Impact of non‐empirically tuning the range‐separation parameter of long‐range corrected hybrid functionals on ionization potentials, electron affinities, and fundamental gaps
Non‐empirically tuning the range‐separation parameter (ω) of long‐range corrected (LC) hybrid functionals in improving the accuracy of vertical ionization potentials (IPs), vertical electron affinities (EAs), and fundamental gaps (FGs) is investigated. Use of default ω values gives the best overall...
Saved in:
Published in | Journal of computational chemistry Vol. 39; no. 28; pp. 2378 - 2384 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
30.10.2018
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Non‐empirically tuning the range‐separation parameter (ω) of long‐range corrected (LC) hybrid functionals in improving the accuracy of vertical ionization potentials (IPs), vertical electron affinities (EAs), and fundamental gaps (FGs) is investigated. Use of default ω values gives the best overall property predictions employing the Δ self‐consistent field (ΔSCF) approach, if sufficiently large basis set is used. Upon tuning, IP (HOMO) (i.e., the IP estimated from the negative of HOMO energy via DFT Koopmans’ theorem) with the IP (ΔSCF) (i.e., the IP obtained from the ΔSCF approach) the accuracy of IP (HOMO) significantly improves however a reciprocal phenomenon is not observed. An interesting observation is that EA (LUMO) (i.e., the EA estimated from the negative of LUMO energy) is more accurate than EA (ΔSCF), if the ω value is in the range of 0.30 to 0.50 bohr−1. © 2018 Wiley Periodicals, Inc.
Tuning the HOMO(IP) with IP(ΔSCF) by adjusting the range separation parameter of LC‐ Hybrid Functional improves the accuracy of HOMO(IP) significantly however a vice‐versa phenomenon is not observed i.e., an improvement in accuracy of IP(ΔSCF) is not found. Impact of tuning on LUMO (EA) is negligible and its accuracy is independent of tuning. LUMO (EA) accuracy outperforms conventional EA (ΔSCF) if the range separation parameter lies within the range of 0.3 to 0.5 bohr−1. Fundamental gap (FG) follows a similar trend as that of IP. |
---|---|
AbstractList | Non-empirically tuning the range-separation parameter (ω) of long-range corrected (LC) hybrid functionals in improving the accuracy of vertical ionization potentials (IPs), vertical electron affinities (EAs), and fundamental gaps (FGs) is investigated. Use of default ω values gives the best overall property predictions employing the Δ self-consistent field (ΔSCF) approach, if sufficiently large basis set is used. Upon tuning, IP (HOMO) (i.e., the IP estimated from the negative of HOMO energy via DFT Koopmans' theorem) with the IP (ΔSCF) (i.e., the IP obtained from the ΔSCF approach) the accuracy of IP (HOMO) significantly improves however a reciprocal phenomenon is not observed. An interesting observation is that EA (LUMO) (i.e., the EA estimated from the negative of LUMO energy) is more accurate than EA (ΔSCF), if the ω value is in the range of 0.30 to 0.50 bohr
. © 2018 Wiley Periodicals, Inc. Non‐empirically tuning the range‐separation parameter (ω) of long‐range corrected (LC) hybrid functionals in improving the accuracy of vertical ionization potentials (IPs), vertical electron affinities (EAs), and fundamental gaps (FGs) is investigated. Use of default ω values gives the best overall property predictions employing the Δ self‐consistent field (ΔSCF) approach, if sufficiently large basis set is used. Upon tuning, IP (HOMO) (i.e., the IP estimated from the negative of HOMO energy via DFT Koopmans’ theorem) with the IP (ΔSCF) (i.e., the IP obtained from the ΔSCF approach) the accuracy of IP (HOMO) significantly improves however a reciprocal phenomenon is not observed. An interesting observation is that EA (LUMO) (i.e., the EA estimated from the negative of LUMO energy) is more accurate than EA (ΔSCF), if the ω value is in the range of 0.30 to 0.50 bohr −1 . © 2018 Wiley Periodicals, Inc. Non‐empirically tuning the range‐separation parameter (ω) of long‐range corrected (LC) hybrid functionals in improving the accuracy of vertical ionization potentials (IPs), vertical electron affinities (EAs), and fundamental gaps (FGs) is investigated. Use of default ω values gives the best overall property predictions employing the Δ self‐consistent field (ΔSCF) approach, if sufficiently large basis set is used. Upon tuning, IP (HOMO) (i.e., the IP estimated from the negative of HOMO energy via DFT Koopmans’ theorem) with the IP (ΔSCF) (i.e., the IP obtained from the ΔSCF approach) the accuracy of IP (HOMO) significantly improves however a reciprocal phenomenon is not observed. An interesting observation is that EA (LUMO) (i.e., the EA estimated from the negative of LUMO energy) is more accurate than EA (ΔSCF), if the ω value is in the range of 0.30 to 0.50 bohr−1. © 2018 Wiley Periodicals, Inc. Non-empirically tuning the range-separation parameter (ω) of long-range corrected (LC) hybrid functionals in improving the accuracy of vertical ionization potentials (IPs), vertical electron affinities (EAs), and fundamental gaps (FGs) is investigated. Use of default ω values gives the best overall property predictions employing the Δ self-consistent field (ΔSCF) approach, if sufficiently large basis set is used. Upon tuning, IP (HOMO) (i.e., the IP estimated from the negative of HOMO energy via DFT Koopmans' theorem) with the IP (ΔSCF) (i.e., the IP obtained from the ΔSCF approach) the accuracy of IP (HOMO) significantly improves however a reciprocal phenomenon is not observed. An interesting observation is that EA (LUMO) (i.e., the EA estimated from the negative of LUMO energy) is more accurate than EA (ΔSCF), if the ω value is in the range of 0.30 to 0.50 bohr-1 . © 2018 Wiley Periodicals, Inc. Non‐empirically tuning the range‐separation parameter (ω) of long‐range corrected (LC) hybrid functionals in improving the accuracy of vertical ionization potentials (IPs), vertical electron affinities (EAs), and fundamental gaps (FGs) is investigated. Use of default ω values gives the best overall property predictions employing the Δ self‐consistent field (ΔSCF) approach, if sufficiently large basis set is used. Upon tuning, IP (HOMO) (i.e., the IP estimated from the negative of HOMO energy via DFT Koopmans’ theorem) with the IP (ΔSCF) (i.e., the IP obtained from the ΔSCF approach) the accuracy of IP (HOMO) significantly improves however a reciprocal phenomenon is not observed. An interesting observation is that EA (LUMO) (i.e., the EA estimated from the negative of LUMO energy) is more accurate than EA (ΔSCF), if the ω value is in the range of 0.30 to 0.50 bohr−1. © 2018 Wiley Periodicals, Inc. Tuning the HOMO(IP) with IP(ΔSCF) by adjusting the range separation parameter of LC‐ Hybrid Functional improves the accuracy of HOMO(IP) significantly however a vice‐versa phenomenon is not observed i.e., an improvement in accuracy of IP(ΔSCF) is not found. Impact of tuning on LUMO (EA) is negligible and its accuracy is independent of tuning. LUMO (EA) accuracy outperforms conventional EA (ΔSCF) if the range separation parameter lies within the range of 0.3 to 0.5 bohr−1. Fundamental gap (FG) follows a similar trend as that of IP. |
Author | Chai, Jeng‐Da Vikramaditya, Talapunur Lin, Shiang‐Tai |
Author_xml | – sequence: 1 givenname: Talapunur orcidid: 0000-0001-5052-6367 surname: Vikramaditya fullname: Vikramaditya, Talapunur organization: National Taiwan University – sequence: 2 givenname: Jeng‐Da orcidid: 0000-0002-3994-2279 surname: Chai fullname: Chai, Jeng‐Da email: jdchai@phys.ntu.edu.tw organization: National Taiwan University – sequence: 3 givenname: Shiang‐Tai orcidid: 0000-0001-8513-8196 surname: Lin fullname: Lin, Shiang‐Tai email: stlin@ntu.edu.tw organization: National Taiwan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30251265$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1u1DAUhS1URKeFBS-ALLEBibS-TpyfZTXip1UlNiCxixznZuqRYwfbEZqu-gg8DE_Ek-DMTFkgsfLVPd85V9Y5IyfWWSTkJbALYIxfbpW64EJU4glZAWvKrKmrbydkxaDhWV0KOCVnIWwZY7koi2fkNGdcAC_Fivy6HiepInUDTaG_H37iOGmvlTRmR-Nstd3QeIfUS7vBJAecpJdRO0uXYcSIfjEbZzdJ3mNUOe9RRezp3a7zuqfDbNXikSbQ5EyTvj-GuIg26iS8o2iSyaelHAZtddSYltLu7X06ZaM0dCOn8Jw8HZIDXxzfc_L1w_sv60_Z7eeP1-ur20zlIhcZqLoXJQepiqoXfcFVJQGbsle8yweEglWFrFlXNiyvqw46UE1ZocqrQcimL_Jz8uaQO3n3fcYQ21EHhcZIi24OLQfgUDe8ahL6-h9062a_fDhROfACCoBEvT1QyrsQPA7t5PUo_a4F1i5VtqnKdl9lYl8dE-duxP4v-dhdAi4PwA9tcPf_pPZmvT5E_gFlxLDV |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_1c06799 crossref_primary_10_1021_acs_jpcc_0c04885 crossref_primary_10_1002_jcc_26056 crossref_primary_10_1021_acs_jpca_2c01463 crossref_primary_10_1016_j_electacta_2019_01_037 crossref_primary_10_1021_acs_jpca_3c05486 crossref_primary_10_3390_molecules29112627 crossref_primary_10_1039_D0CP05106C crossref_primary_10_1007_s00894_021_04891_1 crossref_primary_10_1016_j_comptc_2019_112667 crossref_primary_10_1080_00268976_2021_1983056 crossref_primary_10_3389_fchem_2022_926916 |
Cites_doi | 10.1039/C6RA00053C 10.1021/ct100529s 10.1021/ct300420f 10.1063/1.464913 10.1103/PhysRev.140.A1133 10.1021/ar500021t 10.1016/j.cplett.2013.08.064 10.1039/b617919c 10.1021/acs.jctc.6b01249 10.1063/1.472933 10.1063/1.443164 10.1021/j100377a012 10.1103/PhysRevA.30.2745 10.1063/1.4967814 10.1021/acs.jctc.5b00873 10.1063/1.2834918 10.1201/b18485 10.1039/C5RA20085G 10.1039/c3cp50441g 10.1002/jcc.24846 10.1039/b810189b 10.1021/ct300715s 10.1103/PhysRevLett.49.1691 10.1103/PhysRevB.37.785 10.1103/PhysRevB.84.075144 10.1103/PhysRevB.23.5048 10.1002/jcc.24828 10.1016/j.cplett.2008.10.070 10.1063/1.1688752 10.1002/qua.560560417 10.1103/PhysRevB.18.7165 10.1021/ct2009363 10.1063/1.478522 10.1063/1.1383587 10.1063/1.3491272 10.1063/1.3663856 |
ContentType | Journal Article |
Copyright | 2018 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2018 Wiley Periodicals, Inc. |
DBID | NPM AAYXX CITATION JQ2 7X8 |
DOI | 10.1002/jcc.25575 |
DatabaseName | PubMed CrossRef ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef ProQuest Computer Science Collection MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1096-987X |
EndPage | 2384 |
ExternalDocumentID | 10_1002_jcc_25575 30251265 JCC25575 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Taiwan University funderid: NTU‐CDP‐106L7827; NTU‐CDP‐105R7818; NTU‐CCP‐106R891706; NTU‐CC‐107L892906 – fundername: Ministry of Science and Technology, Taiwan funderid: MOST 104‐2628‐M‐002‐011‐MY3; MOST 104‐2221‐E‐002‐186‐MY3; 106‐2811‐E‐002‐020 – fundername: National Taiwan University grantid: NTU-CDP-106L7827 – fundername: National Taiwan University grantid: NTU-CC-107L892906 – fundername: National Taiwan University grantid: NTU-CDP-105R7818 – fundername: Ministry of Science and Technology, Taiwan grantid: 106-2811-E-002-020 – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 104-2221-E-002-186-MY3 – fundername: National Taiwan University grantid: NTU-CCP-106R891706 – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 104-2628-M-002-011-MY3 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 36B 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RWK RX1 RYL SUPJJ TN5 UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YQT ZZTAW ~IA ~KM ~WT NPM AAYXX CITATION JQ2 7X8 |
ID | FETCH-LOGICAL-c3535-1c8d5621ac47d5d42c7a1e96dc2b3fe14074a80b690387b1b1c967ec37f5a9d43 |
IEDL.DBID | DR2 |
ISSN | 0192-8651 |
IngestDate | Fri Aug 16 09:37:33 EDT 2024 Thu Oct 10 17:57:17 EDT 2024 Fri Aug 23 01:46:45 EDT 2024 Sat Sep 28 08:32:18 EDT 2024 Sat Aug 24 00:40:47 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Keywords | ionization potential HOMO LUMO fundamental gap non-empirically tuning scheme long-range corrected hybrid functionals range-separation parameter electron affinity |
Language | English |
License | 2018 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3535-1c8d5621ac47d5d42c7a1e96dc2b3fe14074a80b690387b1b1c967ec37f5a9d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8513-8196 0000-0001-5052-6367 0000-0002-3994-2279 |
PMID | 30251265 |
PQID | 2131241411 |
PQPubID | 48816 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2112189279 proquest_journals_2131241411 crossref_primary_10_1002_jcc_25575 pubmed_primary_30251265 wiley_primary_10_1002_jcc_25575_JCC25575 |
PublicationCentury | 2000 |
PublicationDate | October 30, 2018 |
PublicationDateYYYYMMDD | 2018-10-30 |
PublicationDate_xml | – month: 10 year: 2018 text: October 30, 2018 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: New York |
PublicationTitle | Journal of computational chemistry |
PublicationTitleAlternate | J Comput Chem |
PublicationYear | 2018 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2004; 120 2011; 135 2015; 5 2013; 589 1965; 140 1988; 37 1995; 56 1982; 76 2011; 84 2016; 145 1978; 18 2014; 47 2008; 128 2008; 10 2008; 467 2016; 12 1981; 23 2013; 9 1996; 105 2016; 6 1984; 30 1982; 49 2013; 15 2017; 38 1993; 98 2017; 13 2007; 9 1999; 110 2010; 133 2015 2013 2001; 115 2010; 6 2012; 8 1990; 94 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 Frisch M. J. (e_1_2_7_34_1) 2013 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 |
References_xml | – volume: 30 start-page: 2745 year: 1984 publication-title: Phys. Rev. A – volume: 120 start-page: 8425 year: 2004 publication-title: J. Chem. Phys. – volume: 133 start-page: 174101 year: 2010 publication-title: J. Chem. Phys. – volume: 23 start-page: 5048 year: 1981 publication-title: Phys. Rev. B – volume: 98 start-page: 5648 year: 1993 publication-title: J. Chem. Phys. – volume: 8 start-page: 1515 year: 2012 publication-title: J. Chem. Theory Comput. – volume: 105 start-page: 9982 year: 1996 publication-title: J. Chem. Phys. – volume: 8 start-page: 2682 year: 2012 publication-title: J. Chem. Theory Comput. – volume: 38 start-page: 2020 year: 2017 publication-title: J. Comput.Chem. – volume: 110 start-page: 6158 year: 1999 publication-title: J. Chem. Phys. – volume: 9 start-page: 2932 year: 2007 publication-title: Phys. Chem. Chem. Phys. – volume: 38 start-page: 1844 year: 2017 publication-title: J. Comput. Chem. – volume: 6 start-page: 3704 year: 2010 publication-title: J. Chem. Theory Comput. – volume: 10 start-page: 6615 year: 2008 publication-title: Phys. Chem. Chem. Phys. – volume: 76 start-page: 1910 year: 1982 publication-title: J. Chem. Phys. – volume: 13 start-page: 1656 year: 2017 publication-title: J. Chem. Theory Comput. – volume: 49 start-page: 1691 year: 1982 publication-title: Phys. Rev. Lett. – volume: 5 start-page: 101370 year: 2015 publication-title: RSC Adv. – volume: 128 start-page: 084106 year: 2008 publication-title: J. Chem. Phys. – volume: 6 start-page: 37203 year: 2016 publication-title: RSC Adv. – volume: 84 start-page: 075144 year: 2011 publication-title: Phys. Rev. B – volume: 140 start-page: 1133 year: 1965 publication-title: Phys. Rev. – volume: 115 start-page: 3540 year: 2001 publication-title: J. Chem. Phys. – volume: 15 start-page: 8352 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 56 start-page: 327 year: 1995 publication-title: Int. J. Quantum Chem. – volume: 9 start-page: 263 year: 2013 publication-title: J. Chem. Theory Comput. – volume: 94 start-page: 5483 year: 1990 publication-title: J. Phys. Chem. – volume: 589 start-page: 37 year: 2013 publication-title: Chem. Phys. Lett. – volume: 18 start-page: 7165 year: 1978 publication-title: Phys. Rev. B – volume: 135 start-page: 204107 year: 2011 publication-title: J. Chem. Phys. – volume: 467 start-page: 176 year: 2008 publication-title: Chem. Phys. Lett. – volume: 12 start-page: 605 year: 2016 publication-title: J. Chem. Theory Comput. – volume: 145 start-page: 204101 year: 2016 publication-title: J. Chem. Phys. – volume: 47 start-page: 3284 year: 2014 publication-title: Acc. Chem. Res. – year: 2015 – volume: 37 start-page: 785 year: 1988 publication-title: Phys. Rev. B – year: 2013 – ident: e_1_2_7_3_1 doi: 10.1039/C6RA00053C – ident: e_1_2_7_37_1 doi: 10.1021/ct100529s – ident: e_1_2_7_18_1 doi: 10.1021/ct300420f – ident: e_1_2_7_27_1 doi: 10.1063/1.464913 – ident: e_1_2_7_7_1 doi: 10.1103/PhysRev.140.A1133 – ident: e_1_2_7_26_1 doi: 10.1021/ar500021t – ident: e_1_2_7_6_1 doi: 10.1016/j.cplett.2013.08.064 – ident: e_1_2_7_15_1 doi: 10.1039/b617919c – ident: e_1_2_7_24_1 doi: 10.1021/acs.jctc.6b01249 – ident: e_1_2_7_22_1 doi: 10.1063/1.472933 – ident: e_1_2_7_5_1 doi: 10.1063/1.443164 – ident: e_1_2_7_20_1 doi: 10.1021/j100377a012 – ident: e_1_2_7_10_1 doi: 10.1103/PhysRevA.30.2745 – ident: e_1_2_7_13_1 doi: 10.1063/1.4967814 – ident: e_1_2_7_4_1 doi: 10.1021/acs.jctc.5b00873 – ident: e_1_2_7_31_1 doi: 10.1063/1.2834918 – ident: e_1_2_7_1_1 doi: 10.1201/b18485 – ident: e_1_2_7_11_1 doi: 10.1039/C5RA20085G – ident: e_1_2_7_12_1 doi: 10.1039/c3cp50441g – ident: e_1_2_7_36_1 doi: 10.1002/jcc.24846 – ident: e_1_2_7_25_1 doi: 10.1039/b810189b – ident: e_1_2_7_33_1 doi: 10.1021/ct300715s – ident: e_1_2_7_9_1 doi: 10.1103/PhysRevLett.49.1691 – ident: e_1_2_7_28_1 doi: 10.1103/PhysRevB.37.785 – volume-title: Gaussian 09, Revision D.01 year: 2013 ident: e_1_2_7_34_1 contributor: fullname: Frisch M. J. – ident: e_1_2_7_17_1 doi: 10.1103/PhysRevB.84.075144 – ident: e_1_2_7_23_1 doi: 10.1103/PhysRevB.23.5048 – ident: e_1_2_7_2_1 doi: 10.1002/jcc.24828 – ident: e_1_2_7_32_1 doi: 10.1016/j.cplett.2008.10.070 – ident: e_1_2_7_19_1 doi: 10.1063/1.1688752 – ident: e_1_2_7_30_1 doi: 10.1002/qua.560560417 – ident: e_1_2_7_8_1 doi: 10.1103/PhysRevB.18.7165 – ident: e_1_2_7_16_1 doi: 10.1021/ct2009363 – ident: e_1_2_7_21_1 doi: 10.1063/1.478522 – ident: e_1_2_7_14_1 doi: 10.1063/1.1383587 – ident: e_1_2_7_35_1 doi: 10.1063/1.3491272 – ident: e_1_2_7_29_1 doi: 10.1063/1.3663856 |
SSID | ssj0003564 |
Score | 2.3802228 |
Snippet | Non‐empirically tuning the range‐separation parameter (ω) of long‐range corrected (LC) hybrid functionals in improving the accuracy of vertical ionization... Non-empirically tuning the range-separation parameter (ω) of long-range corrected (LC) hybrid functionals in improving the accuracy of vertical ionization... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2378 |
SubjectTerms | Affinity electron affinity fundamental gap HOMO Ionization ionization potential Ionization potentials long‐range corrected hybrid functionals LUMO Molecular orbitals non‐empirically tuning scheme Parameters range‐separation parameter Separation Tuning |
Title | Impact of non‐empirically tuning the range‐separation parameter of long‐range corrected hybrid functionals on ionization potentials, electron affinities, and fundamental gaps |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.25575 https://www.ncbi.nlm.nih.gov/pubmed/30251265 https://www.proquest.com/docview/2131241411 https://search.proquest.com/docview/2112189279 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqXuAClOfSglzEgUOzjWMnTtQTWlqVSnBAVOoBKfKz72TVZA_tiZ_Aj-EX9ZcwY2-2aiskxM2SX0lmbH-ezHxDyHsjPJew8SVC5yYRshSJ5iZNHEBXbQsjbPCq_PK12N0Xewf5wRLZGmJhIj_EwuCGKyPs17jAle42b0hDT4wZAx6WGGDOuER3rk_fbqijeB6powDBJGWRs4FVKM02Fz1vn0X3AOZtvBoOnJ3H5MfwqNHP5HQ86_XYXN1hcfzPd3lCHs2BKP0YNWeFLLnmKXkwGfK_PSO_P4cAStp62rTN9c9f7nx6HAhFzi5pP0N7CgX0SC8wPAGqOxdpxNuGYuEc_Wyw81nbHEJ1aEYNJgMxgHLp0SXGilE8V6M5sqPQE63DV_NB2h49maBigw7Jeqjy_rgJJLAbVDWhu1UxPwE9VNPuOdnf2f4-2U3mOR4Sw3OeJ8yUFiAYU0ZIm1uRGamYqwprMs29g-ufFKpMNVzieSk108xUhXSGS5-rygr-gizDR3CvCC3gQFaZtUZhfLAvK8z14LyrbKlT5vWIvBukXU8jlUcdSZuzGgRQBwGMyNqgB_V8NXd1xjjAICYYG5H1RTWIA3-uqMa1M2zDAC1VmaxG5GXUn8UsHC9yWQGDfwha8Pfp673JJBRe_3vTVfIQUFwg6eXpGlnuL2buDSClXr8NS-IPTSUVag |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcigX3o-FAgZx4NBs49iJE4kLWqi2pe0BtVIvKPKz9JWsutlDe-In8GP4RfwSxvZmq4KQEDdLfiXxjOfzxPMNwBvNHRO48SVc5TrhouSJYjpNLEJXZQrNTbhVubNbjPf51kF-sATv-liYyA-xcLh5zQj7tVdw75Bev2INPdZ6iIBY5DfgJqo784kbPny-Io9ieSSPQgyTlEVOe16hNFtfdL1ujf6AmNcRazA5G3fgS_-w8abJyXDWqaG-_I3H8X_f5i7cnmNR8j4Kzz1Yss19WBn1KeAewI_NEENJWkeatvn57bs9mxwFTpHTC9LNvEuFIIAk5z5CAaunNjKJtw3xhTN_1cZ3Pm2bQ6wOzYj2-UA0Al3y9cKHixFvWqNHckqwp3cQX84HaTt_mQkr1kifr4dI546awAO7RmQTuhsZUxSQQzmZPoT9jY97o3EyT_OQaJazPKG6NIjCqNRcmNzwTAtJbVUYnSnmLJ4ABZdlqvAcz0qhqKK6KoTVTLhcVoazR7CMH8E-AVKgTZaZMVr6EGFXVj7dg3W2MqVKqVMDeN0vdz2JbB515G3OalyAOizAAFZ7QajnCj2tM8oQCVFO6QBeLapxOfz_FdnYdubbUARMVSaqATyOArSYhfmzXFbg4G-DGPx9-nprNAqFp__e9CWsjPd2tuvtzd1Pz-AWgrrA2cvSVVjuzmf2OQKnTr0I-vELbcAZgg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIgGX8k8XChjEgUOzjWMnTsQJLazaAhVCVOoBKfJvKbTJqps9tCcegYfhifokHdubrQpCQtwsjX-S2OP57Mx8A_BCc8cEbnwJV7lOuCh5ophOE4vQVZlCcxO8Kj_sFJu7fHsv31uCV30sTOSHWFy4ec0I-7VX8IlxGxekod-0HiIeFvkVuMoLRL4eEX264I5ieeSOQgiTlEVOe1qhNNtYNL1sjP5AmJcBa7A445vwpX_W6GjyfTjr1FCf_kbj-J8vcwtW5kiUvI5L5zYs2eYOXB_1CeDuwq-tEEFJWkeatjn78dMeTQ4Co8jhCelm_kKFIHwkxz4-AcVTG3nE24b4wpF3tPGND9tmH8WhGtE-G4hGmEu-nvhgMeINa7yPnBJs6a-HT-edtJ13ZULBOumz9RDp3EETWGDXiWxCcyNjggKyLyfTe7A7fvt5tJnMkzwkmuUsT6guDWIwKjUXJjc800JSWxVGZ4o5i-c_wWWZKjzFs1IoqqiuCmE1Ey6XleHsPizjR7CrQAq0yDIzRksfIOzKyid7sM5WplQpdWoAz_vZrieRy6OOrM1ZjRNQhwkYwFq_Duq5Ok_rjDLEQZRTOoBnCzFOh_-7IhvbznwdinCpykQ1gAdx_SxGYf4klxXY-cuwCv4-fL09GoXCw3-v-hSufXwzrt9v7bx7BDcQ0QXCXpauwXJ3PLOPETV16knQjnMkFhgx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+non-empirically+tuning+the+range-separation+parameter+of+long-range+corrected+hybrid+functionals+on+ionization+potentials%2C+electron+affinities%2C+and+fundamental+gaps&rft.jtitle=Journal+of+computational+chemistry&rft.au=Vikramaditya%2C+Talapunur&rft.au=Chai%2C+Jeng-Da&rft.au=Lin%2C+Shiang-Tai&rft.date=2018-10-30&rft.eissn=1096-987X&rft.volume=39&rft.issue=28&rft.spage=2378&rft.epage=2384&rft_id=info:doi/10.1002%2Fjcc.25575&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon |