The AP2/ERF transcription factor ORA59 regulates ethylene‐induced phytoalexin synthesis through modulation of an acyltransferase gene expression
The gaseous ethylene (ET) and the oxylipin‐derived jasmonic acid (JA) in plants jointly regulate an arsenal of pathogen responsive genes involved in defending against necrotrophic pathogens. The APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) transcription factor ORA59 is a major positive regulator of...
Saved in:
Published in | Journal of cellular physiology Vol. 239; no. 10; pp. e30935 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.10.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9541 1097-4652 1097-4652 |
DOI | 10.1002/jcp.30935 |
Cover
Abstract | The gaseous ethylene (ET) and the oxylipin‐derived jasmonic acid (JA) in plants jointly regulate an arsenal of pathogen responsive genes involved in defending against necrotrophic pathogens. The APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) transcription factor ORA59 is a major positive regulator of the ET/JA‐mediated defense pathway in Arabidopsis thaliana. The Arabidopsis agmatine coumaroyltransferase (AtACT) catalyzes the formation of hydroxycinnamic acid amides (HCAAs) which are effective toxic antimicrobial substances known as phytoalexins and play an important role in plant defense response. However, induction and regulation of AtACT gene expression and HCAAs synthesis in plants remain less understood. Through gene coexpression network analysis, we identified a list of GCC‐box cis‐element containing genes that were coexpressed with ORA59 under diverse biotic stress conditions and might be potential downstream targets of this AP2/ERF‐domain transcription factor. Particularly, ORA59 directly binds to AtACT gene promoter via the GCC‐boxes and activates AtACT gene expression. The ET precursor 1‐aminocyclopropane‐1‐carboxylic acid (ACC)‐treatment significantly induces AtACT gene expression. Both ORA59 and members of the class II TGA transcription factors are indispensable for ACC‐induced AtACT expression. Interestingly, the expression of AtACT is also subject to the signaling crosstalk of the salicylic acid‐ and ET/JA‐mediated defense response pathways. In addition, we found that genes of the phenylpropanoid metabolism pathway were specifically induced by Botrytis cinerea. Taking together, these evidence suggest that the ET/JA signaling pathway activate the expression of AtACT to increase antimicrobial HCAAs production through the transcription factor ORA59 in response to the infection of necrotrophic plant pathogens. |
---|---|
AbstractList | The gaseous ethylene (ET) and the oxylipin‐derived jasmonic acid (JA) in plants jointly regulate an arsenal of pathogen responsive genes involved in defending against necrotrophic pathogens. The APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) transcription factor ORA59 is a major positive regulator of the ET/JA‐mediated defense pathway in Arabidopsis thaliana. The Arabidopsis agmatine coumaroyltransferase (AtACT) catalyzes the formation of hydroxycinnamic acid amides (HCAAs) which are effective toxic antimicrobial substances known as phytoalexins and play an important role in plant defense response. However, induction and regulation of AtACT gene expression and HCAAs synthesis in plants remain less understood. Through gene coexpression network analysis, we identified a list of GCC‐box cis‐element containing genes that were coexpressed with ORA59 under diverse biotic stress conditions and might be potential downstream targets of this AP2/ERF‐domain transcription factor. Particularly, ORA59 directly binds to AtACT gene promoter via the GCC‐boxes and activates AtACT gene expression. The ET precursor 1‐aminocyclopropane‐1‐carboxylic acid (ACC)‐treatment significantly induces AtACT gene expression. Both ORA59 and members of the class II TGA transcription factors are indispensable for ACC‐induced AtACT expression. Interestingly, the expression of AtACT is also subject to the signaling crosstalk of the salicylic acid‐ and ET/JA‐mediated defense response pathways. In addition, we found that genes of the phenylpropanoid metabolism pathway were specifically induced by Botrytis cinerea. Taking together, these evidence suggest that the ET/JA signaling pathway activate the expression of AtACT to increase antimicrobial HCAAs production through the transcription factor ORA59 in response to the infection of necrotrophic plant pathogens. The gaseous ethylene (ET) and the oxylipin‐derived jasmonic acid (JA) in plants jointly regulate an arsenal of pathogen responsive genes involved in defending against necrotrophic pathogens. The APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) transcription factor ORA59 is a major positive regulator of the ET/JA‐mediated defense pathway in Arabidopsis thaliana . The Arabidopsis agmatine coumaroyltransferase (AtACT) catalyzes the formation of hydroxycinnamic acid amides (HCAAs) which are effective toxic antimicrobial substances known as phytoalexins and play an important role in plant defense response. However, induction and regulation of AtACT gene expression and HCAAs synthesis in plants remain less understood. Through gene coexpression network analysis, we identified a list of GCC‐box cis ‐element containing genes that were coexpressed with ORA59 under diverse biotic stress conditions and might be potential downstream targets of this AP2/ERF‐domain transcription factor. Particularly, ORA59 directly binds to AtACT gene promoter via the GCC‐boxes and activates AtACT gene expression. The ET precursor 1‐aminocyclopropane‐1‐carboxylic acid (ACC)‐treatment significantly induces AtACT gene expression. Both ORA59 and members of the class II TGA transcription factors are indispensable for ACC‐induced AtACT expression. Interestingly, the expression of AtACT is also subject to the signaling crosstalk of the salicylic acid‐ and ET/JA‐mediated defense response pathways. In addition, we found that genes of the phenylpropanoid metabolism pathway were specifically induced by Botrytis cinerea . Taking together, these evidence suggest that the ET/JA signaling pathway activate the expression of AtACT to increase antimicrobial HCAAs production through the transcription factor ORA59 in response to the infection of necrotrophic plant pathogens. The gaseous ethylene (ET) and the oxylipin-derived jasmonic acid (JA) in plants jointly regulate an arsenal of pathogen responsive genes involved in defending against necrotrophic pathogens. The APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) transcription factor ORA59 is a major positive regulator of the ET/JA-mediated defense pathway in Arabidopsis thaliana. The Arabidopsis agmatine coumaroyltransferase (AtACT) catalyzes the formation of hydroxycinnamic acid amides (HCAAs) which are effective toxic antimicrobial substances known as phytoalexins and play an important role in plant defense response. However, induction and regulation of AtACT gene expression and HCAAs synthesis in plants remain less understood. Through gene coexpression network analysis, we identified a list of GCC-box cis-element containing genes that were coexpressed with ORA59 under diverse biotic stress conditions and might be potential downstream targets of this AP2/ERF-domain transcription factor. Particularly, ORA59 directly binds to AtACT gene promoter via the GCC-boxes and activates AtACT gene expression. The ET precursor 1-aminocyclopropane-1-carboxylic acid (ACC)-treatment significantly induces AtACT gene expression. Both ORA59 and members of the class II TGA transcription factors are indispensable for ACC-induced AtACT expression. Interestingly, the expression of AtACT is also subject to the signaling crosstalk of the salicylic acid- and ET/JA-mediated defense response pathways. In addition, we found that genes of the phenylpropanoid metabolism pathway were specifically induced by Botrytis cinerea. Taking together, these evidence suggest that the ET/JA signaling pathway activate the expression of AtACT to increase antimicrobial HCAAs production through the transcription factor ORA59 in response to the infection of necrotrophic plant pathogens.The gaseous ethylene (ET) and the oxylipin-derived jasmonic acid (JA) in plants jointly regulate an arsenal of pathogen responsive genes involved in defending against necrotrophic pathogens. The APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) transcription factor ORA59 is a major positive regulator of the ET/JA-mediated defense pathway in Arabidopsis thaliana. The Arabidopsis agmatine coumaroyltransferase (AtACT) catalyzes the formation of hydroxycinnamic acid amides (HCAAs) which are effective toxic antimicrobial substances known as phytoalexins and play an important role in plant defense response. However, induction and regulation of AtACT gene expression and HCAAs synthesis in plants remain less understood. Through gene coexpression network analysis, we identified a list of GCC-box cis-element containing genes that were coexpressed with ORA59 under diverse biotic stress conditions and might be potential downstream targets of this AP2/ERF-domain transcription factor. Particularly, ORA59 directly binds to AtACT gene promoter via the GCC-boxes and activates AtACT gene expression. The ET precursor 1-aminocyclopropane-1-carboxylic acid (ACC)-treatment significantly induces AtACT gene expression. Both ORA59 and members of the class II TGA transcription factors are indispensable for ACC-induced AtACT expression. Interestingly, the expression of AtACT is also subject to the signaling crosstalk of the salicylic acid- and ET/JA-mediated defense response pathways. In addition, we found that genes of the phenylpropanoid metabolism pathway were specifically induced by Botrytis cinerea. Taking together, these evidence suggest that the ET/JA signaling pathway activate the expression of AtACT to increase antimicrobial HCAAs production through the transcription factor ORA59 in response to the infection of necrotrophic plant pathogens. |
Author | Zhang, Jiayi Huang, Li‐Jun Li, Ning Lin, Zeng Yu, Peiyao Lu, Mengzhu |
Author_xml | – sequence: 1 givenname: Li‐Jun orcidid: 0000-0001-8072-5180 surname: Huang fullname: Huang, Li‐Jun organization: Central South University of Forestry and Technology – sequence: 2 givenname: Jiayi surname: Zhang fullname: Zhang, Jiayi organization: Central South University of Forestry and Technology – sequence: 3 givenname: Zeng surname: Lin fullname: Lin, Zeng organization: Central South University of Forestry and Technology – sequence: 4 givenname: Peiyao surname: Yu fullname: Yu, Peiyao organization: Central South University of Forestry and Technology – sequence: 5 givenname: Mengzhu surname: Lu fullname: Lu, Mengzhu organization: Zhejiang A and F University – sequence: 6 givenname: Ning orcidid: 0000-0001-5297-8551 surname: Li fullname: Li, Ning email: nli@csuft.edu.cn organization: Central South University of Forestry and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36538653$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1uEzEUhS1URNPCghdAltjAYhr_xDPxMopaflSpVVXWI4_nOuNoYg-2R3R2PALiEXkSnKSwqAQL6y78nXOvzjlDJ847QOg1JReUEDbf6uGCE8nFMzSjRFbFohTsBM3yHy2kWNBTdBbjlhAiJecv0CkvBV_mN0M_7zvAq1s2v7y7wikoF3WwQ7LeYaN08gHf3K2ExAE2Y68SRAypm3pw8Ov7D-vaUUOLh25KXvXwYB2Ok0sdRBtx6oIfNx3e-XYv3Vt6g5XDSk_9YZWBoCLgTXbD8DAEiDFTL9Fzo_oIrx7nOfpydXm__lhc33z4tF5dF5oLLgoOJTUtM7JqKtVUhhMCvFJCtNKYinDByiVbUl0uKkapAsqbRrQLRSSrmGgVP0fvjr5D8F9HiKne2aih75UDP8aaVaIsS0kEyejbJ-jWj8Hl62pOqSgZFQfqzSM1Njto6yHYnQpT_SftDLw_Ajr4GAOYvwgl9b7JOjdZH5rM7PwJq206pJijs_3_FN9sD9O_revP69uj4jcuELEj |
CitedBy_id | crossref_primary_10_3390_plants13111528 crossref_primary_10_1007_s44154_023_00140_y crossref_primary_10_3390_ijms25042198 crossref_primary_10_3389_fpls_2023_1213662 crossref_primary_10_1016_j_gene_2024_148382 crossref_primary_10_1002_jcp_31154 crossref_primary_10_1093_pnasnexus_pgae312 crossref_primary_10_3390_plants12233982 |
Cites_doi | 10.1146/annurev-cellbio-092910-154055 10.1111/nph.15496 10.3390/ijms20030671 10.1016/j.bbagrm.2016.11.001 10.1093/nar/gkq310 10.1105/tpc.19.00239 10.1105/tpc.112.108548 10.1104/pp.114.243360 10.1104/pp.105.073783 10.3389/fpls.2015.00170 10.1038/35081178 10.1146/annurev.phyto.37.1.285 10.1371/journal.pone.0000718 10.1007/s11101-020-09691-8 10.1038/ng.3007 10.1105/tpc.16.00265 10.1111/nph.12291 10.1007/s11101-015-9417-1 10.1038/35081161 10.3389/fpls.2015.01024 10.1111/jipb.13054 10.1093/mp/sss128 10.1038/s41477-020-0605-7 10.1093/pcp/pcz076 10.1105/tpc.001768 10.1016/j.plantsci.2012.06.008 10.1073/pnas.0708139104 10.1093/aob/mct067 10.1038/361153a0 10.1073/pnas.92.10.4189 10.1111/tpj.13960 10.1111/j.1365-313X.2005.02327.x 10.1093/pcp/pcq203 10.1104/pp.108.117523 10.1038/srep00689 10.1007/s11816-015-0368-1 10.1023/B:PLAN.0000009297.37235.4a 10.1093/mp/ssp106 10.1111/nph.15596 10.1007/s00425-009-0960-0 10.1093/plphys/kiab437 10.1007/s11103-010-9728-y 10.3390/cells8121532 10.1111/j.1365-313X.2009.04044.x 10.3390/molecules19067480 10.1016/j.envexpbot.2011.06.003 10.1093/nar/gkp335 10.1016/j.tplants.2020.09.011 10.1038/nchembio.164 10.1104/pp.104.050294 10.1016/j.tplants.2005.01.008 10.1105/tpc.014894 10.1016/j.tplants.2011.11.002 10.1046/j.1469-8137.2003.00802.x 10.1038/nprot.2008.73 10.1046/j.1365-313x.1999.00513.x 10.1073/pnas.1103959108 10.1146/annurev-phyto-080516-035544 10.1105/tpc.113.117127 10.1016/j.bbagrm.2011.08.004 |
ContentType | Journal Article |
Copyright | 2022 Wiley Periodicals LLC. 2024 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2022 Wiley Periodicals LLC. – notice: 2024 Wiley Periodicals LLC. |
DBID | AAYXX CITATION NPM 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 |
DOI | 10.1002/jcp.30935 |
DatabaseName | CrossRef PubMed Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | PubMed Genetics Abstracts CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4652 |
EndPage | n/a |
ExternalDocumentID | 36538653 10_1002_jcp_30935 JCP30935 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Training Program for Excellent Young Innovators of Changsha – fundername: Natural Science Foundation of Hunan Province – fundername: Education Department of Hunan Province – fundername: Postgraduate Scientific Research Innovation Project |
GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 36B 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 9M8 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEFU ABEML ABIJN ABJNI ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMB EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IH2 IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ NNB O66 O9- OHT OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RWR RX1 RYL S10 SAMSI SUPJJ SV3 TN5 TWZ UB1 UPT V2E V8K VQP W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ X7M XG1 XJT XOL XPP XSW XV2 Y6R YQT YZZ ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c3535-3e61fd2f97b7ab7f300e37a55d9ff7035268281c647211ae13bb5d4a092725da3 |
IEDL.DBID | DR2 |
ISSN | 0021-9541 1097-4652 |
IngestDate | Fri Jul 11 01:34:13 EDT 2025 Fri Jul 25 22:14:37 EDT 2025 Mon Jul 21 06:07:50 EDT 2025 Tue Jul 01 03:23:47 EDT 2025 Thu Apr 24 23:06:39 EDT 2025 Wed Jan 22 17:16:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | necrotrophic pathogen HCAA gene coexpression network ORA59 AtACT |
Language | English |
License | 2022 Wiley Periodicals LLC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3535-3e61fd2f97b7ab7f300e37a55d9ff7035268281c647211ae13bb5d4a092725da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5297-8551 0000-0001-8072-5180 |
PMID | 36538653 |
PQID | 3115621550 |
PQPubID | 1006363 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2756669050 proquest_journals_3115621550 pubmed_primary_36538653 crossref_primary_10_1002_jcp_30935 crossref_citationtrail_10_1002_jcp_30935 wiley_primary_10_1002_jcp_30935_JCP30935 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2024 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: October 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Journal of cellular physiology |
PublicationTitleAlternate | J Cell Physiol |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 104 2002; 14 2021; 26 2021; 20 2013; 25 2005; 137 2017; 1860 2011; 52 1993; 361 2003; 15 2012; 17 2008; 147 2008; 3 2009; 230 2003; 159 2013; 6 2003; 53 2010; 61 2020; 6 2019; 60 2019; 20 1999; 19 2013; 199 2013; 111 2012; 1819 2012; 28 2014; 19 2007; 2 2010; 3 2014; 165 2001; 411 2019; 8 2015; 6 2010; 38 1995; 92 2019; 31 2011; 75 2005; 41 2011; 74 2014; 46 2021; 187 2015; 9 2016; 15 2019; 221 2019; 222 2012; 195 2012; 2 2011; 108 2017; 55 1999; 37 2006; 140 2005; 10 2018; 95 2009; 5 2016; 28 2021; 63 2009; 37 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 46 start-page: 714 year: 2014 end-page: 721 article-title: Genome‐wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism publication-title: Nature Genetics – volume: 8 year: 2019 article-title: Reconstitution of the jasmonate signaling pathway in plant protoplasts publication-title: Cells – volume: 104 start-page: 18842 year: 2007 end-page: 18847 – volume: 222 start-page: 70 year: 2019 end-page: 83 article-title: Origin and evolution of the plant immune system publication-title: New Phytologist – volume: 6 year: 2015 article-title: Overexpression of soybean isoflavone reductase (GmIFR) enhances resistance to in soybean publication-title: Frontiers in Plant Science – volume: 95 start-page: 444 year: 2018 end-page: 457 article-title: Jasmonic acid/ethylene signaling coordinates hydroxycinnamic acid amides biosynthesis through ORA59 transcription factor publication-title: The Plant Journal – volume: 137 start-page: 692 year: 2005 end-page: 699 article-title: Wound‐inducible biosynthesis of phytoalexin hydroxycinnamic acid amides of tyramine in tryptophan and tyrosine decarboxylase transgenic tobacco lines publication-title: Plant Physiology – volume: 411 start-page: 843 year: 2001 end-page: 847 article-title: Natural products and plant disease resistance publication-title: Nature – volume: 147 start-page: 1347 year: 2008 end-page: 1357 article-title: The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense publication-title: Plant Physiology – volume: 411 start-page: 826 year: 2001 end-page: 833 article-title: Plant pathogens and integrated defence responses to infection publication-title: Nature – volume: 20 year: 2019 article-title: Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense: Do we understand what they are whispering publication-title: International Journal of Molecular Sciences – volume: 53 start-page: 247 year: 2003 end-page: 259 article-title: An T‐DNA mutagenized population (GABI‐Kat) for flanking sequence tag‐based reverse genetics publication-title: Plant Molecular Biology – volume: 20 start-page: 483 year: 2021 end-page: 505 article-title: Regulation of phytoalexin biosynthesis for agriculture and human health publication-title: Phytochemistry Reviews – volume: 19 start-page: 163 year: 1999 end-page: 171 article-title: Deficiency in phytoalexin production causes enhanced susceptibility of to the fungus publication-title: The Plant Journal – volume: 37 start-page: W202 year: 2009 end-page: W208 article-title: MEME SUITE: Tools for motif discovery and searching publication-title: Nucleic Acids Research – volume: 159 start-page: 109 year: 2003 end-page: 115 article-title: Resistance to plant pathogens: Possible roles for free polyamines and polyamine catabolism publication-title: New Phytologist – volume: 10 start-page: 103 year: 2005 end-page: 105 article-title: Modular cloning in plant cells publication-title: Trends in Plant Science – volume: 6 year: 2015 article-title: How salicylic acid takes transcriptional control over jasmonic acid signaling publication-title: Frontiers in Plant Science – volume: 2 year: 2007 article-title: An “electronic fluorescent pictograph” browser for exploring and analyzing large‐scale biological data sets publication-title: PLoS One – volume: 3 start-page: 1101 year: 2008 end-page: 1108 article-title: Analyzing real‐time PCR data by the comparative C(T) method publication-title: Nature Protocols – volume: 37 start-page: 285 year: 1999 end-page: 306 article-title: PHYTOALEXINS: What have we learned after 60 years publication-title: Annual Review of Phytopathology – volume: 6 start-page: 686 year: 2013 end-page: 703 article-title: MYC2: The master in action publication-title: Molecular Plant – volume: 9 start-page: 269 year: 2015 end-page: 278 article-title: Biosynthesis, physiology, and functions of hydroxycinnamic acid amides in plants publication-title: Plant Biotechnology Reports – volume: 31 start-page: 2206 year: 2019 end-page: 2222 article-title: The pleiotropic drug resistance transporters PEN3 and PDR12 mediate camalexin secretion for resistance to publication-title: The Plant Cell – volume: 221 start-page: 1906 year: 2019 end-page: 1918 article-title: TGACG‐binding factors (TGAs) and TGA‐interacting CC‐type glutaredoxins modulate hyponastic growth in publication-title: The New Phytologist – volume: 19 start-page: 7480 year: 2014 end-page: 7496 article-title: Regulation of plant immunity through modulation of phytoalexin synthesis publication-title: Molecules – volume: 55 start-page: 401 year: 2017 end-page: 425 article-title: Evolution of hormone signaling networks in plant defense publication-title: Annual Review of Phytopathology – volume: 6 start-page: 290 year: 2020 end-page: 302 article-title: Integrated multi‐omics framework of the plant response to jasmonic acid publication-title: Nature Plants – volume: 63 start-page: 180 year: 2021 end-page: 209 article-title: Contribution of phenylpropanoid metabolism to plant development and plant‐environment interactions publication-title: Journal of Integrative Plant Biology – volume: 26 start-page: 184 year: 2021 end-page: 195 article-title: Hydroxycinnamate amides: Intriguing conjugates of plant protective metabolites publication-title: Trends in Plant Science – volume: 108 start-page: 12539 year: 2011 end-page: 12544 article-title: Derepression of ethylene‐stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in publication-title: Proceedings of the National Academy of Sciences – volume: 230 start-page: 517 year: 2009 end-page: 527 article-title: Accumulation of hydroxycinnamic acid amides induced by pathogen infection and identification of agmatine coumaroyltransferase in publication-title: Planta – volume: 3 start-page: 2 year: 2010 end-page: 20 article-title: Phenylpropanoid biosynthesis publication-title: Molecular Plant – volume: 187 start-page: 2763 year: 2021 end-page: 2784 article-title: The transcription factor ORA59 exhibits dual DNA binding specificity that differentially regulates ethylene‐ and jasmonic acid‐induced genes in plant immunity publication-title: Plant Physiology – volume: 25 start-page: 744 year: 2013 end-page: 761 article-title: Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1‐JAZ by targeting GCC promoter motifs via transcription factor ORA59 publication-title: The Plant Cell – volume: 361 start-page: 153 year: 1993 end-page: 156 article-title: Disease resistance results from foreign phytoalexin expression in a novel plant publication-title: Nature – volume: 1819 start-page: 86 year: 2012 end-page: 96 article-title: AP2/ERF family transcription factors in plant abiotic stress responses publication-title: Biochimica et Biophysica Acta (BBA)‐Gene Regulatory Mechanisms – volume: 2 year: 2012 article-title: Acquired immunity of transgenic torenia plants overexpressing agmatine coumaroyltransferase to pathogens and herbivore pests publication-title: Scientific Reports – volume: 17 start-page: 73 year: 2012 end-page: 90 article-title: Phytoalexins in defense against pathogens publication-title: Trends in Plant Science – volume: 1860 start-page: 218 year: 2017 end-page: 226 article-title: CC‐type glutaredoxins recruit the transcriptional co‐repressor TOPLESS to TGA‐dependent target promoters in publication-title: Biochimica et Biophysica Acta (BBA)‐Gene Regulatory Mechanisms – volume: 28 start-page: 1533 year: 2016 end-page: 1550 article-title: Evolutionarily distinct BAHD N‐acyltransferases are responsible for natural variation of aromatic amine conjugates in rice publication-title: The Plant Cell – volume: 165 start-page: 1671 year: 2014 end-page: 1683 article-title: TGA transcription factors activate the salicylic acid‐suppressible branch of the ethylene‐induced defense program by regulating ORA59 expression publication-title: Plant Physiology – volume: 92 start-page: 4189 year: 1995 end-page: 4196 – volume: 25 start-page: 4135 year: 2013 end-page: 4149 article-title: The R2R3‐MYB transcription factors MYB14 and MYB15 regulate stilbene biosynthesis in publication-title: The Plant Cell – volume: 75 start-page: 321 year: 2011 end-page: 331 article-title: Two GCC boxes and AP2/ERF‐domain transcription factor ORA59 in jasmonate/ethylene‐mediated activation of the PDF1.2 promoter in publication-title: Plant Molecular Biology – volume: 74 start-page: 216 year: 2011 end-page: 228 article-title: Identification of defence metabolites in tomato plants infected by the bacterial pathogen publication-title: Environmental and Experimental Botany – volume: 41 start-page: 673 year: 2005 end-page: 684 article-title: ups1, an camalexin accumulation mutant defective in multiple defence signalling pathways publication-title: The Plant Journal – volume: 199 start-page: 639 year: 2013 end-page: 649 article-title: APETALA2/ethylene responsive factor (AP2/ERF) transcription factors: Mediators of stress responses and developmental programs publication-title: New Phytologist – volume: 14 start-page: S131 issue: Suppl year: 2002 end-page: S151 article-title: Ethylene biosynthesis and signaling networks publication-title: The Plant Cell – volume: 15 start-page: 699 year: 2016 end-page: 727 article-title: Hydroxycinnamoyltransferases in plant metabolism publication-title: Phytochemistry Reviews – volume: 28 start-page: 489 year: 2012 end-page: 521 article-title: Hormonal modulation of plant immunity publication-title: Annual Review of Cell and Developmental Biology – volume: 195 start-page: 54 year: 2012 end-page: 70 article-title: Phytoalexin transgenics in crop protection—Fairy tale with a happy end publication-title: Plant Science – volume: 52 start-page: 213 year: 2011 end-page: 219 article-title: ATTED‐II updates: Condition‐specific gene coexpression to extend coexpression analyses and applications to a broad range of flowering plants publication-title: Plant & Cell Physiology – volume: 5 start-page: 308 year: 2009 end-page: 316 article-title: Networking by small‐molecule hormones in plant immunity publication-title: Nature Chemical Biology – volume: 111 start-page: 1021 year: 2013 end-page: 1058 article-title: Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany publication-title: Annals of Botany – volume: 140 start-page: 411 year: 2006 end-page: 432 article-title: Genome‐wide analysis of the ERF gene family in and rice publication-title: Plant Physiology – volume: 15 start-page: 2647 year: 2003 end-page: 2653 article-title: Knockout analysis of transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance publication-title: The Plant Cell – volume: 38 start-page: W64 year: 2010 end-page: W70 article-title: agriGO: A GO analysis toolkit for the agricultural community publication-title: Nucleic Acids Research – volume: 60 start-page: 1405 year: 2019 end-page: 1419 article-title: The age of coumarins in plant‐microbe interactions publication-title: Plant & Cell Physiology – volume: 61 start-page: 200 year: 2010 end-page: 210 article-title: class‐II TGA transcription factors are essential activators of jasmonic acid/ethylene‐induced defense responses publication-title: The Plant Journal – ident: e_1_2_7_39_1 doi: 10.1146/annurev-cellbio-092910-154055 – ident: e_1_2_7_28_1 doi: 10.1111/nph.15496 – ident: e_1_2_7_27_1 doi: 10.3390/ijms20030671 – ident: e_1_2_7_47_1 doi: 10.1016/j.bbagrm.2016.11.001 – ident: e_1_2_7_15_1 doi: 10.1093/nar/gkq310 – ident: e_1_2_7_21_1 doi: 10.1105/tpc.19.00239 – ident: e_1_2_7_13_1 doi: 10.1105/tpc.112.108548 – ident: e_1_2_7_56_1 doi: 10.1104/pp.114.243360 – ident: e_1_2_7_35_1 doi: 10.1104/pp.105.073783 – ident: e_1_2_7_7_1 doi: 10.3389/fpls.2015.00170 – ident: e_1_2_7_12_1 doi: 10.1038/35081178 – ident: e_1_2_7_19_1 doi: 10.1146/annurev.phyto.37.1.285 – ident: e_1_2_7_52_1 doi: 10.1371/journal.pone.0000718 – ident: e_1_2_7_2_1 doi: 10.1007/s11101-020-09691-8 – ident: e_1_2_7_9_1 doi: 10.1038/ng.3007 – ident: e_1_2_7_37_1 doi: 10.1105/tpc.16.00265 – ident: e_1_2_7_25_1 doi: 10.1111/nph.12291 – ident: e_1_2_7_38_1 doi: 10.1007/s11101-015-9417-1 – ident: e_1_2_7_10_1 doi: 10.1038/35081161 – ident: e_1_2_7_8_1 doi: 10.3389/fpls.2015.01024 – ident: e_1_2_7_14_1 doi: 10.1111/jipb.13054 – ident: e_1_2_7_24_1 doi: 10.1093/mp/sss128 – ident: e_1_2_7_55_1 doi: 10.1038/s41477-020-0605-7 – ident: e_1_2_7_45_1 doi: 10.1093/pcp/pcz076 – ident: e_1_2_7_50_1 doi: 10.1105/tpc.001768 – ident: e_1_2_7_16_1 doi: 10.1016/j.plantsci.2012.06.008 – ident: e_1_2_7_44_1 doi: 10.1073/pnas.0708139104 – ident: e_1_2_7_51_1 doi: 10.1093/aob/mct067 – ident: e_1_2_7_18_1 doi: 10.1038/361153a0 – ident: e_1_2_7_4_1 doi: 10.1073/pnas.92.10.4189 – ident: e_1_2_7_26_1 doi: 10.1111/tpj.13960 – ident: e_1_2_7_11_1 doi: 10.1111/j.1365-313X.2005.02327.x – ident: e_1_2_7_36_1 doi: 10.1093/pcp/pcq203 – ident: e_1_2_7_41_1 doi: 10.1104/pp.108.117523 – ident: e_1_2_7_34_1 doi: 10.1038/srep00689 – ident: e_1_2_7_31_1 doi: 10.1007/s11816-015-0368-1 – ident: e_1_2_7_42_1 doi: 10.1023/B:PLAN.0000009297.37235.4a – ident: e_1_2_7_48_1 doi: 10.1093/mp/ssp106 – ident: e_1_2_7_20_1 doi: 10.1111/nph.15596 – ident: e_1_2_7_33_1 doi: 10.1007/s00425-009-0960-0 – ident: e_1_2_7_53_1 doi: 10.1093/plphys/kiab437 – ident: e_1_2_7_57_1 doi: 10.1007/s11103-010-9728-y – ident: e_1_2_7_29_1 doi: 10.3390/cells8121532 – ident: e_1_2_7_54_1 doi: 10.1111/j.1365-313X.2009.04044.x – ident: e_1_2_7_59_1 doi: 10.3390/molecules19067480 – ident: e_1_2_7_30_1 doi: 10.1016/j.envexpbot.2011.06.003 – ident: e_1_2_7_5_1 doi: 10.1093/nar/gkp335 – ident: e_1_2_7_58_1 doi: 10.1016/j.tplants.2020.09.011 – ident: e_1_2_7_40_1 doi: 10.1038/nchembio.164 – ident: e_1_2_7_17_1 doi: 10.1104/pp.104.050294 – ident: e_1_2_7_23_1 doi: 10.1016/j.tplants.2005.01.008 – ident: e_1_2_7_60_1 doi: 10.1105/tpc.014894 – ident: e_1_2_7_3_1 doi: 10.1016/j.tplants.2011.11.002 – ident: e_1_2_7_49_1 doi: 10.1046/j.1469-8137.2003.00802.x – ident: e_1_2_7_43_1 doi: 10.1038/nprot.2008.73 – ident: e_1_2_7_46_1 doi: 10.1046/j.1365-313x.1999.00513.x – ident: e_1_2_7_61_1 doi: 10.1073/pnas.1103959108 – ident: e_1_2_7_6_1 doi: 10.1146/annurev-phyto-080516-035544 – ident: e_1_2_7_22_1 doi: 10.1105/tpc.113.117127 – ident: e_1_2_7_32_1 doi: 10.1016/j.bbagrm.2011.08.004 |
SSID | ssj0009933 |
Score | 2.5065355 |
Snippet | The gaseous ethylene (ET) and the oxylipin‐derived jasmonic acid (JA) in plants jointly regulate an arsenal of pathogen responsive genes involved in defending... The gaseous ethylene (ET) and the oxylipin-derived jasmonic acid (JA) in plants jointly regulate an arsenal of pathogen responsive genes involved in defending... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e30935 |
SubjectTerms | Acids Agmatine Amides AtACT Carboxylic acids Chemical synthesis Crosstalk Defense mechanisms Ethylene gene coexpression network Gene expression Genes HCAA Hydroxycinnamic acid Jasmonic acid necrotrophic pathogen Network analysis ORA59 Pathogens Phytoalexins Salicylic acid Signal transduction Transcription factors |
Title | The AP2/ERF transcription factor ORA59 regulates ethylene‐induced phytoalexin synthesis through modulation of an acyltransferase gene expression |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.30935 https://www.ncbi.nlm.nih.gov/pubmed/36538653 https://www.proquest.com/docview/3115621550 https://www.proquest.com/docview/2756669050 |
Volume | 239 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9UwGA5jIHjjx-bH0SmvIuJNd5qmSRe8OswdxkAdBwe7EErSJDDdWjntAY9X_gTxJ_pLfJO0HfMDxLtCU9KP5_1K3j4PIc-EdEbL1CXo_askl3sV2lzhEmescoxSVuz5H5xfvxGHJ_nRKT_dIC-Hf2EiP8S44OYtI_hrb-BKt9NL0tAPFRbsfhsP_S9lwvPmv1pcUkfJXkY-tCDwnA6sQmk2Ha-8Got-SzCv5qsh4MxvkvfDrcY-k4-7q07vVl9-YXH8z2e5RW70iSjMInJukw1bb5HtWY1F-MUankNoDQ1r7lvkWlSsXG-T7wgrmB1n04PFHDof5wavA1G5B94uZlzCMkrc2xYsIgEjm_3x9RuW_wgkA_hlu0Z5Js4a2nWNKWh71kKvGAQXjeklxaBxoGpQ1fo8TOXsEmMuIOQt2M99B299h5zMD97tHya9rENSMc54wqygzmROFrpQunAsTS0rFOfGrx97flaBZSCtPLE9pcpSpjU3uUplVmTcKHaXbNZNbe8TQJQZnVvFitxhXoi1p7Bao8uWeWGdTSfkxfCBy6rnPPfSG-dlZGvOSnzzZXjzE_J0HPopEn38adDOgJKyt_W29HxFIvOl3oQ8GU-jlfqtF1XbZtWWnmRfCJn6MfciusZZmOBeeJXhzQaM_H368mj_OBw8-PehD8n1DPOw2H-4Qza75co-wjyq04-DwfwETD8b0A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKEYILHy3QhQIDQohLukkcJ43EZVW6WkpbqlUr9VJFdmxLpa2DNlmJ5cRPQPxEfgljO0lVPiTELVIcOXHeeGbs8XuEvExzLUUe6gBn_zJI8s0SbS7TgZaKaxpFNNu0B5z39tPJUbJzzI6XyJvuLIznh-gX3KxluPnaGrhdkB5esoZ-LDFjt_t418j1BAMNm3q9nV6SR-WtkLwrQmBJ1PEKhfGwf_SqN_otxLwasTqXM75DTrqX9ZUmZxvzRmyUX37hcfzfr7lLbrexKIw8eO6RJWVWyOrIYB5-sYBX4KpD3bL7CrnhRSsXq-Q7IgtGB_FwezqGxrq6buIBL94DH6YjlsPMq9yrGhSCAZ2b-vH126mRiCUJ-HObilsyTgP1wmAUWp_W0IoGwUUlW1UxqDRwA7xcnLuutJqh2wVEvQL1uS3iNffJ0Xj7cGsStMoOQUkZZQFVaaRlrPNMZFxkmoahohlnTNolZEvRmmImGJWW2z6KuIqoEEwmPMzjLGaS0wdk2VRGrRFAoEmRKE6zRGNoiOlnqoTAWTtPMqVVOCCvuz9clC3tuVXfOC88YXNc4MgXbuQH5EXf9JPn-vhTo_UOJkVr7nVhKYvS2GZ7A_K8v42GandfuFHVvC4sz36a5qFt89DDq--Fpsxqr1J8WQeSv3df7GwduItH_970Gbk5OdzbLXbf7b9_TG7FGJb5csR1stzM5uoJhlWNeOqs5yf1pR_v |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9RAFL3UiuJL1daPrVVHEfEl3SSTmTT4tNQutWpdFgt9EMJMZgZa26RssuD65E-Q_sT-Eu_MJCn1A8S3wM4y-Th37rmTm3MAXvDMKJmFJsDVvwiSbKvAmEtNYJQWhkYRTbfsB84f9vnuQbJ3yA6X4HX3LYzXh-g33GxkuPXaBviZMsNL0dDjAgt2-xrvGlxPODIJy4iml9pRWesj73oQWBJ1skJhPOz_ejUZ_cYwrxJWl3HGt-Fzd66-0eTL5ryRm8W3X2Qc__Ni7sBKy0TJyEPnLizpchXWRiVW4acL8pK43lC36b4KN7xl5WINzhFXZDSJhzvTMWlsouuWHeKte8jH6YhlZOY97nVNNEIBU5u--P4D639EkiL4aJtKWCnOktSLEjlofVST1jKInFaq9RQjlSGiJKJYnLipjJ5h0iWIeU3017aFt7wHB-OdT9u7QevrEBSUURZQzSOjYpOlMhUyNTQMNU0FY8puIFuBVo51YFRYZfsoEjqiUjKViDCL05gpQe_DclmV-iEQhJmSiRY0TQwSQyw-uZYS1-wsSbXR4QBedQ84L1rRc-u9cZJ7ueY4xzufuzs_gOf90DOv9PGnQRsdSvI22OvcChbx2NZ6A3jW_4xhat-9iFJX8zq3KvucZ6Ed88Cjq5-FcmadVymerMPI36fP97Yn7mD934c-hZuTN-P8_dv9d4_gVoyczPcibsByM5vrx8ipGvnExc5Ph9Qeng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+AP2%2FERF+transcription+factor+ORA59+regulates+ethylene%E2%80%90induced+phytoalexin+synthesis+through+modulation+of+an+acyltransferase+gene+expression&rft.jtitle=Journal+of+cellular+physiology&rft.au=Li%E2%80%90Jun+Huang&rft.au=Zhang%2C+Jiayi&rft.au=Zeng%2C+Lin&rft.au=Yu%2C+Peiyao&rft.date=2024-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=239&rft.issue=10&rft_id=info:doi/10.1002%2Fjcp.30935&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon |