Hepatic lentiviral gene transfer is associated with clonal selection, but not with tumor formation in serially transplanted rodents

Lentiviral (LV) vectors are promising tools for long‐term genetic correction of hereditary diseases. In hematopoietic stem cell gene therapies adverse events in patients due to vector integration‐associated genotoxicity have been observed. Only a few studies have explored the potential risks of LV g...

Full description

Saved in:
Bibliographic Details
Published inHepatology (Baltimore, Md.) Vol. 58; no. 1; pp. 397 - 408
Main Authors Rittelmeyer, Ina, Rothe, Michael, Brugman, Martijn H., Iken, Marcus, Schambach, Axel, Manns, Michael P., Baum, Christopher, Modlich, Ute, Ott, Michael
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.07.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lentiviral (LV) vectors are promising tools for long‐term genetic correction of hereditary diseases. In hematopoietic stem cell gene therapies adverse events in patients due to vector integration‐associated genotoxicity have been observed. Only a few studies have explored the potential risks of LV gene therapy targeting the liver. To analyze hepatic genotoxicity in vivo, we transferred the fumarylacetoacetate hydrolase (FAH) gene by LV vectors into FAH(‐/‐) mice (n = 97) and performed serial hepatocyte transplantations (four generations). The integration profile (4,349 mapped insertions) of the LV vectors was assessed by ligation‐mediated polymerase chain reaction and deep sequencing. We tested whether the polyclonality of vector insertions was maintained in serially transplanted mice, linked the integration sites to global hepatocyte gene expression, and investigated the effects of LV liver gene therapy on the survival of the animals. The lifespan of in vivo gene‐corrected mice was increased compared to 2‐(2‐nitro‐4‐trifluoromethylbenzoyl)‐1,3‐cyclohexanedione (NTBC) control animals and unchanged in serially transplanted animals. The integration profile (4,349 mapped insertions) remained polyclonal through all mouse generations with only mild clonal expansion. Genes close to the integration sites of expanding clones may be associated with enhanced hepatocyte proliferation capacity. Conclusion: We did not find evidence for vector‐induced tumors. LV hepatic gene therapy showed a favorable risk profile for stable and long‐term therapeutic gene expression. Polyclonality of hepatocyte regeneration was maintained even in an environment of enforced proliferation. (HEPATOLOGY 2013)
AbstractList Lentiviral (LV) vectors are promising tools for long-term genetic correction of hereditary diseases. In hematopoietic stem cell gene therapies adverse events in patients due to vector integration-associated genotoxicity have been observed. Only a few studies have explored the potential risks of LV gene therapy targeting the liver. To analyze hepatic genotoxicity in vivo, we transferred the fumarylacetoacetate hydrolase (FAH) gene by LV vectors into FAH(-/-) mice (n = 97) and performed serial hepatocyte transplantations (four generations). The integration profile (4,349 mapped insertions) of the LV vectors was assessed by ligation-mediated polymerase chain reaction and deep sequencing. We tested whether the polyclonality of vector insertions was maintained in serially transplanted mice, linked the integration sites to global hepatocyte gene expression, and investigated the effects of LV liver gene therapy on the survival of the animals. The lifespan of in vivo gene-corrected mice was increased compared to 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) control animals and unchanged in serially transplanted animals. The integration profile (4,349 mapped insertions) remained polyclonal through all mouse generations with only mild clonal expansion. Genes close to the integration sites of expanding clones may be associated with enhanced hepatocyte proliferation capacity. Conclusion: We did not find evidence for vector-induced tumors. LV hepatic gene therapy showed a favorable risk profile for stable and long-term therapeutic gene expression. Polyclonality of hepatocyte regeneration was maintained even in an environment of enforced proliferation. (HEPATOLOGY 2013) [PUBLICATION ABSTRACT]
Lentiviral (LV) vectors are promising tools for long‐term genetic correction of hereditary diseases. In hematopoietic stem cell gene therapies adverse events in patients due to vector integration‐associated genotoxicity have been observed. Only a few studies have explored the potential risks of LV gene therapy targeting the liver. To analyze hepatic genotoxicity in vivo, we transferred the fumarylacetoacetate hydrolase (FAH) gene by LV vectors into FAH(‐/‐) mice (n = 97) and performed serial hepatocyte transplantations (four generations). The integration profile (4,349 mapped insertions) of the LV vectors was assessed by ligation‐mediated polymerase chain reaction and deep sequencing. We tested whether the polyclonality of vector insertions was maintained in serially transplanted mice, linked the integration sites to global hepatocyte gene expression, and investigated the effects of LV liver gene therapy on the survival of the animals. The lifespan of in vivo gene‐corrected mice was increased compared to 2‐(2‐nitro‐4‐trifluoromethylbenzoyl)‐1,3‐cyclohexanedione (NTBC) control animals and unchanged in serially transplanted animals. The integration profile (4,349 mapped insertions) remained polyclonal through all mouse generations with only mild clonal expansion. Genes close to the integration sites of expanding clones may be associated with enhanced hepatocyte proliferation capacity. Conclusion: We did not find evidence for vector‐induced tumors. LV hepatic gene therapy showed a favorable risk profile for stable and long‐term therapeutic gene expression. Polyclonality of hepatocyte regeneration was maintained even in an environment of enforced proliferation. (HEPATOLOGY 2013)
Lentiviral (LV) vectors are promising tools for long-term genetic correction of hereditary diseases. In hematopoietic stem cell gene therapies adverse events in patients due to vector integration-associated genotoxicity have been observed. Only a few studies have explored the potential risks of LV gene therapy targeting the liver. To analyze hepatic genotoxicity in vivo, we transferred the fumarylacetoacetate hydrolase (FAH) gene by LV vectors into FAH((-/-)) mice (n = 97) and performed serial hepatocyte transplantations (four generations). The integration profile (4,349 mapped insertions) of the LV vectors was assessed by ligation-mediated polymerase chain reaction and deep sequencing. We tested whether the polyclonality of vector insertions was maintained in serially transplanted mice, linked the integration sites to global hepatocyte gene expression, and investigated the effects of LV liver gene therapy on the survival of the animals. The lifespan of in vivo gene-corrected mice was increased compared to 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) control animals and unchanged in serially transplanted animals. The integration profile (4,349 mapped insertions) remained polyclonal through all mouse generations with only mild clonal expansion. Genes close to the integration sites of expanding clones may be associated with enhanced hepatocyte proliferation capacity. We did not find evidence for vector-induced tumors. LV hepatic gene therapy showed a favorable risk profile for stable and long-term therapeutic gene expression. Polyclonality of hepatocyte regeneration was maintained even in an environment of enforced proliferation.
Abstract Lentiviral (LV) vectors are promising tools for long-term genetic correction of hereditary diseases. In hematopoietic stem cell gene therapies adverse events in patients due to vector integration-associated genotoxicity have been observed. Only a few studies have explored the potential risks of LV gene therapy targeting the liver. To analyze hepatic genotoxicity in vivo , we transferred the fumarylacetoacetate hydrolase (FAH) gene by LV vectors into FAH (-/-) mice (n = 97) and performed serial hepatocyte transplantations (four generations). The integration profile (4,349 mapped insertions) of the LV vectors was assessed by ligation-mediated polymerase chain reaction and deep sequencing. We tested whether the polyclonality of vector insertions was maintained in serially transplanted mice, linked the integration sites to global hepatocyte gene expression, and investigated the effects of LV liver gene therapy on the survival of the animals. The lifespan of in vivo gene-corrected mice was increased compared to 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) control animals and unchanged in serially transplanted animals. The integration profile (4,349 mapped insertions) remained polyclonal through all mouse generations with only mild clonal expansion. Genes close to the integration sites of expanding clones may be associated with enhanced hepatocyte proliferation capacity. Conclusion : We did not find evidence for vector-induced tumors. LV hepatic gene therapy showed a favorable risk profile for stable and long-term therapeutic gene expression. Polyclonality of hepatocyte regeneration was maintained even in an environment of enforced proliferation. (HEPATOLOGY 2013)
UNLABELLEDLentiviral (LV) vectors are promising tools for long-term genetic correction of hereditary diseases. In hematopoietic stem cell gene therapies adverse events in patients due to vector integration-associated genotoxicity have been observed. Only a few studies have explored the potential risks of LV gene therapy targeting the liver. To analyze hepatic genotoxicity in vivo, we transferred the fumarylacetoacetate hydrolase (FAH) gene by LV vectors into FAH((-/-)) mice (n = 97) and performed serial hepatocyte transplantations (four generations). The integration profile (4,349 mapped insertions) of the LV vectors was assessed by ligation-mediated polymerase chain reaction and deep sequencing. We tested whether the polyclonality of vector insertions was maintained in serially transplanted mice, linked the integration sites to global hepatocyte gene expression, and investigated the effects of LV liver gene therapy on the survival of the animals. The lifespan of in vivo gene-corrected mice was increased compared to 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) control animals and unchanged in serially transplanted animals. The integration profile (4,349 mapped insertions) remained polyclonal through all mouse generations with only mild clonal expansion. Genes close to the integration sites of expanding clones may be associated with enhanced hepatocyte proliferation capacity.CONCLUSIONWe did not find evidence for vector-induced tumors. LV hepatic gene therapy showed a favorable risk profile for stable and long-term therapeutic gene expression. Polyclonality of hepatocyte regeneration was maintained even in an environment of enforced proliferation.
Author Brugman, Martijn H.
Modlich, Ute
Ott, Michael
Schambach, Axel
Baum, Christopher
Rothe, Michael
Rittelmeyer, Ina
Manns, Michael P.
Iken, Marcus
Author_xml – sequence: 1
  givenname: Ina
  surname: Rittelmeyer
  fullname: Rittelmeyer, Ina
– sequence: 2
  givenname: Michael
  surname: Rothe
  fullname: Rothe, Michael
– sequence: 3
  givenname: Martijn H.
  surname: Brugman
  fullname: Brugman, Martijn H.
– sequence: 4
  givenname: Marcus
  surname: Iken
  fullname: Iken, Marcus
– sequence: 5
  givenname: Axel
  surname: Schambach
  fullname: Schambach, Axel
– sequence: 6
  givenname: Michael P.
  surname: Manns
  fullname: Manns, Michael P.
– sequence: 7
  givenname: Christopher
  surname: Baum
  fullname: Baum, Christopher
– sequence: 8
  givenname: Ute
  surname: Modlich
  fullname: Modlich, Ute
– sequence: 9
  givenname: Michael
  surname: Ott
  fullname: Ott, Michael
  email: ott.michael@mh‐hannover.de, michael.ott@twincore.de, modlich.ute@mh‐hannover.de.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23258554$$D View this record in MEDLINE/PubMed
BookMark eNp10V9r3SAYBnApLe3pn4t9gSHsZoOmfdWYmMtRup1BYbvYroNJ3qwWo5malXO9Lz5P0-5iUBBE3h-PynNKDp13SMgbBlcMgF_f43zFKw7lAdkwyetCCAmHZAO8hqJhojkhpzE-AEBTcnVMTrjgUklZbsifLc46mZ5adMn8NkFb-hMd0hS0iyMGaiLVMfre6IQDfTTpnvbWu-wiWuyT8e6Sdkuizqd1nJbJBzr6MOn9lBqXaTDa2t0aO1vt9mHBD_nWeE6ORm0jXjzvZ-THp9vvN9vi7uvnLzcf74peSFEWWkJTS4WdlFKxRg7QIbKqzKtEDlqiwqqqmnEAGKtaa1aqfFKD7rDjnRBn5P2aOwf_a8GY2snEHm1-DfoltkzUHGpVqibTd__RB7-E_OknBTVXACqrD6vqg48x4NjOwUw67FoG7b6ZNjfTPjWT7dvnxKWbcPgnX6rI4HoFj8bi7vWkdnv7bY38C9yfmyo
CODEN HPTLD9
CitedBy_id crossref_primary_10_1080_21678707_2020_1791082
crossref_primary_10_18632_oncotarget_23312
crossref_primary_10_1111_cas_12609
crossref_primary_10_1002_hep_26460
crossref_primary_10_1126_scitranslmed_aaf3838
crossref_primary_10_1111_jth_12714
crossref_primary_10_1016_j_ymthe_2017_04_002
crossref_primary_10_1002_hep4_1315
crossref_primary_10_1016_j_hoc_2017_06_009
crossref_primary_10_4254_wjh_v10_i2_277
crossref_primary_10_1038_mtm_2016_74
crossref_primary_10_1089_hum_2013_171
crossref_primary_10_1089_hum_2017_252
crossref_primary_10_2217_imt_14_108
crossref_primary_10_1089_hum_2017_053
crossref_primary_10_1093_hmg_ddu746
crossref_primary_10_1038_mt_2014_88
crossref_primary_10_1016_j_omtm_2017_10_002
crossref_primary_10_1038_mtna_2014_51
Cites_doi 10.1182/blood-2007-03-078493
10.1038/mt.2010.274
10.1182/blood-2010-08-302729
10.1182/blood-2010-09-306761
10.1182/blood-2004-11-4535
10.1182/blood-2010-08-303222
10.1126/science.1068893
10.1126/science.1142658
10.2174/156652308786848049
10.1172/JCI37630
10.1038/mt.2008.199
10.1038/nbt1216
10.1038/leu.2008.118
10.1038/nprot.2009.22
10.1016/0140-6736(92)92685-9
10.1038/83324
10.1089/hgtb.2012.175
10.1038/mt.2012.59
10.1016/j.ymthe.2005.08.012
10.1126/science.1105063
10.1038/mt.2010.119
10.1038/sj.gt.3302059
10.1038/nm.2338
10.1038/mt.2009.179
10.1038/ng0895-453
10.1126/science.1083413
10.1038/gt.2011.117
10.1038/sj.gt.3301541
10.1002/hep.24230
10.1016/j.ymthe.2005.06.482
10.1101/gad.7.12a.2298
10.1016/j.ymthe.2005.07.358
10.1038/sj.gt.3301447
10.1038/sj.mt.6300159
10.1371/journal.pbio.0020423
10.2174/138161211797247587
10.1038/nm1393
10.1371/journal.pbio.0020234
10.1002/hep.23682
10.1038/ng0396-266
10.1089/104303401750148649
10.1172/JCI35798
ContentType Journal Article
Copyright Copyright © 2012 American Association for the Study of Liver Diseases
Copyright © 2012 American Association for the Study of Liver Diseases.
Copyright_xml – notice: Copyright © 2012 American Association for the Study of Liver Diseases
– notice: Copyright © 2012 American Association for the Study of Liver Diseases.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7T5
7TM
7TO
7U9
H94
K9.
7X8
DOI 10.1002/hep.26204
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList AIDS and Cancer Research Abstracts

MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-3350
EndPage 408
ExternalDocumentID 3003105371
10_1002_hep_26204
23258554
HEP26204
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
186
1B1
1CY
1L6
1OB
1OC
1ZS
1~5
24P
31~
33P
3O-
3SF
3WU
4.4
4G.
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
7-5
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHHS
AALRI
AAONW
AAQFI
AAQQT
AAQXK
AASGY
AAXRX
AAXUO
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABMAC
ABOCM
ABPVW
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADOZA
ADXAS
ADZMN
ADZOD
AECAP
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFFNX
AFGKR
AFPWT
AFUWQ
AFZJQ
AHMBA
AIACR
AIURR
AIWBW
AJAOE
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
F00
F01
F04
F5P
FD8
FDB
FEDTE
FGOYB
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IHE
IX1
J0M
J5H
JPC
KBYEO
KQQ
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M41
M65
MJL
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
NQ-
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
R2-
RGB
RIG
RIWAO
RJQFR
ROL
RPZ
RWI
RX1
RYL
SEW
SSZ
SUPJJ
TEORI
UB1
V2E
V9Y
W2D
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
X7M
XG1
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7T5
7TM
7TO
7U9
H94
K9.
7X8
ID FETCH-LOGICAL-c3534-a509758eb5558195d0bee1641644e20a5e8e6669fd00f67aa14869f8dabeb2b33
IEDL.DBID DR2
ISSN 0270-9139
IngestDate Fri Aug 16 20:34:12 EDT 2024
Thu Oct 10 17:14:11 EDT 2024
Wed Oct 30 12:28:07 EDT 2024
Sat Sep 28 07:52:02 EDT 2024
Sat Aug 24 00:46:54 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Copyright © 2012 American Association for the Study of Liver Diseases.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3534-a509758eb5558195d0bee1641644e20a5e8e6669fd00f67aa14869f8dabeb2b33
Notes These authors contributed equally to this work.
Potential conflict of interest: Nothing to report.
Supported by grants of the Deutsche Forschungsgemeinschaft (SFB 738 and the Excellence Cluster REBIRTH).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23258554
PQID 1370728008
PQPubID 996352
PageCount 12
ParticipantIDs proquest_miscellaneous_1372078489
proquest_journals_1370728008
crossref_primary_10_1002_hep_26204
pubmed_primary_23258554
wiley_primary_10_1002_hep_26204_HEP26204
PublicationCentury 2000
PublicationDate July 2013
2013-Jul
2013-07-00
20130701
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: July 2013
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Hepatology (Baltimore, Md.)
PublicationTitleAlternate Hepatology
PublicationYear 2013
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Subscription Services, Inc
References 1993; 7
2011; 119
2011; 117
2002; 296
2006; 12
1992; 340
2006; 13
2011
2010; 18
2013; 24
2010; 467
2008; 16
1995; 10
2011; 53
2008; 8
2012; 19
2004; 2
2011; 17
1995; 1
2009; 119
1996; 223
2011; 19
2003; 10
2007; 15
1996; 12
2007; 317
2001; 7
2006; 24
2007; 110
2005; 105
2001; 8
2008; 118
2005; 308
2008; 22
2009; 4
2001; 12
2003; 300
2009; 506
2010; 52
2005; 12
2012; 20
2009; 17
23695955 - Hepatology. 2013 Jul;58(1):13-4
Kay (R5-42-20241029) 2001; 7
HaceinBeyAbina (R13-42-20241029) 2008; 118
Modlich (R10-42-20241029) 2005; 105
Kutner (R30-42-20241029) 2009; 4
CavazzanaCalvo (R21-42-20241029) 2010; 467
Kustikova (R32-42-20241029) 2009; 506
Heckl (R22-42-20241029) 2012; 20
Ferry (R1-42-20241029) 2011; 17
Bayer (R40-42-20241029) 2008; 16
Montini (R17-42-20241029) 2009; 119
Riviere (R9-42-20241029) 2011; 119
Mitchell (R18-42-20241029) 2004; 2
Wu (R15-42-20241029) 2003; 300
Schambach (R4-42-20241029) 2008; 8
Montini (R11-42-20241029) 2006; 24
Figueiredo (R24-42-20241029) 2010; 52
Lindstedt (R26-42-20241029) 1992; 340
Li (R45-42-20241029) 2011; 117
Donsante (R44-42-20241029) 2001; 8
Themis (R23-42-20241029) 2005; 12
Themis (R42-42-20241029) 2003; 10
Howe (R14-42-20241029) 2008; 118
Modlich (R16-42-20241029) 2009; 17
Brugman (R37-42-20241029) 2013; 24
Rothe (R6-42-20241029) 2012; 19
Nguyen (R7-42-20241029) 2005; 12
Overturf (R28-42-20241029) 1996; 12
Weber (R49-42-20241029) 2011; 17
Biffi (RU48-42-20241029) 2011; 117
Grompe (R27-42-20241029) 1995; 10
Klump (R34-42-20241029) 2001; 8
Grompe (R25-42-20241029) 1993; 7
Modlich (R38-42-20241029) 2008; 22
Grinshpun (R8-42-20241029) 2010; 18
Beard (R19-42-20241029) 2007; 15
Nathwani (R46-42-20241029) 2011; 19
Ott (R36-42-20241029) 2006; 12
Schmidt (R31-42-20241029) 2001; 12
Matrai (R47-42-20241029) 2011; 53
Li (R12-42-20241029) 2002; 296
Maetzig (R33-42-20241029) 2011; 117
Donsante (R43-42-20241029) 2007; 317
Brown (R39-42-20241029) 2007; 110
Schambach (R29-42-20241029) 2006; 13
Kustikova (R35-42-20241029) 2005; 308
Hematti (R20-42-20241029) 2004; 2
References_xml – volume: 117
  start-page: 3053
  year: 2011
  end-page: 3064
  article-title: Polyclonal fluctuation of lentiviral vector‐transduced and expanded murine hematopoietic stem cells
  publication-title: Blood
– volume: 19
  start-page: 425
  year: 2012
  end-page: 434
  article-title: Epidermal growth factor improves lentivirus vector gene transfer into primary mouse hepatocytes
  publication-title: Gene Ther
– volume: 7
  start-page: 2298
  year: 1993
  end-page: 2307
  article-title: Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice
  publication-title: Genes Dev
– volume: 12
  start-page: 743
  year: 2001
  end-page: 749
  article-title: Detection and direct genomic sequencing of multiple rare unknown flanking DNA in highly complex samples
  publication-title: Hum Gene Ther
– volume: 12
  start-page: 852
  year: 2005
  end-page: 859
  article-title: Therapeutic lentivirus‐mediated neonatal in vivo gene therapy in hyperbilirubinemic Gunn rats
  publication-title: Mol Ther
– volume: 8
  start-page: 811
  year: 2001
  end-page: 817
  article-title: Retroviral vector‐mediated expression of HoxB4 in hematopoietic cells using a novel coexpression strategy
  publication-title: Gene Ther
– volume: 15
  start-page: 1356
  year: 2007
  end-page: 1365
  article-title: Comparison of HIV‐derived lentiviral and MLV‐based gammaretroviral vector integration sites in primate repopulating cells
  publication-title: Mol Ther
– volume: 53
  start-page: 1696
  year: 2011
  end-page: 1707
  article-title: Hepatocyte‐targeted expression by integrase‐defective lentiviral vectors induces antigen‐specific tolerance in mice with low genotoxic risk
  publication-title: HEPATOLOGY
– volume: 7
  start-page: 33
  year: 2001
  end-page: 40
  article-title: Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics
  publication-title: Nat Med
– volume: 17
  start-page: 2516
  year: 2011
  end-page: 2527
  article-title: Retroviral vector‐mediated gene therapy for metabolic diseases: an update
  publication-title: Curr Pharm Des
– volume: 52
  start-page: 634
  year: 2010
  end-page: 643
  article-title: Quantifying growth and transformation frequency of oncogene‐expressing mouse hepatocytes in vivo
  publication-title: HEPATOLOGY
– volume: 110
  start-page: 4144
  year: 2007
  end-page: 4152
  article-title: A microRNA‐regulated lentiviral vector mediates stable correction of hemophilia B mice
  publication-title: Blood
– volume: 317
  start-page: 477
  year: 2007
  article-title: AAV vector integration sites in mouse hepatocellular carcinoma
  publication-title: Science
– volume: 12
  start-page: 763
  year: 2005
  end-page: 771
  article-title: Oncogenesis following delivery of a nonprimate lentiviral gene therapy vector to fetal and neonatal mice
  publication-title: Mol Ther
– volume: 19
  start-page: 876
  year: 2011
  end-page: 885
  article-title: Long‐term safety and efficacy following systemic administration of a self‐complementary AAV vector encoding human FIX pseudotyped with serotype 5 and 8 capsid proteins
  publication-title: Mol Ther
– year: 2011
  article-title: Lentiviral vector‐based insertional mutagenesis identifies new clinically relevant cancer genes involved in the pathogenesis of hepatocellular carcinoma
  publication-title: ESGCT abstract
– volume: 118
  start-page: 3132
  year: 2008
  end-page: 3142
  article-title: Insertional oncogenesis in 4 patients after retrovirus‐mediated gene therapy of SCID‐X1
  publication-title: J Clin Invest
– volume: 506
  start-page: 373
  year: 2009
  end-page: 390
  article-title: Retroviral insertion site analysis in dominant haematopoietic clones
  publication-title: Methods Mol Biol
– volume: 119
  start-page: 1107
  year: 2011
  end-page: 1116
  article-title: Hematopoietic stem cell engineering at a crossroads
  publication-title: Blood
– volume: 117
  start-page: 5332
  year: 2011
  end-page: 5339
  article-title: Lentiviral vector common integration sites in preclinical models and a clinical trial reflect a benign integration bias and not oncogenic selection
  publication-title: Blood
– volume: 22
  start-page: 1519
  year: 2008
  end-page: 1528
  article-title: Leukemia induction after a single retroviral vector insertion in Evi1 or Prdm16
  publication-title: Leukemia
– volume: 1
  start-page: 1148
  year: 1995
  end-page: 1154
  article-title: A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolaemia
  publication-title: Nat Med
– volume: 105
  start-page: 4235
  year: 2005
  end-page: 4246
  article-title: Leukemias following retroviral transfer of multidrug resistance 1 (MDR1) are driven by combinatorial insertional mutagenesis
  publication-title: Blood
– volume: 2
  start-page: e423
  year: 2004
  article-title: Distinct genomic integration of MLV and SIV vectors in primate hematopoietic stem and progenitor cells
  publication-title: PLoS Biol
– volume: 12
  start-page: 401
  year: 2006
  end-page: 409
  article-title: Correction of X‐linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1‐EVI1, PRDM16 or SETBP1
  publication-title: Nat Med
– volume: 118
  start-page: 3143
  year: 2008
  end-page: 3150
  article-title: Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID‐X1 patients
  publication-title: J Clin Invest
– volume: 8
  start-page: 1343
  year: 2001
  end-page: 1346
  article-title: Observed incidence of tumorigenesis in long‐term rodent studies of rAAV vectors
  publication-title: Gene Ther
– volume: 8
  start-page: 474
  year: 2008
  end-page: 482
  article-title: Clinical application of lentiviral vectors — concepts and practice
  publication-title: Curr Gene Ther
– volume: 308
  start-page: 1171
  year: 2005
  end-page: 1174
  article-title: Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking
  publication-title: Science
– volume: 17
  start-page: 1919
  year: 2009
  end-page: 1928
  article-title: Insertional transformation of hematopoietic cells by self‐inactivating lentiviral and gammaretroviral vectors
  publication-title: Mol Ther
– volume: 18
  start-page: 1592
  year: 2010
  end-page: 1598
  article-title: Neonatal gene therapy of glycogen storage disease type Ia using a feline immunodeficiency virus‐based vector
  publication-title: Mol Ther
– volume: 119
  start-page: 964
  year: 2009
  end-page: 975
  article-title: The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy
  publication-title: J Clin Invest
– volume: 24
  start-page: 68
  year: 2013
  end-page: 79
  article-title: Evaluating a ligation‐mediated PCR and pyrosequencing method for the detection of clonal contribution in polyclonal retrovirally transduced samples
  publication-title: Hum Gene Ther Methods
– volume: 117
  start-page: 3311
  year: 2011
  end-page: 3319
  article-title: Assessing the potential for AAV vector genotoxicity in a murine model
  publication-title: Blood
– volume: 300
  start-page: 1749
  year: 2003
  end-page: 1751
  article-title: Transcription start regions in the human genome are favored targets for MLV integration
  publication-title: Science
– volume: 12
  start-page: 266
  year: 1996
  end-page: 273
  article-title: Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I
  publication-title: Nat Genet
– volume: 223
  start-page: 116
  year: 1996
  end-page: 126
  article-title: Safety and feasibility of liver‐directed ex vivo gene therapy for homozygous familial hypercholesterolemia
  publication-title: Ann Surg
– volume: 467
  start-page: 318
  year: 2010
  end-page: 322
  article-title: Transfusion independence and HMGA2 activation after gene therapy of human beta‐thalassaemia
  publication-title: Nature
– volume: 24
  start-page: 687
  year: 2006
  end-page: 696
  article-title: Hematopoietic stem cell gene transfer in a tumor‐prone mouse model uncovers low genotoxicity of lentiviral vector integration
  publication-title: Nat Biotechnol
– volume: 2
  start-page: E234
  year: 2004
  article-title: Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences
  publication-title: PLoS Biol
– volume: 17
  start-page: 504
  year: 2011
  end-page: 509
  article-title: RGB marking facilitates multicolor clonal cell tracking
  publication-title: Nat Med
– volume: 10
  start-page: 1703
  year: 2003
  end-page: 1711
  article-title: Mutational effects of retrovirus insertion on the genome of V79 cells by an attenuated retrovirus vector: implications for gene therapy
  publication-title: Gene Ther
– volume: 4
  start-page: 495
  year: 2009
  end-page: 505
  article-title: Production, concentration and titration of pseudotyped HIV‐1‐based lentiviral vectors
  publication-title: Nat Protoc
– volume: 13
  start-page: 391
  year: 2006
  end-page: 400
  article-title: Equal potency of gammaretroviral and lentiviral SIN vectors for expression of O6‐methylguanine‐DNA methyltransferase in hematopoietic cells
  publication-title: Mol Ther
– volume: 340
  start-page: 813
  year: 1992
  end-page: 817
  article-title: Treatment of hereditary tyrosinaemia type I by inhibition of 4‐hydroxyphenylpyruvate dioxygenase
  publication-title: Lancet
– volume: 20
  start-page: 1187
  year: 2012
  end-page: 1195
  article-title: Lentiviral vector induced insertional haploinsufficiency of Ebf1 causes murine leukemia
  publication-title: Mol Ther
– volume: 296
  start-page: 497
  year: 2002
  article-title: Murine leukemia induced by retroviral gene marking
  publication-title: Science
– volume: 10
  start-page: 453
  year: 1995
  end-page: 460
  article-title: Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I
  publication-title: Nat Genet
– volume: 16
  start-page: 1968
  year: 2008
  end-page: 1976
  article-title: A large U3 deletion causes increased in vivo expression from a nonintegrating lentiviral vector
  publication-title: Mol Ther
– volume: 110
  start-page: 41444152
  year: 2007
  ident: R39-42-20241029
  article-title: A microRNAregulated lentiviral vector mediates stable correction of hemophilia B mice.
  publication-title: Blood
  doi: 10.1182/blood-2007-03-078493
  contributor:
    fullname: Brown
– volume: 19
  start-page: 876885
  year: 2011
  ident: R46-42-20241029
  article-title: Longterm safety and efficacy following systemic administration of a selfcomplementary AAV vector encoding human FIX pseudotyped with serotype 5 and 8 capsid proteins.
  publication-title: Mol Ther
  doi: 10.1038/mt.2010.274
  contributor:
    fullname: Nathwani
– volume: 117
  start-page: 33113319
  year: 2011
  ident: R45-42-20241029
  article-title: Assessing the potential for AAV vector genotoxicity in a murine model.
  publication-title: Blood
  doi: 10.1182/blood-2010-08-302729
  contributor:
    fullname: Li
– volume: 117
  start-page: 53325339
  year: 2011
  ident: RU48-42-20241029
  article-title: Lentiviral vector common integration sites in preclinical models and a clinical trial reflect a benign integration bias and not oncogenic selection.
  publication-title: Blood
  doi: 10.1182/blood-2010-09-306761
  contributor:
    fullname: Biffi
– volume: 105
  start-page: 42354246
  year: 2005
  ident: R10-42-20241029
  article-title: Leukemias following retroviral transfer of multidrug resistance 1 (MDR1) are driven by combinatorial insertional mutagenesis.
  publication-title: Blood
  doi: 10.1182/blood-2004-11-4535
  contributor:
    fullname: Modlich
– volume: 117
  start-page: 30533064
  year: 2011
  ident: R33-42-20241029
  article-title: Polyclonal fluctuation of lentiviral vectortransduced and expanded murine hematopoietic stem cells.
  publication-title: Blood
  doi: 10.1182/blood-2010-08-303222
  contributor:
    fullname: Maetzig
– volume: 296
  start-page: 497
  year: 2002
  ident: R12-42-20241029
  article-title: Murine leukemia induced by retroviral gene marking.
  publication-title: Science
  doi: 10.1126/science.1068893
  contributor:
    fullname: Li
– volume: 317
  start-page: 477
  year: 2007
  ident: R43-42-20241029
  article-title: AAV vector integration sites in mouse hepatocellular carcinoma.
  publication-title: Science
  doi: 10.1126/science.1142658
  contributor:
    fullname: Donsante
– volume: 8
  start-page: 474482
  year: 2008
  ident: R4-42-20241029
  article-title: Clinical application of lentiviral vectors concepts and practice.
  publication-title: Curr Gene Ther
  doi: 10.2174/156652308786848049
  contributor:
    fullname: Schambach
– volume: 119
  start-page: 964975
  year: 2009
  ident: R17-42-20241029
  article-title: The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy.
  publication-title: J Clin Invest
  doi: 10.1172/JCI37630
  contributor:
    fullname: Montini
– volume: 16
  start-page: 19681976
  year: 2008
  ident: R40-42-20241029
  article-title: A large U3 deletion causes increased in vivo expression from a nonintegrating lentiviral vector.
  publication-title: Mol Ther
  doi: 10.1038/mt.2008.199
  contributor:
    fullname: Bayer
– volume: 24
  start-page: 687696
  year: 2006
  ident: R11-42-20241029
  article-title: Hematopoietic stem cell gene transfer in a tumorprone mouse model uncovers low genotoxicity of lentiviral vector integration.
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1216
  contributor:
    fullname: Montini
– volume: 22
  start-page: 15191528
  year: 2008
  ident: R38-42-20241029
  article-title: Leukemia induction after a single retroviral vector insertion in Evi1 or Prdm16.
  publication-title: Leukemia
  doi: 10.1038/leu.2008.118
  contributor:
    fullname: Modlich
– volume: 4
  start-page: 495505
  year: 2009
  ident: R30-42-20241029
  article-title: Production, concentration and titration of pseudotyped HIV1based lentiviral vectors.
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2009.22
  contributor:
    fullname: Kutner
– volume: 340
  start-page: 813817
  year: 1992
  ident: R26-42-20241029
  article-title: Treatment of hereditary tyrosinaemia type I by inhibition of 4hydroxyphenylpyruvate dioxygenase.
  publication-title: Lancet
  doi: 10.1016/0140-6736(92)92685-9
  contributor:
    fullname: Lindstedt
– volume: 7
  start-page: 3340
  year: 2001
  ident: R5-42-20241029
  article-title: Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics.
  publication-title: Nat Med
  doi: 10.1038/83324
  contributor:
    fullname: Kay
– volume: 24
  start-page: 6879
  year: 2013
  ident: R37-42-20241029
  article-title: Evaluating a ligationmediated PCR and pyrosequencing method for the detection of clonal contribution in polyclonal retrovirally transduced samples.
  publication-title: Hum Gene Ther Methods
  doi: 10.1089/hgtb.2012.175
  contributor:
    fullname: Brugman
– volume: 20
  start-page: 11871195
  year: 2012
  ident: R22-42-20241029
  article-title: Lentiviral vector induced insertional haploinsufficiency of Ebf1 causes murine leukemia.
  publication-title: Mol Ther
  doi: 10.1038/mt.2012.59
  contributor:
    fullname: Heckl
– volume: 13
  start-page: 391400
  year: 2006
  ident: R29-42-20241029
  article-title: Equal potency of gammaretroviral and lentiviral SIN vectors for expression of O6methylguanineDNA methyltransferase in hematopoietic cells.
  publication-title: Mol Ther
  doi: 10.1016/j.ymthe.2005.08.012
  contributor:
    fullname: Schambach
– volume: 119
  start-page: 11071116
  year: 2011
  ident: R9-42-20241029
  article-title: Hematopoietic stem cell engineering at a crossroads.
  publication-title: Blood
  contributor:
    fullname: Riviere
– volume: 308
  start-page: 11711174
  year: 2005
  ident: R35-42-20241029
  article-title: Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking.
  publication-title: Science
  doi: 10.1126/science.1105063
  contributor:
    fullname: Kustikova
– volume: 18
  start-page: 15921598
  year: 2010
  ident: R8-42-20241029
  article-title: Neonatal gene therapy of glycogen storage disease type Ia using a feline immunodeficiency virusbased vector.
  publication-title: Mol Ther
  doi: 10.1038/mt.2010.119
  contributor:
    fullname: Grinshpun
– volume: 10
  start-page: 17031711
  year: 2003
  ident: R42-42-20241029
  article-title: Mutational effects of retrovirus insertion on the genome of V79 cells by an attenuated retrovirus vector: implications for gene therapy.
  publication-title: Gene Ther
  doi: 10.1038/sj.gt.3302059
  contributor:
    fullname: Themis
– volume: 17
  start-page: 504509
  year: 2011
  ident: R49-42-20241029
  article-title: RGB marking facilitates multicolor clonal cell tracking.
  publication-title: Nat Med
  doi: 10.1038/nm.2338
  contributor:
    fullname: Weber
– volume: 506
  start-page: 373390
  year: 2009
  ident: R32-42-20241029
  article-title: Retroviral insertion site analysis in dominant haematopoietic clones.
  publication-title: Methods Mol Biol
  contributor:
    fullname: Kustikova
– volume: 17
  start-page: 19191928
  year: 2009
  ident: R16-42-20241029
  article-title: Insertional transformation of hematopoietic cells by selfinactivating lentiviral and gammaretroviral vectors.
  publication-title: Mol Ther
  doi: 10.1038/mt.2009.179
  contributor:
    fullname: Modlich
– volume: 10
  start-page: 453460
  year: 1995
  ident: R27-42-20241029
  article-title: Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I.
  publication-title: Nat Genet
  doi: 10.1038/ng0895-453
  contributor:
    fullname: Grompe
– volume: 300
  start-page: 17491751
  year: 2003
  ident: R15-42-20241029
  article-title: Transcription start regions in the human genome are favored targets for MLV integration.
  publication-title: Science
  doi: 10.1126/science.1083413
  contributor:
    fullname: Wu
– volume: 19
  start-page: 425434
  year: 2012
  ident: R6-42-20241029
  article-title: Epidermal growth factor improves lentivirus vector gene transfer into primary mouse hepatocytes.
  publication-title: Gene Ther
  doi: 10.1038/gt.2011.117
  contributor:
    fullname: Rothe
– volume: 8
  start-page: 13431346
  year: 2001
  ident: R44-42-20241029
  article-title: Observed incidence of tumorigenesis in longterm rodent studies of rAAV vectors.
  publication-title: Gene Ther
  doi: 10.1038/sj.gt.3301541
  contributor:
    fullname: Donsante
– volume: 53
  start-page: 16961707
  year: 2011
  ident: R47-42-20241029
  article-title: Hepatocytetargeted expression by integrasedefective lentiviral vectors induces antigenspecific tolerance in mice with low genotoxic risk.
  publication-title: HEPATOLOGY
  doi: 10.1002/hep.24230
  contributor:
    fullname: Matrai
– volume: 12
  start-page: 852859
  year: 2005
  ident: R7-42-20241029
  article-title: Therapeutic lentivirusmediated neonatal in vivo gene therapy in hyperbilirubinemic Gunn rats.
  publication-title: Mol Ther
  doi: 10.1016/j.ymthe.2005.06.482
  contributor:
    fullname: Nguyen
– volume: 7
  start-page: 22982307
  year: 1993
  ident: R25-42-20241029
  article-title: Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice.
  publication-title: Genes Dev
  doi: 10.1101/gad.7.12a.2298
  contributor:
    fullname: Grompe
– volume: 12
  start-page: 763771
  year: 2005
  ident: R23-42-20241029
  article-title: Oncogenesis following delivery of a nonprimate lentiviral gene therapy vector to fetal and neonatal mice.
  publication-title: Mol Ther
  doi: 10.1016/j.ymthe.2005.07.358
  contributor:
    fullname: Themis
– volume: 467
  start-page: 318322
  year: 2010
  ident: R21-42-20241029
  article-title: Transfusion independence and HMGA2 activation after gene therapy of human betathalassaemia.
  publication-title: Nature
  contributor:
    fullname: CavazzanaCalvo
– volume: 8
  start-page: 811817
  year: 2001
  ident: R34-42-20241029
  article-title: Retroviral vectormediated expression of HoxB4 in hematopoietic cells using a novel coexpression strategy.
  publication-title: Gene Ther
  doi: 10.1038/sj.gt.3301447
  contributor:
    fullname: Klump
– volume: 15
  start-page: 13561365
  year: 2007
  ident: R19-42-20241029
  article-title: Comparison of HIVderived lentiviral and MLVbased gammaretroviral vector integration sites in primate repopulating cells.
  publication-title: Mol Ther
  doi: 10.1038/sj.mt.6300159
  contributor:
    fullname: Beard
– volume: 2
  start-page: e423
  year: 2004
  ident: R20-42-20241029
  article-title: Distinct genomic integration of MLV and SIV vectors in primate hematopoietic stem and progenitor cells.
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0020423
  contributor:
    fullname: Hematti
– volume: 17
  start-page: 25162527
  year: 2011
  ident: R1-42-20241029
  article-title: Retroviral vectormediated gene therapy for metabolic diseases: an update.
  publication-title: Curr Pharm Des
  doi: 10.2174/138161211797247587
  contributor:
    fullname: Ferry
– volume: 12
  start-page: 401409
  year: 2006
  ident: R36-42-20241029
  article-title: Correction of Xlinked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1EVI1, PRDM16 or SETBP1.
  publication-title: Nat Med
  doi: 10.1038/nm1393
  contributor:
    fullname: Ott
– volume: 2
  start-page: E234
  year: 2004
  ident: R18-42-20241029
  article-title: Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences.
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0020234
  contributor:
    fullname: Mitchell
– volume: 52
  start-page: 634643
  year: 2010
  ident: R24-42-20241029
  article-title: Quantifying growth and transformation frequency of oncogeneexpressing mouse hepatocytes in vivo.
  publication-title: HEPATOLOGY
  doi: 10.1002/hep.23682
  contributor:
    fullname: Figueiredo
– volume: 12
  start-page: 266273
  year: 1996
  ident: R28-42-20241029
  article-title: Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I.
  publication-title: Nat Genet
  doi: 10.1038/ng0396-266
  contributor:
    fullname: Overturf
– volume: 12
  start-page: 743749
  year: 2001
  ident: R31-42-20241029
  article-title: Detection and direct genomic sequencing of multiple rare unknown flanking DNA in highly complex samples.
  publication-title: Hum Gene Ther
  doi: 10.1089/104303401750148649
  contributor:
    fullname: Schmidt
– volume: 118
  start-page: 31323142
  year: 2008
  ident: R13-42-20241029
  article-title: Insertional oncogenesis in 4 patients after retrovirusmediated gene therapy of SCIDX1.
  publication-title: J Clin Invest
  contributor:
    fullname: HaceinBeyAbina
– volume: 118
  start-page: 31433150
  year: 2008
  ident: R14-42-20241029
  article-title: Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCIDX1 patients.
  publication-title: J Clin Invest
  doi: 10.1172/JCI35798
  contributor:
    fullname: Howe
SSID ssj0009428
Score 2.27252
Snippet Lentiviral (LV) vectors are promising tools for long‐term genetic correction of hereditary diseases. In hematopoietic stem cell gene therapies adverse events...
Lentiviral (LV) vectors are promising tools for long-term genetic correction of hereditary diseases. In hematopoietic stem cell gene therapies adverse events...
Abstract Lentiviral (LV) vectors are promising tools for long-term genetic correction of hereditary diseases. In hematopoietic stem cell gene therapies adverse...
UNLABELLEDLentiviral (LV) vectors are promising tools for long-term genetic correction of hereditary diseases. In hematopoietic stem cell gene therapies...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 397
SubjectTerms Animals
Clone Cells
Gene Dosage
Gene expression
Gene therapy
Genetic Therapy - adverse effects
Genetic Vectors
Hepatocytes - transplantation
Hepatology
Hydrolases - genetics
Lentivirus - genetics
Liver Neoplasms - genetics
Medical research
Mice
Mice, Inbred C57BL
Polymerase Chain Reaction - methods
Rodents
Title Hepatic lentiviral gene transfer is associated with clonal selection, but not with tumor formation in serially transplanted rodents
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhep.26204
https://www.ncbi.nlm.nih.gov/pubmed/23258554
https://www.proquest.com/docview/1370728008
https://search.proquest.com/docview/1372078489
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6KB_Hi-xFfrOLBg6lpks0DT-KDIigiCj0IYTfZYrGmpU0OevWPO7ObRFQEEXpISdo8Zmbn-7Kz3wAcYErFpBgKm_uZQILS8TGkAm4j2Yojt5MiB6C1w9c3QffBv-rxXgtO6rUwRh-ieeFGkaHHawpwIafHn6KhT2rc1mrqOP52vJDKuc7vPqWjYl_3VUXW5dDsclyrCjnucfPLr7noB8D8ild1wrlcgMf6Uk2dyXO7LGQ7ffum4vjPe1mE-QqIslPjOUvQUvkyzF5XU-0r8N5VVGydMkpLAyoFHjJ0NsUKDXXVhA2mTFTGVRmjF7osHRKwZ1PdXActfsRkWbB8VJjdRfkymrBmvSQb5MxEwPDV_O14SIbOGI7qVOCxCg-XF_dnXbvq2GCnHvd8WyD8QAKiJKmIdWKeOVIpJGT48ZXrCK4ihXwp7meO0w9CIZCM4bcoExIZvvS8NZjJR7naAOaGkrhXGkU-kiovi3ggA6lCwcMs7MeuBfu17ZKxEeZIjASzm-DjTPTjtGC7tmpSxeY0QWdxqCmXE1mw1-zGqKKpEpGrUamPcRE8-VFswbrxhuYsiEE5FfdZcKht-vvpk-7Frd7Y_PuhWzDn6o4bVBG8DTPFpFQ7iHsKuasd_AO45_2T
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xkEovQEuBlEddxKGHZskmcR4SF8RDacsihEDigiI78YpVl-xqNznQK3-cGTsJggoJIeWQKO-MJ_N99vgbgF0MqRgUQ2FzPxdIULo-ulTAbSRbceR2M-QANHe4dxYkV_7va349A_vNXBijD9F2uJFn6P81OTh1SO89qYbeqnFHy6nPwjy6u0eFG44unsSjYl9XVkXe5dD4ctzoCjnuXnvq82j0H8R8jlh1yDlZgpvmYU2myd9OVcpO9u-FjuN732YZFmssyg5M4_kEM6r4DB969Wj7CjwkivKtM0aRaUDZwEOG7U2xUqNdNWGDKRO1fVXOqE-XZUPC9myq6-ug0X8yWZWsGJVmd1ndjSasnTLJBgUzTjC8N5cdD8nWOcMfO-V4fIGrk-PLw8SuizbYmcc93xaIQJCDKElCYt2Y545UCjkZLr5yHcFVpJAyxf3ccfpBKATyMdyKciGR5EvPW4W5YlSodWBuKIl-ZVHkI6_y8ogHMpAqFDzMw37sWrDTGC8dG22O1Kgwuyl-zlR_Tgs2G7OmtXtO064XOlSXy4ks-N7uRsei0RJRqFGlj3ERP_lRbMGaaQ7tXRCGcsrvs-CHNurrt0-T43O98vXth36DheSyd5qe_jr7swEfXV2AgxKEN2GunFRqC2FQKbd1a38EfdABug
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BVkJcCi19hG5bF3Hg0CzZxM5DnFDLavsAIQQSh0qRHXvVFUt2tZsc2mv_ODN2EkSrSlWlHBLl4STjyXxfPP4GYB9DKgbFRPqCa4kEZcjRpWLhI9nK0nBYIAegucOnZ_H4in--FtdrcNTOhXH6EN0PN_IM-70mB1_oyeG9aOh3sxhYNfV1eMRjRL6EiC7utaMybgurIu0KaHg5a2WFgvCwO_VhMPoDYT4ErDbijLbgW3uvLtHkZlBXalD8_E3G8T8fZhseN0iUHbuu8wTWTPkUNk6bsfYd-DU2lG1dMIpLU8oFnjHsbYZVFuuaJZuumGysazSjP7qsmBGyZytbXQdN_p6pumLlvHK7q_p2vmTdhEk2LZlzgdkPd9nFjCytGX7WKcPjGVyNTi4_jP2mZINfRCLivkT8gQzEKJIRG2ZCB8oYZGS4cBMGUpjUIGHKJjoIJnEiJbIx3Eq1VEjxVRQ9h145L81LYGGiiHwVacqRVUU6FbGKlUmkSHQyyUIP9lrb5QunzJE7DeYwx9eZ29fpQb-1at445yofRklAVbmC1IN33W50KxorkaWZ1_aYENETTzMPXrje0LWCIFRQdp8HB9amf28-H5-c25Xdfz_0LWycfxzlXz-dfXkFm6GtvkHZwX3oVcvavEYMVKk3tq_fAX39AGk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hepatic+lentiviral+gene+transfer+is+associated+with+clonal+selection%2C+but+not+with+tumor+formation+in+serially+transplanted+rodents&rft.jtitle=Hepatology+%28Baltimore%2C+Md.%29&rft.au=Rittelmeyer%2C+Ina&rft.au=Rothe%2C+Michael&rft.au=Brugman%2C+Martijn+H.&rft.au=Iken%2C+Marcus&rft.date=2013-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0270-9139&rft.eissn=1527-3350&rft.volume=58&rft.issue=1&rft.spage=397&rft.epage=408&rft_id=info:doi/10.1002%2Fhep.26204&rft.externalDBID=10.1002%252Fhep.26204&rft.externalDocID=HEP26204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-9139&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-9139&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-9139&client=summon