test results, regression models were developed to describe the combined effects of temperature, noise, and vibration on subjects’ overall comfort perception and thermal neutral temperature. They can serve as references for the design and operation of public transport environments.
Public transports like the bus and subway inherently experience noise, vibration, and temperature variations that are different from building environment. Each of them can influence passengers' comfort, but little is known about their combined effects, especially how they affect thermal comfort. This paper presents experimental results from a series of human subject tests under different noises, vibrations, and temperatures. 32 subjects' subjective perception and physiological response were collected under three temperatures (22.5, 25.5, 28.5℃), five noise levels (55, 60, 65, 70, 75 dB(A)), and five vibrating accelerations (0, 0.2, 0.4, 0.6, 0.8 m/s2 ). We also varied the noise and vibration spectrums to simulate the bus and subway environments. In total, 48 195-min and 192 115-min laboratory tests were conducted. By using significance tests (paired t tests and two-way ANOVA tests) and sensitivity analysis (Treed Gaussian Process), the results show that temperature, noise, and vibration exposures can significantly affect subjects' overall satisfaction. More interestingly, high noise and vibration levels can cause warmer thermal sensations. A change in the noise of 20 dB(A) or vibration of 0.6 m/s2 is equivalent to an ambient temperature change of 0.6 °C. We also observed higher heart rates and metabolic heat production at higher levels of noise and vibrating accelerators. Based on the test results, regression models were developed to describe the combined effects of temperature, noise, and vibration on subjects' overall comfort perception and thermal neutral temperature. They can serve as references for the design and operation of public transport environments.Public transports like the bus and subway inherently experience noise, vibration, and temperature variations that are different from building environment. Each of them can influence passengers' comfort, but little is known about their combined effects, especially how they affect thermal comfort. This paper presents experimental results from a series of human subject tests under different noises, vibrations, and temperatures. 32 subjects' subjective perception and physiological response were collected under three temperatures (22.5, 25.5, 28.5℃), five noise levels (55, 60, 65, 70, 75 dB(A)), and five vibrating accelerations (0, 0.2, 0.4, 0.6, 0.8 m/s2 ). We also varied the noise and vibration spectrums to simulate the bus and subway environments. In total, 48 195-min and 192 115-min laboratory tests were conducted. By using significance tests (paired t tests and two-way ANOVA tests) and sensitivity analysis (Treed Gaussian Process), the results show that temperature, noise, and vibration exposures can significantly affect subjects' overall satisfaction. More interestingly, high noise and vibration levels can cause warmer thermal sensations. A change in the noise of 20 dB(A) or vibration of 0.6 m/s2 is equivalent to an ambient temperature change of 0.6 °C. We also observed higher heart rates and metabolic heat production at higher levels of noise and vibrating accelerators. Based on the test results, regression models were developed to describe the combined effects of temperature, noise, and vibration on subjects' overall comfort perception and thermal neutral temperature. They can serve as references for the design and operation of public transport environments.
Public transports like the bus and subway inherently experience noise, vibration, and temperature variations that are different from building environment. Each of them can influence passengers’ comfort, but little is known about their combined effects, especially how they affect thermal comfort. This paper presents experimental results from a series of human subject tests under different noises, vibrations, and temperatures. 32 subjects’ subjective perception and physiological response were collected under three temperatures (22.5, 25.5, 28.5℃), five noise levels (55, 60, 65, 70, 75 dB(A)), and five vibrating accelerations (0, 0.2, 0.4, 0.6, 0.8 m/s2). We also varied the noise and vibration spectrums to simulate the bus and subway environments. In total, 48 195‐min and 192 115‐min laboratory tests were conducted. By using significance tests (paired t tests and two‐way ANOVA tests) and sensitivity analysis (Treed Gaussian Process), the results show that temperature, noise, and vibration exposures can significantly affect subjects’ overall satisfaction. More interestingly, high noise and vibration levels can cause warmer thermal sensations. A change in the noise of 20 dB(A) or vibration of 0.6 m/s2 is equivalent to an ambient temperature change of 0.6 °C. We also observed higher heart rates and metabolic heat production at higher levels of noise and vibrating accelerators. Based on the test results, regression models were developed to describe the combined effects of temperature, noise, and vibration on subjects’ overall comfort perception and thermal neutral temperature. They can serve as references for the design and operation of public transport environments.
Author Liu, Yunliang
Yang, Rui
Zhou, Xiang
Zheng, Shun
Luo, Maohui
Zhang, Xu
Author_xml – sequence: 1
  givenname: Xiang
  surname: Zhou
  fullname: Zhou, Xiang
  organization: Tongji University
– sequence: 2
  givenname: Yunliang
  surname: Liu
  fullname: Liu, Yunliang
  organization: Tongji University
– sequence: 3
  givenname: Maohui
  surname: Luo
  fullname: Luo, Maohui
  email: luomaohui@tongji.edu.cn
  organization: Tongji University
– sequence: 4
  givenname: Shun
  surname: Zheng
  fullname: Zheng, Shun
  organization: Tongji University
– sequence: 5
  givenname: Rui
  surname: Yang
  fullname: Yang, Rui
  organization: Tongji University
– sequence: 6
  givenname: Xu
  surname: Zhang
  fullname: Zhang, Xu
  organization: Tongji University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34337783$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtLxDAUhYMozkMX_gEpuFGwM0nT9LEU8QWDs1FchqS9wUibjEmrzr8389oMejcXbr5zuDdnhA6NNYDQGcETEmqqjZiQpCTsAA1JhnGMs6w4RENcYhZnZZoP0Mj7D4xJTkt6jAY0pTTPCzpEb_MvcKJpImHqqHsH14omqmyrrOui3tTgolorBQ5MF3XQLgLd9Q6uI2O1D22l-9IyTLU1EfwsrA_P_gQdKdF4ON32MXq9v3u5fYxn84en25tZXFFGWQySqbJiVCiQKlcpyWgKLBGySIBUec0ywJkkRKgSKBMFSQgUkkqJKYBSJR2jy43vwtnPHnzHW-0raBphwPaeJ4zlLKU4oQG92EM_bO9M2I4nWZKSsE-RB-p8S_WyhZovnG6FW_LdlwVgugEqZ713oHilu_X1nRO64QTzVSg8hMLXoQTF1Z5iZ_oXu3X_1g0s_wf50_PNRvELCuOblQ
CitedBy_id crossref_primary_10_1016_j_buildenv_2023_110510
crossref_primary_10_1016_j_trpro_2022_06_129
crossref_primary_10_3390_biomechanics2040043
crossref_primary_10_1016_j_asoc_2023_110079
crossref_primary_10_1016_j_buildenv_2022_109069
crossref_primary_10_1016_j_buildenv_2024_111435
crossref_primary_10_1016_j_uclim_2024_101967
crossref_primary_10_30657_pea_2023_29_16
crossref_primary_10_3389_fbuil_2022_1033046
crossref_primary_10_1016_j_enbuild_2023_112856
crossref_primary_10_3390_app13074639
crossref_primary_10_3390_atmos16020140
Cites_doi 10.1080/00140138208925023
10.1177/1420326X17719490
10.1016/j.apenergy.2017.11.022
10.1016/j.enbuild.2004.08.001
10.1016/S0031-9384(02)00956-3
10.1016/j.autneu.2009.12.008
10.2486/indhealth.MSWBVI-19
10.1152/jappl.1964.19.3.531
10.1201/b13017-7
10.1016/j.rser.2018.04.005
10.1243/09544070JAUTO1315
10.18637/jss.v033.i06
10.1016/S0169-8141(00)00052-4
10.1080/00140137708931596
10.1016/j.tranpol.2005.12.004
10.1007/s004210050067
10.1016/j.jsv.2004.03.008
10.1007/s00231-004-0558-9
10.1080/001401399185586
10.1016/j.measurement.2013.08.068
10.1016/j.enbuild.2019.02.009
10.1111/j.1600-0668.1993.00006.x
10.1016/j.enbuild.2016.02.041
10.1016/j.tranpol.2007.04.009
10.1016/j.buildenv.2018.06.022
10.1007/s00420-003-0493-y
10.1007/BF00716376
10.1111/j.1600-0668.2004.00305.x
ContentType Journal Article
Copyright 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Copyright © 2022 John Wiley & Sons A/S
Copyright_xml – notice: 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
– notice: 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
– notice: Copyright © 2022 John Wiley & Sons A/S
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7ST
8FD
C1K
FR3
KR7
SOI
7X8
DOI 10.1111/ina.12915
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
Civil Engineering Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1600-0668
EndPage n/a
ExternalDocumentID 34337783
10_1111_ina_12915
INA12915
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
– fundername: National Natural Science Foundation of China
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29I
31~
33P
36B
3SF
4.4
4P2
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8C1
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAJEY
AAKAS
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABUWG
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFS
ACIWK
ACMXC
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFEBI
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHEFC
AIACR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOETA
ASPBG
ATCPS
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BMXJE
BROTX
BRXPI
BY8
C45
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EDH
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FEDTE
FUBAC
FYUFA
FZ0
G-S
G.N
GODZA
H.X
H13
HCIFZ
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
PALCI
PATMY
PIMPY
PQQKQ
PYCSY
Q.N
Q11
QB0
R.K
RHX
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
W8V
W99
WBKPD
WIH
WIJ
WIK
WLBEL
WOHZO
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
XG1
YFH
ZZTAW
~IA
~WT
AAYXX
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
7ST
8FD
C1K
FR3
KR7
SOI
7X8
ID FETCH-LOGICAL-c3535-eb5f9c53afebf7f41634e52ab82e1c7d56e06b11af9e35a8121e8b3bb03eeff93
IEDL.DBID DR2
ISSN 0905-6947
1600-0668
IngestDate Fri Jul 11 01:59:23 EDT 2025
Fri Jul 25 20:58:27 EDT 2025
Mon Jul 21 06:08:11 EDT 2025
Thu Apr 24 23:12:25 EDT 2025
Tue Jul 01 02:22:22 EDT 2025
Wed Jan 22 16:26:08 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords passenger comfort
metabolic rate
noise and vibration
human subject experiment
public transport
Language English
License 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3535-eb5f9c53afebf7f41634e52ab82e1c7d56e06b11af9e35a8121e8b3bb03eeff93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 34337783
PQID 2624153587
PQPubID 105551
PageCount 16
ParticipantIDs proquest_miscellaneous_2557543023
proquest_journals_2624153587
pubmed_primary_34337783
crossref_citationtrail_10_1111_ina_12915
crossref_primary_10_1111_ina_12915
wiley_primary_10_1111_ina_12915_INA12915
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Malden
PublicationTitle Indoor air
PublicationTitleAlternate Indoor Air
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2018; 142
2010; 33
1980; 47
2012
2006; 13
2010
1997; 20
2010; 224
2005; 41
2014; 47
2014; 69
2006
1999; 42
2004
2001; 27
1970
1995; 6
2019; 188
2018; 27
1993; 3
2007; 14
2003; 78
1997; 8
2004; 277
2004; 77
1982; 25
2010; 20
2010; 48
1964; 19
2010; 116
2016; 118
2001; 4
2004; 14
2018; 211
1991; 61
2018; 91
2010; 155
2000; 81
2018
2017
2015
2013
2005; 37
2009; 2
e_1_2_12_3_1
Zhang K (e_1_2_12_10_1) 2014; 69
e_1_2_12_6_1
e_1_2_12_5_1
e_1_2_12_19_1
e_1_2_12_2_1
e_1_2_12_17_1
ISO 2631–5 (e_1_2_12_18_1) 2004
e_1_2_12_16_1
e_1_2_12_38_1
Tiller D (e_1_2_12_20_1) 2010; 116
Saltelli A (e_1_2_12_35_1) 2018
Ren Z (e_1_2_12_30_1) 1995; 6
e_1_2_12_42_1
Fanger P (e_1_2_12_14_1) 1970
e_1_2_12_41_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_22_1
Tian W (e_1_2_12_36_1) 2010; 20
e_1_2_12_43_1
e_1_2_12_23_1
e_1_2_12_24_1
e_1_2_12_45_1
e_1_2_12_25_1
e_1_2_12_26_1
Nassiri P (e_1_2_12_15_1) 2009; 2
e_1_2_12_40_1
Ren Z (e_1_2_12_29_1) 1997; 8
Okada A (e_1_2_12_39_1) 1991; 61
e_1_2_12_27_1
e_1_2_12_28_1
ASHRAE (e_1_2_12_31_1) 2017
Waye K (e_1_2_12_46_1) 2001; 4
ISO9886 (e_1_2_12_47_1)
e_1_2_12_32_1
e_1_2_12_33_1
e_1_2_12_34_1
National Bureau of Statistics of China, 2006–2020 (e_1_2_12_4_1)
e_1_2_12_37_1
e_1_2_12_13_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_9_1
References_xml – volume: 188
  start-page: 98
  year: 2019
  end-page: 110
  article-title: Thermal comfort under radiant asymmetries of floor cooling system in 2 h and 8 h exposure durations
  publication-title: Energ Build
– volume: 91
  start-page: 443
  year: 2018
  end-page: 463
  article-title: The solutions to electric vehicle air conditioning systems: A review
  publication-title: Renew Sustain Energy Rev
– volume: 14
  start-page: 478
  issue: 6
  year: 2007
  end-page: 489
  article-title: Understanding attitudes towards public transport and private car: A qualitative study
  publication-title: Transp Policy
– volume: 277
  start-page: 471
  issue: 3
  year: 2004
  end-page: 478
  article-title: Physiological aspects of noise‐induced stress and annoyance
  publication-title: J Sound Vib
– volume: 69
  start-page: 105
  year: 2014
  end-page: 112
  article-title: Evaluating bus transit performance of Chinese cities: Developing an overall bus comfort model
  publication-title: Transp Res
– volume: 48
  start-page: 519
  year: 2010
  end-page: 529
  article-title: Relative contribution of translational and rotational vibration to discomfort
  publication-title: Ind Health
– volume: 4
  start-page: 33
  issue: 13
  year: 2001
  end-page: 49
  article-title: Low frequency noise “pollution” interferes with performance
  publication-title: Noise Health
– volume: 2
  start-page: 124
  issue: 2
  year: 2009
  end-page: 131
  article-title: Occupational noise exposure evaluation in drivers of bus transportation of Tehran city
  publication-title: Iranian J Health Environ
– volume: 47
  start-page: 179
  year: 1980
  end-page: 190
  article-title: Health effects of traffic noise
  publication-title: Int Arch Occup Environ Health
– volume: 37
  start-page: 287
  year: 2005
  end-page: 294
  article-title: New comfort index during combined conditions of moderate low ambient temperature and traffic noise
  publication-title: Energy Build
– volume: 14
  start-page: 30
  issue: Suppl 8
  year: 2004
  end-page: 40
  article-title: The effects of moderate heat stress and open‐plan office noise distraction on SBS symptoms and on the performance of office work
  publication-title: Indoor Air
– volume: 41
  start-page: 449
  issue: 5
  year: 2005
  end-page: 458
  article-title: Thermal comfort during heating and cooling periods in an automobile
  publication-title: Heat Mass Transf
– volume: 27
  issue: 9
  year: 2018
  article-title: The effects of sound loudness on subjective feeling, sympathovagal, and brain activity
  publication-title: Indoor Built Environ
– volume: 78
  start-page: 99
  year: 2003
  end-page: 106
  article-title: Combined effects of temperature and noise on human discomfort
  publication-title: Physiol Behav
– volume: 8
  start-page: 111
  issue: 2
  year: 1997
  end-page: 114
  article-title: Effects of combined heat, noise and vibration stress on blood pressure and levels of vasoconstrictive hormones in human subjects
  publication-title: Chinese J Aerospace Med
– volume: 6
  start-page: 205
  issue: 4
  year: 1995
  end-page: 208
  article-title: Changes of human thermoregulation during combined heat, noise and vibration stress
  publication-title: Chinese J Aerospace Med
– year: 2018
– volume: 142
  start-page: 502
  year: 2018
  end-page: 512
  article-title: Development of the ASHRAE Global Thermal Comfort Database II
  publication-title: Build Environ
– year: 2010
– volume: 118
  start-page: 152
  year: 2016
  end-page: 159
  article-title: Revisiting an overlooked parameter in thermal comfort metabolic rate
  publication-title: Energy Build
– volume: 20
  start-page: 11
  issue: 1
  year: 1997
  end-page: 18
  article-title: Can color and noise influence man’s thermal comfort?
  publication-title: Ergonomics
– volume: 27
  start-page: 219
  issue: 4
  year: 2001
  end-page: 232
  article-title: An investigation into a synthetic vibration model for humans: An investigation into a mechanical vibration human model constructed according to the relations between the physical, psychological, and physiological reactions of humans exposed to vibration
  publication-title: Int J Ind Ergon
– start-page: 97
  year: 2012
  end-page: 116
– volume: 19
  start-page: 531
  issue: 3
  year: 1964
  end-page: 533
  article-title: A new weighting system for mean surface temperature of the human body
  publication-title: J Appl Physiol
– volume: 25
  start-page: 603
  issue: 7
  year: 1982
  end-page: 630
  article-title: Vibration and comfort I. Translational seat vibration
  publication-title: Ergonomics
– volume: 155
  start-page: 94
  issue: 1–2
  year: 2010
  end-page: 97
  article-title: Evoked response of heart rate variability using short‐duration white noise
  publication-title: Auton Neurosci
– volume: 13
  start-page: 295
  issue: 4
  year: 2006
  end-page: 306
  article-title: The demand for public transport: The effects of fares, quality of service, income and car ownership
  publication-title: Transp Policy
– year: 2006
– year: 2004
– volume: 42
  start-page: 444
  issue: 3
  year: 1999
  end-page: 461
  article-title: Motion sickness in public road transport: Passenger behaviour and susceptibility
  publication-title: Ergonomics
– volume: 61
  start-page: 3240331
  issue: 5
  year: 1991
  article-title: Experimental studies on the effects of vibration and noise on sympathetic nerve activity in skin
  publication-title: Eur J Appl Physiol
– volume: 47
  start-page: 442
  year: 2014
  end-page: 451
  article-title: Embedded system to evaluate the passenger comfort in public transportation based on dynamical vehicle behavior with user’s feedback
  publication-title: Measurement
– year: 1970
– volume: 20
  start-page: 411
  issue: 4
  year: 2010
  end-page: 419
  article-title: A review of sensitivity analysis methods in building energy analysis
  publication-title: Renew Sustain Energy Rev
– volume: 211
  start-page: 820
  year: 2018
  end-page: 842
  article-title: Future energy use and CO2 emissions of urban passenger transport in China: A travel behavior and urban form‐based approach
  publication-title: Appl Energy
– volume: 116
  start-page: 522
  year: 2010
  end-page: 540
  article-title: Combined effects of noise and temperature on human comfort and performance
  publication-title: ASHRAE Trans
– year: 2017
– volume: 33
  start-page: 1
  issue: 6
  year: 2010
  end-page: 48
  article-title: Categorical inputs, sensitivity analysis, optimization and importance tempering with tgp version 2, an R package for treed Gaussian process models
  publication-title: J Stat Softw
– volume: 81
  start-page: 449
  issue: 6
  year: 2000
  end-page: 454
  article-title: Hormonal responses to whole‐body vibration in me
  publication-title: Eur J Appl Physiol
– year: 2015
– volume: 224
  start-page: 1289
  issue: 10
  year: 2010
  end-page: 1302
  article-title: Psychological effects of combined noise and whole‐body vibration: a review and avenues for future research
  publication-title: Proc Inst Mec Eng, Part D: J Automob Eng
– volume: 3
  start-page: 255
  issue: 4
  year: 1993
  end-page: 262
  article-title: A comparative study of discomfort caused by indoor air pollution, thermal load and noise
  publication-title: Indoor Air
– year: 2013
– volume: 77
  start-page: 205
  issue: 3
  year: 2004
  end-page: 212
  article-title: Effect of different vibration frequencies on heart rate variability and driving fatigue in healthy drivers
  publication-title: Int Arch Occup Environ
– volume: 6
  start-page: 205
  issue: 4
  year: 1995
  ident: e_1_2_12_30_1
  article-title: Changes of human thermoregulation during combined heat, noise and vibration stress
  publication-title: Chinese J Aerospace Med
– ident: e_1_2_12_11_1
  doi: 10.1080/00140138208925023
– ident: e_1_2_12_38_1
  doi: 10.1177/1420326X17719490
– ident: e_1_2_12_19_1
– ident: e_1_2_12_3_1
  doi: 10.1016/j.apenergy.2017.11.022
– ident: e_1_2_12_22_1
  doi: 10.1016/j.enbuild.2004.08.001
– volume: 61
  start-page: 3240331
  issue: 5
  year: 1991
  ident: e_1_2_12_39_1
  article-title: Experimental studies on the effects of vibration and noise on sympathetic nerve activity in skin
  publication-title: Eur J Appl Physiol
– ident: e_1_2_12_16_1
– ident: e_1_2_12_21_1
  doi: 10.1016/S0031-9384(02)00956-3
– volume-title: Global Sensitivity Analysis: The Primer
  year: 2018
  ident: e_1_2_12_35_1
– ident: e_1_2_12_25_1
  doi: 10.1016/j.autneu.2009.12.008
– ident: e_1_2_12_12_1
  doi: 10.2486/indhealth.MSWBVI-19
– ident: e_1_2_12_34_1
  doi: 10.1152/jappl.1964.19.3.531
– volume-title: Mechanical Vibration and Shock – Evaluation of Human Exposure to Whole Body Vibration. Part 5: Method for Evaluation of Vibration Containing Multiple Shocks
  year: 2004
  ident: e_1_2_12_18_1
– ident: e_1_2_12_26_1
  doi: 10.1201/b13017-7
– ident: e_1_2_12_9_1
  doi: 10.1016/j.rser.2018.04.005
– volume: 20
  start-page: 411
  issue: 4
  year: 2010
  ident: e_1_2_12_36_1
  article-title: A review of sensitivity analysis methods in building energy analysis
  publication-title: Renew Sustain Energy Rev
– volume: 2
  start-page: 124
  issue: 2
  year: 2009
  ident: e_1_2_12_15_1
  article-title: Occupational noise exposure evaluation in drivers of bus transportation of Tehran city
  publication-title: Iranian J Health Environ
– ident: e_1_2_12_13_1
  doi: 10.1243/09544070JAUTO1315
– ident: e_1_2_12_37_1
  doi: 10.18637/jss.v033.i06
– ident: e_1_2_12_40_1
  doi: 10.1016/S0169-8141(00)00052-4
– ident: e_1_2_12_43_1
  doi: 10.1080/00140137708931596
– ident: e_1_2_12_2_1
  doi: 10.1016/j.tranpol.2005.12.004
– ident: e_1_2_12_28_1
  doi: 10.1007/s004210050067
– volume: 4
  start-page: 33
  issue: 13
  year: 2001
  ident: e_1_2_12_46_1
  article-title: Low frequency noise “pollution” interferes with performance
  publication-title: Noise Health
– volume-title: China Statistical Yearbook
  ident: e_1_2_12_4_1
– volume-title: Thermal Comfort: Analysis and Applications in Environmental Engineering
  year: 1970
  ident: e_1_2_12_14_1
– ident: e_1_2_12_23_1
  doi: 10.1016/j.jsv.2004.03.008
– ident: e_1_2_12_8_1
  doi: 10.1007/s00231-004-0558-9
– volume: 69
  start-page: 105
  year: 2014
  ident: e_1_2_12_10_1
  article-title: Evaluating bus transit performance of Chinese cities: Developing an overall bus comfort model
  publication-title: Transp Res
– ident: e_1_2_12_27_1
  doi: 10.1080/001401399185586
– ident: e_1_2_12_6_1
  doi: 10.1016/j.measurement.2013.08.068
– ident: e_1_2_12_32_1
  doi: 10.1016/j.enbuild.2019.02.009
– ident: e_1_2_12_45_1
  doi: 10.1111/j.1600-0668.1993.00006.x
– ident: e_1_2_12_7_1
– volume: 116
  start-page: 522
  year: 2010
  ident: e_1_2_12_20_1
  article-title: Combined effects of noise and temperature on human comfort and performance
  publication-title: ASHRAE Trans
– ident: e_1_2_12_42_1
  doi: 10.1016/j.enbuild.2016.02.041
– volume: 8
  start-page: 111
  issue: 2
  year: 1997
  ident: e_1_2_12_29_1
  article-title: Effects of combined heat, noise and vibration stress on blood pressure and levels of vasoconstrictive hormones in human subjects
  publication-title: Chinese J Aerospace Med
– ident: e_1_2_12_5_1
  doi: 10.1016/j.tranpol.2007.04.009
– ident: e_1_2_12_17_1
– ident: e_1_2_12_33_1
  doi: 10.1016/j.buildenv.2018.06.022
– ident: e_1_2_12_41_1
  doi: 10.1007/s00420-003-0493-y
– volume-title: AHSRAE Handbook ‐ Fundamentals
  year: 2017
  ident: e_1_2_12_31_1
– ident: e_1_2_12_24_1
  doi: 10.1007/BF00716376
– ident: e_1_2_12_44_1
  doi: 10.1111/j.1600-0668.2004.00305.x
– volume-title: Ergonomics‐Evaluation of thermal strain by physiological measurements
  ident: e_1_2_12_47_1
SSID ssj0017393
Score 2.4138498
Snippet Public transports like the bus and subway inherently experience noise, vibration, and temperature variations that are different from building environment. Each...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e12915
SubjectTerms Air Pollution, Indoor
Ambient temperature
Buses
Gaussian process
Heart rate
human subject experiment
Humans
Laboratory tests
metabolic rate
Noise
noise and vibration
Noise levels
Passenger comfort
public transport
Public transportation
Railroads
Regression analysis
Regression models
Sensitivity analysis
Temperature
Temperature effects
Temperature perception
Thermal comfort
Variance analysis
Vibration
Vibration analysis
Vibration perception
Vibrations
Title Overall and thermal comfort under different temperature, noise, and vibration exposures
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fina.12915
https://www.ncbi.nlm.nih.gov/pubmed/34337783
https://www.proquest.com/docview/2624153587
https://www.proquest.com/docview/2557543023
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4huMChPErLUkBu1QMHgpL1I444LY8VRYJKCASHSlGcjCVUmkVsFlX8ejzOQzwlxCmRPI4dz4z9xfF8A_BTcc4tRiLAGGUgLHc-V8Q24Fokzp6MFoIChY9P1OG5OLqUl1Ow08bC1PwQ3YYbeYafr8nBMzN-5OSUtcAtVj7AnM5qESA67aijImJ68zx7oQxUIuKGVYhO8XQ1n65FLwDmU7zqF5zhPPxpu1qfM_m7PanMdn7_jMXxg--yAJ8aIMoGteUswhSWSzD3iJ7wM1z8vqMdq2uWlQUjoPjPVXCPdji3YhR8dsva_CoVI46rhqB5i5Wjq7G7UL076hhpn-H_mxHtR46X4Xx4cLZ3GDSJGIKcSy4DNNImueSZRWNjSxhOoOxnRvcxyuNCKgyViaLMJshl5jBDhNpwY0KOaG3Cv8B0OSpxBViktMoSqZVKEiK316EqclEIN9kZGVrdg81WJWnesJRTsozrtP1acWOV-rHqwY9O9Kam5nhNaK3Va9p45zjtK8ItXOq4B9-7YudX9LMkK3E0cTLSAVlBKZV68LW2h64VLjiPY-1KNr1W324-_XUy8Der7xf9BrN9irHw-zxrMF3dTnDdIZ_KbMDMYHd_d7jhTf0BGnX_OQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4heigcoC0FltLiVhw4NKtk_Ygj9YKqouW1lRAILlUUJ2MJAVm0m11V_fX1OA8BbaWKUyJ5nDj2jP154vkGYFdxzi1GIsAYZSAsdzZXxDbgWiROn4wWggKFT0dqeCGOruTVAnxpY2FqfojO4UaW4edrMnBySD-wckpb4FYrijB_QRm9_YbqrCOPiojrzTPthTJQiYgbXiE6x9NVfbwa_QExHyNWv-QcrMKPtrH1SZOb_qwy_fzXEx7H537NK1hpsCjbr5XnNSxg-QaWHzAUrsHl9zk5rW5ZVhaMsOKdq-Ce7aBuxSj-bMLaFCsVI5qrhqP5MyvH11N3oXpzahkpAMOf92NySU7fwsXBt_Ovw6DJxRDkXHIZoJE2ySXPLBobW4JxAuUgM3qAUR4XUmGoTBRlNkEuMwcbItSGGxNyRGsTvg6L5bjETWCR0ipLpFYqSYjfXoeqyEUh3HxnZGh1D_baMUnzhqic8mXcpu2GxfVV6vuqB5860fuaneNvQtvtwKaNgU7TgSLowqWOe_CxK3amRf9LshLHMycjHZYVlFWpBxu1QnRv4YLzONauZM8P679fnx6O9v3N1v-L7sDL4fnpSXpyODp-B0sDCrnwbp9tWKwmM3zvgFBlPnh9_w36pwHx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hkBAcaIEC2_IwiAOHBiXrRxxxQoUVzwVVReVQKYqTsYRKsys2i1B_PZ68BJRKiFMieRw79oz9ZeL5BmBbcc4tBsLDEKUnLHc2l4XW41pETp-MFoIChc_76uhKnFzL6wnYa2JhKn6I1uFGllGu12Tgw8w-MXLKWuA2KwownxLK16TSB99b7qiAqN5Koj1feioSYU0rRMd42qrPN6N_EOZzwFruOL0P8Kvpa3XQ5PfuuDC76d8XNI7vfJmPMFcjUbZfqc48TGC-ALNP-AkX4efFPbmsblmSZ4yQ4h9XwT3aAd2CUfTZHWsSrBSMSK5qhuavLB_cjNyF6t1Tx2j6GT4MB-SQHH2Cq97hj29HXp2JwUu55NJDI22USp5YNDa0BOIEym5idBeDNMykQl-ZIEhshFwmDjQEqA03xueI1kZ8CSbzQY4rwAKlVRJJrVQUEbu99lWWiky41c5I3-oO7DRTEqc1TTlly7iNm88VN1ZxOVYd2GpFhxU3x2tCq828xrV5juKuIuDCpQ47sNkWO8OivyVJjoOxk5EOyQrKqdSB5Uof2la44DwMtSvZKWf1_83Hx_398ubz20U3YPryoBefHfdPv8BMl-ItSp_PKkwWd2NccyioMOultj8CEcEAqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overall+and+thermal+comfort+under+different+temperature%2C+noise%2C+and+vibration+exposures&rft.jtitle=Indoor+air&rft.au=Zhou%2C+Xiang&rft.au=Liu%2C+Yunliang&rft.au=Luo%2C+Maohui&rft.au=Zheng%2C+Shun&rft.date=2022-01-01&rft.eissn=1600-0668&rft.volume=32&rft.issue=1&rft.spage=e12915&rft_id=info:doi/10.1111%2Fina.12915&rft_id=info%3Apmid%2F34337783&rft.externalDocID=34337783
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0905-6947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0905-6947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0905-6947&client=summon