Impact of non‐empirically tuning the range‐separation parameter of long‐range corrected hybrid functionals on ionization potentials, electron affinities, and fundamental gaps

Non‐empirically tuning the range‐separation parameter (ω) of long‐range corrected (LC) hybrid functionals in improving the accuracy of vertical ionization potentials (IPs), vertical electron affinities (EAs), and fundamental gaps (FGs) is investigated. Use of default ω values gives the best overall...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational chemistry Vol. 39; no. 28; pp. 2378 - 2384
Main Authors Vikramaditya, Talapunur, Chai, Jeng‐Da, Lin, Shiang‐Tai
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 30.10.2018
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Non‐empirically tuning the range‐separation parameter (ω) of long‐range corrected (LC) hybrid functionals in improving the accuracy of vertical ionization potentials (IPs), vertical electron affinities (EAs), and fundamental gaps (FGs) is investigated. Use of default ω values gives the best overall property predictions employing the Δ self‐consistent field (ΔSCF) approach, if sufficiently large basis set is used. Upon tuning, IP (HOMO) (i.e., the IP estimated from the negative of HOMO energy via DFT Koopmans’ theorem) with the IP (ΔSCF) (i.e., the IP obtained from the ΔSCF approach) the accuracy of IP (HOMO) significantly improves however a reciprocal phenomenon is not observed. An interesting observation is that EA (LUMO) (i.e., the EA estimated from the negative of LUMO energy) is more accurate than EA (ΔSCF), if the ω value is in the range of 0.30 to 0.50 bohr−1. © 2018 Wiley Periodicals, Inc. Tuning the HOMO(IP) with IP(ΔSCF) by adjusting the range separation parameter of LC‐ Hybrid Functional improves the accuracy of HOMO(IP) significantly however a vice‐versa phenomenon is not observed i.e., an improvement in accuracy of IP(ΔSCF) is not found. Impact of tuning on LUMO (EA) is negligible and its accuracy is independent of tuning. LUMO (EA) accuracy outperforms conventional EA (ΔSCF) if the range separation parameter lies within the range of 0.3 to 0.5 bohr−1. Fundamental gap (FG) follows a similar trend as that of IP.
AbstractList Non-empirically tuning the range-separation parameter (ω) of long-range corrected (LC) hybrid functionals in improving the accuracy of vertical ionization potentials (IPs), vertical electron affinities (EAs), and fundamental gaps (FGs) is investigated. Use of default ω values gives the best overall property predictions employing the Δ self-consistent field (ΔSCF) approach, if sufficiently large basis set is used. Upon tuning, IP (HOMO) (i.e., the IP estimated from the negative of HOMO energy via DFT Koopmans' theorem) with the IP (ΔSCF) (i.e., the IP obtained from the ΔSCF approach) the accuracy of IP (HOMO) significantly improves however a reciprocal phenomenon is not observed. An interesting observation is that EA (LUMO) (i.e., the EA estimated from the negative of LUMO energy) is more accurate than EA (ΔSCF), if the ω value is in the range of 0.30 to 0.50 bohr . © 2018 Wiley Periodicals, Inc.
Non‐empirically tuning the range‐separation parameter (ω) of long‐range corrected (LC) hybrid functionals in improving the accuracy of vertical ionization potentials (IPs), vertical electron affinities (EAs), and fundamental gaps (FGs) is investigated. Use of default ω values gives the best overall property predictions employing the Δ self‐consistent field (ΔSCF) approach, if sufficiently large basis set is used. Upon tuning, IP (HOMO) (i.e., the IP estimated from the negative of HOMO energy via DFT Koopmans’ theorem) with the IP (ΔSCF) (i.e., the IP obtained from the ΔSCF approach) the accuracy of IP (HOMO) significantly improves however a reciprocal phenomenon is not observed. An interesting observation is that EA (LUMO) (i.e., the EA estimated from the negative of LUMO energy) is more accurate than EA (ΔSCF), if the ω value is in the range of 0.30 to 0.50 bohr −1 . © 2018 Wiley Periodicals, Inc.
Non‐empirically tuning the range‐separation parameter (ω) of long‐range corrected (LC) hybrid functionals in improving the accuracy of vertical ionization potentials (IPs), vertical electron affinities (EAs), and fundamental gaps (FGs) is investigated. Use of default ω values gives the best overall property predictions employing the Δ self‐consistent field (ΔSCF) approach, if sufficiently large basis set is used. Upon tuning, IP (HOMO) (i.e., the IP estimated from the negative of HOMO energy via DFT Koopmans’ theorem) with the IP (ΔSCF) (i.e., the IP obtained from the ΔSCF approach) the accuracy of IP (HOMO) significantly improves however a reciprocal phenomenon is not observed. An interesting observation is that EA (LUMO) (i.e., the EA estimated from the negative of LUMO energy) is more accurate than EA (ΔSCF), if the ω value is in the range of 0.30 to 0.50 bohr−1. © 2018 Wiley Periodicals, Inc.
Non-empirically tuning the range-separation parameter (ω) of long-range corrected (LC) hybrid functionals in improving the accuracy of vertical ionization potentials (IPs), vertical electron affinities (EAs), and fundamental gaps (FGs) is investigated. Use of default ω values gives the best overall property predictions employing the Δ self-consistent field (ΔSCF) approach, if sufficiently large basis set is used. Upon tuning, IP (HOMO) (i.e., the IP estimated from the negative of HOMO energy via DFT Koopmans' theorem) with the IP (ΔSCF) (i.e., the IP obtained from the ΔSCF approach) the accuracy of IP (HOMO) significantly improves however a reciprocal phenomenon is not observed. An interesting observation is that EA (LUMO) (i.e., the EA estimated from the negative of LUMO energy) is more accurate than EA (ΔSCF), if the ω value is in the range of 0.30 to 0.50 bohr-1 . © 2018 Wiley Periodicals, Inc.
Non‐empirically tuning the range‐separation parameter (ω) of long‐range corrected (LC) hybrid functionals in improving the accuracy of vertical ionization potentials (IPs), vertical electron affinities (EAs), and fundamental gaps (FGs) is investigated. Use of default ω values gives the best overall property predictions employing the Δ self‐consistent field (ΔSCF) approach, if sufficiently large basis set is used. Upon tuning, IP (HOMO) (i.e., the IP estimated from the negative of HOMO energy via DFT Koopmans’ theorem) with the IP (ΔSCF) (i.e., the IP obtained from the ΔSCF approach) the accuracy of IP (HOMO) significantly improves however a reciprocal phenomenon is not observed. An interesting observation is that EA (LUMO) (i.e., the EA estimated from the negative of LUMO energy) is more accurate than EA (ΔSCF), if the ω value is in the range of 0.30 to 0.50 bohr−1. © 2018 Wiley Periodicals, Inc. Tuning the HOMO(IP) with IP(ΔSCF) by adjusting the range separation parameter of LC‐ Hybrid Functional improves the accuracy of HOMO(IP) significantly however a vice‐versa phenomenon is not observed i.e., an improvement in accuracy of IP(ΔSCF) is not found. Impact of tuning on LUMO (EA) is negligible and its accuracy is independent of tuning. LUMO (EA) accuracy outperforms conventional EA (ΔSCF) if the range separation parameter lies within the range of 0.3 to 0.5 bohr−1. Fundamental gap (FG) follows a similar trend as that of IP.
Author Chai, Jeng‐Da
Vikramaditya, Talapunur
Lin, Shiang‐Tai
Author_xml – sequence: 1
  givenname: Talapunur
  orcidid: 0000-0001-5052-6367
  surname: Vikramaditya
  fullname: Vikramaditya, Talapunur
  organization: National Taiwan University
– sequence: 2
  givenname: Jeng‐Da
  orcidid: 0000-0002-3994-2279
  surname: Chai
  fullname: Chai, Jeng‐Da
  email: jdchai@phys.ntu.edu.tw
  organization: National Taiwan University
– sequence: 3
  givenname: Shiang‐Tai
  orcidid: 0000-0001-8513-8196
  surname: Lin
  fullname: Lin, Shiang‐Tai
  email: stlin@ntu.edu.tw
  organization: National Taiwan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30251265$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1u1DAUhS1URKeFBS-ALLEBibS-TpyfZTXip1UlNiCxixznZuqRYwfbEZqu-gg8DE_Ek-DMTFkgsfLVPd85V9Y5IyfWWSTkJbALYIxfbpW64EJU4glZAWvKrKmrbydkxaDhWV0KOCVnIWwZY7koi2fkNGdcAC_Fivy6HiepInUDTaG_H37iOGmvlTRmR-Nstd3QeIfUS7vBJAecpJdRO0uXYcSIfjEbZzdJ3mNUOe9RRezp3a7zuqfDbNXikSbQ5EyTvj-GuIg26iS8o2iSyaelHAZtddSYltLu7X06ZaM0dCOn8Jw8HZIDXxzfc_L1w_sv60_Z7eeP1-ur20zlIhcZqLoXJQepiqoXfcFVJQGbsle8yweEglWFrFlXNiyvqw46UE1ZocqrQcimL_Jz8uaQO3n3fcYQ21EHhcZIi24OLQfgUDe8ahL6-h9062a_fDhROfACCoBEvT1QyrsQPA7t5PUo_a4F1i5VtqnKdl9lYl8dE-duxP4v-dhdAi4PwA9tcPf_pPZmvT5E_gFlxLDV
CitedBy_id crossref_primary_10_1021_acs_jpcc_1c06799
crossref_primary_10_1021_acs_jpcc_0c04885
crossref_primary_10_1002_jcc_26056
crossref_primary_10_1021_acs_jpca_2c01463
crossref_primary_10_1016_j_electacta_2019_01_037
crossref_primary_10_1021_acs_jpca_3c05486
crossref_primary_10_3390_molecules29112627
crossref_primary_10_1039_D0CP05106C
crossref_primary_10_1007_s00894_021_04891_1
crossref_primary_10_1016_j_comptc_2019_112667
crossref_primary_10_1080_00268976_2021_1983056
crossref_primary_10_3389_fchem_2022_926916
Cites_doi 10.1039/C6RA00053C
10.1021/ct100529s
10.1021/ct300420f
10.1063/1.464913
10.1103/PhysRev.140.A1133
10.1021/ar500021t
10.1016/j.cplett.2013.08.064
10.1039/b617919c
10.1021/acs.jctc.6b01249
10.1063/1.472933
10.1063/1.443164
10.1021/j100377a012
10.1103/PhysRevA.30.2745
10.1063/1.4967814
10.1021/acs.jctc.5b00873
10.1063/1.2834918
10.1201/b18485
10.1039/C5RA20085G
10.1039/c3cp50441g
10.1002/jcc.24846
10.1039/b810189b
10.1021/ct300715s
10.1103/PhysRevLett.49.1691
10.1103/PhysRevB.37.785
10.1103/PhysRevB.84.075144
10.1103/PhysRevB.23.5048
10.1002/jcc.24828
10.1016/j.cplett.2008.10.070
10.1063/1.1688752
10.1002/qua.560560417
10.1103/PhysRevB.18.7165
10.1021/ct2009363
10.1063/1.478522
10.1063/1.1383587
10.1063/1.3491272
10.1063/1.3663856
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
DBID NPM
AAYXX
CITATION
JQ2
7X8
DOI 10.1002/jcc.25575
DatabaseName PubMed
CrossRef
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
ProQuest Computer Science Collection
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-987X
EndPage 2384
ExternalDocumentID 10_1002_jcc_25575
30251265
JCC25575
Genre article
Journal Article
GrantInformation_xml – fundername: National Taiwan University
  funderid: NTU‐CDP‐106L7827; NTU‐CDP‐105R7818; NTU‐CCP‐106R891706; NTU‐CC‐107L892906
– fundername: Ministry of Science and Technology, Taiwan
  funderid: MOST 104‐2628‐M‐002‐011‐MY3; MOST 104‐2221‐E‐002‐186‐MY3; 106‐2811‐E‐002‐020
– fundername: National Taiwan University
  grantid: NTU-CDP-106L7827
– fundername: National Taiwan University
  grantid: NTU-CC-107L892906
– fundername: National Taiwan University
  grantid: NTU-CDP-105R7818
– fundername: Ministry of Science and Technology, Taiwan
  grantid: 106-2811-E-002-020
– fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 104-2221-E-002-186-MY3
– fundername: National Taiwan University
  grantid: NTU-CCP-106R891706
– fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 104-2628-M-002-011-MY3
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
36B
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWK
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YQT
ZZTAW
~IA
~KM
~WT
NPM
AAYXX
CITATION
JQ2
7X8
ID FETCH-LOGICAL-c3535-1c8d5621ac47d5d42c7a1e96dc2b3fe14074a80b690387b1b1c967ec37f5a9d43
IEDL.DBID DR2
ISSN 0192-8651
IngestDate Fri Aug 16 09:37:33 EDT 2024
Thu Oct 10 17:57:17 EDT 2024
Fri Aug 23 01:46:45 EDT 2024
Sat Sep 28 08:32:18 EDT 2024
Sat Aug 24 00:40:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords ionization potential
HOMO
LUMO
fundamental gap
non-empirically tuning scheme
long-range corrected hybrid functionals
range-separation parameter
electron affinity
Language English
License 2018 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3535-1c8d5621ac47d5d42c7a1e96dc2b3fe14074a80b690387b1b1c967ec37f5a9d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8513-8196
0000-0001-5052-6367
0000-0002-3994-2279
PMID 30251265
PQID 2131241411
PQPubID 48816
PageCount 7
ParticipantIDs proquest_miscellaneous_2112189279
proquest_journals_2131241411
crossref_primary_10_1002_jcc_25575
pubmed_primary_30251265
wiley_primary_10_1002_jcc_25575_JCC25575
PublicationCentury 2000
PublicationDate October 30, 2018
PublicationDateYYYYMMDD 2018-10-30
PublicationDate_xml – month: 10
  year: 2018
  text: October 30, 2018
  day: 30
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: New York
PublicationTitle Journal of computational chemistry
PublicationTitleAlternate J Comput Chem
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2004; 120
2011; 135
2015; 5
2013; 589
1965; 140
1988; 37
1995; 56
1982; 76
2011; 84
2016; 145
1978; 18
2014; 47
2008; 128
2008; 10
2008; 467
2016; 12
1981; 23
2013; 9
1996; 105
2016; 6
1984; 30
1982; 49
2013; 15
2017; 38
1993; 98
2017; 13
2007; 9
1999; 110
2010; 133
2015
2013
2001; 115
2010; 6
2012; 8
1990; 94
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
Frisch M. J. (e_1_2_7_34_1) 2013
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
References_xml – volume: 30
  start-page: 2745
  year: 1984
  publication-title: Phys. Rev. A
– volume: 120
  start-page: 8425
  year: 2004
  publication-title: J. Chem. Phys.
– volume: 133
  start-page: 174101
  year: 2010
  publication-title: J. Chem. Phys.
– volume: 23
  start-page: 5048
  year: 1981
  publication-title: Phys. Rev. B
– volume: 98
  start-page: 5648
  year: 1993
  publication-title: J. Chem. Phys.
– volume: 8
  start-page: 1515
  year: 2012
  publication-title: J. Chem. Theory Comput.
– volume: 105
  start-page: 9982
  year: 1996
  publication-title: J. Chem. Phys.
– volume: 8
  start-page: 2682
  year: 2012
  publication-title: J. Chem. Theory Comput.
– volume: 38
  start-page: 2020
  year: 2017
  publication-title: J. Comput.Chem.
– volume: 110
  start-page: 6158
  year: 1999
  publication-title: J. Chem. Phys.
– volume: 9
  start-page: 2932
  year: 2007
  publication-title: Phys. Chem. Chem. Phys.
– volume: 38
  start-page: 1844
  year: 2017
  publication-title: J. Comput. Chem.
– volume: 6
  start-page: 3704
  year: 2010
  publication-title: J. Chem. Theory Comput.
– volume: 10
  start-page: 6615
  year: 2008
  publication-title: Phys. Chem. Chem. Phys.
– volume: 76
  start-page: 1910
  year: 1982
  publication-title: J. Chem. Phys.
– volume: 13
  start-page: 1656
  year: 2017
  publication-title: J. Chem. Theory Comput.
– volume: 49
  start-page: 1691
  year: 1982
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 101370
  year: 2015
  publication-title: RSC Adv.
– volume: 128
  start-page: 084106
  year: 2008
  publication-title: J. Chem. Phys.
– volume: 6
  start-page: 37203
  year: 2016
  publication-title: RSC Adv.
– volume: 84
  start-page: 075144
  year: 2011
  publication-title: Phys. Rev. B
– volume: 140
  start-page: 1133
  year: 1965
  publication-title: Phys. Rev.
– volume: 115
  start-page: 3540
  year: 2001
  publication-title: J. Chem. Phys.
– volume: 15
  start-page: 8352
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 56
  start-page: 327
  year: 1995
  publication-title: Int. J. Quantum Chem.
– volume: 9
  start-page: 263
  year: 2013
  publication-title: J. Chem. Theory Comput.
– volume: 94
  start-page: 5483
  year: 1990
  publication-title: J. Phys. Chem.
– volume: 589
  start-page: 37
  year: 2013
  publication-title: Chem. Phys. Lett.
– volume: 18
  start-page: 7165
  year: 1978
  publication-title: Phys. Rev. B
– volume: 135
  start-page: 204107
  year: 2011
  publication-title: J. Chem. Phys.
– volume: 467
  start-page: 176
  year: 2008
  publication-title: Chem. Phys. Lett.
– volume: 12
  start-page: 605
  year: 2016
  publication-title: J. Chem. Theory Comput.
– volume: 145
  start-page: 204101
  year: 2016
  publication-title: J. Chem. Phys.
– volume: 47
  start-page: 3284
  year: 2014
  publication-title: Acc. Chem. Res.
– year: 2015
– volume: 37
  start-page: 785
  year: 1988
  publication-title: Phys. Rev. B
– year: 2013
– ident: e_1_2_7_3_1
  doi: 10.1039/C6RA00053C
– ident: e_1_2_7_37_1
  doi: 10.1021/ct100529s
– ident: e_1_2_7_18_1
  doi: 10.1021/ct300420f
– ident: e_1_2_7_27_1
  doi: 10.1063/1.464913
– ident: e_1_2_7_7_1
  doi: 10.1103/PhysRev.140.A1133
– ident: e_1_2_7_26_1
  doi: 10.1021/ar500021t
– ident: e_1_2_7_6_1
  doi: 10.1016/j.cplett.2013.08.064
– ident: e_1_2_7_15_1
  doi: 10.1039/b617919c
– ident: e_1_2_7_24_1
  doi: 10.1021/acs.jctc.6b01249
– ident: e_1_2_7_22_1
  doi: 10.1063/1.472933
– ident: e_1_2_7_5_1
  doi: 10.1063/1.443164
– ident: e_1_2_7_20_1
  doi: 10.1021/j100377a012
– ident: e_1_2_7_10_1
  doi: 10.1103/PhysRevA.30.2745
– ident: e_1_2_7_13_1
  doi: 10.1063/1.4967814
– ident: e_1_2_7_4_1
  doi: 10.1021/acs.jctc.5b00873
– ident: e_1_2_7_31_1
  doi: 10.1063/1.2834918
– ident: e_1_2_7_1_1
  doi: 10.1201/b18485
– ident: e_1_2_7_11_1
  doi: 10.1039/C5RA20085G
– ident: e_1_2_7_12_1
  doi: 10.1039/c3cp50441g
– ident: e_1_2_7_36_1
  doi: 10.1002/jcc.24846
– ident: e_1_2_7_25_1
  doi: 10.1039/b810189b
– ident: e_1_2_7_33_1
  doi: 10.1021/ct300715s
– ident: e_1_2_7_9_1
  doi: 10.1103/PhysRevLett.49.1691
– ident: e_1_2_7_28_1
  doi: 10.1103/PhysRevB.37.785
– volume-title: Gaussian 09, Revision D.01
  year: 2013
  ident: e_1_2_7_34_1
  contributor:
    fullname: Frisch M. J.
– ident: e_1_2_7_17_1
  doi: 10.1103/PhysRevB.84.075144
– ident: e_1_2_7_23_1
  doi: 10.1103/PhysRevB.23.5048
– ident: e_1_2_7_2_1
  doi: 10.1002/jcc.24828
– ident: e_1_2_7_32_1
  doi: 10.1016/j.cplett.2008.10.070
– ident: e_1_2_7_19_1
  doi: 10.1063/1.1688752
– ident: e_1_2_7_30_1
  doi: 10.1002/qua.560560417
– ident: e_1_2_7_8_1
  doi: 10.1103/PhysRevB.18.7165
– ident: e_1_2_7_16_1
  doi: 10.1021/ct2009363
– ident: e_1_2_7_21_1
  doi: 10.1063/1.478522
– ident: e_1_2_7_14_1
  doi: 10.1063/1.1383587
– ident: e_1_2_7_35_1
  doi: 10.1063/1.3491272
– ident: e_1_2_7_29_1
  doi: 10.1063/1.3663856
SSID ssj0003564
Score 2.3802228
Snippet Non‐empirically tuning the range‐separation parameter (ω) of long‐range corrected (LC) hybrid functionals in improving the accuracy of vertical ionization...
Non-empirically tuning the range-separation parameter (ω) of long-range corrected (LC) hybrid functionals in improving the accuracy of vertical ionization...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 2378
SubjectTerms Affinity
electron affinity
fundamental gap
HOMO
Ionization
ionization potential
Ionization potentials
long‐range corrected hybrid functionals
LUMO
Molecular orbitals
non‐empirically tuning scheme
Parameters
range‐separation parameter
Separation
Tuning
Title Impact of non‐empirically tuning the range‐separation parameter of long‐range corrected hybrid functionals on ionization potentials, electron affinities, and fundamental gaps
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.25575
https://www.ncbi.nlm.nih.gov/pubmed/30251265
https://www.proquest.com/docview/2131241411
https://search.proquest.com/docview/2112189279
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqXuAClOfSglzEgUOzjWMnTtQTWlqVSnBAVOoBKfKz72TVZA_tiZ_Aj-EX9ZcwY2-2aiskxM2SX0lmbH-ezHxDyHsjPJew8SVC5yYRshSJ5iZNHEBXbQsjbPCq_PK12N0Xewf5wRLZGmJhIj_EwuCGKyPs17jAle42b0hDT4wZAx6WGGDOuER3rk_fbqijeB6powDBJGWRs4FVKM02Fz1vn0X3AOZtvBoOnJ3H5MfwqNHP5HQ86_XYXN1hcfzPd3lCHs2BKP0YNWeFLLnmKXkwGfK_PSO_P4cAStp62rTN9c9f7nx6HAhFzi5pP0N7CgX0SC8wPAGqOxdpxNuGYuEc_Wyw81nbHEJ1aEYNJgMxgHLp0SXGilE8V6M5sqPQE63DV_NB2h49maBigw7Jeqjy_rgJJLAbVDWhu1UxPwE9VNPuOdnf2f4-2U3mOR4Sw3OeJ8yUFiAYU0ZIm1uRGamYqwprMs29g-ufFKpMNVzieSk108xUhXSGS5-rygr-gizDR3CvCC3gQFaZtUZhfLAvK8z14LyrbKlT5vWIvBukXU8jlUcdSZuzGgRQBwGMyNqgB_V8NXd1xjjAICYYG5H1RTWIA3-uqMa1M2zDAC1VmaxG5GXUn8UsHC9yWQGDfwha8Pfp673JJBRe_3vTVfIQUFwg6eXpGlnuL2buDSClXr8NS-IPTSUVag
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcigX3o-FAgZx4NBs49iJE4kLWqi2pe0BtVIvKPKz9JWsutlDe-In8GP4RfwSxvZmq4KQEDdLfiXxjOfzxPMNwBvNHRO48SVc5TrhouSJYjpNLEJXZQrNTbhVubNbjPf51kF-sATv-liYyA-xcLh5zQj7tVdw75Bev2INPdZ6iIBY5DfgJqo784kbPny-Io9ieSSPQgyTlEVOe16hNFtfdL1ujf6AmNcRazA5G3fgS_-w8abJyXDWqaG-_I3H8X_f5i7cnmNR8j4Kzz1Yss19WBn1KeAewI_NEENJWkeatvn57bs9mxwFTpHTC9LNvEuFIIAk5z5CAaunNjKJtw3xhTN_1cZ3Pm2bQ6wOzYj2-UA0Al3y9cKHixFvWqNHckqwp3cQX84HaTt_mQkr1kifr4dI546awAO7RmQTuhsZUxSQQzmZPoT9jY97o3EyT_OQaJazPKG6NIjCqNRcmNzwTAtJbVUYnSnmLJ4ABZdlqvAcz0qhqKK6KoTVTLhcVoazR7CMH8E-AVKgTZaZMVr6EGFXVj7dg3W2MqVKqVMDeN0vdz2JbB515G3OalyAOizAAFZ7QajnCj2tM8oQCVFO6QBeLapxOfz_FdnYdubbUARMVSaqATyOArSYhfmzXFbg4G-DGPx9-nprNAqFp__e9CWsjPd2tuvtzd1Pz-AWgrrA2cvSVVjuzmf2OQKnTr0I-vELbcAZgg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIgGX8k8XChjEgUOzjWMnTsQJLazaAhVCVOoBKfJvKbTJqps9tCcegYfhifokHdubrQpCQtwsjX-S2OP57Mx8A_BCc8cEbnwJV7lOuCh5ophOE4vQVZlCcxO8Kj_sFJu7fHsv31uCV30sTOSHWFy4ec0I-7VX8IlxGxekod-0HiIeFvkVuMoLRL4eEX264I5ieeSOQgiTlEVOe1qhNNtYNL1sjP5AmJcBa7A445vwpX_W6GjyfTjr1FCf_kbj-J8vcwtW5kiUvI5L5zYs2eYOXB_1CeDuwq-tEEFJWkeatjn78dMeTQ4Co8jhCelm_kKFIHwkxz4-AcVTG3nE24b4wpF3tPGND9tmH8WhGtE-G4hGmEu-nvhgMeINa7yPnBJs6a-HT-edtJ13ZULBOumz9RDp3EETWGDXiWxCcyNjggKyLyfTe7A7fvt5tJnMkzwkmuUsT6guDWIwKjUXJjc800JSWxVGZ4o5i-c_wWWZKjzFs1IoqqiuCmE1Ey6XleHsPizjR7CrQAq0yDIzRksfIOzKyid7sM5WplQpdWoAz_vZrieRy6OOrM1ZjRNQhwkYwFq_Duq5Ok_rjDLEQZRTOoBnCzFOh_-7IhvbznwdinCpykQ1gAdx_SxGYf4klxXY-cuwCv4-fL09GoXCw3-v-hSufXwzrt9v7bx7BDcQ0QXCXpauwXJ3PLOPETV16knQjnMkFhgx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+non-empirically+tuning+the+range-separation+parameter+of+long-range+corrected+hybrid+functionals+on+ionization+potentials%2C+electron+affinities%2C+and+fundamental+gaps&rft.jtitle=Journal+of+computational+chemistry&rft.au=Vikramaditya%2C+Talapunur&rft.au=Chai%2C+Jeng-Da&rft.au=Lin%2C+Shiang-Tai&rft.date=2018-10-30&rft.eissn=1096-987X&rft.volume=39&rft.issue=28&rft.spage=2378&rft.epage=2384&rft_id=info:doi/10.1002%2Fjcc.25575&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon